JP3901764B2 - Method for producing aluminum alloy sheet for foil - Google Patents

Method for producing aluminum alloy sheet for foil Download PDF

Info

Publication number
JP3901764B2
JP3901764B2 JP10048496A JP10048496A JP3901764B2 JP 3901764 B2 JP3901764 B2 JP 3901764B2 JP 10048496 A JP10048496 A JP 10048496A JP 10048496 A JP10048496 A JP 10048496A JP 3901764 B2 JP3901764 B2 JP 3901764B2
Authority
JP
Japan
Prior art keywords
foil
mold
aluminum alloy
release agent
movable mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10048496A
Other languages
Japanese (ja)
Other versions
JPH09285847A (en
Inventor
英幹 松本
耕史 大山
義朗 戸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP10048496A priority Critical patent/JP3901764B2/en
Publication of JPH09285847A publication Critical patent/JPH09285847A/en
Application granted granted Critical
Publication of JP3901764B2 publication Critical patent/JP3901764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、箔地用アルミニウム合金板の製造方法であり、より詳しくはこの合金板を連続鋳造圧延法によって製造する場合、この連続鋳造条件の改良により箔地用アルミニウム合金板としての使用を可能とする製造方法に関するものである。
【0002】
【従来の技術】
一般に箔地用アルミニウム合金板の製造方法としては、アルミニウム合金溶湯を半連続鋳造法により鋳造したスラブを均質化熱処理後、熱間圧延及び冷間圧延(必要に応じて焼鈍)を施すか若しくはアルミニウム合金溶湯を可動鋳型(図4に示す水冷したドラム4、5又は図5に示す水冷したベルト8、9)間に連続的に供給して、板厚30mm以下の鋳造板とし、その後これを冷間圧延(必要に応じその前、中、後に焼鈍を行う場合もある)して、所望のサイズおよび性能を有した板材(箔地)とすることが一般的である。
このように製造された箔地は、その後常法に従って箔圧延され、厚さ6〜10μm程度の箔とされる。
【0003】
しかしながら、箔は表面光沢面および艶消し面の外観の光沢度の均一性が要求されるため、箔地の金属組織の均質性が表面品質に大きく影響を及ぼす。すなわち金属組織にばらつきがあると材料の硬さがばらつき、箔圧延時に形成するオイルピットの分布状態がばらつくこととなり光沢面が帯状あるいは斑状に光沢むらとなり外観不良となる。
また、艶消し面においても材料の硬さがばらつき、艶消し状態がばらつくこととなり外観不良となる。
【0004】
この金属組織のばらつきを引き起こす原因の一つとして、鋳造組織の不均一が挙げられる。
例えば半連続鋳造法により鋳造されたスラブの鋳造組織は、一般に鋳肌から内部に移るに従いチル層、粗大セル層、微細セル層と組織が変化する。ここでチル層と粗大セル層を併せた部分は一般に額縁と呼ばれ不安定な金属組織となり表面品質に悪影響を及ぼすため、面削により削り落とすことが一般的である。
この方法によるアルミニウム合金板の製造は、このように面削したスラブを均質化熱処理および熱間圧延し、続いて冷間圧延(必要により焼鈍)して、所定の板としている。
【0005】
また連続鋳造圧延法は、鋳塊の均質化熱処理および熱間圧延工程が省略され、歩留りおよびエネルギー効率の向上等において非常に有効な方法であるとともに、溶湯の冷却速度を早くすることができるため合金成分が強制固溶され易く、かつ、第2相粒子が微細になり易いので、一般に強度優れた箔が得られるメリットがある。
【0006】
しかしながら、この連続鋳造圧延法は、その製造の基本原理から供給される溶湯に対し鋳型が連続的に移動するため、鋳造時の溶湯と可動鋳型の接触が不安定である。このために溶湯の凝固速度にばらつきを生じ易くこれが原因で鋳造組織が不均一となるという問題がある。この鋳造板の表面欠陥の代表的な例として一般に「リップルマーク」若しくは「レベルライン」と呼ばれているものがある。これは鋳造コイルの長手方向において数mmピッチで周期的に鋳造組織が変動するため生ずるものと考えられ周期的な表面欠陥として現れる。また可動鋳型に塗布する離型剤等のばらつきによるものとも考えられるアットランダムな表面欠陥として現れる場合もある。本明細書においては、鋳造板のこれらの表面欠陥を総称してリップルマークということとする。
この鋳造板の表面欠陥の存在する部分は、鋳造板の鋳造組織も不均一であり、これによって製造された箔地用Al合金圧延板及び最終製品である箔においても、組織が不均一となり、表面に光沢むらが発生して外観不良となる。この鋳造組織の不均一な部分を半連続鋳造法同様面削により落とすことは、板厚が30mm以下程度で薄く工程的にも困難であり、また通常この組織変動は板厚内部でも数mmの深さ若しくは場合によっては板厚中心部まで影響しているため、歩留まりを考えると現実的な方法ではない。
【0007】
このように連続鋳造圧延法は、半連続鋳造法に比べ生産効率および特性の面からは魅力ある方法であるが、鋳造組織の不均一が生じこの部分を除去することも困難であるため、アルミニウム合金箔の内、表面光沢の均一性を厳しく要求される箔への適用ができなかった。
【0008】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解決することであり、具体的には光沢面および艶消し面において光沢の均一性の高い箔が得られる箔地用アルミニウム合金板の連続鋳造圧延法による製造において、この合金板の製造に適した均一で微細な鋳造組織を有する鋳造板を得るための鋳造条件を見出し、箔地用アルミニウム合金板として使用可能な製造方法を提供することである。
【0009】
【課題を解決するための手段】
前記課題を解決するための請求項1の発明は、箔地用アルミニウム合金板の連続鋳造圧延法による製造方法であり、Feを0.2〜2.8wt%、Siを0.05〜0.3wt%含有し、残部がAlと不可避的不純物からなるアルミニウム合金溶湯を可動鋳型間に供給して厚さ30mm以下の鋳造板に連続鋳造し、これを冷間圧延、必要に応じて中間焼鈍し、さらに最終冷間圧延する製造方法において、前記鋳造板に連続鋳造する際、まず可動鋳型の表面に離型剤を塗布し、続いてその塗布した離型剤を、当該可動鋳型の移動に対し左右に揺動するワイパーまたは前記可動鋳型の移動に合わせて回転しかつ当該可動鋳型の移動に対し左右に揺動するロール状のワイパーで均一にしながら、連続鋳造することを特徴としている。
【0010】
また、請求項2の発明は、箔地用アルミニウム合金板の連続鋳造圧延法による製造方法であり、Feを0.2〜2.8wt%、Siを0.05〜0.3wt%含有し、残部がAlと不可避的不純物からなるアルミニウム合金溶湯を可動鋳型間に供給して厚さ30mm以下の鋳造板に連続鋳造し、これを冷間圧延、必要に応じて中間焼鈍し、さらに最終冷間圧延する製造方法において、前記鋳造板に連続鋳造する際、まず可動鋳型の表面を回転ブラシで清浄にした後、当該可動鋳型の表面に離型剤を塗布し、続いてその塗布した離型剤を、当該可動鋳型の移動に対し左右に揺動するワイパーまたは前記可動鋳型の移動に合わせて回転しかつ当該可動鋳型の移動に対し左右に揺動するロール状のワイパーで均一にしながら、連続鋳造することを特徴としている。
【0011】
【発明の実施の形態】
本発明について、以下詳細に説明する。
本発明の各構成要件のうち、まずAl合金組成について説明する。
本発明では、箔地用合金としてFeを0.2〜2.8wt%、Siを0.05〜0.3wt%含有し、残部がAlと不可避的不純物からなるアルミニウム合金を用いる。
Feは、連続鋳造時にAl─Fe系の金属間化合物(第2相粒子)として微細に晶出し、分散する。このAl─Fe系の微細粒子は、強度向上の効果がある。これらの効果を得るには、Feの添加量は0.2wt%以上必要であるが、2.8wt%を越えると効果が飽和するばかりでなく耐蝕性が低下する。従ってFeは0.2〜2.8wt%の範囲で添加する。
【0012】
Siは、Feと共存することによって強度向上の効果を示す。この効果を得るには、Siの添加は0.05wt%である必要がある。一方Siの添加が0.3wt%を越えると固体Si量が多くなり、箔圧延工程での硬化を引き起こしピンホールの発生が多くなる。従って、Siは0.05〜0.3wt%の範囲で添加する。
【0013】
その他の不純物としては、通常のアルミニウム地金に含まれているCu、Mn、Mg、Zn等があるが、これらは0.05wt%程度以下である場合は、特に問題はない。また、任意的な添加元素として、TiおよびBの各0.1wt%以下の含有は、連続鋳造時の凝固組織の微細化に有効である。
【0014】
次に、鋳造以降の製造条件について説明する。
本発明では箔地用アルミニウム合金を鋳造するにあたり、溶湯から直接板厚30mm以下の鋳造板に鋳造する連続鋳造圧延法を用いる。ここで板厚を30mm以下とした理由として、前にも述べたように連続鋳造圧延法では溶湯の冷却速度を早くすることができるため合金成分が強制固溶され易く、かつ、第2相粒子が微細になり易いためこれにより材料特性として各種メリットが得られるが、板厚が30mmを越えると強制固溶に十分な冷却速度が得られず、金属間化合物が粗大化するので好ましくない。また、板厚があまり厚いと下工程での圧延回数が多くなり経済的でない。したがって板厚は薄ければ薄いほど良いが、好ましくは15mm以下、さらに好ましくは10mm以下が良い。
【0015】
なお、ここで対象としている連続鋳造圧延法における連続鋳造は、図4に示す双ドラム4、5を用いたハンター法、3C 法、図5に示す双ベルト8、9を用いたヘズレー法等が挙げられるが、本発明ではこれらのうちの特定の方法に何ら限定されるものではない。
【0016】
本発明の連続鋳造について、図1〜図5を用いて説明する。
図1は、双ドラム4、5による可動鋳型表面に、まず離型剤塗布装置20により離型剤21を塗布し、次にこれをワイパー30で均一にする様子を示す説明図である。
図2及び図3は、それぞれ双ドラム4、5及びローラ10〜13によって駆動させる双ベルト8、9による可動鋳型表面を、まず回転ブラシ40で清浄にし、次に離型剤塗布装置20により離型剤21を塗布し、続いてこれをワイパー30で均一にする様子を示す説明図である。
図4及び図5は、それぞれ双ドラム4、5及び双ベルト8、9による可動鋳型装置で連続鋳造板6を製造する一例を示す説明図である。
【0017】
まず所望の合金成分に調整されたアルミニウム合金溶湯3は、図示しない溶解保持炉からトラフを通じて一旦湯溜まり(通常ヘッドボックスなどと呼ばれている)1に溜められ、その後鋳造ノズル2を通って水冷された可動鋳型(ドラム4、5、ベルト8、9)へと導かれる。なお、6は鋳造板である。
溶湯ノズル2から出た溶湯3は、鋳型に接触し冷却固化されるが、本発明を行うに当たって、この時の溶湯と鋳型の濡れ性が重要であり、これが不均一であると鋳造組織変動を起こすことを見出した。
すなわち溶湯と鋳型の濡れ性が不均一の場合、溶湯と鋳型の接触状態が部分部分で異なってしまうためこれに準じて溶湯の凝固速度が異なり、これにより鋳造組織のばらつきが生じる。
【0018】
通常連続鋳造には、前記のごとく鋳造鋳型としてドラム、ベルトおよびブロック等の連続して鋳造することを可能にした可動鋳型が用いられており、これらの鋳型にはアルミニウムもしくはアルミニウム合金との焼き付き防止のために離型剤が塗布される。この離型剤にはカーボンを主原料とした溶液が一般的に用いられているが、この塗布方法としては遠隔から鋳型に対しスプレー等を用いて塗布する方法がとられている。
【0019】
しかしこの方法では鋳型に塗布された離型剤は、マクロ的には均一であるとしても、ミクロ的にみるとスプレーで霧状になった離型剤の粒子がランダムに配列しているにすぎず、鋳型表面には離型剤が付着している部分と付着していない部分が生じることとなる。
このような鋳型表面のミクロ的な違いでも溶湯と鋳型の濡れ性を不均一にし、前述の理由により鋳造組織が変動する。
また、鋳造後の鋳型表面には、アルミ粉、離型剤等が不均一に残っており、これらも鋳型表面の濡れ性を不均一にする原因となる。
【0020】
そこで、請求項1の本発明では、これを解決するために、可動鋳型に対し、直接接触させたワイパー30を使用し、このワイパー30を左右に揺動させる。
図1に示すように、ワイパー30は、離型剤塗布装置20例えばスプレー装置等により鋳型に離型剤21を塗布した後に用い、これを鋳型表面に接触させて左右に揺動させることにより塗布後の離型剤21が均一に伸ばされ、濡れ性が均一な鋳型表面となすことができる。また、このワイパーは鋳型に接触しているために、離型剤を均一に伸ばすとともに鋳型表面に付着した異物も同時に除去することができ、常に均一な鋳型表面を得ることができる。
なお、図1の離型剤塗布装置20は、一例としてスプレー装置でスプレーにより塗布する様子を示したが、これに限定されるものではなく、鋳型表面に接触させた空隙を有する部材(例えば、ネル状の布等に離型剤を含浸させたもの)で塗布してもよい。
【0021】
前述のようにワイパー30を鋳型の移動に対し左右に揺動させることは、濡れ性を均一にするために有効である。
ワイパーの材質には、耐熱ゴム等の熱および摩擦に強いものを使用すればよいが、ネル状の布等液体を含浸させることができるものを使用すると、余分に塗布された離型剤をこの部分で吸い取ることができるとともに、この部分へ外部から離型剤を供給することでワイパーにより離型剤を直接塗布することも可能となり、上記スプレーでの離型剤塗布よりもより均一な塗布が可能となる。
さらに、前記ワイパーをロール状にして鋳型の移動に併せ回転させると、摩擦による鋳型表面のいたみ軽減の上からさらに好ましい。この時鋳型の移動とロールの回転に相対速度をつけることで、これらの間に摩擦を生じさせることは、離型剤をより均一に伸ばすために有効な方法である。
【0022】
また、請求項2の本発明では、図2、3に示すように、まず回転ブラシ40で鋳型表面に付着した異物を除去して鋳型表面を清浄にした後、離型剤塗布装置20(例えばスプレー等)で離型剤21を塗布し、その塗布した離型剤21を前記と同様な構成のワイパー30で均一にしながら、連続鋳造するものである。
異物の付着は、鋳型表面の濡れ性を不均一にすることは前述の通りであるが、本発明ではこれを回転ブラシ40により除去することで均一な濡れ性の鋳型表面を達成することができる。
ブラシ材質は、スチールワイヤー、ステンレスワイヤー、ナイロン等の鋳型表面にキズを付けることなく異物のみを落とすものを用いれば何ら問題なく本発明の効果を得ることができる。
なお、この回転ブラシ40と同時に前述のようなワイパー30を用いることは、鋳型表面の濡れ性を均一にし、ひいては均一微細な鋳造組織を得るためにはより効果のある方法である。
【0023】
なお、鋳造速度、鋳型の冷却温度および鋳型ギャップ等のその他の鋳造条件は、目的とする製品サイズ、特性および設備能力等を考慮して設定すればよく、本発明では何ら規定するものではない。
【0024】
上記のように鋳造された鋳造板6は、必要に応じてその直後で圧延が行われるか若しくはそのままコイルに巻取られる。さらにその後冷間圧延により所望のサイズまで圧延(必要に応じてその前、中、後において1 〜数回の焼鈍を行う)されて箔地用アルミニウム合金板とし、さらにこれを常法に従って箔圧延し、目的に応じた厚さの箔とされる。
【0025】
箔地用アルミニウム合金板は、箔として使用する場合、表面光沢面および艶消し面の外観の均一性が要求され、箔地の金属組織の均質性が箔の表面品質に大きく影響を及ぼす。この金属組織にばらつきがあると光沢面および艶消し面において光沢度のばらつきを生じ、外観不良となる。
連続鋳造圧延法で製造した鋳造板、更に箔地用アルミニウム合金板の表面に前述のリップルマーク(この部分は金属組織が不均一である)が発生すると、最終製品である箔での外観の均一性が得られないが、前記のごとく製造した本発明に係る箔地用アルミニウム合金板及び箔は、後に記す実施例でも明らかなごとく、箔での外観の均一性が得られ、箔として充分に使用できるものである。
【0026】
【実施例】
表1に示した化学組成のアルミニウム合金溶湯を本発明例、比較例及び従来例として図1、図2に示す双ドラム4、5を用いたハンター法によりそれぞれ板厚7mmおよび10mmの鋳造板6とした。
なおこれらの鋳造を行うにあたり、離型剤塗布装置20(スプレー装置)での離型剤塗布、ワイパー30、回転ブラシ40を表1に示すように組み合わせ、本発明例、比較例、従来例とした。
なお、上記以外の鋳造条件は以下のとおりである。
・離型剤 :微粉カーボンを水に溶いた溶液
・鋳造板の板幅:1300mm
・溶湯温度 :700℃
・鋳造速度 :1000mm/min.
・冷却速度 :300〜700℃/sec.
これら鋳造板6を表1に示した条件で、冷間圧延および一部中間焼鈍を行い、さらに冷間圧延を施して0.4mmの箔地用アルミニウム合金板を製造した。
これを更に常法にて箔圧延して、厚さ15μmの片面艶消しの箔とした。
なお表1中、装置の組み合わせ1ブラシ、2スプレー、3ワイパーは、可動鋳型表面をこの順序で処理し、可動鋳型に溶湯を供給することを意味している。
【0027】
【表1】

Figure 0003901764
【0028】
これらの箔について、光沢面および艶消し面の光沢度の均一性を以下の要領で評価した。
なお、リップルマークの有無、鋳造組織の均一性は、鋳造板について以下の要領で評価した。
評価方法は、以下の通りである。
(1)鋳造板についてのリップルマークの有無
鋳造板の表面状態を目視にて観察した。
(2)鋳造組織の均一性
鋳造板の表面および長手方向断面について、研磨後エッチングし、鋳造組織の均一性を顕微鏡で観察し、均一性が優れているもの◎、良好なもの○、やや劣っているもの△、劣っているもの×として判定を行った。
(3)箔の外観の光沢度の均一性
外観を目視により観察し、光沢の均一性が優れているもの◎、良好なもの○、やや劣っているもの△、劣っているもの×として判定を行った。
これらの試験結果を表2に記した。
【0029】
【表2】
Figure 0003901764
【0030】
表1、表2から明らかなように、本発明範囲の条件で製造したアルミニウム合金鋳造板は、表面および組織欠陥がなく、またこの鋳造板から製造された箔は、外観の均一性に優れており、箔として使用可能であることが確認された。
【0031】
【発明の効果】
以上の説明から明らかな如く、本発明によれば箔地用アルミニウム合金板を連続鋳造圧延法で製造しても、この合金板の製造に適した均一で微細な鋳造組織を有する鋳造板を得ることが出来、箔地用アルミニウム合金板としての使用を可能とするもので、工業上顕著な効果を有するものである。
【図面の簡単な説明】
【図1】双ドラムによる可動鋳型表面に離型剤を塗布し、これをワイパーで均一にする様子を示す説明図である。
【図2】双ドラムによる可動鋳型表面を回転ブラシで清浄にした後、離型剤を塗布し、これをワイパーで均一にする様子を示す説明図である。
【図3】双ベルトによる可動鋳型表面を回転ブラシで清浄にした後、離型剤を塗布し、これをワイパーで均一にする様子を示す説明図である。
【図4】双ドラムによる可動鋳型装置(ハンター法)で連続鋳造板を製造する一例を示す説明図である。
【図5】双ベルトによる可動鋳型装置(ヘズレー法)で連続鋳造板を製造する一例を示す説明図である。
【符号の説明】
1 湯溜まり(ヘッドボックス)
2 鋳造ノズル
3 溶湯
4、5 ドラム(可動鋳型)
6 鋳造板
8、9 ベルト(可動鋳型)
10〜13 ローラ
20 離型剤塗布装置(一例としてスプレー装置)
21 離型剤
30 ワイパー装置
40 回転ブラシ[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for producing an aluminum alloy plate for foil, and more specifically, when this alloy plate is produced by a continuous casting and rolling method, it can be used as an aluminum alloy plate for foil by improving this continuous casting condition. It relates to a manufacturing method.
[0002]
[Prior art]
In general, as a method for producing aluminum alloy sheets for foil, a slab cast from a molten aluminum alloy by a semi-continuous casting method is subjected to homogenization heat treatment and then hot-rolled and cold-rolled (annealed as necessary) or aluminum. The molten alloy is continuously supplied between the movable molds (water-cooled drums 4 and 5 shown in FIG. 4 or water-cooled belts 8 and 9 shown in FIG. 5) to form a cast plate having a thickness of 30 mm or less. It is common to carry out hot rolling (there may be annealing before, during, and after if necessary) to obtain a plate material (foil) having a desired size and performance.
The foil fabric thus manufactured is then rolled in accordance with a conventional method to obtain a foil having a thickness of about 6 to 10 μm.
[0003]
However, since the foil is required to have uniform glossiness of the appearance of the glossy surface and the matte surface, the homogeneity of the metal structure of the foil greatly affects the surface quality. That is, if the metal structure varies, the hardness of the material varies, and the distribution of oil pits formed at the time of foil rolling varies.
Further, the hardness of the material also varies on the matte surface, and the matte state varies, resulting in poor appearance.
[0004]
One of the causes for the variation in the metal structure is non-uniformity in the cast structure.
For example, the cast structure of a slab cast by the semi-continuous casting method generally changes the structure of the chill layer, coarse cell layer, and fine cell layer as it moves from the casting surface to the inside. Here, the combined portion of the chill layer and the coarse cell layer is generally called a picture frame and becomes an unstable metal structure, which adversely affects the surface quality. Therefore, it is generally shaved off by chamfering.
In the production of an aluminum alloy plate by this method, the slab chamfered in this way is subjected to homogenization heat treatment and hot rolling, followed by cold rolling (annealing if necessary) to obtain a predetermined plate.
[0005]
In addition, the continuous casting and rolling method eliminates the ingot homogenization heat treatment and hot rolling steps, and is a very effective method for improving the yield and energy efficiency, and can increase the cooling rate of the molten metal. Since the alloy components are easily forcibly dissolved and the second phase particles are likely to be fine, there is a merit that a foil having excellent strength is generally obtained.
[0006]
However, in this continuous casting and rolling method, since the mold moves continuously with respect to the molten metal supplied from the basic principle of production, the contact between the molten metal and the movable mold during casting is unstable. For this reason, there is a problem that the solidification rate of the molten metal tends to vary, and this causes the cast structure to be non-uniform. As a typical example of the surface defect of the cast plate, there is one generally called “ripple mark” or “level line”. This is considered to occur because the cast structure periodically varies at a pitch of several mm in the longitudinal direction of the cast coil, and appears as a periodic surface defect. It may also appear as an at-random surface defect that may be due to variations in the release agent applied to the movable mold. In the present specification, these surface defects of the cast plate are collectively referred to as a ripple mark.
The part where the surface defects of the cast plate exist, the cast structure of the cast plate is also non-uniform, and the foil alloy Al foil rolled sheet and the foil that is the final product produced thereby have a non-uniform structure, Uneven appearance of gloss occurs on the surface, resulting in poor appearance. It is difficult to remove the non-uniform portion of the cast structure by chamfering as in the semi-continuous casting method, because the plate thickness is about 30 mm or less and difficult in terms of process. Since it affects the depth or the center of the plate thickness depending on the case, it is not a realistic method considering the yield.
[0007]
As described above, the continuous casting and rolling method is an attractive method in terms of production efficiency and characteristics as compared with the semi-continuous casting method, but it is difficult to remove this portion due to non-uniform cast structure and it is difficult to remove this part. Among the alloy foils, it was not possible to apply to foils that strictly required surface gloss uniformity.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, specifically, continuous casting and rolling of an aluminum alloy sheet for foils that can obtain a highly uniform foil on the glossy surface and the matte surface. In the production by the method, to find a casting condition for obtaining a cast plate having a uniform and fine cast structure suitable for the production of this alloy plate, and to provide a production method usable as an aluminum alloy plate for foils .
[0009]
[Means for Solving the Problems]
Invention of Claim 1 for solving the said subject is a manufacturing method by the continuous casting rolling method of the aluminum alloy board for foil, Fe is 0.2-2.8 wt%, Si is 0.05-0. Contain 3wt% of aluminum alloy molten metal with Al and inevitable impurities remaining between the movable molds and continuously cast it into a cast plate with a thickness of 30mm or less. This is cold-rolled and intermediate-annealed as necessary. Further, in the manufacturing method of final cold rolling, when continuously casting on the cast plate, first, a release agent is applied to the surface of the movable mold, and then the applied release agent is applied to the movement of the movable mold. It is characterized in that continuous casting is performed while uniformly rotating with a wiper that swings to the left or right or a roll-shaped wiper that rotates in accordance with the movement of the movable mold and swings to the left or right with respect to the movement of the movable mold .
[0010]
Further, the invention of claim 2 is a manufacturing method by a continuous casting and rolling method of an aluminum alloy sheet for foil, comprising 0.2 to 2.8 wt% Fe, 0.05 to 0.3 wt% Si, Supply the molten aluminum alloy consisting of Al and inevitable impurities between the movable molds and continuously cast it into a cast plate with a thickness of 30 mm or less. This is cold-rolled, subjected to intermediate annealing as necessary, and finally cold In the production method of rolling, when continuously casting the cast plate, first, the surface of the movable mold is cleaned with a rotating brush, and then the mold release agent is applied to the surface of the movable mold, and then the applied mold release agent is applied. Is continuously cast with a wiper that swings left and right with respect to the movement of the movable mold or a roll-shaped wiper that rotates with the movement of the movable mold and swings with respect to the movement of the movable mold. Special to do It is set to.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
Among the constituent features of the present invention, the Al alloy composition will be described first.
In the present invention, an aluminum alloy containing 0.2 to 2.8 wt% of Fe and 0.05 to 0.3 wt% of Si as the alloy for foil is used, with the balance being Al and inevitable impurities.
Fe is crystallized and dispersed finely as an Al—Fe-based intermetallic compound (second phase particles) during continuous casting. The Al—Fe fine particles have an effect of improving the strength. In order to obtain these effects, the amount of Fe added is 0.2 wt% or more. However, if it exceeds 2.8 wt%, not only the effects are saturated but also the corrosion resistance is lowered. Therefore, Fe is added in the range of 0.2 to 2.8 wt%.
[0012]
Si exhibits an effect of improving strength by coexisting with Fe. In order to obtain this effect, the addition of Si needs to be 0.05 wt%. On the other hand, if the addition of Si exceeds 0.3 wt%, the amount of solid Si increases, causing hardening in the foil rolling process and increasing the number of pinholes. Therefore, Si is added in the range of 0.05 to 0.3 wt%.
[0013]
Other impurities include Cu, Mn, Mg, Zn and the like contained in ordinary aluminum ingots, but there is no particular problem when these are about 0.05 wt% or less. In addition, the inclusion of 0.1 wt% or less of Ti and B as optional additive elements is effective for refining the solidification structure during continuous casting.
[0014]
Next, manufacturing conditions after casting will be described.
In the present invention, when casting the aluminum alloy for foil, a continuous casting and rolling method is used in which the molten metal is directly cast on a cast plate having a thickness of 30 mm or less. Here, the reason why the plate thickness is 30 mm or less is that, as described above, in the continuous casting and rolling method, the cooling rate of the molten metal can be increased, so that the alloy components are easily forcibly dissolved, and the second phase particles However, if the plate thickness exceeds 30 mm, a cooling rate sufficient for forced solid solution cannot be obtained and the intermetallic compound becomes coarse, which is not preferable. On the other hand, if the plate thickness is too thick, the number of rolling operations in the lower process increases, which is not economical. Accordingly, the thinner the plate thickness, the better. However, it is preferably 15 mm or less, more preferably 10 mm or less.
[0015]
In addition, the continuous casting in the continuous casting and rolling method which is the object here is the Hunter method using the twin drums 4 and 5 shown in FIG. 4, the 3C method, the Hazeley method using the twin belts 8 and 9 shown in FIG. However, the present invention is not limited to any particular method.
[0016]
The continuous casting of this invention is demonstrated using FIGS.
FIG. 1 is an explanatory diagram showing a state in which a release agent 21 is first applied to the surface of a movable mold by twin drums 4 and 5 by a release agent application device 20 and then uniformed by a wiper 30.
2 and 3 show that the movable mold surface by the twin belts 8 and 9 driven by the twin drums 4 and 5 and the rollers 10 to 13, respectively, is first cleaned by the rotating brush 40 and then released by the release agent coating device 20. It is explanatory drawing which shows a mode that the type | mold agent 21 is apply | coated and this is made uniform with the wiper 30 continuously.
4 and 5 are explanatory views showing an example in which the continuous cast plate 6 is manufactured by the movable mold apparatus using the twin drums 4 and 5 and the twin belts 8 and 9, respectively.
[0017]
First, molten aluminum alloy 3 adjusted to a desired alloy composition is temporarily stored in a hot water pool (usually called a head box) 1 through a trough from a melting and holding furnace (not shown), and then water-cooled through a casting nozzle 2. Is guided to the movable mold (drums 4, 5, belts 8, 9). Reference numeral 6 denotes a cast plate.
The molten metal 3 coming out of the molten metal nozzle 2 comes into contact with the mold and is cooled and solidified. However, in carrying out the present invention, the wettability between the molten metal and the mold at this time is important. I found out that it would happen.
That is, when the wettability between the molten metal and the mold is not uniform, the contact state between the molten metal and the mold is different in the partial portions, and accordingly, the solidification rate of the molten metal differs accordingly, resulting in variations in the cast structure.
[0018]
Usually, continuous casting uses movable molds that enable continuous casting such as drums, belts, and blocks as casting molds as described above, and these molds prevent seizure with aluminum or aluminum alloys. For this purpose, a release agent is applied. As the mold release agent, a solution containing carbon as a main raw material is generally used. As this coating method, a method of remotely coating a mold using a spray or the like is employed.
[0019]
However, in this method, even if the mold release agent applied to the mold is macroscopically uniform, the particles of the mold release agent that are atomized by spraying are only randomly arranged when viewed microscopically. Therefore, a part to which the release agent is attached and a part not to be attached are generated on the mold surface.
Even with such a microscopic difference in the mold surface, the wettability between the molten metal and the mold becomes non-uniform, and the cast structure fluctuates due to the aforementioned reasons.
In addition, aluminum powder, a release agent, and the like remain non-uniformly on the mold surface after casting, which also causes non-uniform wettability of the mold surface.
[0020]
Accordingly, in the present invention of claim 1, to solve this problem, the wiper 30 that is in direct contact with the movable mold is used, and the wiper 30 is swung left and right.
As shown in FIG. 1, the wiper 30 is used after a release agent 21 is applied to a mold by a release agent application device 20 such as a spray device, and is applied by swinging it left and right while contacting the mold surface. The later mold release agent 21 is uniformly extended, and a mold surface with uniform wettability can be obtained. In addition, since the wiper is in contact with the mold, the mold release agent can be extended uniformly and foreign matter adhering to the mold surface can be removed at the same time, so that a uniform mold surface can always be obtained.
In addition, although the mold release agent application apparatus 20 of FIG. 1 showed a mode that it apply | coated by spray with a spray apparatus as an example, it is not limited to this, For example, the member (For example, a space | gap contacted with the mold surface) It may be applied with a nell-like cloth impregnated with a release agent.
[0021]
As described above, swinging the wiper 30 to the left and right with respect to the movement of the mold is effective to make the wettability uniform.
The wiper may be made of heat-resistant rubber or other material that is resistant to heat and friction. However, if a material that can be impregnated with liquid, such as flannel cloth, is used, the excess release agent is removed. In addition to being able to be absorbed by the part, it is also possible to apply the release agent directly by a wiper by supplying a release agent from the outside to this part, and more uniform application than the above-mentioned spray release agent application It becomes possible.
Further, it is more preferable that the wiper is rolled and rotated together with the movement of the mold from the viewpoint of reducing the sag of the mold surface due to friction. At this time, by creating a relative speed between the movement of the mold and the rotation of the roll, it is effective to extend the mold release agent more uniformly.
[0022]
Further, in the present invention of claim 2, as shown in FIGS. 2 and 3, first, the foreign material adhering to the mold surface is removed by the rotating brush 40 to clean the mold surface, and then the release agent coating apparatus 20 (for example, The release agent 21 is applied by spraying or the like, and the applied release agent 21 is continuously cast while being uniformed by the wiper 30 having the same configuration as described above .
As described above, the adhesion of the foreign matter makes the wettability of the mold surface non-uniform as described above, but in the present invention, it is possible to achieve a uniform wettability mold surface by removing this with the rotating brush 40. .
The effect of the present invention can be obtained without any problem if the brush material is made of steel wire, stainless steel wire, nylon or the like that removes only foreign matter without scratching the mold surface.
It is to be noted that using the wiper 30 as described above simultaneously with the rotating brush 40 is a more effective method for making the wettability of the mold surface uniform and thus obtaining a uniform and fine cast structure.
[0023]
It should be noted that other casting conditions such as casting speed, mold cooling temperature and mold gap may be set in consideration of the target product size, characteristics, equipment capacity, etc., and are not defined in the present invention.
[0024]
The cast plate 6 cast as described above is rolled immediately after that, if necessary, or wound as it is on a coil. Further, it is then rolled to the desired size by cold rolling (if necessary, before, during, and after, annealing is performed one to several times) to obtain an aluminum alloy sheet for foil, and this is further rolled according to a conventional method. The foil has a thickness according to the purpose.
[0025]
When used as a foil, the aluminum alloy sheet for foil is required to have uniform appearance on the surface glossy surface and matte surface, and the homogeneity of the metal structure of the foil greatly affects the surface quality of the foil. If there is a variation in this metal structure, the glossiness and the matte surface will vary in glossiness, resulting in poor appearance.
If the above ripple mark (this part has non-uniform metal structure) occurs on the surface of the cast plate manufactured by the continuous casting and rolling method and the aluminum alloy plate for foil, the appearance of the final product foil is uniform. However, the aluminum alloy sheet and foil for foils according to the present invention produced as described above, as will be apparent from the examples described later, are uniform in appearance with the foil and are sufficient as a foil. It can be used.
[0026]
【Example】
The aluminum alloy melts having the chemical compositions shown in Table 1 were casted with thicknesses of 7 mm and 10 mm by the Hunter method using the twin drums 4 and 5 shown in FIGS. 1 and 2 as examples of the present invention, comparative examples and conventional examples, respectively. It was.
In performing these castings, the release agent application device 20 (spray device), the wiper 30 and the rotary brush 40 are combined as shown in Table 1, and the present invention example, comparative example, and conventional example are combined. did.
The casting conditions other than the above are as follows.
-Mold release agent: Solution in which fine carbon is dissolved in water-Cast plate width: 1300 mm
-Molten metal temperature: 700 ° C
Casting speed: 1000 mm / min.
Cooling rate: 300 to 700 ° C./sec.
These cast plates 6 were subjected to cold rolling and partial intermediate annealing under the conditions shown in Table 1, and further subjected to cold rolling to produce a 0.4 mm foil aluminum alloy plate.
This was further foil-rolled by a conventional method to obtain a single-side matte foil having a thickness of 15 μm.
In Table 1, an apparatus combination 1 brush, 2 spray, and 3 wiper means that the surface of the movable mold is processed in this order, and molten metal is supplied to the movable mold.
[0027]
[Table 1]
Figure 0003901764
[0028]
About these foils, the uniformity of the glossiness of the glossy surface and the matte surface was evaluated in the following manner.
The presence or absence of the ripple mark and the uniformity of the cast structure were evaluated for the cast plate as follows.
The evaluation method is as follows.
(1) Presence or absence of ripple marks on the cast plate The surface state of the cast plate was visually observed.
(2) Uniformity of the cast structure The surface of the cast plate and the cross section in the longitudinal direction are etched after polishing, and the uniformity of the cast structure is observed with a microscope, and the uniformity is excellent ◎, good one ○, slightly inferior Judgment was carried out as △ which is inferior and x which is inferior.
(3) Uniformity of glossiness of the appearance of the foil The appearance is visually observed and judged as having excellent gloss uniformity ◎, good ○, slightly inferior Δ, inferior ×. went.
These test results are shown in Table 2.
[0029]
[Table 2]
Figure 0003901764
[0030]
As is apparent from Tables 1 and 2, the aluminum alloy cast plate produced under the conditions of the present invention has no surface and structural defects, and the foil produced from this cast plate is excellent in appearance uniformity. It was confirmed that it can be used as a foil.
[0031]
【The invention's effect】
As is apparent from the above description, according to the present invention, a cast plate having a uniform and fine cast structure suitable for the production of this alloy plate is obtained even if the aluminum alloy plate for foil base is produced by the continuous casting and rolling method. It can be used as an aluminum alloy plate for foil, and has a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a state in which a mold release agent is applied to the surface of a movable mold using a twin drum and made uniform with a wiper.
FIG. 2 is an explanatory view showing a state where a movable mold surface by a twin drum is cleaned with a rotating brush, a release agent is applied, and this is made uniform with a wiper.
FIG. 3 is an explanatory view showing a state where a movable mold surface by a double belt is cleaned with a rotating brush, a release agent is applied, and this is made uniform with a wiper.
FIG. 4 is an explanatory view showing an example in which a continuous cast plate is manufactured by a movable mold apparatus (hunter method) using a twin drum.
FIG. 5 is an explanatory view showing an example in which a continuous cast plate is manufactured by a movable mold apparatus using a double belt (Hezley method).
[Explanation of symbols]
1 Hot water pool (head box)
2 Casting nozzle 3 Molten metal 4, 5 Drum (movable mold)
6 Casting plates 8, 9 Belt (movable mold)
10-13 Roller 20 Release agent coating device (spray device as an example)
21 Release agent 30 Wiper device 40 Rotating brush

Claims (2)

箔地用アルミニウム合金板の連続鋳造圧延法による製造方法であり、Feを0.2〜2.8wt%、Siを0.05〜0.3wt%含有し、残部がAlと不可避的不純物からなるアルミニウム合金溶湯を可動鋳型間に供給して厚さ30mm以下の鋳造板に連続鋳造し、これを冷間圧延、必要に応じて中間焼鈍し、さらに最終冷間圧延する製造方法において、前記鋳造板に連続鋳造する際、まず可動鋳型の表面に離型剤を塗布し、続いてその塗布した離型剤を、当該可動鋳型の移動に対し左右に揺動するワイパーまたは前記可動鋳型の移動に合わせて回転しかつ当該可動鋳型の移動に対し左右に揺動するロール状のワイパーで均一にしながら、連続鋳造することを特徴とする箔地用アルミニウム合金板の製造方法。It is a manufacturing method by a continuous casting and rolling method of an aluminum alloy sheet for foil, containing 0.2 to 2.8 wt% of Fe and 0.05 to 0.3 wt% of Si, with the balance being made of Al and inevitable impurities. In the manufacturing method in which the molten aluminum alloy is supplied between the movable molds and continuously cast into a cast plate having a thickness of 30 mm or less, which is cold-rolled, intermediate-annealed as necessary, and finally cold-rolled. When continuous casting is performed, a mold release agent is first applied to the surface of the movable mold, and then the applied mold release agent is adjusted in accordance with the movement of the wiper that swings left and right with respect to the movement of the movable mold or the movement of the movable mold. A method for producing an aluminum alloy sheet for foils, characterized by performing continuous casting while uniformly rotating with a roll-shaped wiper that rotates and swings to the left and right with respect to the movement of the movable mold . 箔地用アルミニウム合金板の連続鋳造圧延法による製造方法であり、Feを0.2〜2.8wt%、Siを0.05〜0.3wt%含有し、残部がAlと不可避的不純物からなるアルミニウム合金溶湯を可動鋳型間に供給して厚さ30mm以下の鋳造板に連続鋳造し、これを冷間圧延、必要に応じて中間焼鈍し、さらに最終冷間圧延する製造方法において、前記鋳造板に連続鋳造する際、まず可動鋳型の表面を回転ブラシで清浄にした後、当該可動鋳型の表面に離型剤を塗布し、続いてその塗布した離型剤を、当該可動鋳型の移動に対し左右に揺動するワイパーまたは前記可動鋳型の移動に合わせて回転しかつ当該可動鋳型の移動に対し左右に揺動するロール状のワイパーで均一にしながら、連続鋳造することを特徴とする箔地用アルミニウム合金板の製造方法。It is a manufacturing method by a continuous casting and rolling method of an aluminum alloy sheet for foil, containing 0.2 to 2.8 wt% of Fe and 0.05 to 0.3 wt% of Si, with the balance being made of Al and inevitable impurities. In the manufacturing method in which the molten aluminum alloy is supplied between the movable molds and continuously cast into a cast plate having a thickness of 30 mm or less, which is cold-rolled, intermediate-annealed as necessary, and finally cold-rolled. In continuous casting, the surface of the movable mold is first cleaned with a rotating brush, and then a release agent is applied to the surface of the movable mold, and then the applied release agent is applied to the movement of the movable mold. For foil fabric, which is continuously cast while rotating uniformly with a wiper that swings to the left or right or a roll-shaped wiper that swings to the left and right with respect to the movement of the movable mold . Arminius Method of manufacturing the alloy plate.
JP10048496A 1996-04-22 1996-04-22 Method for producing aluminum alloy sheet for foil Expired - Fee Related JP3901764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10048496A JP3901764B2 (en) 1996-04-22 1996-04-22 Method for producing aluminum alloy sheet for foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10048496A JP3901764B2 (en) 1996-04-22 1996-04-22 Method for producing aluminum alloy sheet for foil

Publications (2)

Publication Number Publication Date
JPH09285847A JPH09285847A (en) 1997-11-04
JP3901764B2 true JP3901764B2 (en) 2007-04-04

Family

ID=14275211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10048496A Expired - Fee Related JP3901764B2 (en) 1996-04-22 1996-04-22 Method for producing aluminum alloy sheet for foil

Country Status (1)

Country Link
JP (1) JP3901764B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159313A (en) * 1999-04-29 2000-12-12 Alcan International Limited Production of aluminum alloy strip for use in making thin gauge foils
JP5209814B1 (en) * 2012-08-01 2013-06-12 古河スカイ株式会社 Aluminum alloy plate for battery case and manufacturing method thereof
JP5209815B1 (en) * 2012-08-01 2013-06-12 古河スカイ株式会社 Aluminum alloy plate for battery lid and manufacturing method thereof
JP6431315B2 (en) * 2014-08-14 2018-11-28 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing the same
CN113718122A (en) * 2021-09-03 2021-11-30 中铝河南洛阳铝加工有限公司 Preparation method of high-reflectivity mirror aluminum plate strip for architectural decoration

Also Published As

Publication number Publication date
JPH09285847A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
US4224978A (en) Method of manufacturing composite strips by continuous casting
JP3901764B2 (en) Method for producing aluminum alloy sheet for foil
JP4553901B2 (en) Nonferrous metal and light metal belt casting method and apparatus therefor
JP3919843B2 (en) Manufacturing method of aluminum alloy sheet for building materials and equipment
JP2007136464A (en) METHOD FOR MANUFACTURING Al-Mg-Si SYSTEM ALUMINUM ALLOY SHEET EXCELLENT IN SURFACE QUALITY
JPH07115132B2 (en) Casting method of Al-Mg alloy with twin rolls
JP3587351B2 (en) Method for producing aluminum alloy support for lithographic printing plate
JP2006130545A (en) TWIN ROLL TYPE CONTINUOUS CASTING-ROLLING METHOD FOR Al-Mg-Si-BASED ALLOY PLATE, Al-Mg-Si-BASED ALLOY PLATE, AND AUTOMOBILE OUTER PLATE PRODUCED BY CONTINUOUS CASTING-ROLLING METHOD, AND CASTING ROLL
JPH03243250A (en) Production of aluminum series metal strip having flat surface characteristic
JP3836532B2 (en) Aluminum alloy plate for building materials and equipment and manufacturing method thereof
JPH10296307A (en) Aluminum alloy plate stock having excellent surface treatment appearance and its manufacture
JP3817188B2 (en) Thin slab manufacturing method using twin drum type continuous casting machine having scum weir and scum weir
JPH09285846A (en) Production of aluminum alloy plate for electrolytic capacitor electrode foil
JPH01170553A (en) Device for manufacturing rapid cooling metal thin strip
JPH09235639A (en) Aluminum alloy sheet for foil and its production
JPH09285845A (en) Production of aluminum alloy plate for planographic printing plate supporting body
JPH0673720B2 (en) Method for producing quenched metal ribbon
JPH11207445A (en) Method for casting metallic strip, strip casting apparatus for casting metallic strip and twin roll strip casting apparatus
JP2002178113A (en) Cast slab having excellent solidified structure and steel obtained by working the same
JP4214143B2 (en) Aluminum alloy plate for magnetic disk, aluminum alloy substrate for magnetic disk, and method for producing the alloy plate
JPH0433754A (en) Apparatus and method for continuous casting
JPH01266947A (en) Method for continuously casting strip
JPS58209449A (en) Production of continuous casting plate of aluminum alloy
JPS62199201A (en) Surface pretreatment of ingot for rolling
JP3593411B2 (en) Aluminum alloy plate for lithographic printing plate support and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050315

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees