JP3973540B2 - Aluminum alloy sheet having excellent wear resistance and method for producing the same - Google Patents

Aluminum alloy sheet having excellent wear resistance and method for producing the same Download PDF

Info

Publication number
JP3973540B2
JP3973540B2 JP2002324162A JP2002324162A JP3973540B2 JP 3973540 B2 JP3973540 B2 JP 3973540B2 JP 2002324162 A JP2002324162 A JP 2002324162A JP 2002324162 A JP2002324162 A JP 2002324162A JP 3973540 B2 JP3973540 B2 JP 3973540B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
plate
wear resistance
alloy sheet
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002324162A
Other languages
Japanese (ja)
Other versions
JP2004156117A (en
Inventor
雅之 佐伯
勝 吉川
Original Assignee
株式会社日軽テクノキャスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日軽テクノキャスト filed Critical 株式会社日軽テクノキャスト
Priority to JP2002324162A priority Critical patent/JP3973540B2/en
Publication of JP2004156117A publication Critical patent/JP2004156117A/en
Application granted granted Critical
Publication of JP3973540B2 publication Critical patent/JP3973540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プレス成形等により成形して自動車部材や一般産業用機械等として用いるのに適した、低廉で耐摩耗性に優れたアルミニウム合金板材およびその製造方法に関する。
【0002】
【従来の技術】
アルミニウム合金は軽量で成形性が良好であることから、種々の部材に用いられている。しかもAlにSiやFe, 更にMnやCrなどを含有させることで優れた耐摩耗性を付与できるので用途は益々拡大している。
【0003】
このようなアルミニウム合金板材を得るには、CC法(連続鋳造法)およびDC法(半連続鋳造法)がある。CC法は溶湯から直接仕上圧延可能な厚み、例えば25mm厚以下の板スラブを得る方法であり、一般のDC法で不可欠な熱間粗圧延を省けるという特徴がある。
【0004】
CC法としては双ロール法や双ベルト法、ブロック法などが知られている。例えば、双ロール法は、一対のロールの間に溶湯を注入し板スラブを得る方法であるが、ロール間に注入された溶湯は、ロールからの強力な抜熱により非常に短い時間で凝固が完了し、合金元素が固溶乃至微細晶出物となる固溶タイプの板スラブとなることが知られている。また、双ベルト法、ブロック法においても冷却速度は双ロール法ほど大きくはないものの、ベルト間もしくはブロック間に注入された溶湯は、ベルトもしくはブロックからの強力な抜熱により短い時間で凝固が完了し板スラブとなる。
【0005】
前述のCC法の典型例として、双ロール法による製造方法の例は特許文献1に、製造装置の例は特許文献2にに示されているが、このような方法において耐摩耗性を向上させるには合金組成を工夫しなければならない。
【0006】
【特許文献1】
特開昭64-73043号公報(第3頁、特に左上欄から右上欄)
【特許文献2】
特開平7-68354号公報(第2頁、特に第1欄段落0002、図1)
【0007】
【発明が解決しようとする課題】
CC法における板スラブの冷却速度はDC法と比べると10〜1000倍以上であって、凝固は表面から内部に向かって急速に進行する。
【0008】
前記したように、板材に耐摩耗性を付与するにはSiやFe, 更にMnやCr等の元素を添加し、添加量を多くすれば耐摩耗性を高めることができる。しかし、CC法では板スラブが固溶タイプであることと中心部への偏析が大きいことで、添加元素量に相当する耐摩耗性が得られない。
【0009】
本発明は、従来のCC法で得られた板材より耐摩耗性の優れる板材およびその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、耐摩耗性に寄与する合金元素の濃度をアルミニウム合金板材の表面において板材全体における合金元素の平均濃度よりも高くしたことにより、合金添加量を低減してコスト低減しつつ優れた耐摩耗性を確保できる。
【0011】
即ち第1の発明は、Fe 0.1〜2.0%およびSi 0.05〜2.0%を含有し、残部Alと不可避的不純物からなるアルミニウム合金板材であって、該板材表面のFeおよびSiの合計値Tsと、該板材厚さの1/4位置におけるFeおよびSiの合計値Toとの比Ts/Toが1.2以上であることを特徴とする耐摩耗性に優れたアルミニウム合金板材である。
【0012】
本明細書中、元素含有量(濃度)の表示単位「%」は、特に断らない限り「質量%」である。
【0013】
耐摩耗性向上元素を上記規定範囲で表面において濃化させることによって、添加した合金元素を耐摩耗性向上に対して有効に利用することができる。
【0014】
望ましくは、前記組成に更にMn 0.01〜1.5%、Cr 0.01〜0.5%、Zr 0.01〜0.5%およびNi 0.01〜0.5%のうちの1種もしくは2種以上を含有してなり、残部Alと不可避的不純物からなるアルミニウム合金板材であって、該板材表面のFe、Si、Mn、Cr、ZrおよびNiの合計値TUsと、該板材厚さの1/4位置におけるFe、Si、Mn、Cr、ZrおよびNiの合計値TUoとの比TUs/TUoが1.2以上である。
【0015】
これにより、板材表面に多種類の耐摩耗向上元素を共存させて、これら元素の相乗作用により板材の耐摩耗性を更に向上させることができる。
【0016】
また、前記アルミニウム合金に、更に鋳造結晶粒微細化剤を0.2%以下含有させることによって、厚い板スラブをCC鋳造等により鋳造速度を速くする場合に、より有効に鋳造割れ発生を防止できる。
【0017】
第2の発明は、上記いずれかの組成を有するアルミニウム合金の溶湯を双ベルト式連続鋳造により板スラブとし、該板スラブを圧延してアルミニウム合金板材を製造する方法であって、
双ベルトにより画定された鋳型壁を有する鋳型内で、生成した凝固シェルから一旦該鋳型壁を離した後に、再び接触させることにより凝固を完了させて板スラブとし、該板スラブを面削なしで圧延してアルミニウム合金板材とし、該圧延を全圧下率95%以下で行なうことを特徴とする耐摩耗性に優れたアルミニウム合金板材の製造方法である。
【0018】
前記板スラブとして凝固が終了する前に該可動鋳型面を該板スラブ表面から所定時間離して鋳造することによって、板スラブ表面の合金元素濃度を該板スラブ内部の合金元素濃度より高くでき、更に該板スラブを板材に至るまでの全圧下率を規制することによって、耐摩耗性の優れたアルミニウム合金板材を製造することができる。
【0019】
【発明の実施の形態】
本発明は、アルミニウム合金の凝固の際の逆偏析を積極的に活用して、耐摩耗性向上に有用な合金元素を表面に濃化させ、少ない合金添加量で優れた耐摩耗性を実現する。
【0020】
通常、Al-Fe-Si系の如きアルミニウム合金溶湯が鋳型に注湯され鋳型壁に接触すると、状態図で説明されているように、初めにその溶湯組成より純度の高いα晶が晶出し、その晶出物を起点として近傍の溶湯組成より純度の高いα晶が晶出する。鋳型からの抜熱流に沿ってこのような凝固を連続的に繰り返すことによって、いわゆる樹枝状晶の発達したシェル(薄皮)を形成する。α晶の晶出に際しては合金元素は異物として晶出物からその一部が排出され、樹枝状晶間に集まるため、合金元素は表面から内部に行くほど傾斜的に順次濃度が高くなる。
【0021】
ところが、シェルがある程度成長した時点で、本発明により鋳型壁をシェルから一旦離すことによって鋳型からの抜熱を遮断すると、シェルより高温の溶湯に接触しているシェル内壁が再溶解する。その際、各樹枝状晶の間の部分は比較的シェルが薄いので、その部分ではシェル肉厚全体が再溶解する。ただし、個々の再溶解領域は樹枝状晶のサイズに対応した極めて微細な領域であり、マクロ的に見るとシェル表面に微細な再溶解領域が均等かつ緻密に分散した状態になり、シェル自体はその形状を維持している。
【0022】
この再溶解に伴い、その時点でシェル近傍の溶湯内に既に生成しているFe、Si、Mn、Cr、Zr、Ni等を含む晶出物が、樹枝状晶の間隙に沿って再溶解領域に流入する。その結果、再溶解領域ではこれら耐摩耗性向上元素が濃化する。
【0023】
この状態で、本発明により鋳型壁を再びシェルに接触させて、鋳型内での凝固を完了させて板スラブとすると、表面に耐摩耗性向上元素が濃化した板スラブが得られる。
【0024】
シェルから鋳型壁を離すことによる抜熱遮断の時間が長過ぎると、再溶解領域のサイズが大きくなり過ぎて、板スラブの表面不良や鋳造不能を引き起こす。したがって、鋳型壁をシェルから離し始める時点でのシェル厚さに対して適切な遮断時間を設定することにより、シェルの溶解潜熱と溶湯の顕熱がバランスして微細な再溶解領域がシェル表面に均等かつ緻密に分散した状態が得られる。
【0025】
このようにして得られた板スラブは、表面は再溶解・再凝固を経て合金濃化すなわち逆偏析した微細な領域が均等かつ緻密に分布しているため高い耐摩耗性を備えており、同時に、この逆偏析により内部は合金濃度が低下しているため高い成形性を備えており、その結果、板スラブおよびこれを圧延して得られる本発明の合金板材は表面の耐摩耗性と全体としての成形性とを兼備することになる。
【0026】
次に本発明における合金成分とその含有量の限定理由について述べる。
〔Fe0.1〜2.0%〕
Feは、Al-Fe系の金属間化合物の晶出により、またSiと共存したときにはAl-Fe-Si系の金属間化合物の晶出により、耐摩耗性を向上させる。その添加量を0.1〜2.0%と限定したのは、0.1%未満とすると原料コスト高になる上、晶出物として出てくる量が少ないため耐摩耗性の向上が小さく、一方、2.0%を超えると鋳造時に巨大な晶出物を生成し板スラブの圧延性および合金板材の成形性を著しく阻害するためである。
【0027】
Feが金属間化合物として晶出し、シェル表面の再溶解・再凝固領域に流入することによって表面に濃化(逆偏析)し、最終的な合金板材の耐摩耗性を向上させる。
〔Si0.05〜2.0%〕
Siは、単体のSiとして晶出し、またFeと共存したときにAl-Fe-Si系の金属間化合物として晶出し、耐摩耗性の向上に寄与する。Si量を0.05〜2.0%と限定したのは、0.05%未満とすると原料コスト高になるし、晶出物として出てくる量が少ないためその効果が小さく、2.0%を超えると流動性の低下により鋳造性が著しく低下し鋳造欠陥が増加するためである。
【0028】
Siが金属間化合物または単体として晶出し、シェル表面の再溶解・再凝固領域に流入することによって表面に濃化(逆偏析)し、最終的な合金板材の耐摩耗性を向上させる。
〔Mn 0.01〜1.5%、Cr 0.01〜0.5%、Zr 0.01〜0.5%、Ni 0.01〜0.5%のうちの1種もしくは2種以上〕
Mn、 Cr、Zr、Niは凝固時にFe、SiとともAl-(Fe,Mn,Cr,Ni)-Si系の金属間化合物、あるいは一部はAl-Mn系、Al-Cr系、Al-Zr系、Al-Ni系等の金属間化合物として晶出し耐摩耗性を向上させる。その添加量が下限値未満では耐摩耗性の向上が小さく、上限値を超えると鋳造時に巨大晶出物が生成し圧延時や成形時に割れが発生するためである。これらの元素の合計量は圧延性を考慮すると2.0%以下が好ましい。
〔鋳造結晶粒微細化剤を0.2%以下〕
鋳造組織微細化剤は、厚い板スラブをCC鋳造したり鋳造速度を速くするような場合に、鋳造割れの発生を防止できる。割れ防止にはTi またはTi およびBの0.2%以下の添加が好ましい。具体的にはTiの0.002〜0.2%、もしくはTiの0.002〜0.2%およびBの0.0002〜0.02%の含有により上記の効果が発揮される。上限値を超える含有は効果の向上が顕著でなく経済的でない。
〔不可避的不純物〕
前記した特定元素以外は不可避的不純物であって、本発明の効果を妨げない範囲で含有していてもよい。その許容される含有量が多いと返り材、その他の低価格材料を使用できて好ましいが、許容できる目安としては、上限値としMgおよびZn1.0%、V0.1%、Ga0.05%その他の元素各0.03%であることが好ましい。
【0029】
次に本発明に係る板材の製造方法について説明する。
【0030】
溶湯の溶製は組成調整後に脱ガス、鎮静、必要により組成の微調整を施し、必要により結晶粒微細化剤を炉内または樋中で添加し連続鋳造する。好ましくはフィルタ通過後可動鋳型に鋳造する。連続鋳造の方法は双ベルト法、双ロール法、ブロック鋳造法などがあるが、その方法は限定されるものでない。ここで可動鋳型に鋳造する溶湯温度は通常より20度程度高めの710℃以上とする。高めに設定するのは逆偏析を均等に生じさせるためであって、710℃より低い鋳造温度では、シェルを十分に溶解するには溶融金属の総熱量が不足し、そのため逆偏析層が板スラブ表面の全面ではなく局部的に偏在することになり、全体的に均一な耐摩耗性が得られ難くなるためである。上限は鋳造の安定性確保として760℃程度である。
【0031】
図1を参照して、本発明により板スラブを鋳造するための好ましい方法を説明図する。同図において、1は湯溜、2はノズル、3は可動鋳型(金属製ベルト)、5は電磁石、6はサンプ、7は板スラブである。
【0032】
図示していない溶解保持炉から前記のように溶製した溶湯を湯溜1に移湯し、該溶湯はノズル2を通って可動鋳型3、3間に注湯される。この可動鋳型3、3は具体的には金属製ベルトで鉄板、銅板等でできている。可動鋳型3、3は図示しない駆動力で矢印8の方向に回転されている。
【0033】
可動鋳型3、3間に注湯された溶湯12は、可動鋳型3、3の抜熱能によって直ちに凝固してシェル4、4を形成する。そして徐々にシェル厚さが増して凝固完了点13において凝固を完了し板スラブ7を形成する。6はシェル4、4に挟まれた溶湯すなわちサンプである。可動鋳型内に注湯された溶湯12は、鋳型に接触して直ちに凝固してシェル4を形成する。溶湯は鋳型から抜熱されシェル4、4が経時的に厚くなり、シェル厚さの成長は可動鋳型の抜熱能に依存する。シェル4、4面から可動鋳型3、3の面を離す最初の位置11は、可動鋳型3、3の溶湯注入口9よりサンプ長さL0の20〜50%のところが適当である。これによってシェル4、4は鋳型からの抜熱が絶たれ内部の溶湯の顕熱で溶解して再溶解領域10が形成され、樹枝状晶間から溶湯12がシェル4、4の外面に浸出し、表面における耐摩耗性が向上する。20%未満の位置ではシェル厚さが薄く溶湯が樹枝状晶間からではなくシェル4を溶解し吹き出てしまう虞があり、スラブ面が斑になり好ましくない。50%を超える位置ではサンプ6内溶湯の熱量が小さくシェルを溶解し難くなる。
【0034】
シェル4、4から可動鋳型3、3を離している距離L1は、サンプ長さL0の30〜70%の範囲が適当である。30%未満の長さではシェルを溶湯の顕熱で均一に溶解し、樹枝状晶間から浸出させ難い。尤も鋳造時の溶湯温度を更に高温にし760℃をはるかに超える温度として溶湯の熱量を高くすれば逆偏析を起こさせ易いが、鋳型の冷却、シェル面から可動鋳型の面を離す位置およびその長さ等の管理が困難となり鋳造が不安定になる。70%を超える長さではシェルを溶解し吹き出てしまう虞があり、スラブ面が斑になり好ましくない。
【0035】
なお、図1は説明図であるので樹枝状晶間から溶湯12がシェル4、4の外面に浸出する状況が粗大であるが、実際は稠密状態で浸出しているものと思われる。
【0036】
可動鋳型内の溶湯の凝固が完全に終了する前に可動鋳型をシェルから離す方法には、図1に示したように電磁石5、5を設けて、その電磁力によりシェルとは反対方向に可動鋳型3,3を途中で引っ張ってシェルから可動鋳型を引き離す方法がある。この場合シェル4、4面から可動鋳型3、3の面を離す最初の位置11に開始補助ローラ15、15を設け、終了位置17,17には終了補助ローラ16,16を設けて可動鋳型3、3の向きを制御すると、電磁石5,5の磁力に幅をもたせることができ、しかもシェル4、4から可動鋳型3、3を離している長さL1の管理がし易くなる利点がある。
【0037】
上記したような方法でシェル面から可動鋳型面を離しシェルを断熱するタイミングはどのような鋳型を使用するかによって夫々異なるが、双ベルト法は溶湯がベルトに接触してから2秒から20秒内に離すことで達成できる。ブロック法は溶湯がブロックに接触してから1秒から20秒以内に離すことで達成できる。シェルから浸出した晶出物を含む合金元素濃度の高い溶湯は前記したようにシェルの溶解潜熱と溶湯の顕熱のバランスしたところで凝固するが、シェルと可動鋳型の間隔L2が小さく、例えば数百μmの場合は、浸出溶湯が可動鋳型に接触して凝固し板スラブ面を形成することもある。
【0038】
このようにして得られた板スラブは表面を面削しないで圧延する。表面を面削しないで圧延するのは、耐摩耗性に寄与する表面の晶出物を含む合金元素濃度の高い部分を残すためである。冷間圧延の前または途中で焼鈍しても良いが、最終製品に至るまでのトータルの圧下率は95%以下とする。95%を超えて圧延した場合、製品表面の晶出物間に内部組織の合金元素濃度の低い部分が過剰に露出し、その結果表面の晶出物割合が低下し耐摩耗性が劣化するためである。
【0039】
【実施例】
本発明によりアルミニウム合金板材を製造した。表1に示される成分組成のアルミニウム合金溶湯を用いた。
【0040】
CC法として図1に示すような双ベルト鋳造装置を用いて鋳造した。鋳造厚は15mmとし、鋳造速度(スラブの引出し速度)は3m/minとした。鋳造に際し可動鋳型の溶湯注入口より20cm離れた位置から長さ20cmにわたり可動鋳型を約2mm内側に電磁力によりベルトを内側に引き込むことで、可動鋳型を板スラブ表面から引き離した。なお、このときのサンプ長さは50cmであった。鋳造された板スラブを面削することなく所定の圧下率まで圧延して合金板材とした。
【0041】
一方、比較として、前記の双ベルト法において可動鋳型を板スラブ表面から引き離さない方法およびDC法による鋳造方法によりアルミニウム合金板材を製造した。DC法による鋳造厚は406mmとし、鋳造された鋳塊は面削なし、530℃×4時間の均質化熱処理、熱間圧延および冷間圧延、また必要に応じて中間焼鈍の工程を経て所定の圧下率まで圧延した。鋳造条件を表2に示す。
【0042】
上記のように本発明および比較法により製造したアルミニウム合金板材について、図2に示したように厚さの1/4の位置におけるFeおよびSiの合計量に対する板材表面におけるFeおよびSiの合計量比(Ts/To)、または厚さの1/4の位置におけるFe、Si、Mn、Cr、Zr、Niの含有量に対する板表面におけるFe、Si、Mn、Cr、Zr、Niの含有量比(TUs/TUo)を調べた。合金元素含有量の分析はグロー放電型発光分析法によった。
【0043】
含有量比は板材表面のFeおよびSiの合計値をTsとし、該板材厚さの1/4位置におけるFeおよびSiの合計値をToとしたとき、合計値比はTs/Toで計算される値である。Mn、Cr、Zr、Niのうちの1種もしくは2種以上を含有させた場合の含有量比は同様に、板材表面のFe、Si、Mn、Cr、ZrおよびNiの合計値をTUsとし、該板材厚さの1/4位置におけるFe、Si、Mn、Cr、ZrおよびNiの合計値をTUoとしたとき、合計値比はTUs/ TUoで計算される値である。
【0044】
耐摩耗性を調べた。耐摩耗性は、フリクトロン式摩擦摩耗試験機を使用し、摩擦速度を0.139m/秒,摩擦距離を1000m,加圧荷重を100kg,相手材をSUJ2とし、シェルから可動鋳型を離さないCC法で得られた板材の摩耗量を1として各試料の摩耗量比を求めた。結果を表2に示す。
【0045】
なお、成形性をエリクセン試験機で評価したがシェルから可動鋳型を引き離さない従来法と比べて良好であった。
【0046】
表2の結果から、本発明例(試料番号2、3、4、9、10、11、15、16、17、21、22、23、27、28、29、33、4、35、39、40、41、45、46、47、51、52、53、57、58、59、63、64、65、69、70、71、75、76、77,81,82,83,87,88,89,93,94,95)は、表面において元素の合計量比が高く摩耗量が低くなり、耐摩耗性に優れていることが判る。またTi,Bの含有有無で耐磨耗性に顕在化するほどの差は見られないことが判る。Ti,Bの含有量の少ないもの(試料番号4,11,17,23,29,35,41,47,53,59,65,71,77,83,89,95,)は、スラブ厚さが厚くなく、鋳造速度も速くなかったので割れることなく鋳造することができた。
【0047】
一方、比較例として圧下率の高いもの(試料番号5、12、12、18、24、30、36、42、48、54、60、66、72、78、84、90,96)は、シェルから可動鋳型を離したとしても元素合計量比低く、摩耗量大きく耐摩耗性に劣っていることが判る。
【0048】
比較例としてシェルから可動鋳型を離さないもの(試料番号6、13、19、25、31、37、43、49、55、61、67、73、79、85、91、97,101)は、圧下率が低くても元素合計量比が低く、摩耗量大きく耐摩耗性に劣っていることが判る。
【0049】
DC法によるもの(試料番号1、8、14、20、26、32、38、44、50、56、62、68、74、80、86、92、98)は圧下率が極端に大きく元素合計量比が1.00で摩耗量大きく、耐摩耗性に劣っていることが判る。
【0050】
比較例としてCC法で鋳造温度の低いもの(試料番号7)は、板スラブ面が均一でなく逆偏析層が偏在していて板材として不適当なものであった。
比較例としてCC法でFe含有量の低いものでシェルから可動鋳型を離したもの(試料番号99)は、元素合計量比が本発明の範囲に入るが、Fe含有量を低く抑えるためにコストが高くなる。
【0051】
比較例としてCC法でSi含有量が低く、かつシェルから可動鋳型を離さないもの(試料番号101)は、圧下率が低くても元素合計量比が低く、摩耗量大きく耐摩耗性が劣り、かつFe含有量を低く抑えるためにコストが高くなる。
【0052】
比較例としてCC法でSi含有量が低く、かつシェルから可動鋳型を離したもの(試料番号68)は、元素合計量比が本発明の範囲に入るがSi含有量を低く抑えるためにコストが高くなる。
【0053】
比較例としてCC法でFe含有量の高いもの(試料番号102)、Mn含有量の高いもの(試料番号103)、Zr含有量の高いもの(試料番号104)、Cr含有量の高いもの(試料番号105)、Ni含有量の高いもの(試料番号106)は、可動鋳型を離して鋳造はしたもののその後の圧延が割れ等の発生不良で各位置の測定ができなかった。
【0054】
比較例としてCC法で鋳造しSi含有量の高いもの(試料番号107)は、流動性が悪く大きな引けが生じて鋳造ができなっかた。
【0055】
【表1】

Figure 0003973540
【0056】
【表2】
Figure 0003973540
【0057】
【表3】
Figure 0003973540
【0058】
【表4】
Figure 0003973540
【0059】
【表5】
Figure 0003973540
【0060】
【表6】
Figure 0003973540
【0061】
【表7】
Figure 0003973540
【0062】
【表8】
Figure 0003973540
【0063】
【表9】
Figure 0003973540
【0064】
【発明の効果】
以上述べたように、本発明のアルミニウム合金板材は低コストで製造可能で、耐摩耗性に優れ、鋳造性、圧延性のいずれにおいても優れた特性を有する。また、板材内部の合金元素量は合金元素が表面に移動した分少ないので、表面および内部ともに合金元素濃度の高い板材に比較して成形性が良好である。そのため、得られたアルミニウム合金板は、ケース、摺動板、フィン、変速機部品、ハードディスクドライブ部品等として、優れた特性を示す材質として使用される。
【図面の簡単な説明】
【図1】図1は、本発明によりアルミニウム合金を鋳造する装置を模式的に示す断面図である。
【図2】図2は、本発明によるアルミニウム合金板材の表面および1/4厚さ部の分析位置を模式的に示す断面図である。
【符号の説明】
1…湯溜
2…注湯ノズル
3…双ベルト式可動鋳型
4…凝固シェル
5…電磁石
6…サンプ(未凝固溶湯)
7…板スラブ
8…双ベルト回転方向
9…溶湯注入口
10…再溶解領域
11…シェルから鋳型を離し始める位置
12…溶湯
13…凝固完了点
15…鋳型を離し始める位置の補助ローラ
16…鋳型を再接触させる位置の補助ローラ
17…鋳型を再接触させる位置
…サンプ長さ
…鋳型を離している距離[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy plate material that is inexpensive and excellent in wear resistance, and is suitable for use as an automobile member, a general industrial machine or the like by molding by press molding or the like, and a method for producing the same.
[0002]
[Prior art]
Aluminum alloys are used for various members because they are lightweight and have good formability. In addition, the use of Al and Al is further expanding because it can provide excellent wear resistance by containing Si, Fe, Mn, Cr, and the like.
[0003]
In order to obtain such an aluminum alloy sheet, there are a CC method (continuous casting method) and a DC method (semi-continuous casting method). The CC method is a method for obtaining a plate slab having a thickness that can be finish-rolled directly from the molten metal, for example, a thickness of 25 mm or less, and is characterized by omitting hot rough rolling, which is indispensable in a general DC method.
[0004]
As the CC method, a twin roll method, a twin belt method, a block method and the like are known. For example, the twin roll method is a method in which molten metal is injected between a pair of rolls to obtain a plate slab, but the molten metal injected between the rolls is solidified in a very short time due to powerful heat removal from the rolls. It is known that it is a solid solution type plate slab that is completed and the alloy element becomes a solid solution or a fine crystallized product. In addition, although the cooling rate is not as high as that of the twin roll method in the twin belt method and the block method, the molten metal injected between the belts or between the blocks can be solidified in a short time by powerful heat removal from the belt or block. It becomes a slab slab.
[0005]
As a typical example of the above-described CC method, an example of a production method by a twin roll method is shown in Patent Document 1, and an example of a production apparatus is shown in Patent Document 2. In such a method, wear resistance is improved. For this, the alloy composition must be devised.
[0006]
[Patent Document 1]
JP-A-64-73043 (3rd page, especially from upper left column to upper right column)
[Patent Document 2]
Japanese Patent Laid-Open No. 7-68354 (2nd page, especially the first column, paragraph 0002, FIG. 1)
[0007]
[Problems to be solved by the invention]
The cooling rate of the plate slab in the CC method is 10 to 1000 times that of the DC method, and solidification proceeds rapidly from the surface toward the inside.
[0008]
As described above, in order to impart wear resistance to the plate material, it is possible to increase wear resistance by adding elements such as Si, Fe, Mn and Cr, and increasing the amount of addition. However, in the CC method, the plate slab is a solid solution type and the segregation to the center is large, so that the wear resistance corresponding to the amount of the added element cannot be obtained.
[0009]
An object of this invention is to provide the board | plate material which is more excellent in abrasion resistance than the board | plate material obtained by the conventional CC method, and its manufacturing method.
[0010]
[Means for Solving the Problems]
In the present invention, the concentration of the alloy element contributing to wear resistance is made higher than the average concentration of the alloy element in the entire plate material on the surface of the aluminum alloy plate material, thereby reducing the amount of alloy addition and reducing the cost. Abrasion can be secured.
[0011]
That is, the first invention is an aluminum alloy plate material containing Fe 0.1-2.0% and Si 0.05-2.0%, the balance Al and inevitable impurities, the total value Ts of Fe and Si on the plate surface, The aluminum alloy plate material having excellent wear resistance, characterized in that the ratio Ts / To with respect to the total value To of Fe and Si at 1/4 position of the plate material thickness is 1.2 or more.
[0012]
In the present specification, the display unit “%” of the element content (concentration) is “mass%” unless otherwise specified.
[0013]
By concentrating the wear resistance improving element on the surface within the above specified range, the added alloy element can be effectively used for improving the wear resistance.
[0014]
Desirably, the composition further contains one or more of Mn 0.01 to 1.5%, Cr 0.01 to 0.5%, Zr 0.01 to 0.5% and Ni 0.01 to 0.5%, and the balance is inevitable with Al. An aluminum alloy plate made of impurities, the total value TUs of Fe, Si, Mn, Cr, Zr and Ni on the surface of the plate, and Fe, Si, Mn, Cr, Zr at 1/4 of the plate thickness And the ratio TUs / TUo with respect to the total value TUo of Ni is 1.2 or more.
[0015]
Thereby, various kinds of wear resistance improving elements can coexist on the surface of the plate material, and the wear resistance of the plate material can be further improved by the synergistic action of these elements.
[0016]
Further, by adding 0.2% or less of the cast crystal grain refining agent to the aluminum alloy, it is possible to prevent the occurrence of casting cracks more effectively when the casting speed of a thick plate slab is increased by CC casting or the like.
[0017]
The second invention is a method for producing an aluminum alloy plate material by rolling a molten metal of aluminum alloy having any of the above compositions into a plate slab by twin belt type continuous casting, and rolling the plate slab,
In a mold having a mold wall defined by twin belts, the mold wall is once separated from the generated solidified shell and then brought into contact again to complete solidification into a plate slab. A method for producing an aluminum alloy sheet having excellent wear resistance, comprising rolling an aluminum alloy sheet and performing the rolling at a total reduction of 95% or less.
[0018]
By casting the movable mold surface away from the surface of the plate slab for a predetermined time before solidification as the plate slab is finished, the alloy element concentration on the surface of the plate slab can be made higher than the alloy element concentration inside the plate slab, By regulating the total reduction ratio of the plate slab to the plate material, an aluminum alloy plate material having excellent wear resistance can be produced.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention actively utilizes reverse segregation during solidification of an aluminum alloy, concentrates alloy elements useful for improving wear resistance on the surface, and realizes excellent wear resistance with a small amount of alloy addition. .
[0020]
Usually, when an aluminum alloy melt such as Al-Fe-Si is poured into a mold and comes into contact with the mold wall, as explained in the phase diagram, α crystal having higher purity than the melt composition is first crystallized. Starting from the crystallized product, an α crystal having a higher purity than that of the molten metal in the vicinity is crystallized. By continuously repeating such solidification along the heat removal flow from the mold, a so-called dendritic shell (thin skin) is formed. When the α crystal is crystallized, a part of the alloy element is discharged as a foreign substance from the crystallized material and gathers between the dendrites, so that the alloy element gradually increases in concentration from the surface to the inside.
[0021]
However, when heat removal from the mold is interrupted by once separating the mold wall from the shell according to the present invention when the shell has grown to some extent, the inner wall of the shell in contact with the molten metal having a temperature higher than that of the shell is remelted. At that time, since the shell between the portions of each dendrite is relatively thin, the entire shell thickness is redissolved at that portion. However, each remelted region is a very fine region corresponding to the size of the dendrite, and when viewed macroscopically, the fine remelted region is uniformly and densely dispersed on the shell surface, and the shell itself is The shape is maintained.
[0022]
Along with this remelting, the crystallized material containing Fe, Si, Mn, Cr, Zr, Ni, etc. already formed in the molten metal near the shell at that time is remelted along the dendrite gap. Flow into. As a result, these wear resistance improving elements are concentrated in the remelted region.
[0023]
In this state, when the mold wall is brought into contact with the shell again according to the present invention to complete the solidification in the mold to obtain a plate slab, a plate slab having a concentrated wear resistance improving element on the surface is obtained.
[0024]
If the time for shutting off the heat removal by separating the mold wall from the shell is too long, the size of the remelting area becomes too large, causing surface defects of the plate slab and inability to cast. Therefore, by setting an appropriate blocking time for the shell thickness at the time when the mold wall starts to be separated from the shell, the latent heat of melting of the shell and the sensible heat of the molten metal are balanced so that a fine remelting region is formed on the shell surface. An even and finely dispersed state is obtained.
[0025]
The plate slab obtained in this way has high wear resistance because the surface of the alloy is concentrated and reverse segregated through remelting and resolidification, and the fine segregated areas are evenly and densely distributed. Because of this reverse segregation, the alloy concentration in the inside is low, so it has high formability. As a result, the plate slab and the alloy plate material of the present invention obtained by rolling the slab have surface wear resistance and overall The moldability will be combined.
[0026]
Next, the reasons for limiting the alloy components and their contents in the present invention will be described.
[Fe0.1-2.0%]
Fe improves wear resistance by crystallization of an Al—Fe intermetallic compound and, when coexisting with Si, by crystallization of an Al—Fe—Si intermetallic compound. The amount of addition is limited to 0.1 to 2.0%. If the amount is less than 0.1%, the raw material cost is high, and the amount of crystallized material is small, so the improvement in wear resistance is small. If it exceeds, a large crystallized product is produced at the time of casting, and the rollability of the plate slab and the formability of the alloy plate material are significantly inhibited.
[0027]
Fe crystallizes out as an intermetallic compound and flows into the remelted / resolidified region of the shell surface, thereby enriching (reverse segregation) on the surface and improving the wear resistance of the final alloy sheet.
[Si 0.05-2.0%]
Si crystallizes as simple Si, and when it coexists with Fe, it crystallizes as an Al-Fe-Si intermetallic compound, which contributes to improved wear resistance. The reason for limiting the amount of Si to 0.05-2.0% is that if it is less than 0.05%, the raw material cost will be high, and the effect will be small because the amount that appears as a crystallized substance is small. This is because castability is remarkably lowered and casting defects are increased.
[0028]
Si crystallizes as an intermetallic compound or as a simple substance, and flows into the remelted / resolidified region of the shell surface to concentrate (reverse segregation) on the surface and improve the wear resistance of the final alloy sheet.
[One or more of Mn 0.01 to 1.5%, Cr 0.01 to 0.5%, Zr 0.01 to 0.5%, Ni 0.01 to 0.5%]
Mn, Cr, Zr, Ni are Al- (Fe, Mn, Cr, Ni) -Si intermetallic compounds together with Fe and Si during solidification, or some are Al-Mn, Al-Cr, Al- Crystallization and improvement of wear resistance as intermetallic compounds such as Zr and Al-Ni. This is because when the amount added is less than the lower limit, the improvement in wear resistance is small, and when the amount exceeds the upper limit, a giant crystallized product is generated during casting and cracking occurs during rolling or forming. The total amount of these elements is preferably 2.0% or less in consideration of rollability.
[Casting grain refiner is 0.2% or less]
The cast structure refining agent can prevent the occurrence of casting cracks when CC casting a thick plate slab or increasing the casting speed. To prevent cracking, addition of 0.2% or less of Ti or Ti and B is preferable. Specifically, the above effects are exhibited by the inclusion of 0.002 to 0.2% of Ti, or 0.002 to 0.2% of Ti and 0.0002 to 0.02% of B. Inclusion exceeding the upper limit is not economical because the effect is not significantly improved.
[Inevitable impurities]
Other than the specific elements described above, they are unavoidable impurities, and may be contained within a range not impeding the effects of the present invention. When the allowable content is large, it is preferable that return materials and other low-priced materials can be used. However, as an acceptable standard, the upper limit is Mg and Zn 1.0%, V 0.1%, Ga 0.05%, etc. It is preferable that each element is 0.03%.
[0029]
Next, the manufacturing method of the board | plate material which concerns on this invention is demonstrated.
[0030]
Melting of the molten metal is performed by degassing, sedating, and finely adjusting the composition as necessary after adjusting the composition, and if necessary, adding a crystal grain refining agent in a furnace or in a bowl and continuously casting. Preferably, it is cast into a movable mold after passing through the filter. Examples of the continuous casting method include a twin belt method, a twin roll method, and a block casting method, but the method is not limited. Here, the temperature of the molten metal cast on the movable mold is set to about 710 ° C., which is about 20 degrees higher than usual. The reason for setting it higher is to cause back segregation evenly. At a casting temperature lower than 710 ° C, the total heat of the molten metal is insufficient to sufficiently dissolve the shell, and therefore the back segregation layer is formed in the plate slab. This is because the surface is unevenly distributed, not the entire surface, and it is difficult to obtain uniform wear resistance as a whole. The upper limit is about 760 ° C. to ensure casting stability.
[0031]
With reference to FIG. 1, a preferred method for casting a plate slab according to the present invention is illustrated. In the figure, 1 is a hot water reservoir, 2 is a nozzle, 3 is a movable mold (metal belt), 5 is an electromagnet, 6 is a sump, and 7 is a plate slab.
[0032]
The molten metal melted as described above is transferred from a melting and holding furnace (not shown) to the hot water reservoir 1, and the molten metal is poured between the movable molds 3 and 3 through the nozzle 2. Specifically, the movable molds 3, 3 are metal belts made of iron plate, copper plate or the like. The movable molds 3, 3 are rotated in the direction of the arrow 8 by a driving force (not shown).
[0033]
The molten metal 12 poured between the movable molds 3 and 3 is immediately solidified by the heat removal ability of the movable molds 3 and 3 to form shells 4 and 4. Then, the shell thickness is gradually increased, and solidification is completed at the solidification completion point 13 to form a plate slab 7. 6 is a molten metal or sump sandwiched between the shells 4 and 4. The molten metal 12 poured into the movable mold contacts the mold and immediately solidifies to form the shell 4. The molten metal is removed from the mold and the shells 4 and 4 become thicker over time, and the growth of the shell thickness depends on the ability to remove the movable mold. The initial position 11 for separating the surfaces of the movable molds 3 and 3 from the shells 4 and 4 is appropriately 20 to 50% of the sump length L0 from the molten metal injection port 9 of the movable molds 3 and 3. As a result, the shells 4 and 4 are removed from the mold by heat and melted by the sensible heat of the molten metal inside to form a remelted region 10, and the molten metal 12 leaches out from the dendrite to the outer surface of the shells 4 and 4. The wear resistance on the surface is improved. If the position is less than 20%, the shell thickness is small and the molten metal may melt and blow out from the dendrite, which is undesirable because the slab surface becomes uneven. At a position exceeding 50%, the heat amount of the molten metal in sump 6 is small and it becomes difficult to melt the shell.
[0034]
The distance L1 separating the movable molds 3 and 3 from the shells 4 and 4 is suitably in the range of 30 to 70% of the sump length L0. If the length is less than 30%, the shell is uniformly dissolved by the sensible heat of the molten metal, and it is difficult to leach out between the dendrites. However, if the molten metal temperature during casting is further increased to a temperature exceeding 760 ° C and the amount of heat of the molten metal is increased, reverse segregation is likely to occur, but the cooling of the mold, the position of the movable mold surface away from the shell surface and its length It becomes difficult to manage the casting and the casting becomes unstable. If the length exceeds 70%, the shell may be dissolved and blown out, and the slab surface becomes uneven, which is not preferable.
[0035]
Since FIG. 1 is an explanatory diagram, the situation in which the molten metal 12 leaches out from the dendrite to the outer surfaces of the shells 4 and 4 is coarse, but it seems that it is actually leached in a dense state.
[0036]
To move the movable mold away from the shell before the solidification of the molten metal in the movable mold is completed, electromagnets 5 and 5 are provided as shown in Fig. 1, and the electromagnetic force moves in the opposite direction to the shell. There is a method of pulling the molds 3 and 3 halfway and pulling the movable mold away from the shell. In this case, start auxiliary rollers 15 and 15 are provided at the first position 11 where the surface of the movable molds 3 and 3 is separated from the shells 4 and 4, and end auxiliary rollers 16 and 16 are provided at the end positions 17 and 17, respectively. If the direction of 3 is controlled, the magnetic force of the electromagnets 5 and 5 can be widened, and the length L1 separating the movable molds 3 and 3 from the shells 4 and 4 can be easily managed.
[0037]
The timing to insulate the shell by separating the movable mold surface from the shell surface as described above varies depending on the type of mold used, but the double belt method is 2 to 20 seconds after the molten metal contacts the belt. This can be achieved by separating the inside. The block method can be achieved by separating within 1 to 20 seconds after the molten metal contacts the block. As described above, the molten metal having a high concentration of alloying elements including crystallized substances leached from the shell is solidified at the balance between the melting latent heat of the shell and the sensible heat of the molten metal, but the distance L2 between the shell and the movable mold is small, for example, several hundred. In the case of μm, the leached molten metal may come into contact with the movable mold and solidify to form a plate slab surface.
[0038]
The plate slab thus obtained is rolled without chamfering the surface. The reason for rolling without chamfering the surface is to leave a portion with a high alloy element concentration including crystallized material on the surface that contributes to wear resistance. Although it may be annealed before or during cold rolling, the total reduction ratio until reaching the final product is 95% or less. When rolling exceeds 95%, the portion with low alloying element concentration in the internal structure is exposed between the crystallized products on the product surface, resulting in a decrease in the crystallized material ratio on the surface and deterioration of wear resistance. It is.
[0039]
【Example】
An aluminum alloy sheet was produced according to the present invention. A molten aluminum alloy having the composition shown in Table 1 was used.
[0040]
The CC method was cast using a twin belt casting apparatus as shown in FIG. The casting thickness was 15 mm, and the casting speed (slab drawing speed) was 3 m / min. During casting, the movable mold was pulled away from the surface of the plate slab by pulling the belt inward by electromagnetic force about 2 mm inward from a position 20 cm away from the molten metal injection port of the movable mold. The sump length at this time was 50 cm. The cast plate slab was rolled to a predetermined rolling reduction without chamfering to obtain an alloy plate material.
[0041]
On the other hand, as a comparison, an aluminum alloy plate was manufactured by a method in which the movable mold was not pulled away from the surface of the plate slab in the twin belt method and a casting method by the DC method. Cast thickness by DC method is 406mm, cast ingot is not chamfered, homogenized heat treatment at 530 ° C x 4 hours, hot rolling and cold rolling, and if necessary through intermediate annealing process Rolled to reduction. Table 2 shows the casting conditions.
[0042]
For the aluminum alloy sheet produced by the present invention and the comparative method as described above, the ratio of the total amount of Fe and Si on the sheet surface to the total amount of Fe and Si at the 1/4 position of the thickness as shown in FIG. (Ts / To), or the content ratio of Fe, Si, Mn, Cr, Zr, Ni on the plate surface to the content of Fe, Si, Mn, Cr, Zr, Ni at a position of 1/4 of the thickness ( TUs / TUo). The alloy element content was analyzed by glow discharge emission spectrometry.
[0043]
The content ratio is calculated as Ts / To, where Ts is the total value of Fe and Si on the surface of the plate, and To is the total value of Fe and Si at 1/4 position of the plate thickness. Value. Similarly, the content ratio when one or more of Mn, Cr, Zr, and Ni are included is the total value of Fe, Si, Mn, Cr, Zr, and Ni on the surface of the plate material as TUs. When the total value of Fe, Si, Mn, Cr, Zr and Ni at 1/4 position of the plate material thickness is TUo, the total value ratio is a value calculated by TUs / TUo.
[0044]
The wear resistance was investigated. Wear resistance is a CC method that uses a frictron friction and wear tester, friction speed is 0.139 m / sec, friction distance is 1000 m, pressure load is 100 kg, mating material is SUJ2, and the movable mold is not separated from the shell. The wear amount ratio of each sample was determined by setting the wear amount of the obtained plate material to 1. The results are shown in Table 2.
[0045]
Although the moldability was evaluated with an Erichsen tester, it was better than the conventional method in which the movable mold was not pulled away from the shell.
[0046]
From the results in Table 2, the present invention examples (sample numbers 2, 3, 4, 9, 10, 11, 15, 16, 17, 21, 22, 23, 27, 28, 29, 33, 4, 35, 39, 40, 41, 45, 46, 47, 51, 52, 53, 57, 58, 59, 63, 64, 65, 69, 70, 71, 75, 76, 77, 81, 82, 83, 87, 88, 89, 93, 94, 95) shows that the total amount ratio of elements on the surface is high and the wear amount is low, so that the wear resistance is excellent. It can also be seen that there is no significant difference in wear resistance with and without Ti and B. Thickness of Ti and B (Sample No. 4,11,17,23,29,35,41,47,53,59,65,71,77,83,89,95) is slab thickness Was not thick and the casting speed was not fast, so it was possible to cast without cracking.
[0047]
On the other hand, a comparative example having a high rolling reduction (sample numbers 5, 12, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96) is a shell. It can be seen that even if the movable mold is separated from the above, the total element amount ratio is low, the wear amount is large, and the wear resistance is poor.
[0048]
As a comparative example, the one in which the movable mold is not separated from the shell (sample numbers 6, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 101) Even if it is low, the total element amount ratio is low, and it can be seen that the wear amount is large and the wear resistance is poor.
[0049]
For the DC method (sample numbers 1, 8, 14, 20, 26, 32, 38, 44, 50, 56, 62, 68, 74, 80, 86, 92, 98), the rolling reduction is extremely large and the total element It can be seen that the amount ratio is 1.00, the wear amount is large, and the wear resistance is poor.
[0050]
As a comparative example, the CC method having a low casting temperature (Sample No. 7) was unsuitable as a plate material because the plate slab surface was not uniform and the reverse segregation layer was unevenly distributed.
As a comparative example, the CC method with a low Fe content and a movable mold separated from the shell (sample number 99) has a total element ratio within the scope of the present invention, but the cost is low to keep the Fe content low. Becomes higher.
[0051]
As a comparative example, the CC method has a low Si content and the movable mold is not separated from the shell (sample number 101), even if the rolling reduction is low, the element total amount ratio is low, the wear amount is large, and the wear resistance is poor. In addition, the cost increases to keep the Fe content low.
[0052]
As a comparative example, the CC method has a low Si content and the movable mold is separated from the shell (sample number 68), but the total element ratio falls within the scope of the present invention, but the cost is low to keep the Si content low. Get higher.
[0053]
As comparative examples, CC method with high Fe content (Sample No. 102), high Mn content (Sample No. 103), high Zr content (Sample No. 104), high Cr content (Sample) No. 105) and a high Ni content (sample No. 106) were cast with the movable mold separated, but the subsequent rolling could not be measured due to defects such as cracking.
[0054]
As a comparative example, the one cast by the CC method and having a high Si content (Sample No. 107) had poor flowability and a large shrinkage, and could not be cast.
[0055]
[Table 1]
Figure 0003973540
[0056]
[Table 2]
Figure 0003973540
[0057]
[Table 3]
Figure 0003973540
[0058]
[Table 4]
Figure 0003973540
[0059]
[Table 5]
Figure 0003973540
[0060]
[Table 6]
Figure 0003973540
[0061]
[Table 7]
Figure 0003973540
[0062]
[Table 8]
Figure 0003973540
[0063]
[Table 9]
Figure 0003973540
[0064]
【The invention's effect】
As described above, the aluminum alloy sheet of the present invention can be manufactured at low cost, has excellent wear resistance, and has excellent properties in both castability and rollability. Further, since the amount of the alloy element inside the plate material is small because the alloy element has moved to the surface, both the surface and the inside have better formability than a plate material having a high alloy element concentration. Therefore, the obtained aluminum alloy plate is used as a material exhibiting excellent characteristics as a case, a sliding plate, a fin, a transmission component, a hard disk drive component, or the like.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an apparatus for casting an aluminum alloy according to the present invention.
FIG. 2 is a cross-sectional view schematically showing the analysis position of the surface of the aluminum alloy plate material according to the present invention and a ¼ thickness portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hot water reservoir 2 ... Pouring nozzle 3 ... Double belt type movable mold 4 ... Solidified shell 5 ... Electromagnet 6 ... Sump (unsolidified molten metal)
7 ... Plate slab 8 ... Twin belt rotation direction 9 ... Melt inlet 10 ... Remelting region 11 ... Position 12 where mold starts to be released from the shell 12 ... Molten metal 13 ... Solidification completion point 15 ... Auxiliary roller 16 at position where mold starts to be released ... Mold Auxiliary roller 17 at a position where the mold is re-contacted ... Position L 0 where the mold is re-contacted ... Sump length L 1 ... Distance where the mold is separated

Claims (4)

Fe 0.1〜2.0%およびSi 0.05〜2.0%を含有し、残部Alと不可避的不純物からなるアルミニウム合金板材であって、該板材表面のFeおよびSiの合計値Tsと、該板材厚さの1/4位置におけるFeおよびSiの合計値Toとの比Ts/Toが1.2以上であることを特徴とする耐摩耗性に優れたアルミニウム合金板材。An aluminum alloy plate containing 0.1 to 2.0% Fe and 0.05 to 2.0% Si, the balance being Al and inevitable impurities, the total value Ts of Fe and Si on the surface of the plate, and 1 / th of the thickness of the plate An aluminum alloy sheet with excellent wear resistance, characterized in that the ratio Ts / To with the total value To of Fe and Si at 4 positions is 1.2 or more. 更にMn 0.01〜1.5%、Cr 0.01〜0.5%、Zr 0.01〜0.5%およびNi 0.01〜0.5%のうちの1種もしくは2種以上を含有してなり、残部Alと不可避的不純物からなるアルミニウム合金板材であって、該板材表面のFe、Si、Mn、Cr、ZrおよびNiの合計値TUsと、該板材厚さの1/4位置におけるFe、Si、Mn、Cr、ZrおよびNiの合計値TUoとの比TUs/TUoが1.2以上であることを特徴とする請求項1記載の耐摩耗性に優れたアルミニウム合金板材。Furthermore, it contains one or more of Mn 0.01 to 1.5%, Cr 0.01 to 0.5%, Zr 0.01 to 0.5%, and Ni 0.01 to 0.5%, and the balance is aluminum alloy sheet made of Al and inevitable impurities. The total value TUs of Fe, Si, Mn, Cr, Zr and Ni on the surface of the plate material, and the total value TUo of Fe, Si, Mn, Cr, Zr and Ni at 1/4 position of the plate material thickness 2. The aluminum alloy sheet material having excellent wear resistance according to claim 1, wherein the ratio TUs / TUo to is 1.2 or more. 前記アルミニウム合金板は、更に鋳造結晶粒微細化剤を0.2%以下含有していることを特徴とする請求項1または2記載の耐摩耗性に優れたアルミニウム合金板材。3. The aluminum alloy sheet excellent in wear resistance according to claim 1, wherein the aluminum alloy sheet further contains 0.2% or less of a cast crystal grain refining agent. 請求項1から3までのいずれか1項に記載のアルミニウム合金の溶湯を双ベルト式連続鋳造により板スラブとし、該板スラブを圧延してアルミニウム合金板材を製造する方法であって、
双ベルトにより画定された鋳型壁を有する鋳型内で、生成した凝固シェルを一旦該鋳型壁から離した後に、再度該鋳型壁に接触させることにより凝固を完了させて板スラブとし、該板スラブを面削なしで圧延してアルミニウム合金板材とし、該圧延を全圧下率95%以下で行なうことを特徴とする耐摩耗性に優れたアルミニウム合金板材の製造方法。
A method for producing an aluminum alloy plate material by rolling the molten plate of aluminum alloy according to any one of claims 1 to 3 into a plate slab by twin belt type continuous casting, and rolling the plate slab.
In a mold having a mold wall defined by a double belt, the generated solidified shell is once separated from the mold wall and then brought into contact with the mold wall again to complete solidification into a plate slab. A method for producing an aluminum alloy sheet having excellent wear resistance, wherein the aluminum alloy sheet is rolled without chamfering, and the rolling is performed at a total reduction of 95% or less.
JP2002324162A 2002-11-07 2002-11-07 Aluminum alloy sheet having excellent wear resistance and method for producing the same Expired - Fee Related JP3973540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324162A JP3973540B2 (en) 2002-11-07 2002-11-07 Aluminum alloy sheet having excellent wear resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324162A JP3973540B2 (en) 2002-11-07 2002-11-07 Aluminum alloy sheet having excellent wear resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004156117A JP2004156117A (en) 2004-06-03
JP3973540B2 true JP3973540B2 (en) 2007-09-12

Family

ID=32803838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324162A Expired - Fee Related JP3973540B2 (en) 2002-11-07 2002-11-07 Aluminum alloy sheet having excellent wear resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3973540B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998277B2 (en) 2007-01-22 2012-08-15 株式会社豊田中央研究所 Aluminum alloy casting material and manufacturing method thereof, aluminum alloy material and manufacturing method thereof
JP5412714B2 (en) * 2007-07-10 2014-02-12 日本軽金属株式会社 Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability
CN102806325B (en) 2007-11-29 2015-03-04 日本轻金属株式会社 Twin-belt casting machine and method of continuous slab casting
CN102500628B (en) * 2011-11-13 2013-10-30 首钢总公司 Method for accurately calibrating widening positions of casting blank during steel rolling
JP6355098B2 (en) * 2013-12-27 2018-07-11 三菱アルミニウム株式会社 High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same
KR102273220B1 (en) * 2019-12-10 2021-07-05 김준수 Aluminum alloy for enamel coating and method for manufacturing die casted aluminum alloy frying pan

Also Published As

Publication number Publication date
JP2004156117A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US7478665B2 (en) Method of manufacturing magnesium alloy material
US9038702B2 (en) System and method of producing multi-layered alloy products
US20070144630A1 (en) Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability
KR101511632B1 (en) Method for manufacturing of Al-Zn alloy sheet using twin roll casting and Al-Zn alloy sheet thereby
WO2013140826A1 (en) Aluminum alloy sheet having excellent press formability and shape fixability, and method for manufacturing same
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
KR20010031606A (en) Process For Producing Base Foils Of Aluminum Alloys
JP3973540B2 (en) Aluminum alloy sheet having excellent wear resistance and method for producing the same
JP4701998B2 (en) Aluminum alloy foil excellent in strength and rough skin resistance and method for producing the same
JP2004522585A (en) Manufacturing method of high strength aluminum alloy foil
JP3657217B2 (en) Method for producing magnesium alloy slab for hot rolling and method for hot rolling magnesium alloy
JPH07252574A (en) Al-cu-mg alloy excellent in toughness and its production
US20020074384A1 (en) Method of making aluminum alloy plate for bearing
JPH05239584A (en) Rolled sheet of high strength aluminum alloy and its production
JPWO2003023080A1 (en) Aluminum alloy for casting, aluminum alloy casting, and method for manufacturing aluminum alloy casting
JP3685973B2 (en) Al-Mg-based Al alloy plate with excellent formability
JP4728114B2 (en) Aluminum alloy billet for heat roll production
KR101757733B1 (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
KR20150042099A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
KR20160091863A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
JPS6365402B2 (en)
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
RU2451105C1 (en) Manufacturing method of plates from alloy of aluminium-magnesium-manganese system
JPH05277656A (en) Thin plate of alloy containing ti3al group intermetallic compound and manufacture thereof
JP3836532B2 (en) Aluminum alloy plate for building materials and equipment and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040127

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees