JP4109178B2 - Method for producing aluminum alloy fin material for brazing - Google Patents

Method for producing aluminum alloy fin material for brazing Download PDF

Info

Publication number
JP4109178B2
JP4109178B2 JP2003344946A JP2003344946A JP4109178B2 JP 4109178 B2 JP4109178 B2 JP 4109178B2 JP 2003344946 A JP2003344946 A JP 2003344946A JP 2003344946 A JP2003344946 A JP 2003344946A JP 4109178 B2 JP4109178 B2 JP 4109178B2
Authority
JP
Japan
Prior art keywords
less
mass
fin material
aluminum alloy
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003344946A
Other languages
Japanese (ja)
Other versions
JP2005111482A (en
Inventor
武宜 土公
昭男 新倉
晃 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2003344946A priority Critical patent/JP4109178B2/en
Publication of JP2005111482A publication Critical patent/JP2005111482A/en
Application granted granted Critical
Publication of JP4109178B2 publication Critical patent/JP4109178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Description

本発明はプレス成形やコルゲート成形を施してブレージングに供される、自動車用熱交換器用フィン材の製造方法に関するものである。   The present invention relates to a method for manufacturing a fin material for a heat exchanger for automobiles, which is subjected to press molding or corrugated molding and subjected to brazing.

一般に自動車用のアルミニウム製熱交換器はろう付工法によって製造され、フィン材はプレス成形、ロール成形或いはコルゲート成形後に、チューブ材やプレート材などの部材に組み付けられ、ろう付けされる。前記アルミニウム製熱交換器用フィン材の鋳造法としては、双ロールキャスターに代表される薄板連続鋳造法、ベルト若しくはブロック式の厚板連続鋳造法、Direct Chill法などが挙げられる。この他、設備費が安い連続鋳造圧延と冷間圧延によるフィン材の製造方法が幾つか提案されている。   In general, aluminum heat exchangers for automobiles are manufactured by a brazing method, and the fin material is assembled to a member such as a tube material or a plate material after press molding, roll molding, or corrugated molding and brazed. Examples of the casting method for the aluminum heat exchanger fin material include a thin plate continuous casting method typified by a twin roll caster, a belt or block type thick plate continuous casting method, and a direct chill method. In addition, several methods for producing fin materials by continuous casting and cold rolling with low equipment costs have been proposed.

前記薄板連続鋳造法では、通常板厚10mm未満の鋳造板を製造し、この鋳造板を熱間圧延することなく冷間圧延してフィン材とする。近年、双ロールキャスター法では、凝固ロールによる圧下が考慮されており、数千〜数万N(板状鋳塊幅1mmあたり)の圧荷重が付与される。また鋳造条件、焼鈍条件等を規定した例がある(例えば特許文献1)。   In the thin plate continuous casting method, a cast plate having a thickness of less than 10 mm is usually produced, and the cast plate is cold rolled without hot rolling to obtain a fin material. In recent years, in the twin roll caster method, reduction by a solidification roll is considered, and a pressure load of several thousand to several tens of thousands N (per 1 mm of plate-shaped ingot width) is applied. There is an example in which casting conditions, annealing conditions, and the like are defined (for example, Patent Document 1).

一方、厚板連続鋳造法では、鋳造中溶湯には殆ど荷重がかからずに板厚10mm以上の鋳造板が製造され、前記鋳造板は、通常、熱間圧延および冷間圧延が施され、フィン材に供される。厚板連続鋳造法の例として、Al-Fe-Si-Mn系合金を10℃/秒を超える冷却速度で連続鋳造する例がある(例えば特許文献2)。   On the other hand, in the thick plate continuous casting method, a cast plate having a plate thickness of 10 mm or more is manufactured with almost no load applied to the molten metal during casting, and the cast plate is usually subjected to hot rolling and cold rolling, Used for fin material. As an example of the thick plate continuous casting method, there is an example in which an Al—Fe—Si—Mn alloy is continuously cast at a cooling rate exceeding 10 ° C./second (for example, Patent Document 2).

特開2002−241910JP-A-2002-241910 特表2002−521564Special table 2002-521564

ところで前記アルミニウム製熱交換器は、自動車の燃費低減を目的に部材の軽量化つまり薄肉化が進んでいる。フィン材の薄肉化に対しては、熱交換器の耐圧強度を保持するために、ろう付後のフィン材の強度向上が必須である。また強度が向上すると張出性や伸びフランジ性が低下して割れ不良や寸法のばらつきが増加するので、フィン材には成形性の向上も望まれている。しかし、ろう付後の熱交換器の強度向上のためFe、Si、Mnなどの合金元素の添加量を増やすと成形性が低下するという問題がある。   By the way, the aluminum heat exchanger has been made lighter, that is, thinner, for the purpose of reducing fuel consumption of automobiles. In order to reduce the thickness of the fin material, it is essential to improve the strength of the fin material after brazing in order to maintain the pressure resistance of the heat exchanger. Further, as the strength is improved, the stretchability and stretch flangeability are deteriorated and cracking defects and dimensional variations are increased. Therefore, it is desired that the fin material be improved in formability. However, there is a problem that formability decreases when the amount of addition of alloy elements such as Fe, Si, and Mn is increased to improve the strength of the heat exchanger after brazing.

成形性の向上については、合金元素や調質条件を変更して材料強度を調整したり、成形機を調整したりして対処しているが、成形性に最も影響する材料の表面特性については対策が殆ど講じられていないのが現状である。   The improvement of formability is dealt with by changing the alloying elements and tempering conditions to adjust the material strength and adjusting the molding machine. Currently, almost no countermeasures are taken.

本発明は、熱交換器用アルミニウム合金フィン材の薄肉化について、合金組成と鋳造条件との関係、熱間圧延条件と金属組織および成形性との関係を種々検討した結果に基づいてなされたものであり、その目的は、薄肉化に対して、ろう付後に十分高い強度を有しながらも、さまざまな加工に対して良好な成形性を有するブレージング用アルミニウム合金フィン材の製造方法を提供することである。   The present invention was made on the basis of the results of various investigations on the relationship between alloy composition and casting conditions, and the relationship between hot rolling conditions, metal structure, and formability for thinning aluminum alloy fin materials for heat exchangers. The purpose is to provide a method for producing an aluminum alloy fin material for brazing that has good formability for various processes while having sufficiently high strength after brazing for thinning. is there.

請求項1記載発明は、アルミニウム又はアルミニウム合金溶湯を、前記溶湯の圧荷重を鋳塊幅1mmあたり1000N以下に規定して、厚み10mm以上20mm以下の板状鋳塊に連続鋳造し、次いで前記板状鋳塊を冷間圧延することを特徴とするブレージング用アルミニウム合金フィン材の製造方法である。   According to a first aspect of the present invention, a molten aluminum or aluminum alloy is continuously cast into a plate-shaped ingot having a thickness of 10 mm or more and 20 mm or less, the pressure load of the molten metal being regulated to 1000 N or less per 1 mm of ingot width, and then the plate It is a manufacturing method of the aluminum alloy fin material for brazing characterized by cold-rolling a cylindrical ingot.

請求項2記載発明は、アルミニウム又はアルミニウム合金溶湯を、前記溶湯の圧荷重を鋳塊幅1mmあたり1000N以下に規定して、厚み10mm以上20mm以下の板状鋳塊に連続鋳造し、次いで前記板状鋳塊を圧下率50%未満で熱間圧延し、次いで冷間圧延することを特徴とするブレージング用アルミニウム合金フィン材の製造方法である。   According to a second aspect of the present invention, a molten aluminum or aluminum alloy is continuously cast into a plate-shaped ingot having a thickness of 10 mm or more and 20 mm or less, the pressure load of the molten metal being regulated to 1000 N or less per 1 mm of ingot width, and then the plate A method for producing an aluminum alloy fin material for brazing, characterized in that a hot ingot is rolled at a reduction rate of less than 50% and then cold rolled.

請求項3記載発明は、前記連続鋳造方法がベルトキャスター法であることを特徴とする、請求項1又は2記載のブレージング用アルミニウム合金フィン材の製造方法である。   A third aspect of the present invention is the method for producing an aluminum alloy fin material for brazing according to the first or second aspect, wherein the continuous casting method is a belt caster method.

請求項4記載発明は、前記連続鋳造方法において、離型剤を用いることを特徴とする、請求項1乃至3記載のブレージング用アルミニウム合金フィン材の製造方法である。   A fourth aspect of the present invention is the method for producing an aluminum alloy fin material for brazing according to any one of the first to third aspects, wherein a release agent is used in the continuous casting method.

請求項5記載発明は、前記アルミニウム合金が、0.1mass%を超え2.2mass%以下のFe、0.1mass%を超え2.0mass%以下のSi、および0.2mass%を超え2.5%mass%以下のMnを含有し、必要に応じて0.05mass%を超え0.5mass%以下のNi、0.05mass%を超え0.5mass%以下のCuのうちの1種あるいは2種を含有し、さらに0.3mass%以下のCr、0.3mass%以下のZr、0.3mass%以下のTi、4mass%以下のZn、0.3mass%以下のIn、0.3mass%以下のSn、1mass%以下のMgのうち1種または2種以上を含有し、残部不可避不純物からなるアルミニウム合金であることを特徴とする請求項1乃至4のいずれかに記載のブレージング用アルミニウム合金フィン材の製造方法である。   The invention according to claim 5 is characterized in that the aluminum alloy contains Fe of more than 0.1 mass% and 2.2 mass% or less, Si of more than 0.1 mass% and 2.0 mass% or less, and Mn of more than 0.2 mass% and 2.5% mass% or less. Containing, if necessary, containing 0.05 mass% to 0.5 mass% or less of Ni, 0.05 mass% to 0.5 mass% or less of Cu or one or two of Cu, and 0.3 mass% or less of Cr, Contains one or more of 0.3 mass% or less of Zr, 0.3 mass% or less of Ti, 4 mass% or less of Zn, 0.3 mass% or less of In, 0.3 mass% or less of Sn, or 1 mass% or less of Mg. 5. The method for producing an aluminum alloy fin material for brazing according to any one of claims 1 to 4, wherein the balance is an aluminum alloy comprising inevitable impurities.

本発明は、所定組成のアルミニウム又はアルミニウム合金を、連続鋳造法により、鋳造条件を規定して鋳造して、表層近傍が微細な急冷凝固組織からなる板状鋳塊とし、さらにこの板状鋳塊を熱間圧延を施さず、或いは熱間圧延を圧延率50%未満で施して、前記急冷凝固組織を冷間圧延後のフィン材にまで持ち来たすので、得られるフィン材は高強度でかつ成形性に優れたものとなり、フィン材の薄肉化が可能となる。さらに前記連続鋳造で鋳型内面に離型剤を塗布すると前記離型剤は潤滑効果を有する粒子として鋳塊表面に付着し、これをフィン材にまで残存させることによりフィン材の成形性が一層高まる。   In the present invention, a predetermined composition of aluminum or an aluminum alloy is cast by a continuous casting method by defining casting conditions to obtain a plate-shaped ingot having a rapidly solidified structure in the vicinity of the surface layer. No hot rolling is performed, or hot rolling is performed at a rolling rate of less than 50%, and the rapidly solidified structure is brought to the fin material after cold rolling, so that the obtained fin material has high strength and is formed. The fin material can be thinned. Further, when a mold release agent is applied to the inner surface of the mold by the continuous casting, the mold release agent adheres to the ingot surface as particles having a lubricating effect, and the fin material is further improved in moldability by remaining on the fin material. .

本発明者等はフィン材の薄肉化について種々検討する中で、薄肉化のために合金濃度を高めると、鋳造時に粗大な化合物が晶出し、この粗大晶出相が成形時に亀裂の起点となり易いこと、この亀裂は合金元素がFe、Si、Mnなどのときに特に起き易いことを見出した。そしてさらに検討を進め、前記晶出相による亀裂の発生は、鋳塊表面を微細な急冷凝固組織とし、熱間圧延での圧延率を低く抑え、冷間圧延時に鋳塊内部の粗大晶出相を分断することにより防止できることを明らかにした。   When the inventors of the present invention variously study the thinning of the fin material, if the alloy concentration is increased for thinning, a coarse compound crystallizes during casting, and this coarse crystallized phase tends to be a starting point of cracking during molding. It has been found that this crack is particularly likely to occur when the alloy element is Fe, Si, Mn or the like. Further investigation has been carried out, and the occurrence of cracks due to the crystallization phase is caused by making the ingot surface a fine rapidly solidified structure, suppressing the rolling rate in hot rolling low, and the coarse crystallization phase inside the ingot during cold rolling. It was clarified that it can be prevented by splitting.

本発明において、前記鋳塊表面近傍を微細な急冷凝固組織とするためには、鋳塊厚さを10mm以上にする必要がある。鋳塊厚さが10mm未満では最終フィン材までの圧延率が小さく晶出相が十分に分断されなくなり、その結果、フィン材の強度が不足し、さらには破断起点となるサイズの晶出相の個数が多くなって成形性が低下する。一方、鋳塊厚さが20mmを超えると冷却速度が遅くなり晶出相が粗大化してしまう。
従って、本発明では鋳塊厚さを10mm以上20mm以下に規定する。鋳塊厚さは10mm以上15mm以下が特に好ましい。
In the present invention, in order to obtain a fine rapidly solidified structure in the vicinity of the ingot surface, the ingot thickness needs to be 10 mm or more. If the ingot thickness is less than 10 mm, the rolling rate up to the final fin material is small and the crystallization phase is not sufficiently divided. As a result, the strength of the fin material is insufficient, and the crystallization phase of the size that will be the starting point of fracture The number increases and the moldability decreases. On the other hand, if the ingot thickness exceeds 20 mm, the cooling rate becomes slow and the crystallization phase becomes coarse.
Therefore, in the present invention, the ingot thickness is specified to be 10 mm or more and 20 mm or less. The ingot thickness is particularly preferably from 10 mm to 15 mm.

本発明において、鋳塊表面近傍を微細な急冷凝固組織とするためには、溶湯の圧荷重を鋳塊幅1mmあたり1000N以下で鋳造することが必要である。これは、本発明者らがさまざまな鋳造条件により実験を行い、溶湯の圧荷重が鋳塊幅1mmあたり1000Nより大きいと表面近傍の微細な組織が破壊され、中央部の組織との差異が無くなることを確認した。溶湯の圧荷重は鋳塊幅1mmあたり600N以下が特に好ましい。   In the present invention, in order to make the vicinity of the ingot surface a fine rapidly solidified structure, it is necessary to cast the molten metal with a pressure load of 1000 N or less per 1 mm of the ingot width. This is because the inventors conducted experiments under various casting conditions, and when the pressure load of the molten metal is larger than 1000 N per 1 mm of ingot width, the fine structure near the surface is destroyed and there is no difference from the structure in the central part. It was confirmed. The pressure load of the molten metal is particularly preferably 600 N or less per 1 mm ingot width.

本発明において、連続鋳造法には、圧荷重を低位に制御し易いベルトキャスター法が推奨される。   In the present invention, a belt caster method that can easily control the pressure load to a low level is recommended as the continuous casting method.

本発明等は、上述のように、鋳塊表面近傍を微細な急冷凝固組織とし、これを冷間圧延後のフィン材にまで持ち来たすことによりフィン材の成形加工性を高めたものであるが、本発明者らはフィン材の成形加工性をさらに高めるために、フィン材の成形性と材料表面との関係について検討した。その結果、成形性の向上には、潤滑油を塗布する他に、材料表面に潤滑効果を有する粒子を付着させておくことが有効なことを見出した。   As described above, the present invention has a fine rapidly solidified structure in the vicinity of the ingot surface, and this is brought to the fin material after cold rolling to improve the moldability of the fin material. In order to further improve the moldability of the fin material, the present inventors examined the relationship between the moldability of the fin material and the material surface. As a result, it has been found that, in order to improve the moldability, it is effective to attach particles having a lubricating effect to the material surface in addition to applying the lubricating oil.

前記潤滑効果を有する粒子は、成形加工前に材料表面にコーティング等により付着させても良いが、この方法は工数が増加してコスト的に不利な上、粒子密度が均一になるようにコーティングするのが困難で、かえって潤滑性を低下させてしまう。
そこで、本発明者らは、前記粒子をフィン材の表面に均一に薄く塗布する方法について検討した。その結果、連続鋳造鋳型に離型剤を塗布し、かつ溶湯の圧荷重を規定し、また熱間圧延での圧延率を50%未満(0%含む)に規定すると、前記粒子は冷間圧延後にも材料表面に残存し、これがフィン成形時に材料と成形型内面との潤滑性を高め、成形性が向上することを見出した。
The particles having the lubricating effect may be adhered to the material surface by coating or the like before the molding process. However, this method increases the number of steps and is disadvantageous in terms of cost, and is coated so that the particle density is uniform. It is difficult to reduce the lubricity.
Therefore, the present inventors examined a method for uniformly and thinly applying the particles to the surface of the fin material. As a result, when the mold release agent is applied to the continuous casting mold, the pressure load of the molten metal is specified, and the rolling rate in hot rolling is specified to be less than 50% (including 0%), the particles are cold-rolled. It was found that it remained on the surface of the material later, which increased the lubricity between the material and the inner surface of the mold during fin molding, and improved moldability.

前記離型剤としてはシリカまたはカーボンが潤滑効果が大きく推奨される。また連続鋳造時の溶湯の圧荷重は鋳塊幅1mmあたり1000N以下に規定すると離型剤が表面から剥離する量が著しく減少する。圧荷重は鋳塊幅1mmあたり600N以下が特に好ましい。
なお前記離型剤および前記圧荷重の規定値は本発明者らがさまざまな条件で実験をして見出したものである。
As the mold release agent, silica or carbon is highly recommended because of its lubricating effect. Further, when the pressure load of the molten metal during continuous casting is regulated to 1000 N or less per 1 mm of ingot width, the amount of release agent released from the surface is remarkably reduced. The pressure load is particularly preferably 600 N or less per 1 mm ingot width.
The prescribed values of the mold release agent and the pressure load were found by the inventors through experiments under various conditions.

本発明者等は、さまざまな条件で熱間圧延し、次いで冷間圧延してフィン材を製造し、その組織を観察したところ、熱間圧延を圧延率50%以上で行ったものは、表層近傍の急冷凝固組織が破壊したり、表面に付着した潤滑効果を有する粒子がロールにコーティングされて剥離することを知見した。従って、前記急冷凝固組織或いは潤滑効果を有する粒子をフィン材にまで持ち来たしてフィン材の成形性を改善するためには熱間圧延を全く行わないか、熱間圧延率を50%未満とする必要がある。   The inventors of the present invention hot rolled under various conditions, then cold rolled to produce a fin material, and the structure thereof was observed. It was found that a rapidly solidified structure in the vicinity was destroyed or particles having a lubricating effect attached to the surface were coated on a roll and separated. Therefore, in order to improve the moldability of the fin material by bringing the rapidly solidified structure or particles having a lubricating effect to the fin material, hot rolling is not performed at all or the hot rolling rate is set to less than 50%. There is a need.

本発明において、熱間圧延前の加熱温度等の他の条件は、フィン材の成形性を損なわない範囲で任意である。また冷間圧延率については特に規定しない。その理由は、冷間圧延ではロールコーティングが発生せず、表面近傍の急冷凝固組織や潤滑効果を有する粒子が剥離しないためである。従って通常の冷間圧延条件であれば、本発明のフィン材の成形性向上効果が損なわれることはない。このような条件でフィン材を製造することにより、離型剤として材料表面に付着した潤滑効果を有する粒子は熱間圧延で剥離することなく冷間圧延材にまで持ち来たされる。このためフィン材の成形性が向上する。   In the present invention, other conditions such as the heating temperature before hot rolling are arbitrary as long as the formability of the fin material is not impaired. The cold rolling rate is not particularly specified. The reason is that in cold rolling, roll coating does not occur, and the rapidly solidified structure in the vicinity of the surface and particles having a lubricating effect do not peel off. Therefore, under normal cold rolling conditions, the effect of improving the formability of the fin material of the present invention is not impaired. By producing the fin material under such conditions, particles having a lubricating effect attached to the material surface as a release agent are brought to the cold rolled material without being separated by hot rolling. For this reason, the moldability of the fin material is improved.

本発明では、冷間圧延中に施す中間焼鈍条件についても規定しない。中間焼鈍はバッチ式焼鈍や連続焼鈍などにより一般的な加熱を行えば良い。各種調質条件や、最終冷間圧延率もフィン材の要求特性を考慮して決めれば良い。   In this invention, it does not prescribe | regulate also about the intermediate annealing conditions performed during cold rolling. The intermediate annealing may be performed by general heating such as batch annealing or continuous annealing. Various tempering conditions and the final cold rolling rate may be determined in consideration of the required characteristics of the fin material.

本請求項5発明は、本発明で用いる望ましいフィン材のアルミニウム合金で、必須元素として、Fe、Si、Mnをそれぞれ適量含有し、必要に応じてNi、Cuの1種または2種を含有し、さらに必要に応じてCr、Zr、Ti、Zn、In、Sn、Mgのうちの1種または2種以上をそれぞれ適量含有するものである。   The present invention is an aluminum alloy of a desirable fin material used in the present invention, containing appropriate amounts of Fe, Si, and Mn as essential elements, and optionally containing one or two of Ni and Cu. Further, it contains one or two or more of Cr, Zr, Ti, Zn, In, Sn, and Mg as required.

以下に前記合金元素について作用と含有量の規定理由について説明する。
Feはろう付後のフィン材の強度向上に寄与する。その含有量を、0.1mass%を超え2.2mass%以下に規定する理由は、0.1mass%以下ではその効果が十分に得られず、2.2mass%を超えると晶出相が粗大化するため本発明の製造方法によっても成形性を改善することができないためである。また多量のFeは加工性を悪化させる。Feの含有量は0.7mass%以上1.9mass%未満がより好ましい。
Hereinafter, the reasons for defining the action and content of the alloy element will be described.
Fe contributes to improving the strength of the fin material after brazing. The reason why the content is specified to be more than 0.1 mass% and 2.2 mass% or less is that the effect is not sufficiently obtained when the content is less than 0.1 mass%, and the crystallized phase becomes coarse when the content exceeds 2.2 mass%. This is because the moldability cannot be improved even by this manufacturing method. A large amount of Fe deteriorates workability. The Fe content is more preferably 0.7 mass% or more and less than 1.9 mass%.

Siもろう付後のフィン材の強度向上に寄与する。その含有量を0.1mass%を超え2.0mass%以下に規定する理由は、0.1mass%以下ではその効果が十分に得られず、2.0mass%を超えると合金の融点が低下し、ブレージング用フィン材として用いる場合にろう材の拡散によってフィン材が座屈してしまうためである。Siの含有量は0.3mass%以上1.6mass%以下がより好ましい。   Si also contributes to improving the strength of the fin material after brazing. The reason why the content is specified to exceed 0.1 mass% and below 2.0 mass% is that the effect cannot be sufficiently obtained at 0.1 mass% or less, and when it exceeds 2.0 mass%, the melting point of the alloy is lowered, and the brazing fin material This is because the fin material buckles due to diffusion of the brazing material. The Si content is more preferably 0.3 mass% or more and 1.6 mass% or less.

Mnもろう付後のフィン材の強度向上に寄与する。その含有量を0.2mass%を超え2.5mass%以下に規定する理由は、0.2mass%以下ではその効果が十分に得られず、2.5mass%を超えるとAl-Fe-Mn系晶出相の数およびサイズが共に増大し、本発明の製造方法においても成形性を改善することができないためである。Mnの含有量は0.3mass%を超え2.0mass%以下がより好ましい。   Mn also contributes to improving the strength of the fin material after brazing. The reason why the content is specified to be more than 0.2 mass% and not more than 2.5 mass% is that the effect cannot be sufficiently obtained if the content is less than 0.2 mass%, and if it exceeds 2.5 mass%, the number of Al-Fe-Mn crystallization phases This is because both the size increases and the moldability cannot be improved even in the production method of the present invention. The Mn content is more preferably more than 0.3 mass% and not more than 2.0 mass%.

本発明では必要に応じて0.05mass%を超え0.5mass%以下のNi、0.05mass%を超え0.5mass%以下のCuのうちの1種または2種を添加する。これらの元素はいずれも強度向上のために添加するが、0.05mass%以下ではその効果が十分に得られず、0.5mass%を超えるとAl-Fe-Ni系晶出相が粗大化し成形性が悪化する。またCuはSiと同様合金の融点を下げるため0.5mass%以下とする。   In the present invention, if necessary, one or two of Ni exceeding 0.05 mass% and 0.5 mass% or less and Cu exceeding 0.05 mass% and 0.5 mass% or less are added. All of these elements are added to improve the strength. However, the effect cannot be obtained sufficiently at 0.05 mass% or less, and if it exceeds 0.5 mass%, the Al-Fe-Ni crystallization phase becomes coarse and the formability is reduced. Getting worse. Cu, like Si, is 0.5 mass% or less in order to lower the melting point of the alloy.

以上の添加元素の他に、0.3mass%以下のCr、0.3mass%以下のZr、0.3mass%以下のTi、4mass%以下のZn、0.3mass%以下のIn、0.3mass%以下のSn、1mass%以下のMgのうち1種または2種以上を含有してもよい。これらの合金元素はフィン材に要求される種々の特性に重要な作用を示すものである。以下に各元素の作用と含有量の規定理由を述べる。   In addition to the above additive elements, 0.3 mass% or less of Cr, 0.3 mass% or less of Zr, 0.3 mass% or less of Ti, 4 mass% or less of Zn, 0.3 mass% or less of In, 0.3 mass% or less of Sn, 1 mass You may contain 1 type (s) or 2 or more types of Mg below%. These alloy elements have an important effect on various properties required for the fin material. The reasons for defining the action and content of each element are described below.

CrおよびZrはろう付後のフィン材の強度向上に寄与するとともに、ろう付時にフィン材の再結晶粒を粗大化させてフィンの耐垂下性を高め、またフィンへのろうの拡散を防止する。CrおよびZrの含有量をそれぞれ0.3mass%以下とする理由は0.3mass%を超えると金属間化合物が成長して前記諸特性が低下するためである。CrおよびZrの含有量はそれぞれ0.08mass%以下がより好ましい。   Cr and Zr contribute to improving the strength of the fin material after brazing, increase the droop resistance of the fin by coarsening the recrystallized grains of the fin material during brazing, and prevent the diffusion of the wax into the fin. . The reason why the contents of Cr and Zr are each 0.3 mass% or less is that when the content exceeds 0.3 mass%, an intermetallic compound grows and the above-mentioned properties deteriorate. The content of Cr and Zr is more preferably 0.08 mass% or less.

Tiはろう付後の強度を向上させると共に凝固組織を微細化する。その含有量を0.3mass%以下に規定する理由は、0.3mass%を超えるとフィン材の犠牲防食効果および導電率が低下するためである。0.08mass%以下、特には0.02mass%以下がより好ましい。   Ti improves the strength after brazing and refines the solidified structure. The reason for prescribing its content to be 0.3 mass% or less is that when it exceeds 0.3 mass%, the sacrificial anticorrosive effect and conductivity of the fin material are lowered. 0.08 mass% or less, particularly 0.02 mass% or less is more preferable.

Zn、In、Snはフィン材の犠牲防食効果を高める。どの元素をどの程度添加するかはフィン材に要求される防食特性や導電性を考慮して決めればよい。しかしInおよびSnは少量の添加で十分な犠牲陽極効果を発揮するが、高価なこと、屑のリサイクル性を阻害するという問題があり、本発明では特にZnの添加を推奨する。
Znは添加量を増すとフィン材自体の耐腐食性を低下させるために4mass%以下に規定するが、2mass%以下、特には1mass%以下が推奨される。Znの添加量は防食を行う相手の材料により決めればよいが、通常0.5mass%以上添加することが望ましい。InおよびSnの添加量は、高価なこととリサイクル性を考慮して各々0.3mass%以下に規定する。
Zn, In, and Sn enhance the sacrificial anticorrosion effect of the fin material. Which element is added to what extent may be determined in consideration of the anticorrosive properties and conductivity required for the fin material. However, In and Sn exhibit a sufficient sacrificial anode effect even if they are added in a small amount, but there are problems that they are expensive and impede the recyclability of scraps. In the present invention, the addition of Zn is particularly recommended.
Zn is specified to be 4 mass% or less in order to reduce the corrosion resistance of the fin material itself as the addition amount is increased, but 2 mass% or less, particularly 1 mass% or less is recommended. The addition amount of Zn may be determined depending on the material to be anticorrosion, but it is usually desirable to add 0.5 mass% or more. The addition amount of In and Sn is specified to be 0.3 mass% or less in consideration of high cost and recyclability.

Mgは強度向上に寄与する。その含有量を1mass%以下に規定する理由は、Mgは1mass%を超えるとNBろう付け工法でフラックスと反応してろう付性を著しく低下させるためである。Mgの含有量は0.5mass%以下、特には0.05mass%以下が好ましい。
以下に本発明を実施例により詳細に説明する。
Mg contributes to strength improvement. The reason why the content is specified to be 1 mass% or less is that when Mg exceeds 1 mass%, it reacts with the flux by the NB brazing method and the brazing property is remarkably reduced. The Mg content is preferably 0.5 mass% or less, particularly preferably 0.05 mass% or less.
Hereinafter, the present invention will be described in detail with reference to examples.

表1に示す本発明規定組成のAl合金(No.A〜F)を溶解し、得られた溶湯をベルトキャスター法により板厚10〜20mmの板状鋳塊に鋳造し、この板状鋳塊を熱間圧延後冷間圧延するか、熱間圧延せずに冷間圧延してフィン材を製造した。一部はベルトキャスターの鋳型内面に離型剤としてシリカまたはカーボンを塗布した。
板状鋳塊厚さ、プーリ(ベルト車)により付与した圧荷重値、熱間圧延率、冷間圧延工程などを表2に示した。いずれも本発明規定条件内で変化させた。
The Al alloys (No. A to F) of the present invention composition shown in Table 1 were melted, and the obtained molten metal was cast into a plate ingot having a thickness of 10 to 20 mm by a belt caster method. The fin material was manufactured by cold rolling after hot rolling or by cold rolling without hot rolling. Some applied silica or carbon as a mold release agent to the inner surface of the belt caster mold.
Table 2 shows the thickness of the plate-shaped ingot, the pressure load applied by the pulley (belt wheel), the hot rolling rate, the cold rolling process, and the like. All were changed within the conditions prescribed in the present invention.

比較例1として、表1に示す本発明規定外組成のAl合金(No.G〜J)を用いた他は、実施例1と同じ方法によりフィン材を製造した。   As Comparative Example 1, a fin material was produced by the same method as in Example 1 except that an Al alloy (No. G to J) having a composition outside the scope of the present invention shown in Table 1 was used.

比較例2として、鋳造条件および熱間圧延条件を本発明規定外条件(表2参照)とした他は、実施例1と同じ方法によりフィン材を製造した。   As Comparative Example 2, a fin material was produced by the same method as in Example 1 except that the casting conditions and the hot rolling conditions were changed to conditions other than those specified in the present invention (see Table 2).

Figure 0004109178
Figure 0004109178

Figure 0004109178
Figure 0004109178

実施例1及び比較例1、2で製造した各々のフィン材から試験片を切り出し、エリクセン値、プレス成形性、コルゲート成形性、引張強さを調べた。   A test piece was cut out from each fin material produced in Example 1 and Comparative Examples 1 and 2, and the Erichsen value, press formability, corrugated formability, and tensile strength were examined.

エリクセン値はJIS-Z2247に準じて測定した。
プレス成形性は深絞り試験を行って調べた。深絞り試験は、直径50mm、肩R9mmの円筒ポンチを用い、ポンチ速度200mm/秒、しわ押さえ力300kgfとし、試験片の両面に潤滑油を塗布して行った。試験個数は各30とした(n=30)。
The Eriksen value was measured according to JIS-Z2247.
The press formability was examined by performing a deep drawing test. The deep drawing test was performed using a cylindrical punch having a diameter of 50 mm and a shoulder R of 9 mm, a punch speed of 200 mm / second, and a wrinkle holding force of 300 kgf, and a lubricant was applied to both sides of the test piece. The number of tests was 30 for each (n = 30).

プレス成形性は試験後の試験片を目視および顕微鏡で観察して調べた。破断も皺も観察されない場合はプレス成形性が極めて良好(◎)、破断はないが皺が若干観察された場合はプレス成形性が良好(○)、皺が多いか破断が観察された場合は不良(×)と判定した。   The press formability was examined by visually and visually observing the test piece after the test. If neither rupture nor wrinkle is observed, press formability is very good (◎). If there is no rupture but some wrinkles are observed, press formability is good (◯). If there are many wrinkles or breakage is observed It was determined to be defective (x).

コルゲート成形性は、各フィン材をコルゲート機を用いて、山数100、山間隔2.5mm(設定値)のコルゲート状に成形して調べた。山間隔が2.5mm±20%以上の山が100山中10未満の場合はコルゲート成形性が良好(○)、10以上の場合は不良(×)と判定した。   The corrugate formability was examined by forming each fin material into a corrugated shape having a number of peaks of 100 and a pitch of 2.5 mm (set value) using a corrugating machine. Corrugated formability was judged to be good (◯) when the crest having a crest of 2.5 mm ± 20% or more was less than 10 out of 100, and judged to be bad (×) if it was 10 or more.

引張強さはJIS5号試験片を窒素ガス雰囲気中でろう付け条件と同じ条件(600℃×3分)で加熱し、これを室温で引張試験して調べた。引張強さは平均値(n=5)で示した。
調査結果を表3に纏めて示す。表3には冷間圧延中の材料破断の有無を併記した。
The tensile strength was examined by heating a JIS No. 5 test piece in a nitrogen gas atmosphere under the same conditions as brazing (600 ° C. × 3 minutes), and performing a tensile test at room temperature. The tensile strength is shown as an average value (n = 5).
The survey results are summarized in Table 3. Table 3 also shows the presence or absence of material breakage during cold rolling.

Figure 0004109178
Figure 0004109178

表3から明らかなように、本発明例の実施例No.1〜8はいずれも冷間圧延中破断することなく良好に製造できた。またプレス成形性およびコルゲート成形性は共に良好で、エリクセン値および引張強さも高い値を示した。特に、鋳造時鋳型内面にシリカを塗布したNo.7とカーボンを塗布したNo.8はいずれもプレス成形性が極めて優れた。   As is apparent from Table 3, Example No. of the present invention example. All of Nos. 1 to 8 could be produced satisfactorily without breaking during cold rolling. The press moldability and corrugated moldability were both good, and the Erichsen value and tensile strength were also high. In particular, no. No. 7 and carbon coated no. No. 8 was extremely excellent in press formability.

これに対し、比較例1のNo.9〜12は合金組成が本発明規定外のためいずれかの特性が劣った。即ち、No.9はFeが多いため、No.11はMnが多いためいずれもエリクセン値、プレス成形性、コルゲート成形性が劣った。No.10はSiが多いためエリクセン値、プレス成形性が劣った。No.12はFeが少ないためろう付け加熱後の引張強さが劣った。No.9はFeが多いため冷間圧延中に破断が生じた。   On the other hand, No. 1 of Comparative Example 1 was used. Nos. 9 to 12 were inferior in characteristics because the alloy composition was outside the scope of the present invention. That is, no. No. 9 has a large amount of Fe. Since No. 11 had a large amount of Mn, the Erichsen value, press formability, and corrugated formability were all poor. No. No. 10 was inferior in Erichsen value and press formability due to a large amount of Si. No. No. 12 was inferior in tensile strength after brazing heating because Fe was low. No. No. 9 had a large amount of Fe, and fracture occurred during cold rolling.

また、比較例2のNo.13〜16は鋳造条件または熱間圧延条件が本発明規定外のため材料表面に微細な急冷凝固組織或いは潤滑効果を有する粒子が存在せず、いずれもプレス成形性が劣った。さらにNo.13、15はエリクセン値およびコルゲート成形性が劣り、No.16は引張強さが劣った。   Moreover, No. 2 of Comparative Example 2 was used. In Nos. 13 to 16, since the casting conditions or hot rolling conditions were outside the scope of the present invention, there were no fine rapidly solidified structures or particles having a lubricating effect on the material surface, and all of them were inferior in press formability. Furthermore, no. Nos. 13 and 15 have poor Erichsen values and corrugated moldability. No. 16 was inferior in tensile strength.

Claims (5)

アルミニウム又はアルミニウム合金溶湯を、前記溶湯の圧荷重を鋳塊幅1mmあたり1000N以下に規定して、厚み10mm以上20mm以下の板状鋳塊に連続鋳造し、次いで前記板状鋳塊を冷間圧延することを特徴とするブレージング用アルミニウム合金フィン材の製造方法。   Aluminum or aluminum alloy molten metal is continuously cast into a plate-shaped ingot having a thickness of 10 mm or more and 20 mm or less, with the pressure load of the molten metal being regulated to 1000 N or less per 1 mm of ingot width, and then cold-rolling the plate-shaped ingot The manufacturing method of the aluminum alloy fin material for brazing characterized by doing. アルミニウム又はアルミニウム合金溶湯を、前記溶湯の圧荷重を鋳塊幅1mmあたり1000N以下に規定して、厚み10mm以上20mm以下の板状鋳塊に連続鋳造し、次いで前記板状鋳塊を圧下率50%未満で熱間圧延し、次いで冷間圧延することを特徴とするブレージング用アルミニウム合金フィン材の製造方法。   Aluminum or aluminum alloy molten metal is continuously cast into a plate-shaped ingot having a thickness of 10 mm or more and 20 mm or less, with the pressure load of the molten metal being regulated to 1000 N or less per 1 mm of the ingot width, and then the plate-shaped ingot is reduced by 50%. A method for producing an aluminum alloy fin material for brazing, comprising hot rolling at less than% and then cold rolling. 前記連続鋳造方法がベルトキャスター法であることを特徴とする、請求項1又は2記載のブレージング用アルミニウム合金フィン材の製造方法。   3. The method for producing an aluminum alloy fin material for brazing according to claim 1, wherein the continuous casting method is a belt caster method. 前記連続鋳造方法において、離型剤を用いることを特徴とする、請求項1乃至3記載のブレージング用アルミニウム合金フィン材の製造方法。   4. The method for producing an aluminum alloy fin material for brazing according to claim 1, wherein a release agent is used in the continuous casting method. 前記アルミニウム合金が、0.1mass%を超え2.2mass%以下のFe、0.1mass%を超え2.0mass%以下のSi、および0.2mass%を超え2.5%mass%以下のMnを含有し、必要に応じて0.05mass%を超え0.5mass%以下のNi、0.05mass%を超え0.5mass%以下のCuのうちの1種あるいは2種を含有し、さらに0.3mass%以下のCr、0.3mass%以下のZr、0.3mass%以下のTi、4mass%以下のZn、0.3mass%以下のIn、0.3mass%以下のSn、1mass%以下のMgのうち1種または2種以上を含有し、残部不可避不純物からなるアルミニウム合金であることを特徴とする請求項1乃至4のいずれかに記載のブレージング用アルミニウム合金フィン材の製造方法。   The aluminum alloy contains Fe of more than 0.1 mass% and less than 2.2 mass%, Si of more than 0.1 mass% and less than 2.0 mass%, and Mn of more than 0.2 mass% and less than 2.5% mass%, if necessary Containing 0.05 mass% to 0.5 mass% or less of Ni, 0.05 mass% to 0.5 mass% or less of Cu or one or two kinds of Cu, 0.3 mass% or less of Cr, 0.3 mass% or less of Zr, Aluminum containing one or more of 0.3mass% or less of Ti, 4mass% or less of Zn, 0.3mass% or less of In, 0.3mass% or less of Sn, or 1mass% or less of Mg, and the balance being inevitable impurities The method for producing an aluminum alloy fin material for brazing according to any one of claims 1 to 4, which is an alloy.
JP2003344946A 2003-10-02 2003-10-02 Method for producing aluminum alloy fin material for brazing Expired - Lifetime JP4109178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344946A JP4109178B2 (en) 2003-10-02 2003-10-02 Method for producing aluminum alloy fin material for brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344946A JP4109178B2 (en) 2003-10-02 2003-10-02 Method for producing aluminum alloy fin material for brazing

Publications (2)

Publication Number Publication Date
JP2005111482A JP2005111482A (en) 2005-04-28
JP4109178B2 true JP4109178B2 (en) 2008-07-02

Family

ID=34538404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344946A Expired - Lifetime JP4109178B2 (en) 2003-10-02 2003-10-02 Method for producing aluminum alloy fin material for brazing

Country Status (1)

Country Link
JP (1) JP4109178B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773248B2 (en) * 2006-03-31 2011-09-14 株式会社片木アルミニューム製作所 Manufacturing method of fin material for heat exchanger
JP5388084B2 (en) * 2007-07-27 2014-01-15 三菱アルミニウム株式会社 Aluminum alloy clad material for heat exchangers with excellent strength and pitting corrosion resistance
JP5279337B2 (en) * 2008-05-09 2013-09-04 日本軽金属株式会社 Aluminum alloy fin material for heat exchanger, method for producing the same, and heat exchanger
CN105268918B (en) * 2015-10-18 2017-10-10 中国电子科技集团公司第十研究所 The preparation method of anticorrosive liquid-cooling heat radiation cold drawing
US20220274160A1 (en) 2020-11-06 2022-09-01 Hazelett Castechnology Ulc Casting process for aluminium alloys
CN113897519A (en) * 2021-10-18 2022-01-07 贵州大学 Al-Mn-Mg-Si-Ti-Sn casting alloy for realizing vacuum brazing by vacuum die casting and preparation method thereof

Also Published As

Publication number Publication date
JP2005111482A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4886129B2 (en) Method for producing aluminum alloy fin material for brazing
JP2008516090A (en) Recovered high-strength multilayer aluminum brazing sheet products
JP2008308761A (en) Method for producing high strength aluminum alloy material for automobile heat exchanger having excellent erosion resistance and used for high strength automobile heat exchanger member produced by brazing
CN105220037B (en) Super-strength anti-corrosion easy-to-cut aluminum alloy radiating material, preparation method and applications
EP1100975A1 (en) High conductivity aluminum fin alloy
CN106460105A (en) Aluminum alloy fin material for heat exchanger, method for manufacturing same, and heat exchanger
WO2013086628A1 (en) Aluminium fin alloy and method of making the same
MXPA02006921A (en) High thermal conductivity aluminum fin alloys.
TWI299755B (en)
JP4109178B2 (en) Method for producing aluminum alloy fin material for brazing
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
CN111057910A (en) Aluminum alloy heat-dissipating component and heat exchanger
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP3355995B2 (en) Aluminum alloy sheet for cross fin excellent in drawless molding and composite moldability and method for producing the same
JP2002256402A (en) Method of producing fin material for use in heat exchanger
WO2003095691A1 (en) Malleable thin magnesium sheet excellent in workability and method for production thereof
JP2004176091A (en) High strength aluminum alloy fin material for automotive heat exchanger having excellent rollability, and its manufacturing method
JP4669709B2 (en) Brazing fin material and manufacturing method thereof
JP2006083437A (en) Thin-wall fin material for heat exchanger superior in formability, solderability and corrosion resistance, and manufacturing method therefor
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JP7429153B2 (en) Aluminum alloy clad material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250