JP2000295528A - Thermal infrared ray image pickup element - Google Patents

Thermal infrared ray image pickup element

Info

Publication number
JP2000295528A
JP2000295528A JP11096645A JP9664599A JP2000295528A JP 2000295528 A JP2000295528 A JP 2000295528A JP 11096645 A JP11096645 A JP 11096645A JP 9664599 A JP9664599 A JP 9664599A JP 2000295528 A JP2000295528 A JP 2000295528A
Authority
JP
Japan
Prior art keywords
temperature
pixel
diaphragm
semiconductor substrate
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11096645A
Other languages
Japanese (ja)
Other versions
JP4300305B2 (en
Inventor
Shinichi Morita
信一 森田
Yasukazu Iwasaki
靖和 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP09664599A priority Critical patent/JP4300305B2/en
Publication of JP2000295528A publication Critical patent/JP2000295528A/en
Application granted granted Critical
Publication of JP4300305B2 publication Critical patent/JP4300305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a thermal infrared ray image pickup element that easily and quickly corrects the sensitivity between pixels with high accuracy. SOLUTION: A heating means 41 and a temperature detection means 40 heat up a semiconductor substrate 11 to a prescribed temperature, a voltage is applied between an electrode 30 provided to a diaphragm section 14 with an infrared ray detection section (resistor 16) mounted thereon and the semiconductor substrate 11, an electrostatic force allows the diaphragm section 14 to be in contact with the semiconductor substrate 11 to make the temperature of all pixels of the infrared ray detection section the same as that of the semiconductor substrate 11, an output voltage of each pixel is stored in this case, and the sensitivity of each pixel is corrected according to the output voltage in this thermal infrared ray image pickup element. Since an object at a uniformized temperature is not required different from a conventional image pickup element, the procedure required for sensitivity correction is very easy and quickened, and since the temperature of the pixels can be made the same accurately, the sensitivity can be corrected with high precision.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、性能補正のための
手段を有する熱型赤外線撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal infrared imaging device having means for correcting performance.

【0002】[0002]

【従来の技術】熱型赤外線撮像素子は多数の画素(例え
ば数万〜数十万画素程度)を平面上に配列した構造にな
っているが、それらの各画素の感度は、均一性を欠いて
いる。そのため各画素の感度の補正を行なわないで撮像
を行なうと、撮像された画面が実際の被写体と異なって
しまう可能性がある。したがって、熱型赤外線撮像素子
の使用時には、画像の画質向上のため、素子の各画素の
感度補正を行なう必要がある。図3に示した熱型赤外線
撮像素子の平面図によって説明すると、熱型赤外線撮像
素子は、熱吸収層2を有する熱型赤外線センサ1を画素
として、多数の画素がm列×n行のアレイ状に配列され
ている。各画素にはスイッチング回路部3が形成されて
おり、xアドレス線4とyアドレス線5を介して、各画
素の信号を外部に読み出すようになっている(外部回路
は図示省略)。
2. Description of the Related Art A thermal infrared imaging device has a structure in which a large number of pixels (for example, tens of thousands to hundreds of thousands of pixels) are arranged on a plane, but the sensitivity of each pixel lacks uniformity. ing. Therefore, if imaging is performed without correcting the sensitivity of each pixel, the captured screen may be different from the actual subject. Therefore, when using a thermal infrared imaging device, it is necessary to correct the sensitivity of each pixel of the device in order to improve image quality. Explaining with reference to a plan view of the thermal infrared imaging device shown in FIG. 3, the thermal infrared imaging device has a thermal infrared sensor 1 having a heat absorbing layer 2 as a pixel, and a large number of pixels arranged in an m-column × n-row array. It is arranged in a shape. A switching circuit unit 3 is formed in each pixel, and a signal of each pixel is read out to the outside via an x address line 4 and a y address line 5 (external circuit is not shown).

【0003】従来の熱型赤外線撮像素子においては、図
5に示すように、各画素の出力電圧(画素の状態変化を
電圧信号に変換したものとして説明)は画素毎にアンバ
ランスであるのが常である。このため、素子に外付けで
増幅回路、A/D変換部、信号補正の記憶部などの信号
処理部を設け、撮影する毎に各画素間のアンバランスを
補正する必要が生じる。この画素間のアンバランスを補
正する方法としては、熱型赤外線撮像素子を赤外線撮像
カメラとして利用する際に、赤外線撮像カメラの前方に
温度が比較的均一な物体を置いて、その時の入射赤外線
エネルギーが均一であると仮定して各画素の出力電圧を
記憶部に記憶させ、そのときの出力値に応じて各画素の
感度を補正する方法がある。一般には室温に近い金属板
や黒色板などを赤外線撮像カメラの前方に設置し、それ
を撮像した際の各画素の出力電圧に応じて感度補正を行
なっている。
In a conventional thermal infrared imaging device, as shown in FIG. 5, the output voltage of each pixel (described as a change in the state of a pixel converted to a voltage signal) is unbalanced for each pixel. Always. For this reason, it is necessary to provide an external signal processing unit such as an amplifier circuit, an A / D conversion unit, and a signal correction storage unit, and to correct the imbalance between pixels each time an image is captured. As a method of correcting the imbalance between pixels, when using a thermal infrared imaging device as an infrared imaging camera, an object having a relatively uniform temperature is placed in front of the infrared imaging camera, and the incident infrared energy at that time is set. There is a method in which the output voltage of each pixel is stored in a storage unit assuming that the pixel values are uniform, and the sensitivity of each pixel is corrected according to the output value at that time. Generally, a metal plate or a black plate close to room temperature is installed in front of the infrared imaging camera, and sensitivity is corrected in accordance with the output voltage of each pixel when capturing the image.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記ごとき補
正方法では、赤外線撮像カメラを使用する度毎に赤外線
撮像カメラの視野に入る大きさで、温度が均一な物体を
準備して補正を行なう必要がある。例えば、実用的に正
確な画像を得るためには、使用中でも10分間隔程度で
補正をする必要があるので、非常に手間がかかるという
問題があった。また、カメラの前に均一温度の物体を置
く場合に、環境温度によっては、物体の熱容量にもよる
が全面積で均一な温度に保持することが困難である。特
に最近の赤外線カメラの場合には、NETD(雑音等価
温度差)が0.1℃前後の性能のものも出現しているの
で、それに適応するような正確な均一温度に保持するこ
とは非常に困難となる。また、環境温度よりも高い温度
の物体を用いるときも困難性が増す。
However, in the above-described correction method, it is necessary to prepare an object having a uniform temperature and having a size within the field of view of the infrared imaging camera every time the infrared imaging camera is used, and performing the correction. There is. For example, in order to obtain a practically accurate image, it is necessary to perform correction at intervals of about 10 minutes even during use. In addition, when an object having a uniform temperature is placed in front of the camera, it is difficult to maintain a uniform temperature over the entire area, depending on the heat capacity of the object, depending on the environmental temperature. Particularly, in the case of recent infrared cameras, some have a performance with a NETD (noise equivalent temperature difference) of about 0.1 ° C., so that it is very difficult to maintain an accurate uniform temperature suitable for the performance. It will be difficult. Further, when an object having a temperature higher than the ambient temperature is used, the difficulty increases.

【0005】本発明は、上記のごとき従来技術の問題を
解決するためになされたものであり、容易、迅速かつ高
精度で各画素間の感度補正を行なうことの出来る熱型赤
外線撮像素子を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art as described above, and provides a thermal infrared imaging device capable of easily, quickly and accurately correcting the sensitivity between pixels. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め本発明においては、特許請求の範囲に記載するように
構成している。すなわち、請求項1に記載の発明におい
ては、赤外線検知部を搭載したダイアフラムを支持基板
に接触、離反させる手段と、前記支持基板を加熱する加
熱手段と、前記支持基板もしくは前記ダイアフラムの温
度を検出する温度検出手段と、前記ダイアフラムと前記
支持基板とを接触させた際の温度と、そのときの画素の
出力信号とを記憶する記憶手段と、前記記憶手段の記憶
値に基づいて各画素の出力信号を補正する手段と、を備
えるように構成している。なお、上記の温度とは、物体
の温度そのもの(単位は℃でもKでも可)を示し、温度
差を意味するものではない。また、上記記憶手段と各画
素の出力信号を補正する手段は外付け回路として設けれ
ばよいが、素子上に空き領域があればその部分に形成し
てもよい。
In order to achieve the above object, the present invention is structured as described in the appended claims. That is, according to the first aspect of the present invention, means for contacting and separating the diaphragm on which the infrared detecting unit is mounted from and with the supporting substrate, heating means for heating the supporting substrate, and detecting the temperature of the supporting substrate or the diaphragm. Temperature detection means, storage means for storing the temperature when the diaphragm is brought into contact with the support substrate, and the output signal of the pixel at that time, and the output of each pixel based on the storage value of the storage means. Means for correcting the signal. The above-mentioned temperature indicates the temperature of the object itself (the unit may be either ° C. or K), and does not mean a temperature difference. Further, the storage means and the means for correcting the output signal of each pixel may be provided as an external circuit, but may be formed in an empty area of the element if there is any.

【0007】上記のように構成したことにより、加熱手
段によって所定温度に加熱された支持基板にダイアフラ
ムを接触させることで全画素を支持基板の温度と同じ所
定温度に統一することが出来るので、そのときの各画素
の出力信号を検出することによって各画素の感度を補正
することが出来る。そして、従来のような均一温度の物
体を準備する必要がないので感度補正に要する手順が極
めて容易で迅速になり、かつ各画素の温度を正確に同じ
温度にすることが出来るので、感度補正を高精度で行な
うことが出来る。また、熱型赤外線撮像素子自体に加熱
手段と温度検出手段とを備えているので、素子自身で温
度設定が可能であり、高精度で温度の設定と検出が出来
るので、精度をより向上させることが出来る。
[0007] With the above configuration, by bringing the diaphragm into contact with the support substrate heated to a predetermined temperature by the heating means, all the pixels can be unified to the same predetermined temperature as the temperature of the support substrate. The sensitivity of each pixel can be corrected by detecting the output signal of each pixel at that time. Further, since it is not necessary to prepare an object having a uniform temperature as in the related art, the procedure required for sensitivity correction is extremely easy and quick, and the temperature of each pixel can be set to exactly the same temperature. It can be performed with high accuracy. Further, since the thermal infrared imaging element itself has a heating means and a temperature detecting means, the temperature can be set by the element itself, and the temperature can be set and detected with high accuracy, so that the accuracy can be further improved. Can be done.

【0008】また、請求項2に記載の発明においては、
静電的にダイアフラムと支持基板とを接触させるので、
極めて迅速かつ容易に撮像の準備を行なうことが出来
る。
Further, in the invention according to claim 2,
Since the diaphragm and the support substrate are electrostatically contacted,
Preparation for imaging can be performed very quickly and easily.

【0009】また、請求項3に記載の発明においては、
感度補正を精密に行なうことが出来、特に各画素の温度
特性が直線的でない場合であっても、3点以上の異なっ
た温度における出力を検出することにより、非直線な特
性でも正確な感度補正が可能になる。
Further, in the invention according to claim 3,
Sensitivity correction can be performed precisely. Even if the temperature characteristics of each pixel are not linear, by detecting outputs at three or more different temperatures, accurate sensitivity correction can be performed even for non-linear characteristics. Becomes possible.

【0010】[0010]

【発明の効果】本発明によれば、赤外線撮像素子を構成
する各画素の温度を、容易、迅速かつ正確に基板温度と
同じ所定の温度にすることが出来る。したがって、その
ときの出力信号に応じて各画素の性能の補正を容易に行
なうことができる。また、各画素となる赤外線センサの
温度特性が直線的でない場合でも補正可能である。した
がって、従来のような均一温度の物体を準備することな
く、容易、迅速かつ高精度で、熱型赤外線撮像素子の各
画素の感度補正が可能になるという効果が得られる。
According to the present invention, the temperature of each pixel constituting the infrared imaging device can be easily, quickly and accurately set to the same predetermined temperature as the substrate temperature. Therefore, the performance of each pixel can be easily corrected according to the output signal at that time. Further, correction can be performed even when the temperature characteristics of the infrared sensor serving as each pixel are not linear. Therefore, an effect is obtained in that the sensitivity of each pixel of the thermal infrared imaging device can be easily, quickly, and accurately corrected without preparing an object having a uniform temperature as in the related art.

【0011】[0011]

【発明の実施の形態】図1および図2は本発明の熱型赤
外線撮像素子を構成する一つの赤外線センサ(画素)の
実施の形態を示す図であり、図1は平面図、図2は断面
図を示す。また、図3は上記のセンサを用いて形成した
熱型赤外線撮像素子の概略構成を示す平面図である。
1 and 2 are views showing an embodiment of one infrared sensor (pixel) constituting a thermal infrared imaging device according to the present invention. FIG. 1 is a plan view, and FIG. FIG. FIG. 3 is a plan view showing a schematic configuration of a thermal infrared imaging device formed using the above-described sensor.

【0012】まず、図1と図2を用いて画素の構造につ
いて説明する。ここでは、センサ(画素)として温度検
出が可能なボロメータ型の赤外線センサについて説明す
る。ボロメータ型赤外線センサは温度変化により、抵抗
体の電気抵抗が変化する特性を利用するものである。図
1および図2において、11は支持基板となる半導体基
板(例えばシリコン基板)である。12はダイアフラム
であり、梁部13に支持されて、半導体基板11と微小
な空隙20(例えば数μm程度)を隔てて対向してい
る。このダイアフラム12上に抵抗体16、層間絶縁膜
17、層間絶縁層19、熱吸収層25、電極30が形成
され、全体としてダイアフラム部14を構成している。
このダイアフラム部14は空隙20によって半導体基板
11から熱的に分離されている。また、梁部13上には
抵抗体16を外部に接続する配線15、電極30を外部
に接続する配線31が形成され、その上を層間絶縁膜1
7で覆っている。また、半導体基板11上には温度検出
手段40と加熱手段41が設けられている。このような
画素が半導体基板11上に必要な個数だけアレイ状に形
成されている(図3参照)。なお、図2から判るよう
に、電極30の上に抵抗体16が形成され、さらにその
上に熱吸収層25が形成されており、図1では実際には
熱吸収層25だけが見えることになるが、説明の都合
上、図示のように抵抗体16を表示し、電極30と熱吸
収層25はほぼ同じ平面に形成されるので、電極30は
黒破線で、熱吸収層25は黒太実線で示している。
First, the structure of a pixel will be described with reference to FIGS. Here, a bolometer-type infrared sensor capable of detecting temperature will be described as a sensor (pixel). The bolometer-type infrared sensor utilizes a characteristic in which the electric resistance of a resistor changes according to a temperature change. 1 and 2, reference numeral 11 denotes a semiconductor substrate (for example, a silicon substrate) serving as a support substrate. Reference numeral 12 denotes a diaphragm, which is supported by the beam portion 13 and faces the semiconductor substrate 11 with a small gap 20 (for example, about several μm). On this diaphragm 12, a resistor 16, an interlayer insulating film 17, an interlayer insulating layer 19, a heat absorbing layer 25, and an electrode 30 are formed, and a diaphragm portion 14 is constituted as a whole.
The diaphragm portion 14 is thermally separated from the semiconductor substrate 11 by a gap 20. On the beam portion 13, a wiring 15 for connecting the resistor 16 to the outside and a wiring 31 for connecting the electrode 30 to the outside are formed.
Covered with 7. Further, a temperature detecting means 40 and a heating means 41 are provided on the semiconductor substrate 11. A required number of such pixels are formed in an array on the semiconductor substrate 11 (see FIG. 3). As can be seen from FIG. 2, the resistor 16 is formed on the electrode 30, and the heat absorbing layer 25 is further formed thereon. In FIG. 1, only the heat absorbing layer 25 is actually visible. However, for convenience of explanation, the resistor 16 is shown as shown in the figure, and the electrode 30 and the heat absorbing layer 25 are formed on substantially the same plane. This is indicated by a solid line.

【0013】半導体基板11には、信号処理回路たとえ
ばx,yアドレス用デコーダやプリアンプなどが形成さ
れていてもよい。この半導体基板11の空き領域を用い
て温度検出手段40(例えばボロメータ型またはpn接
合型の温度センサ等)と加熱手段41(例えば金属膜の
抵抗体等)を形成する。この加熱手段41は熱型赤外線
撮像素子全体が均一の温度になるように加熱するので全
体にわたって配置することが好ましい。温度検出手段4
0は各画素毎に設けてもよいが、半導体基板11全体の
温度が均一であれば全体で1個設ければよい。なお、図
では一例として温度検出手段40の存在する画素を示し
ている。
The semiconductor substrate 11 may be formed with a signal processing circuit such as a decoder for x and y addresses, a preamplifier, and the like. A temperature detecting means 40 (for example, a bolometer-type or pn-junction-type temperature sensor) and a heating means 41 (for example, a metal film resistor) are formed using the empty area of the semiconductor substrate 11. Since the heating means 41 heats the entire thermal infrared imaging element so as to have a uniform temperature, it is preferable to dispose the heating means 41 over the whole. Temperature detection means 4
0 may be provided for each pixel, but if the temperature of the entire semiconductor substrate 11 is uniform, one may be provided as a whole. In the drawing, a pixel in which the temperature detecting means 40 exists is shown as an example.

【0014】また、電極30と半導体基板11との間に
電圧を印加する回路や温度検出とそのときの各画素の出
力信号を記憶するメモリ(詳細後述)等が必要である
が、それらについては図示を省略している。これらの回
路は素子に空き領域が有れば、その部分に形成してもよ
いし、或いは外付け回路にしてもよい。
Further, a circuit for applying a voltage between the electrode 30 and the semiconductor substrate 11 and a memory for detecting the temperature and storing an output signal of each pixel at that time (described in detail later) are required. Illustration is omitted. These circuits may be formed in the element if there is an empty area, or may be external circuits.

【0015】また、図2においては、加熱手段41を半
導体基板11内に設けた例を示したが、半導体基板11
に形成した層間絶縁層17の上や半導体基板11の下部
に形成しても構わない。また、温度検出手段40も素子
内ならば何処に設けても構わない。
FIG. 2 shows an example in which the heating means 41 is provided in the semiconductor substrate 11.
Alternatively, it may be formed on the interlayer insulating layer 17 formed below or below the semiconductor substrate 11. Further, the temperature detecting means 40 may be provided anywhere in the element.

【0016】図3は、図1および図2に示した赤外線セ
ンサ1を用いた熱型赤外線撮像素子の平面図である。赤
外線センサ1(画素)は熱吸収層2(図1、図2の25
に相当)を有し、多数の画素がm列×n行のアレイ状に
配列されている。各画素にはスイッチング回路部3が形
成されており、xアドレス線4とyアドレス線5を介し
て、外部に信号を読み出すようになっている。なお、外
付け回路や出力電圧を補正する回路等は図示省略してい
る。
FIG. 3 is a plan view of a thermal infrared imaging device using the infrared sensor 1 shown in FIGS. The infrared sensor 1 (pixel) is connected to the heat absorbing layer 2 (25 in FIGS. 1 and 2).
), And a large number of pixels are arranged in an array of m columns × n rows. A switching circuit unit 3 is formed in each pixel, and a signal is read out to the outside via an x address line 4 and a y address line 5. Note that an external circuit, a circuit for correcting the output voltage, and the like are not shown.

【0017】以下、作用について説明する。上記のごと
きボロメータ型赤外線センサでは、入射した赤外線を熱
吸収層25で吸収し、それによる温度変化に対応して生
じる抵抗体16の抵抗値の変化を検出(例えば電圧変化
として検出)することにより、入射した赤外線に対応し
た信号を得るものである。
Hereinafter, the operation will be described. In the bolometer-type infrared sensor as described above, incident infrared light is absorbed by the heat absorbing layer 25, and a change in the resistance value of the resistor 16 corresponding to a temperature change due to the infrared light is detected (for example, detected as a voltage change). And a signal corresponding to the incident infrared light.

【0018】本実施の形態においては、温度検出手段4
0で温度を検出しながら加熱手段41に電流を流して加
熱することにより、半導体基板11の温度を所定の温度
に保っておき、その状態で、各画素の赤外線検知部が形
成されている熱分離構造のダイアフラム部14を半導体
基板11に接触させて熱的に短絡させ、ダイアフラム部
14に形成されている赤外線検知部(熱吸収層25、抵
抗体16)の温度を基板温度と同じにする。なお、ダイ
アフラム部14の厚さは例えば数μm程度と極めて薄
く、その熱容量は非常に小さいので、極めて短時間接触
させれば同じ温度にすることが出来る。このように全て
の画素を同一の温度にすれば、従来、赤外線カメラの前
方に一定温度の物体を置いたときと同じ効果を得ること
が出来る。なお、上記のごとき半導体基板11の温度制
御は温度検出手段40の出力をフィードバックして所定
温度に一致させるように加熱手段41を制御することに
よって達成できる。或いは加熱手段41を適当に作動さ
せて加熱し、その時の温度を温度検出手段40で検出す
る方法も可能である。上記のようにダイアフラム部14
を半導体基板11に接触させて温度を所定値にした後、
ダイアフラム部14を半導体基板11から離反させれ
ば、撮像の準備状態が完了する。
In this embodiment, the temperature detecting means 4
The temperature of the semiconductor substrate 11 is maintained at a predetermined temperature by applying a current to the heating means 41 and heating while detecting the temperature at 0, and in this state, the heat in which the infrared detecting section of each pixel is formed is formed. The diaphragm portion 14 having the separation structure is brought into contact with the semiconductor substrate 11 to be thermally short-circuited, and the temperature of the infrared detecting portion (heat absorbing layer 25, resistor 16) formed on the diaphragm portion 14 is made equal to the substrate temperature. . Note that the thickness of the diaphragm portion 14 is extremely small, for example, about several μm, and its heat capacity is very small. If all the pixels are set to the same temperature in this manner, the same effect can be obtained as in the case where an object having a constant temperature is conventionally placed in front of the infrared camera. The temperature control of the semiconductor substrate 11 as described above can be achieved by feeding back the output of the temperature detecting means 40 and controlling the heating means 41 so that the temperature coincides with a predetermined temperature. Alternatively, a method is also possible in which the heating means 41 is appropriately operated to perform heating, and the temperature at that time is detected by the temperature detecting means 40. As described above, the diaphragm portion 14
Is brought into contact with the semiconductor substrate 11 to bring the temperature to a predetermined value,
When the diaphragm section 14 is separated from the semiconductor substrate 11, the preparation state for imaging is completed.

【0019】次に、上記のようにダイアフラム部14を
半導体基板11に接触させたり離反させたりする機能に
ついて説明する。本実施の形態においては、ダイアフラ
ム部14と半導体基板11とを静電力で接触させる。す
なわち、ダイアフラム部14に形成されている電極30
と半導体基板11との間に電界を印加する(電圧印加回
路は図示省略)。例えば、半導体基板11側をアース
に、電極側に正電圧を印加すると、静電力によってダイ
アフラム部14が引き寄せられ、梁部13が撓んで、ダ
イアフラム部14と半導体基板11が密着する。この
時、半導体基板11側の温度がダイアフラム部14側に
伝導し、熱容量の小さいダイアフラム部14は急速に半
導体基板11と同じ温度になる。温度検出手段40でこ
のときの温度を測定する。なお、ダイアフラム部14の
大きさは1辺が例えば数十〜数百μm程度で、空隙20
は例えば1〜数μm程度であるから、低い電圧の印加で
容易に密着させることが出来る。
Next, the function of bringing the diaphragm portion 14 into and out of contact with the semiconductor substrate 11 as described above will be described. In the present embodiment, the diaphragm section 14 and the semiconductor substrate 11 are brought into contact with each other by electrostatic force. That is, the electrode 30 formed on the diaphragm portion 14
An electric field is applied between the substrate and the semiconductor substrate 11 (a voltage application circuit is not shown). For example, when the semiconductor substrate 11 side is grounded and a positive voltage is applied to the electrode side, the diaphragm portion 14 is attracted by electrostatic force, the beam portion 13 is bent, and the diaphragm portion 14 and the semiconductor substrate 11 come into close contact. At this time, the temperature on the semiconductor substrate 11 side is conducted to the diaphragm portion 14 side, and the diaphragm portion 14 having a small heat capacity quickly becomes the same temperature as the semiconductor substrate 11. The temperature at this time is measured by the temperature detecting means 40. The size of the diaphragm portion 14 is, for example, about several tens to several hundreds μm on one side, and
Is about 1 μm to several μm, for example, and can be easily adhered by applying a low voltage.

【0020】上記の印加電圧を除去すれば、梁部13の
弾性力でダイアフラム部14は半導体基板11から離反
する。なお、ダイアフラム部14が半導体基板11から
容易に離れるように、半導体基板11側に金属層を設け
たり、シリコン窒化膜との密着性の低い材料の層を形成
してもよい。また、これらの層とダイアフラム部14と
の密着性を緩和するために、それらの層に溝を形成して
もよい。
When the applied voltage is removed, the diaphragm 14 is separated from the semiconductor substrate 11 by the elastic force of the beam 13. Note that a metal layer may be provided on the semiconductor substrate 11 side or a layer of a material having low adhesion to the silicon nitride film may be formed so that the diaphragm portion 14 is easily separated from the semiconductor substrate 11. Further, grooves may be formed in these layers in order to ease the adhesion between these layers and the diaphragm portion 14.

【0021】なお、上記の説明は、半導体基板11が低
抵抗(高不純物濃度)で電極として用いることが可能な
場合の例であるが、半導体基板11の抵抗値が高い場合
(低不純物濃度)や絶縁材料の支持基板を用いた場合に
は、支持基板上の電極30と対向する位置(ダイアフラ
ム部14と空隙20を隔てて対向する位置)に第2の電
極を設け、電極30と第2の電極との間に電圧を印加す
るように構成すればよい。
The above description is an example of the case where the semiconductor substrate 11 can be used as an electrode with low resistance (high impurity concentration). However, when the semiconductor substrate 11 has a high resistance value (low impurity concentration). In the case where a support substrate made of an insulating material is used, a second electrode is provided at a position opposing the electrode 30 on the support substrate (a position opposing the diaphragm portion 14 with the gap 20 therebetween). It may be configured to apply a voltage between the electrodes.

【0022】次に、上記のような温度制御を用いて各画
素の性能補正(感度較正)を行なう構成(各画素の出力
信号を補正する手段)を説明する。図4は、(m−1,
n−1)番目の画素と(m,n)番目の画素について温
度T1とT2の時の出力信号の概念を示した図である。
なお、ここで云う温度とは物体の温度そのもの(単位は
℃でもKでも可)を示し、温度差を意味するものではな
い。図3に示すような熱型赤外線撮像素子全体を加熱手
段41を用いた前記のような方法により、温度T1に設
定し、各画素のダイアフラム部14を基板に接触させた
とする。この時は(m−1、n−1)番目の画素と
(m,n)番目の画素の両方が同じ温度T1になる。こ
の温度T1における(m−1,n−1)番目の画素の出
力信号V1と(m,n)番目の画素の出力信号V1'を
得る。なお、画素自体での温度変化は抵抗体16の抵抗
値変化であるが、ここではそれを電圧に変換して出力し
たものとして扱う。次に、熱型赤外線撮像素子全体を温
度T2(例えばT2>T1)に設定し、各画素のダイア
フラム部14を基板に接触させ、温度T2における(m
−1,n−1)番目の画素の出力信号V2と(m,n)
番目の画素の出力信号V2'を得る。
Next, a configuration for correcting the performance (sensitivity calibration) of each pixel using the above-described temperature control (means for correcting the output signal of each pixel) will be described. FIG. 4 shows (m-1,
FIG. 9 is a diagram illustrating the concept of output signals at (T−1) and (T2) for the (n−1) -th pixel and the (m, n) -th pixel.
It should be noted that the temperature referred to here indicates the temperature of the object itself (the unit may be C or K), and does not mean a temperature difference. It is assumed that the entire thermal infrared imaging device as shown in FIG. 3 is set to the temperature T1 by the above-described method using the heating means 41, and the diaphragm portion 14 of each pixel is brought into contact with the substrate. At this time, both the (m-1, n-1) th pixel and the (m, n) th pixel have the same temperature T1. At this temperature T1, an output signal V1 of the (m-1, n-1) th pixel and an output signal V1 'of the (m, n) th pixel are obtained. Although the temperature change in the pixel itself is a change in the resistance value of the resistor 16, it is treated here as being converted into a voltage and output. Next, the entire thermal infrared imaging device is set at a temperature T2 (for example, T2> T1), the diaphragm section 14 of each pixel is brought into contact with the substrate, and (m
The output signal V2 of the (−1, n−1) th pixel and (m, n)
An output signal V2 'of the pixel is obtained.

【0023】上記の温度T1とT2の差(T2−T1)
をΔTとし、各画素の出力信号の差(V2−V1)をΔ
V1、(V2'−V1')をΔV1'とすれば、(m−
1,n−1)番目の画素では △V1/△T=(V2−V1)/(T2−T1) (m,n)番目の画素では △V1'/△T=(V2'−V1')/(T2−T1) が温度変化に対する出力信号変化となり、この値をそれ
ぞれの素子についての出力信号の温度変化を示す比例定
数として扱うことが出来る。同様のことを全画素につい
て行い、全画素のこれらのデータを記憶部に保存し、赤
外線カメラを利用する際に各画素の性能補正を実施す
る。
The difference between the above temperatures T1 and T2 (T2-T1)
Is ΔT, and the difference (V2−V1) between the output signals of the pixels is Δ
If V1, (V2′−V1 ′) is ΔV1 ′, then (m−
ΔV1 / ΔT = (V2−V1) / (T2−T1) for (1, n−1) th pixel ΔV1 ′ / ΔT = (V2′−V1 ′) for (m, n) th pixel / (T2−T1) is the output signal change with respect to the temperature change, and this value can be treated as a proportional constant indicating the temperature change of the output signal for each element. The same is performed for all the pixels, the data of all the pixels is stored in the storage unit, and the performance of each pixel is corrected when the infrared camera is used.

【0024】以下、各画素の性能補正(較正)の例とし
て、平均値を用いる場合について説明する。前記のよう
にして求めた(m,n)番目の画素の比例定数(前記の
△V1'/△Tに相当)をA(m,n)、全画素の比例定
数の平均値をAとして、(m,n)番目の画素について
の感度補正を考える。温度T1における(m,n)番目
の画素の出力電圧V1と全画素の出力電圧の平均値Vと
の差は(V−V1)となる。或る温度Txにおける
(m,n)番目の画素の出力電圧をVxとすると、補正
値は 〔Vx+(V−V1)〕×A/A(m,n) となる。他の画素においても同様の補正を行なう。この
ような補正を行なうことにより、平均値を基準として全
画素の性能補正が可能になる。
Hereinafter, a case where an average value is used will be described as an example of performance correction (calibration) of each pixel. The proportional constant (corresponding to the above △ V1 ′ / △ T) of the (m, n) th pixel obtained as described above is A (m, n), and the average value of the proportional constants of all pixels is A, Consider sensitivity correction for the (m, n) -th pixel. The difference between the output voltage V1 of the (m, n) -th pixel and the average value V of the output voltages of all the pixels at the temperature T1 is (V-V1). Assuming that the output voltage of the (m, n) -th pixel at a certain temperature Tx is Vx, the correction value is [Vx + (V−V1)] × A / A (m, n). Similar correction is performed for other pixels. By performing such correction, the performance correction of all pixels can be performed based on the average value.

【0025】次に、或る画素を基準として性能補正を行
なう場合について説明する。例えば基準画素を(1,
1)番目の画素とし、この(1,1)画素の比例定数を
A0とする。温度T1における(m,n)番目の画素の
出力電圧V1と(1,1)画素の出力電圧V0との差が
(V0−V1)となる。或る温度Txにおける(m,
n)番目の画素の出力電圧をVxとすると、補正値は 〔Vx+(V0−V1)〕×A0/A(m,n) となる。他の画素においても同様の補正を行なう。この
ような補正を行なうことにより、平均値を基準として全
画素の性能補正が可能になる。上記のようにして各画素
の感度の差を解消することが出来る。
Next, a case where performance correction is performed with reference to a certain pixel will be described. For example, if the reference pixel is (1,
The pixel is the 1) th pixel, and the proportional constant of the (1,1) pixel is A0. The difference between the output voltage V1 of the (m, n) -th pixel and the output voltage V0 of the (1, 1) pixel at the temperature T1 is (V0-V1). At a certain temperature Tx, (m,
Assuming that the output voltage of the (n) th pixel is Vx, the correction value is [Vx + (V0−V1)] × A0 / A (m, n). Similar correction is performed for other pixels. By performing such correction, the performance correction of all pixels can be performed based on the average value. As described above, the difference in sensitivity between the pixels can be eliminated.

【0026】また、各画素の性能補正については、2点
のデータから比例定数を求め、これによって、データの
補正を行なう方法について述べたが、画素の出力信号と
温度の関係が直線的な関係でない場合には、設定温度を
3点以上にして、各温度での出力信号を計測し、各画素
の温度特性曲線を求め、それに対応した補正を行なえ
ば、高精度の性能補正ができる。また、性能補正を行な
う際の温度T1、T2等の設定は、例えば撮像する被写
体の温度に近い値に設定することが望ましい。
As for the performance correction of each pixel, a method has been described in which a proportionality constant is obtained from two points of data and the data is corrected based on the proportional constant. However, the relationship between the output signal of the pixel and the temperature is linear. Otherwise, if the set temperature is set to three or more points, the output signal at each temperature is measured, the temperature characteristic curve of each pixel is obtained, and the correction corresponding thereto is performed, so that the performance can be corrected with high accuracy. Further, it is desirable to set the temperatures T1, T2, and the like when performing the performance correction, for example, to values close to the temperature of the subject to be imaged.

【0027】以上のような補正は、赤外線カメラをとお
して赤外線が入射し、赤外線センサに照射されたとして
も、半導体基板11を加熱するまでには至らないため、
環境からの影響が無い。さらに、電気的方法を用いて加
熱、温度検出を行なうため、性能補正のための均一温度
物体が不要である。したがって、赤外線カメラの準備を
素速く行なうことができる。
The above-described correction does not reach the point where the semiconductor substrate 11 is heated even if infrared light enters through the infrared camera and is irradiated on the infrared sensor.
No environmental impact. Furthermore, since heating and temperature detection are performed using an electrical method, a uniform temperature object for performance correction is not required. Therefore, the infrared camera can be quickly prepared.

【0028】次に、図1〜図3に示した素子の製造方法
について説明する。まず、半導体基板11の上で、空隙
20となる領域に犠牲層となる酸化膜(例えばPSG
膜)を形成する。ここで、PSGの犠牲層の形成方法に
ついて説明する。半導体基板11に厚さ1μm前後のP
SG酸化膜をCVD法などで形成する。このPSG酸化
膜は犠牲エッチング層であるため、ポリイミドなどでも
よい。このPSG酸化膜に格子状の溝(幅1μm前後)
をエッチングにより形成する。この上に同じPSG酸化
膜をCVD法で形成し、一部を残してエッチング除去す
る。こうして空隙20となる部分(ダイアフラム部14
と梁部13の下部)に犠牲層が形成される。犠牲層とな
る酸化膜は2μm位の厚さの単層でもよいが、上記のよ
うに溝を形成した上に再度PSG酸化膜を形成する方法
を用いると、各溝に小さなトンネル(空洞もしくは
「す」の入った状態)が形成され、犠牲層のエッチング
時にそのトンネルを通ってエッチング液が浸透するの
で、エッチング速度を速くすることができる。
Next, a method of manufacturing the device shown in FIGS. 1 to 3 will be described. First, on the semiconductor substrate 11, an oxide film (for example, PSG
Film). Here, a method for forming a sacrificial layer of PSG will be described. A P having a thickness of about 1 μm
An SG oxide film is formed by a CVD method or the like. Since this PSG oxide film is a sacrificial etching layer, it may be polyimide or the like. Lattice grooves (width about 1 μm) in this PSG oxide film
Is formed by etching. The same PSG oxide film is formed thereon by the CVD method, and is etched away except for a part. In this way, the portion that becomes the void 20 (the diaphragm portion 14
A sacrificial layer is formed on the lower part of the beam 13). The oxide film serving as the sacrificial layer may be a single layer having a thickness of about 2 μm. However, if the method of forming a groove and forming a PSG oxide film again as described above is used, a small tunnel (cavity or “ Is formed, and the etching solution permeates through the tunnel when the sacrificial layer is etched, so that the etching rate can be increased.

【0029】次に、上記犠牲層の上にダイアフラムにな
る膜、例えばシリコン窒化膜をLPCVD法で形成す
る。これが梁部13とダイアフラム12の構造材とな
る。ダイアフラム12の上には電極30を形成する。電
極30としては金属膜であればなんでもよいが、CMO
Sプロセスを考えるとA1膜が好ましい。この電極30
の上に層間絶縁膜17例えばシリコン酸化物を形成し、
さらに、温度変化に応じて電気抵抗が変化する抵抗体1
6を形成し、必要に応じてパターン化する。この上に層
間絶縁膜19を形成した後、エッチング穴18を形成す
る。次に熱吸収層25を形成する。なお、熱吸収層25
と層間絶縁層19の間に熱吸収層25の密着を高めるた
めに、アモルファスSiの層を形成していてもよい。こ
の場合には、熱吸収層25としては金黒膜が適当であ
る。次に、上記エッチング穴18からエッチング液を注
入して上記PSG酸化膜の犠牲層をエッチング除去する
ことにより、空隙20を形成してダイアフラム部14を
分離形成する。
Next, a film to be a diaphragm, for example, a silicon nitride film is formed on the sacrificial layer by LPCVD. This is the structural material of the beam 13 and the diaphragm 12. An electrode 30 is formed on the diaphragm 12. Any electrode may be used as long as it is a metal film.
Considering the S process, the A1 film is preferable. This electrode 30
An interlayer insulating film 17, for example, a silicon oxide,
Furthermore, the resistor 1 whose electric resistance changes according to a temperature change
6 is formed and patterned if necessary. After an interlayer insulating film 19 is formed thereon, an etching hole 18 is formed. Next, the heat absorption layer 25 is formed. The heat absorbing layer 25
In order to enhance the adhesion of the heat absorbing layer 25 between the semiconductor device and the interlayer insulating layer 19, an amorphous Si layer may be formed. In this case, a gold black film is appropriate as the heat absorbing layer 25. Next, an etching solution is injected from the etching hole 18 and the sacrificial layer of the PSG oxide film is removed by etching, thereby forming a gap 20 and separately forming the diaphragm portion 14.

【0030】なお、これまでの説明は、ボロメータ型の
赤外線センサを画素にする場合について説明してきた
が、pn接合型の赤外線センサでも同様に構成すること
が出来る。
In the above description, the case where a bolometer type infrared sensor is used as a pixel has been described. However, a pn junction type infrared sensor can be similarly configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱型赤外線撮像素子に用いる赤外線セ
ンサ(画素)の一実施の形態を示す平面図。
FIG. 1 is a plan view showing an embodiment of an infrared sensor (pixel) used in a thermal infrared imaging device of the present invention.

【図2】本発明の熱型赤外線撮像素子に用いる赤外線セ
ンサ(画素)の一実施の形態を示す断面図。
FIG. 2 is a cross-sectional view showing an embodiment of an infrared sensor (pixel) used in the thermal infrared imaging device of the present invention.

【図3】本発明の熱型赤外線撮像素子のアレイ構成を示
す平面図。
FIG. 3 is a plan view showing an array configuration of a thermal infrared imaging device of the present invention.

【図4】二つの画素の出力信号の状態を示す特性図。FIG. 4 is a characteristic diagram showing states of output signals of two pixels.

【図5】熱型赤外線撮像素子における各画素の出力信号
のバラツキを示す特性図。
FIG. 5 is a characteristic diagram showing variations in output signals of respective pixels in the thermal infrared imaging device.

【符号の説明】[Explanation of symbols]

1…赤外線センサ 2…熱吸収層 3…スイッチング回路部 4…xアドレ
ス線 5…yアドレス線 11…半導体基
板 12…ダイアフラム 13…梁部 14…ダイアフラム部 15…配線 16…抵抗体 17…層間絶縁
層 18…エッチング穴 19…層間絶縁
層 20…空隙 25…熱吸収層 30…電極 31…配線 40…温度検出手段 41…加熱手段
DESCRIPTION OF SYMBOLS 1 ... Infrared sensor 2 ... Heat absorption layer 3 ... Switching circuit part 4 ... x address line 5 ... y address line 11 ... Semiconductor substrate 12 ... Diaphragm 13 ... Beam part 14 ... Diaphragm part 15 ... Wiring 16 ... Resistor 17 ... Interlayer insulation Layer 18 Etching hole 19 Interlayer insulating layer 20 Air gap 25 Heat absorbing layer 30 Electrode 31 Wiring 40 Temperature detecting means 41 Heating means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】支持基板から空隙を隔てて熱分離構造のダ
イアフラムが形成され、該ダイアフラム上に赤外線検知
部が形成されている熱型赤外線センサを画素とし、複数
の画素でアレイを形成した熱型赤外線撮像素子におい
て、 前記ダイアフラムを前記支持基板に接触、離反させる手
段と、 前記支持基板を加熱する加熱手段と、 前記支持基板もしくは前記ダイアフラムの温度を検出す
る温度検出手段と、 前記ダイアフラムと前記支持基板とを接触させた際の温
度と、そのときの画素の出力信号とを記憶する記憶手段
と、 前記記憶手段の記憶値に基づいて、各画素の出力信号を
補正する手段と、 を備えたことを特徴とする熱型赤外線撮像素子。
A thermo-infrared sensor in which a diaphragm having a thermal isolation structure is formed with a gap from a support substrate, and a thermal type infrared sensor having an infrared detecting portion formed on the diaphragm is used as a pixel, and an array is formed by a plurality of pixels. In the infrared type infrared imaging device, means for contacting and separating the diaphragm with the support substrate, heating means for heating the support substrate, temperature detection means for detecting the temperature of the support substrate or the diaphragm, the diaphragm and the Storage means for storing the temperature at the time of contact with the support substrate and the output signal of the pixel at that time, and means for correcting the output signal of each pixel based on the storage value of the storage means. A thermal infrared imaging device, characterized in that:
【請求項2】前記ダイアフラムを前記支持基板に接触、
離反させる手段は、前記ダイアフラムに形成された電極
と前記支持基板または支持基板に設けた電極との間に電
圧を印加することにより、静電力によって前記ダイアフ
ラムと前記支持基板とを接触させるものであることを特
徴とする請求項1に記載の熱型赤外線撮像素子。
2. The method according to claim 2, wherein the diaphragm contacts the support substrate.
The separating means applies electrostatic force between the electrode formed on the diaphragm and the electrode provided on the support substrate or the support substrate, thereby bringing the diaphragm into contact with the support substrate by electrostatic force. The thermal infrared imaging device according to claim 1, wherein:
【請求項3】前記各画素の出力信号を補正する手段は、
少なくとも二つの異なる温度およびそれぞれの温度にお
ける出力信号の値に応じて各画素の出力信号を補正する
ものであることを特徴とする請求項1または請求項2に
記載の熱型赤外線撮像素子。
3. The means for correcting the output signal of each pixel,
3. The thermal infrared imaging device according to claim 1, wherein an output signal of each pixel is corrected according to at least two different temperatures and an output signal value at each temperature.
【請求項4】前記赤外線検知部はボロメータ型またはp
n接合型の赤外線センサであることを特徴とする請求項
1乃至請求項3の何れかに記載の熱型赤外線撮像素子。
4. The infrared detector according to claim 1, wherein said infrared detector is of a bolometer type or a p-type.
The thermal infrared imaging device according to any one of claims 1 to 3, wherein the thermal infrared imaging device is an n-junction infrared sensor.
JP09664599A 1999-04-02 1999-04-02 Thermal infrared image sensor Expired - Fee Related JP4300305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09664599A JP4300305B2 (en) 1999-04-02 1999-04-02 Thermal infrared image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09664599A JP4300305B2 (en) 1999-04-02 1999-04-02 Thermal infrared image sensor

Publications (2)

Publication Number Publication Date
JP2000295528A true JP2000295528A (en) 2000-10-20
JP4300305B2 JP4300305B2 (en) 2009-07-22

Family

ID=14170576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09664599A Expired - Fee Related JP4300305B2 (en) 1999-04-02 1999-04-02 Thermal infrared image sensor

Country Status (1)

Country Link
JP (1) JP4300305B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524621A (en) * 2004-12-21 2008-07-10 ユリス Components that specifically detect infrared electromagnetic radiation
US7550726B2 (en) 2005-06-06 2009-06-23 Panasonic Corporation Electronic device and method for fabricating the same
KR101024289B1 (en) 2008-02-14 2011-03-29 닛본 덴끼 가부시끼가이샤 Infrared sensor and manufacturing method thereof
US8047710B2 (en) 2006-10-11 2011-11-01 Panasonic Corporation Electronic device
JP2012151661A (en) * 2011-01-19 2012-08-09 Fujitsu Ltd Infrared imaging apparatus
KR20160000046A (en) * 2014-06-23 2016-01-04 삼성전자주식회사 Image sensor and method of fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246428A (en) * 1990-02-23 1991-11-01 Fujitsu Ltd Infrared video device
JPH09203659A (en) * 1995-08-11 1997-08-05 Nec Corp Bolometer type infrared detector
JPH09329499A (en) * 1996-06-12 1997-12-22 Ishizuka Denshi Kk Infrared sensor and infrared detector
JPH10262186A (en) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp Infrared ray camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246428A (en) * 1990-02-23 1991-11-01 Fujitsu Ltd Infrared video device
JPH09203659A (en) * 1995-08-11 1997-08-05 Nec Corp Bolometer type infrared detector
JPH09329499A (en) * 1996-06-12 1997-12-22 Ishizuka Denshi Kk Infrared sensor and infrared detector
JPH10262186A (en) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp Infrared ray camera

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524621A (en) * 2004-12-21 2008-07-10 ユリス Components that specifically detect infrared electromagnetic radiation
JP4854676B2 (en) * 2004-12-21 2012-01-18 ユリス Components that specifically detect infrared electromagnetic radiation
US7550726B2 (en) 2005-06-06 2009-06-23 Panasonic Corporation Electronic device and method for fabricating the same
US8047710B2 (en) 2006-10-11 2011-11-01 Panasonic Corporation Electronic device
KR101024289B1 (en) 2008-02-14 2011-03-29 닛본 덴끼 가부시끼가이샤 Infrared sensor and manufacturing method thereof
JP2012151661A (en) * 2011-01-19 2012-08-09 Fujitsu Ltd Infrared imaging apparatus
KR20160000046A (en) * 2014-06-23 2016-01-04 삼성전자주식회사 Image sensor and method of fabricating the same
KR102268714B1 (en) * 2014-06-23 2021-06-28 삼성전자주식회사 Image sensor and method of fabricating the same

Also Published As

Publication number Publication date
JP4300305B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
US7385199B2 (en) Microbolometer IR focal plane array (FPA) with in-situ mirco vacuum sensor and method of fabrication
US6441372B1 (en) Infrared focal plane array detector and method of producing the same
US6737648B2 (en) Micromachined infrared sensitive pixel and infrared imager including same
US7288765B2 (en) Device for detecting infrared radiation with bolometric detectors
US8748808B2 (en) Detection and correction of a loss of calibration of microbolometer thermal imaging radiometers
JPWO2005015637A1 (en) Electronic device and manufacturing method thereof
US5446284A (en) Monolithic detector array apparatus
AU595376B2 (en) Gate coupled input circuit
CN102874735A (en) Two-material micro-cantilever, electromagnetic radiation detector and detection method
CN102192790A (en) Detection circuit for heat sensor, heat sensor device, and electronic device
US9097579B2 (en) Electrical calibrated radiometer
JP4300305B2 (en) Thermal infrared image sensor
KR20000071693A (en) Thermal functional device capable of high-speed response and a method of driving the device
JP2004530893A (en) Method and apparatus for reading composite microbolometer array
JPH10227689A (en) Infrared detector and infrared focal plane array
CN110140215B (en) Infrared sensor device
US5502307A (en) Spun cast IR detector arrays and method of making the same
WO2006038213A2 (en) Millimeter wave pixel and focal plane array imaging sensors thereof
JP2001255203A (en) Thermal infrared detector having thermally separating structure
US7560694B2 (en) Method and system for increasing signal-to-noise ratio in microbolometer arrays
Hunter et al. Development and optimization of microcantilever based IR imaging arrays
US6040577A (en) Chopperless operation of a thermal infrared radiation sensor system by application of heat pulses to thermally isolated pixel sensor elements
JPH1038686A (en) Charge integration type photodetector
JP3147856B2 (en) Linear infrared detector
JP2001264158A (en) Thermal infrared imaging element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees