JPH03246428A - Infrared video device - Google Patents
Infrared video deviceInfo
- Publication number
- JPH03246428A JPH03246428A JP2044001A JP4400190A JPH03246428A JP H03246428 A JPH03246428 A JP H03246428A JP 2044001 A JP2044001 A JP 2044001A JP 4400190 A JP4400190 A JP 4400190A JP H03246428 A JPH03246428 A JP H03246428A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- temperature
- calibration
- detector
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 19
- 238000001514 detection method Methods 0.000 claims description 73
- 238000003331 infrared imaging Methods 0.000 claims description 17
- 230000007613 environmental effect Effects 0.000 abstract description 14
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 19
- 238000003384 imaging method Methods 0.000 description 16
- 238000001816 cooling Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Radiation Pyrometers (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
校正源を用いて赤外線検知器の検出信号の温度補正を行
なう赤外線映像装置に関し、
環境温度や赤外線検知器の感度などの変化に対する影響
を極力排除して正確な温度検出を行なうことを目的とし
、
校正源からミラー及び集光光学系を介して赤外線検知器
に入射された赤外線の検知信号を基準にして、その後に
該ミラー及び該集光光学系を介して被写体から該赤外線
検知器に入射される赤外線の検知信号の校正を行なう赤
外線映像装置において、前記校正源から放射される赤外
線パワーを連続的又は段階的に変化させる赤外線パワー
可変手段と、該赤外線パワー可変手段によりパワーが順
次変化する該校正源からの赤外線を所定の温度間隔毎に
前記赤外線検知器で検知して得た検知信号とイのときの
該校正源の温度とに関するデータを配憶する記憶手段と
、前記被写体の搬像時に該赤外線検知器から取り出され
る被写体からの赤外線の検知信号に基づいて該V憶手段
からデータを読み出し、該被写体からの赤外線に対応し
た温度の検出処理を行なう検出手段とより構成する。[Detailed Description of the Invention] [Summary] Regarding an infrared imaging device that uses a calibration source to perform temperature correction on the detection signal of an infrared detector, the present invention relates to an infrared imaging device that uses a calibration source to perform temperature correction on the detection signal of an infrared detector, and to achieve accuracy by eliminating as much as possible the effects of changes in environmental temperature and sensitivity of the infrared detector. The purpose is to perform accurate temperature detection, and based on the detection signal of infrared rays incident on the infrared detector from the calibration source via the mirror and the condensing optical system, In an infrared imaging device that calibrates an infrared detection signal incident on the infrared detector from a subject, the infrared power variable means continuously or stepwise changes the infrared power emitted from the calibration source; Storing data regarding the detection signal obtained by detecting infrared rays from the calibration source whose power changes sequentially by the power variable means with the infrared detector at predetermined temperature intervals and the temperature of the calibration source at the time of A. a storage means for reading out data from the storage means based on a detection signal of infrared rays from the subject taken out from the infrared detector when the image of the subject is conveyed, and detecting a temperature corresponding to the infrared rays from the subject; and a detection means for performing the detection.
本発明は赤外線映像装置に係り、特に校正源を用いて赤
外線検知器の検出信号の温度補正を行なう赤外線映像装
置に関する。The present invention relates to an infrared imaging device, and more particularly to an infrared imaging device that performs temperature correction on a detection signal of an infrared detector using a calibration source.
第5図は従来の赤外線映像装置の一例のブロック図を示
す。同図中、1は対物面走査型の走査鏡で、撮像対象を
走査し、また校正用黒体2を走査する。走査1t1の走
査角、走査周期等は走査制御部3により制御されている
。FIG. 5 shows a block diagram of an example of a conventional infrared imaging device. In the figure, reference numeral 1 denotes an object plane scanning type scanning mirror, which scans the object to be imaged and also scans the black body 2 for calibration. The scanning angle, scanning period, etc. of the scanning 1t1 are controlled by the scanning control section 3.
走査線1で反射された赤外光は、集光光学系4を透過し
て集光されて赤外線検知器5に入射される。この赤外線
検知器5は画素を構成する赤外検知素子が1個のもの、
複数個の赤外検知素子が一次元配列されたりニアアレイ
型のもの、赤外検知素子がマトリクス状に二次元配列さ
れたもの、のいずれでも差し支えない。The infrared light reflected by the scanning line 1 passes through the condensing optical system 4, is condensed, and enters the infrared detector 5. This infrared detector 5 has one infrared detection element constituting a pixel,
It may be a one-dimensional arrangement of a plurality of infrared detection elements, a near array type, or a two-dimensional arrangement of infrared detection elements in a matrix.
赤外線検知器5により入射赤外光を光電変換して得られ
た微弱な電気信号は増幅器6で所要のレベルまで増幅さ
れて検知電圧とされた後、演算部7に供給される。演算
部7はリード・オンリ・メモリ(ROM)等のメモリを
有し、またディジタル演算処理のための回路部を有し、
既知の温度の校正用黒体2を走査したときに得られた検
知電圧を基準にしてN像対象の検知電圧を補正演算して
、対応する温度値を算出し、更にその温度値を示す信号
を映像信号に変換して表示部8に供給する。A weak electrical signal obtained by photoelectrically converting the incident infrared light by the infrared detector 5 is amplified to a required level by the amplifier 6 and converted into a detection voltage, and then supplied to the arithmetic unit 7. The calculation section 7 has a memory such as a read-only memory (ROM), and also has a circuit section for digital calculation processing,
Correcting the detection voltage of the N image object based on the detection voltage obtained when scanning the calibration black body 2 with a known temperature, calculates the corresponding temperature value, and further generates a signal indicating the temperature value. is converted into a video signal and supplied to the display unit 8.
表示部8は同期制御部9からの走査鏡1の走査に同期し
た掃引信号が供給され、走査位置に対応した位置に、上
記の温度値を示す映像信号を画面に画像表示する。The display section 8 is supplied with a sweep signal synchronized with the scanning of the scanning mirror 1 from the synchronization control section 9, and displays a video signal indicating the above-mentioned temperature value on the screen at a position corresponding to the scanning position.
なお、赤外線検知器5付近の機械的構造は第6図に示す
如く構成されているのが一般的である。Note that the mechanical structure around the infrared detector 5 is generally constructed as shown in FIG.
同図中、5aは赤外線検知器で、前記した赤外線検知器
5に相当し、ここでは複数個の赤外検知素子が一次元配
列されたりニアアレイ型としている。In the figure, reference numeral 5a denotes an infrared detector, which corresponds to the infrared detector 5 described above, in which a plurality of infrared detecting elements are arranged one-dimensionally or in a near array type.
この赤外線検知器5aはコールドへラド11上に取付け
られ、またその視野が冷却された開口であるコールドア
パーチャ12によって制限される構成とされており、こ
れらは容器13内の真空中に収納されている。This infrared detector 5a is mounted on a cold aperture 11, and its field of view is limited by a cold aperture 12, which is a cooled opening, and these are housed in a vacuum inside a container 13. There is.
また、赤外線検知器5aの受光面側前方の容器13には
、赤外線を透過する例えばゲルマニウム製のウィンド1
4が設けられており、更にその前方には前記した集光光
学系4を構成する複数枚のレンズのうちの最後の1枚で
ある集光レンズ15が鏡筒16に取付けられて配置され
ている。Further, in the container 13 in front of the light receiving surface side of the infrared detector 5a, there is a window 1 made of, for example, germanium that transmits infrared rays.
4 is provided, and in front of it, a condenser lens 15, which is the last one of the plurality of lenses constituting the aforementioned condensing optical system 4, is attached to a lens barrel 16 and arranged. There is.
ここで、コールドアパーチャ12は赤外線検知器5aが
集光レンズ15のレンズ面を見込むように、第7図の平
面図に示すように、赤外線検知器5aの形状に応じて長
方形の開口12aを有する。Here, the cold aperture 12 has a rectangular opening 12a according to the shape of the infrared detector 5a, as shown in the plan view of FIG. 7, so that the infrared detector 5a can see the lens surface of the condensing lens 15. .
しかし、実際は赤外線検知器5aは両端の赤外検知素子
の視野を確保するため、第6図に破線17で示す如く集
光レンズ15のレンズ面以外の鏡筒16も見込まざるを
得ないようになっている。この点は、リニアアレイ型で
なくとも、多少はあるが、他の構成の赤−外線検知器で
も同じである。However, in reality, in order to ensure the field of view of the infrared detecting elements at both ends of the infrared detector 5a, the lens barrel 16 other than the lens surface of the condensing lens 15 must be viewed as shown by the broken line 17 in FIG. It has become. This point applies to infrared ray detectors of other configurations, even if they are not linear array type.
ところで、従来より演算部7による補正演算には、■−
点校正や■二点校正がある。−点校正は校正用黒体2と
して既知の一定温度の単一の校正用黒体を使用し、かつ
、予め製造段階で赤外線検知器5の赤外検知素子夫々に
ついて、種々の基準温度とそのときの検出電圧との特性
(第8図に曲線工で示す)をテーブルとして演算部7内
のROMに格納しておく。そして、実際の撮像時におい
て、被写体撮像時の赤外検知素子の特性が第8図に一点
鎖線■で示す如く変化している場合でも、同図にTOで
示す温度の校正用黒体2を適宜撮像した時に得られる検
出電圧Voを基準にして補正演算することにより、同図
に1で示す特性で得られる正確な温度表示を行なうこと
ができる。By the way, conventionally, the correction calculation by the calculation unit 7 includes ■-
There are point calibration and ■two-point calibration. - In point calibration, a single calibration black body with a known constant temperature is used as the calibration black body 2, and various reference temperatures and their The characteristics (shown by the curved line in FIG. 8) with respect to the detected voltage at the time are stored in the ROM in the calculation unit 7 as a table. During actual imaging, even if the characteristics of the infrared detection element at the time of object imaging change as shown by the dashed line ■ in Fig. 8, the black body 2 for temperature calibration shown by TO in the same figure is used. By performing a correction calculation based on the detected voltage Vo obtained when taking an appropriate image, it is possible to perform an accurate temperature display obtained with the characteristic indicated by 1 in the figure.
また、二点校正の場合には、校正用黒体2として温度が
異なる2つの基準黒体を用意し、実際の撮像時に温度T
+−+の第1の校正用黒体を撮像したときの赤外線検知
器5の検知電圧v1と温度Tしの第2の校正用黒体を撮
像したときの赤外線検知器5の検知電圧v2との差(V
I V2)と、第1及び第2の校正用黒体Ill待時
規定の検知電圧VH,VL(7)差(VH−VL )と
の比である補正係数を演算部7で算出し、次いで被写体
の撮像時に得られる検知電圧から上記検知電圧v2を差
し引いた差分値Voに前記補正係数を乗じ、更にこの乗
算値に上記検知電圧V1を加算することにより補正値を
得る。In addition, in the case of two-point calibration, two reference black bodies with different temperatures are prepared as the calibration black body 2, and the temperature T
The detection voltage v1 of the infrared detector 5 when imaging the first calibration black body at +-+ and the detection voltage v2 of the infrared detector 5 when imaging the second calibration black body at temperature T difference (V
The calculation unit 7 calculates a correction coefficient, which is the ratio of the detection voltage VH, VL (7) (VH - VL ) of the first and second calibration black bodies Ill standby stipulations. A correction value is obtained by multiplying the difference value Vo obtained by subtracting the detection voltage v2 from the detection voltage obtained when imaging the subject by the correction coefficient, and then adding the detection voltage V1 to this multiplied value.
これにより、成る環境温度下で第9図(△)にaで示す
如く、第1.第2の校正用黒体撮像時の検知電圧がVa
H,VaLであり、また別の環境温度下では同図(A)
にbで示す如く、Vl))I、 VbLである場合でも
、上記した補正演算動作によって同図(B)に実線IV
で示す如く、第1の校正用黒体撮像時はVH,第2の校
正用黒体撮像時はVLの各補正値を得ることができ、環
境温度の変化を受けない安定な温度測定機能を有するこ
とができる。As a result, as shown by a in FIG. 9 (Δ) under the environmental temperature, the first. The detection voltage at the time of second calibration blackbody imaging is Va
H, VaL, and the same figure (A) under different environmental temperature.
As shown by b in the figure, even when Vl))I and VbL, the solid line IV in the same figure (B) is obtained by the above-mentioned correction calculation operation.
As shown in , it is possible to obtain the correction values of VH when capturing the first black body image for calibration, and VL when capturing the black body image for second calibration, providing a stable temperature measurement function that is not affected by changes in the environmental temperature. can have
なお、二点校正の別の方法としては、校正用黒体2は一
つのみとし、走査鏡1を特定の角度に走査されたときに
赤外線検知器5を見るようにしく赤外線検知器5が走査
鏡1を介して自分自身を撮像する)、この時に得られる
極低温に対応する零レベル信号と、校正用黒体2の撮像
時の検知電圧との2つの信号から装置の動作状態をモニ
タする方法も従来より知られている。Another method of two-point calibration is to use only one black body 2 for calibration, and to set the infrared detector 5 so that the infrared detector 5 is seen when the scanning mirror 1 is scanned at a specific angle. The operating state of the device is monitored from two signals: the zero level signal corresponding to the extremely low temperature obtained at this time, and the detection voltage when imaging the calibration blackbody 2. Methods for doing so have also been known.
しかるに、装置の環境温度が変化すると、第6図に示し
た鏡筒16の温度が変化し、これにより赤外線検知器5
(5a)に背景光として入射される赤外線パワー(直
流分)が変化することになる。However, when the environmental temperature of the device changes, the temperature of the lens barrel 16 shown in FIG.
The infrared power (DC component) incident on (5a) as background light changes.
赤外線パワーと検知電圧との関係は第10図に示す如く
非線形特性となっているため、装置の環境温度が所定値
のときの入射赤外線パワーがP。のときVSOなる検知
電圧が得られても、装置の環境温度が変化して入射赤外
線パワーがPl又はPlに変化すると、撮像対象からの
赤外線パワー(交流会)が変化していないにも拘らず、
得られる検知電圧はVSl又はVS2のようにVsOと
異なる振幅となり、温度対検出電圧特性が変化してしま
う。Since the relationship between infrared power and detection voltage has a nonlinear characteristic as shown in FIG. 10, the incident infrared power is P when the environmental temperature of the device is a predetermined value. Even if a detection voltage of VSO is obtained when ,
The obtained detection voltage has an amplitude different from VsO, such as VS1 or VS2, and the temperature versus detection voltage characteristic changes.
また、集光光学系4の軽年変化による赤外線検知器5へ
の入射赤外線パワーの減少、赤外線検知器5自体の劣化
や感度変化、増幅器6のゲイン変動などによっても、温
度対検知電圧特性が変化してしまう。In addition, the temperature vs. detection voltage characteristics may also change due to a decrease in the infrared power incident on the infrared detector 5 due to slight changes in the condensing optical system 4, deterioration or sensitivity changes in the infrared detector 5 itself, gain fluctuations in the amplifier 6, etc. It will change.
温度対検知電圧特性が変化すると、第8図に示した一点
校正の場合は所望の基準特性工とは傾斜が異なる特性が
得られてしまうため、−点校正しても同図に■で示すよ
うな特性しか得られず、正確な温度検出ができなくなる
。If the temperature vs. detection voltage characteristic changes, a characteristic with a slope different from the desired standard characteristic will be obtained in the case of the single-point calibration shown in Figure 8, so even if the −-point calibration is performed, the slope shown in the figure is Therefore, accurate temperature detection becomes impossible.
また、第9図に示した二点校正の場合は温度対検知電圧
特性の非線形性のために、二点校正しても同図<8)に
−点鎖線Vで示す如く所望の特性■とは異なる特性しか
得られなくなり、完全な補正はできない。In addition, in the case of the two-point calibration shown in Figure 9, due to the non-linearity of the temperature vs. detected voltage characteristic, even if the two-point calibration is performed, the desired characteristic (<8) as shown by the - dotted chain line V in the figure is not achieved. Only different characteristics can be obtained, and complete correction cannot be made.
そこで、装置の環境温度変化に伴う鏡筒16の温度変化
を補正するため、例えば本出願人が先に特願平1−81
76号にで提案した赤外線R像装置のように、M筒16
内に温度センサを設け、この温度センサの温度データと
鏡筒16の温度変動に対応した赤外検知電圧を予めメモ
リにテーブルとして記憶しておき、実際の撮像時に赤外
検知電圧と補正値〈これはそのときの温度データに対応
してメモリから読み出した検知電圧)とに基づいて算術
論理演算ユニットで演算して温度安定度を向上すること
が考えられる。Therefore, in order to correct the temperature change of the lens barrel 16 due to the environmental temperature change of the device, for example, the present applicant has previously proposed
Like the infrared R image device proposed in No. 76, M cylinder 16
A temperature sensor is provided inside, and the temperature data of this temperature sensor and the infrared detection voltage corresponding to the temperature fluctuation of the lens barrel 16 are stored in advance as a table in the memory, and the infrared detection voltage and correction value are stored in the memory during actual imaging. It is conceivable that this is performed by an arithmetic and logic operation unit based on the detected voltage (detected voltage read from the memory corresponding to the temperature data at that time) to improve temperature stability.
しかし、この提案装置では鏡筒16の温度変化による影
響は補正できても、第6図の集光レンズ15より入射側
にある他の集光光学系の光学エレメントの温度変化によ
る赤外放射の変化及び前記した各種変動要因による影響
は補正することができない。However, although this proposed device can compensate for the effects of temperature changes in the lens barrel 16, it is possible to compensate for infrared radiation caused by temperature changes in other optical elements of the focusing optical system on the incident side of the focusing lens 15 in FIG. Changes and the effects of the various variable factors mentioned above cannot be corrected.
本発明は以上の点に鑑みてなされたもので、環境温度や
赤外線検知器の感度などの変化に対する影響を極力排除
して正確な温度検出ができる赤外線映像装置を提供する
ことを目的とする。The present invention has been made in view of the above points, and an object of the present invention is to provide an infrared imaging device that can accurately detect temperature while minimizing the influence of changes in environmental temperature and sensitivity of an infrared detector.
(課題を解決するための手段〕
第1図は本発明の原理構成図を示″g。本発明IJ校正
源101.ミラー102.集光光学系103及び赤外線
検知器104を有する赤外線映像装置において、校正源
101から放射される赤外線パワーを連続的又は段階的
に変化させる赤外線パワー可変手段105と、記憶手段
106及び検出手段107とを設けたものである。(Means for Solving the Problems) FIG. 1 shows a principle block diagram of the present invention. , an infrared power variable means 105 for continuously or stepwise changing the infrared power emitted from the calibration source 101, a storage means 106, and a detection means 107 are provided.
ここで、記憶手段106は校正源101からの赤外線を
所定の温度間隔毎に赤外線検知器104で検知して得た
検知信号と、そのときの校正源101の温度とに関する
データを記憶する。Here, the storage means 106 stores data regarding a detection signal obtained by detecting infrared rays from the calibration source 101 with the infrared detector 104 at predetermined temperature intervals and the temperature of the calibration source 101 at that time.
また、検出手段107は被写体の撮像時に赤外線検知器
104から取り8される検知信号に基づいて記憶手段?
06からデータを読み出し、被写体からの赤外線に対応
した温度の検出処理を行なう。Furthermore, the detection means 107 stores data based on the detection signal taken from the infrared detector 104 when imaging the subject.
06 and performs temperature detection processing corresponding to infrared rays from the subject.
〔作用)
本発明は被写体と同じ条件下にある校正源101の温度
を一定とするのではなく、装置の対象とする温度範囲の
上限付近から下限付近まで連続的又は段階的に可変し、
そのとき得られる検知信号のうち所定温度間隔毎の検知
信号とそのときの温度とに関するデータを記憶手段10
6に記憶した後、実際の@像動作に入るようにする。[Function] The present invention does not keep the temperature of the calibration source 101 constant under the same conditions as the subject, but varies it continuously or stepwise from near the upper limit to near the lower limit of the temperature range targeted by the device.
The storage means 10 stores data regarding the detection signals obtained at each predetermined temperature interval and the temperature at that time among the detection signals obtained at that time.
6, then start the actual @ image operation.
従って、本発明では実際の撮像動作に入る前色に、その
時点での装置の環境温度、集光光学系103の光学エレ
メントの温度変化による赤外放射の変化や経年変化によ
る到達パワーの減少、赤外線検知器104の劣化などを
すべて包含した形で検知信号と正しい温度情報とを記憶
手段106に記憶しておくことができる。Therefore, in the present invention, before starting the actual imaging operation, the environmental temperature of the apparatus at that time, changes in infrared radiation due to temperature changes of the optical elements of the condensing optical system 103, and decreases in arriving power due to aging, etc. The detection signal and correct temperature information can be stored in the storage means 106 in a form that includes all deterioration of the infrared detector 104 and the like.
なお、ミラー102は対物面走査型の走査鏡でも、無走
査型のポインティングミラーでもよい。また、赤外線検
知器104が多素子検知器の場合には、記憶手段106
には赤外検知素子の各々についての前記データが格納さ
れる。Note that the mirror 102 may be an object plane scanning type scanning mirror or a non-scanning type pointing mirror. Furthermore, if the infrared detector 104 is a multi-element detector, the storage means 106
The data regarding each of the infrared detection elements is stored in .
第2図は本発明の一実施例のブロック図を示す。 FIG. 2 shows a block diagram of one embodiment of the invention.
同図中、第1図及び第5図と同一構成部分には同一符号
を付し、その説明を省略する。第2図において、20は
校正用黒体で、前記校正源101に相当し、熱容量の小
さい材料(アルミニウム等)を用いた、赤外エミシビテ
イが約1の薄板とされている。熱容量が小さい材料を用
いるのは、校正用黒体20の温度を容易に変化させるこ
とができるようにするためである。In the figure, the same components as those in FIGS. 1 and 5 are denoted by the same reference numerals, and their explanations will be omitted. In FIG. 2, reference numeral 20 denotes a calibration blackbody, which corresponds to the calibration source 101 and is a thin plate made of a material with a small heat capacity (such as aluminum) and whose infrared emittance is about 1. The reason why a material with a small heat capacity is used is to enable the temperature of the calibration black body 20 to be easily changed.
上記の校正用黒体20の一部には1個又は複数の温度セ
ンサ21が取付けられており、また加熱又は冷却器22
により加熱又は冷加されるように構成されている。加熱
又は冷却器22は前記した赤外線パワー可変手段105
を構成しており、校正用黒体20の温度を装置の対象と
する温度範囲の上限、下限付近まで変化させるために、
■最初は校正用黒体20を低温にしておき、校正の開始
と共にヒータ等によって加熱するか、又は■最初は校正
用黒体20を高温にしておき、校正の開始と共に電子冷
却器等によって冷却するのいずれかの構成とされている
。One or more temperature sensors 21 are attached to a part of the calibration black body 20, and a heating or cooling device 22 is attached.
It is configured to be heated or cooled by. The heating or cooling device 22 is the infrared power variable means 105 described above.
In order to change the temperature of the calibration black body 20 to near the upper and lower limits of the temperature range targeted by the device,
■ Initially, the calibration black body 20 is kept at a low temperature and heated by a heater etc. at the start of calibration, or ■ Initially, the calibration black body 20 is kept at a high temperature and cooled by an electronic cooler etc. at the start of calibration. It is configured as one of the following.
加熱又は冷却器22による校正用黒体20の温度変化は
連続的又は段階的に行なわれる。連続的温度変化の場合
は加熱温度を最大(冷却温度を最低)にするのみでよい
が、温度が片々刻々と変化するため、演算部25の処理
速度が早い必要がある。段階的な温度変化の場合はヒー
タや電子冷却器の電力を適当な段階で変化させ、温度の
安定をまって処理することができるため、演算部25の
処理速度は遅くてもよい。The temperature change of the calibration black body 20 by the heating or cooling device 22 is performed continuously or stepwise. In the case of continuous temperature changes, it is sufficient to simply set the heating temperature to the maximum (cooling temperature to the minimum), but since the temperature changes moment by moment, the processing speed of the calculation unit 25 needs to be fast. In the case of a stepwise temperature change, the processing speed of the arithmetic unit 25 may be slow because the power of the heater or electronic cooler can be changed at appropriate steps and the processing can be carried out after the temperature has stabilized.
低温側がO’C以下になるような場合は、校正精度を維
持するために、霜の付着を防止するための配慮(例えば
、校正用黒体20を窒素ガスの雰囲気中に置く〉をする
必要がある。If the temperature on the low temperature side is below O'C, it is necessary to take precautions to prevent frost from forming (for example, placing the calibration black body 20 in a nitrogen gas atmosphere) in order to maintain calibration accuracy. There is.
また、23は増幅器、24はスイッチ回路、25及び2
6は夫々演算部である。スイッチ回路24は走査111
11]部3からの信号により、走査鏡1が校正用黒体2
0を走査している期間は端子24a側に切換わり、走査
H1が被写体を走査している期間は端子24b側に切換
ねり、増幅器6からの検知電圧を演算部25及び26の
一方に選択入力する。Further, 23 is an amplifier, 24 is a switch circuit, 25 and 2
6 are arithmetic units, respectively. The switch circuit 24 scans 111
11] The signal from the unit 3 causes the scanning mirror 1 to move to the calibration black body 2.
During the period when 0 is being scanned, the terminal is switched to the terminal 24a side, and during the period when the scanning H1 is scanning the subject, it is switched to the terminal 24b side, and the detected voltage from the amplifier 6 is selectively input to one of the calculation units 25 and 26. do.
演算部25は前記記憶手段106に相当するランダム・
アクセス・メモリ(RAM)を有しており、またスイッ
チ回路24からの検知電圧や増幅器23からの温度信号
をディジタル信号に変換するA/DコンバータやRAM
へのデータの書き込み/読み出し制御回路などを有して
いる。更に、演算部26は前記検出手段107に相当す
る演算処理や映像信号への変換を行なう回路部で、スイ
ッチ回路24からの検知電圧に対応した温度を示す映像
信号を生成する。The arithmetic unit 25 has a random memory corresponding to the storage means 106.
It has an access memory (RAM), and an A/D converter and RAM that convert the detection voltage from the switch circuit 24 and the temperature signal from the amplifier 23 into digital signals.
It has a data write/read control circuit, etc. Further, the calculation section 26 is a circuit section that performs calculation processing and conversion into a video signal, which corresponds to the detection means 107, and generates a video signal indicating the temperature corresponding to the detected voltage from the switch circuit 24.
第2図中、表示部8を除いた部分が第3図に示す同じ筐
体30内に内蔵されている。第3図は第2図の要部の外
観概略図で、走査鏡1の走査範囲θ内に校正用黒体20
と窓31が設けられている。In FIG. 2, the parts other than the display section 8 are housed in the same casing 30 shown in FIG. 3. FIG. 3 is a schematic external view of the main part of FIG.
and a window 31 are provided.
窓31を通して走査鏡1により走査される走査範囲が被
写体が位置する視野32である。The scanning range scanned by the scanning mirror 1 through the window 31 is the field of view 32 where the subject is located.
次に本実施例の動作について説明する。まず、走査鏡1
が校正用黒体20を走査する(校正モード)。また、こ
れと同時に加熱又は冷却器22により校正用黒体20を
例えば装置の対象とする温度範囲の下限付近から上限付
近まで加熱していく。Next, the operation of this embodiment will be explained. First, scanning mirror 1
scans the calibration black body 20 (calibration mode). At the same time, the calibration black body 20 is heated by the heating or cooling device 22, for example, from near the lower limit to near the upper limit of the temperature range targeted by the apparatus.
これにより、校正用黒体20から放射される赤外線パワ
ーは順次変化し、またその放射赤外線は走査鏡1で反射
され、集光光学系4で集光されて赤外線検知器5に入射
され、ここで光電変換されて微弱な電気信号に変換され
た後、増幅器6及びこの校正モード時は端子24a側に
接続されているスイッチ回路24を通して演算部25に
入力される。As a result, the infrared power emitted from the calibration black body 20 changes sequentially, and the emitted infrared rays are reflected by the scanning mirror 1, condensed by the condensing optical system 4, and incident on the infrared detector 5. After being photoelectrically converted into a weak electric signal, the signal is input to the arithmetic unit 25 through the amplifier 6 and the switch circuit 24 connected to the terminal 24a side in this calibration mode.
この演算部25には、更に温度センサ21により抽出さ
れた校正用黒体20の温度信号が増幅器23を通して入
力されており、この温度信号とスイッチ回路24を通し
て入力された検知電圧を夫々対応させて、演算部25内
のRAMに格納する。The temperature signal of the calibration black body 20 extracted by the temperature sensor 21 is further input to the calculation unit 25 through the amplifier 23, and the temperature signal and the detection voltage input through the switch circuit 24 are made to correspond to each other. , stored in the RAM in the calculation unit 25.
すなわち、演算部25は校正用黒体20の温度を正確に
温度センサ21で測定して得られた温度信号に基づき、
適当な温度間隔Δ丁で所定数検知電圧をサンプリングし
、そのサンプリング検知電圧及びそのときの温度とから
なる情報(切点)間を結ぶ関数式(2次乃至4次式)を
算出し、その関数式の各係数の値と各切点とをRAMに
格納する。That is, based on the temperature signal obtained by accurately measuring the temperature of the calibration black body 20 with the temperature sensor 21, the calculation unit 25 calculates
A predetermined number of detected voltages are sampled at an appropriate temperature interval Δt, and a functional equation (quadratic to quartic equation) connecting the information (cutting point) consisting of the sampled detected voltage and the temperature at that time is calculated. The value of each coefficient and each cut point of the functional formula are stored in RAM.
例えば、上記の切点として第4図にd+ 、d2゜d3
及びd4で示す如く、温度と検知電圧の組が(T+ 、
V+ >、(T2.V2 )、(T3.V3 )及U
(T4 、 V4 )である4つの切点を得たものとす
ると、演算部25はこれら切点d1〜d4を結ぶ、第4
図に■で示す曲線の関数式を算出し、その関数式の各係
数の値と上記切点d1〜d4の情報とをRAMに格納す
る。For example, the above cut points are d+, d2°d3 in Figure 4.
As shown by and d4, the set of temperature and detection voltage is (T+,
V+ >, (T2.V2), (T3.V3) and U
(T4, V4), the calculation unit 25 connects these cut points d1 to d4 with a fourth cut point.
A functional formula for the curve shown by ■ in the figure is calculated, and the values of each coefficient of the functional formula and information on the cut points d1 to d4 are stored in the RAM.
次に、走査鏡1が被写体を走査する(撮像モード〉。こ
れにより、被写体1がらの赤外線が第2図に示す走査鏡
1.集光光学系4を通して赤外線検知器5に入射される
。これにより、赤外線検知器5より取り出された電気信
号は増幅器6.この撮像モード中、端子24bに接続さ
れているスイッチ回路24を夫々通して検知電圧として
演算部26に入力される。Next, the scanning mirror 1 scans the subject (imaging mode). As a result, the infrared rays from the subject 1 are incident on the infrared detector 5 through the scanning mirror 1 and condensing optical system 4 shown in FIG. Accordingly, the electric signal extracted from the infrared detector 5 is inputted as a detection voltage to the arithmetic unit 26 through the amplifier 6. During this imaging mode, the switch circuit 24 is connected to the terminal 24b.
演算部26は演算部25内のRAMから前記した関数式
の各係数の値を読み出し、これにより関数式を再現し、
このときの被写体の検知電圧をその関数式に代入して対
応する温度を演算算出した後、それを表示部8で表示で
きる映像信号に変換する。The calculation unit 26 reads out the values of each coefficient of the above-mentioned function formula from the RAM in the calculation unit 25, thereby reproducing the function formula,
After substituting the detected voltage of the object at this time into the functional equation and calculating the corresponding temperature, it is converted into a video signal that can be displayed on the display unit 8.
従って、本実施例によれば、赤外線検知器5が第6図に
示したように鏡筒を見込んでいることにより装置の環境
温度に左右されたとしても、その環境温度を含んだ形で
校正用黒体20からの赤外線が検知され、かつ、その時
の正確な温度が温度センサ2]により検出されているか
ら、正確な測温機能を有することができる。しかも、校
正モード時に演算部25に入力される検知電圧は、集光
光学系4の経年変化による到達パワーの減少、赤外線検
知器5の感度劣化、集光光学系4の光学エレメントの温
度変化による赤外放射の変化、増幅器6のゲイン変動な
ど種々の温度対検知電圧変動要因を現時点ですべて含ん
だ情報であるから、撮像モード時の演算部26の検出出
力にそれらの影響を受けることもない。Therefore, according to this embodiment, even if the infrared detector 5 is influenced by the environmental temperature of the device because it looks into the lens barrel as shown in FIG. 6, the calibration is performed in a manner that includes the environmental temperature. Since the infrared rays from the black body 20 are detected and the accurate temperature at that time is detected by the temperature sensor 2, it is possible to have an accurate temperature measuring function. Moreover, the detection voltage input to the calculation unit 25 during the calibration mode is due to a decrease in the arriving power due to aging of the condensing optical system 4, a deterioration in the sensitivity of the infrared detector 5, and a temperature change of the optical elements of the condensing optical system 4. Since this information currently includes all the various temperature-versus-detection voltage fluctuation factors such as changes in infrared radiation and gain fluctuations of the amplifier 6, the detection output of the arithmetic unit 26 in the imaging mode is not affected by these factors. .
なお、赤外線検知器5がリニアアレイ41又はマトリク
ス状に多数の赤外検知素子が配置された二次元配列型の
多素子検知器である場合は、各赤外検知素子の夫々につ
いて別々に上記の切点及び関数式の各係数の値のRAM
への記憶が行なわれる。In addition, when the infrared detector 5 is a linear array 41 or a two-dimensional array type multi-element detector in which a large number of infrared detection elements are arranged in a matrix, the above-mentioned procedure is performed separately for each infrared detection element. RAM of cut points and values of each coefficient of the function equation
memory is carried out.
各赤外検知素子間で感度にばらつきがあるためである。This is because there are variations in sensitivity among each infrared sensing element.
なお、本発明は上記の実施例に限定されるものではなく
、例えば演算部25は■直線近似が成り立つ程度に前記
温度間隔Δ丁を小さくし、これにより得られた各切点だ
けをRAMに格納してもよく、または■各切点情報から
多数の検知電圧と温度との対応表を予め演算して求め、
その対応表をテーブルとしてRAMに記憶しておいても
よい。Note that the present invention is not limited to the above-mentioned embodiments; for example, the calculation unit 25 (1) reduces the temperature interval Δt to such an extent that linear approximation holds, and stores only each cut point obtained thereby in the RAM. It may be stored, or it may be determined by calculating in advance a correspondence table between a large number of detected voltages and temperatures from each cut point information,
The correspondence table may be stored in the RAM as a table.
演算部26は■の場合は、撮像モードでの入力検知電圧
に近い値の検知電圧を演算部25内のRAMから読み出
し直線近似式の演算によって温度情報を算出する。また
、■の場合は撮像モードでの入力検知電圧に対応する温
度を演算することなくテーブルから直ちに求めることが
できる。In the case of ■, the calculation unit 26 reads out a detection voltage close to the input detection voltage in the imaging mode from the RAM in the calculation unit 25 and calculates temperature information by calculation using a linear approximation formula. Furthermore, in the case of (2), the temperature corresponding to the input detection voltage in the imaging mode can be immediately obtained from the table without calculation.
また、走査鏡1は対物面走査型の走査鏡として説明した
が、本発明は走査鏡1の代りに視野の方向を変更するた
めのポインティングミラーを備えた、CCD系を用いた
無走査型の赤外線映像装置にも適用することができる。Furthermore, although the scanning mirror 1 has been described as an object plane scanning type scanning mirror, the present invention is a non-scanning type scanning mirror using a CCD system, which is equipped with a pointing mirror for changing the direction of the field of view instead of the scanning mirror 1. It can also be applied to infrared imaging devices.
この無走査型赤外線映像装置は人工衛星又は航空機搭載
用であって、装置全体が所定方向へ移動することによっ
て走査が行なえるため、ミラーで走査を行なわなくても
差し支えない。ただし、校正モードと@像モードではポ
インティングミラーによって視野を切換える必要がある
。This non-scanning infrared imaging device is mounted on an artificial satellite or an aircraft, and since scanning can be performed by moving the entire device in a predetermined direction, there is no need to use a mirror for scanning. However, in the calibration mode and @image mode, it is necessary to switch the field of view using a pointing mirror.
上述の如く、本発明によれば、装置の環境温度変化や集
光光学系の光学エレメントの温度変化による赤外放射の
変化、経年変化による各素子の劣化など種々の温度対検
知電圧特性の変動要因を含んだ状態の検知電圧と、その
ときの正確な温度とに関するデータを校正モードで記憶
しているため、撮像モード時には上記の変動要因の影響
の殆どない正確な温度情報を得ることができ、赤外線映
像装置の信頼性を大幅に向上することができる等の特長
を有するものである。As described above, according to the present invention, various changes in temperature vs. detection voltage characteristics, such as changes in infrared radiation due to changes in the environmental temperature of the device, changes in the temperature of the optical elements of the condensing optical system, and deterioration of each element due to aging, can be avoided. Since data regarding the detected voltage including the factors and the accurate temperature at that time is stored in the calibration mode, it is possible to obtain accurate temperature information that is almost unaffected by the above fluctuation factors in the imaging mode. , it has features such as being able to significantly improve the reliability of infrared imaging devices.
第1図は本発明の原理構成図、
第2図は本発明の一実施例のブロック図、第3図は本発
明の要部の一実施例の外観概略図、第4図は本発明の一
実施例の要部説明用特性図、第5図は従来の一例のブロ
ック図、
第6図は赤外線映像装置の要部の一例の構成図、第7図
はりニアアレイ型赤外線検知器とコールドアパーチャと
の位置関係を示す図、
第8図は一点校正による特性説明図、
第9図は二点校正による特性説明図、
第10図は環境温度変化時の赤外線パワーの検出電圧と
の関係を示す図である。
図において、
4. 103は集光光学系、
5、 104は赤外線検知器、
20は校正用黒体、
21は温度センサ、
22は加熱又は冷却器、
24はスイッチ回路、
25.26は演算部、
101は校正源、
102はミラー
105は赤外線パワー可変手段、
106は記憶手段、
107は検出手段
を示す。
検出電圧
本発明の一実施例の要部説明用特性図
第
図
赤外線映像装置の要部の
例の構成図
第
図
X方向
ノニアアレイ型赤外線検知器と
コールドアパーチャとの位置関係を示す図第7図
検出電圧
点校正1こよる特性説明図
第8区
検出電圧
υヒ奉
検出電圧との関係を示す図
第10図
検出電圧V
検出電圧V
二点校正1こよる特性説明図
第
図Fig. 1 is a diagram of the principle configuration of the present invention, Fig. 2 is a block diagram of an embodiment of the invention, Fig. 3 is a schematic external view of an embodiment of the main part of the invention, and Fig. 4 is a diagram of the embodiment of the invention. A characteristic diagram for explaining the main parts of one embodiment. Fig. 5 is a block diagram of a conventional example. Fig. 6 is a configuration diagram of an example of the main parts of an infrared imaging device. Fig. 7 is a linear array type infrared detector and a cold aperture. Figure 8 is a characteristic diagram based on one-point calibration. Figure 9 is a characteristic diagram based on two-point calibration. Figure 10 is a diagram showing the relationship between infrared power and detection voltage when environmental temperature changes. It is a diagram. In the figure, 4. 103 is a condensing optical system, 5 and 104 are infrared detectors, 20 is a black body for calibration, 21 is a temperature sensor, 22 is a heating or cooling device, 24 is a switch circuit, 25.26 is a calculation unit, 101 is a calibration source , 102 is a mirror 105 is an infrared power variable means, 106 is a storage means, and 107 is a detection means. Detection voltageCharacteristics diagram for explaining the main parts of an embodiment of the present invention Fig.7 A configuration diagram of an example of the main parts of an infrared imaging device Fig.7 A diagram showing the positional relationship between the X-direction nonia array type infrared detector and the cold aperture Characteristic explanatory diagram based on detection voltage point calibration 1 Section 8 Diagram showing the relationship between detection voltage υ and detection voltage Figure 10 Detection voltage V Detection voltage V Characteristic explanatory diagram based on two-point calibration 1
Claims (4)
光学系(103)を介して赤外線検知器(104)に入
射された赤外線の検知信号を基準にして、その後に該ミ
ラー(102)及び該集光光学系(103)を介して被
写体から該赤外線検知器(104)に入射される赤外線
の検知信号の校正を行なう赤外線映像装置において、 前記校正源(101)から放射される赤外線パワーを連
続的又は段階的に変化させる赤外線パワー可変手段(1
05)と、 該赤外線パワー可変手段(105)によりパワーが順次
変化する該校正源(101)からの赤外線を所定の温度
間隔毎に前記赤外線検知器(104)で検知して得た検
知信号とそのときの該校正源(101)の温度とに関す
るデータを記憶する記憶手段(106)と、 前記被写体の撮像時に該赤外線検知器(104)から取
り出される被写体からの赤外線の検知信号に基づいて該
記憶手段(106)からデータを読み出し、該被写体か
らの赤外線に対応した温度の検出処理を行なう検出手段
(107)と、 を具備することを特徴とする赤外線映像装置。(1) Based on the detection signal of infrared rays incident on the infrared detector (104) from the calibration source (101) via the mirror (102) and the condensing optical system (103), then the mirror (102) and an infrared imaging device that calibrates an infrared detection signal that is incident on the infrared detector (104) from a subject via the condensing optical system (103), the infrared power emitted from the calibration source (101). Infrared power variable means (1
05), and a detection signal obtained by detecting infrared rays from the calibration source (101) whose power changes sequentially by the infrared power variable means (105) with the infrared detector (104) at predetermined temperature intervals. a storage means (106) for storing data regarding the temperature of the calibration source (101) at that time; and a storage means (106) for storing data regarding the temperature of the calibration source (101) at that time; An infrared imaging device comprising: a detection means (107) that reads data from a storage means (106) and performs temperature detection processing corresponding to infrared rays from the subject.
子が配列された多素子検知器であり、前記記憶手段(1
06)は該複数の赤外検知素子の各々について前記デー
タを記憶することを特徴とする請求項1記載の赤外線映
像装置。(2) The infrared detector (104) is a multi-element detector in which a plurality of infrared detection elements are arranged, and the storage means (104) is a multi-element detector in which a plurality of infrared detection elements are arranged.
2. The infrared imaging device according to claim 1, wherein the infrared imaging device (06) stores the data for each of the plurality of infrared detection elements.
であることを特徴とする請求項1記載の赤外線映像装置
。(3) The infrared imaging device according to claim 1, wherein the mirror (102) is an object plane scanning type scanning mirror.
(101)と被写体の一方だけに設定し、該被写体の走
査は行なわないポインティングミラーであることを特徴
とする請求項1記載の赤外線映像装置。(4) The infrared rays according to claim 1, wherein the mirror (102) is a pointing mirror whose field of view is set to only one of the calibration source (101) and the subject and does not scan the subject. Video equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2044001A JPH03246428A (en) | 1990-02-23 | 1990-02-23 | Infrared video device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2044001A JPH03246428A (en) | 1990-02-23 | 1990-02-23 | Infrared video device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03246428A true JPH03246428A (en) | 1991-11-01 |
Family
ID=12679474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2044001A Pending JPH03246428A (en) | 1990-02-23 | 1990-02-23 | Infrared video device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03246428A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07507389A (en) * | 1992-05-26 | 1995-08-10 | フリル システムズ アクチボラゲット | Infrared image recording device |
JPH07507390A (en) * | 1992-05-26 | 1995-08-10 | フリル システムズ アクチボラゲット | Detector calibration |
JPH10111172A (en) * | 1996-10-09 | 1998-04-28 | Fujitsu Ltd | Sensitivity correcting method for infrared ray imaging device |
JPH10115557A (en) * | 1996-10-15 | 1998-05-06 | Nippon Avionics Co Ltd | Method and apparatus for temperature correction of infrared sensor as well as infrared thermography using two-dimensional infrared sensor |
JPH11132859A (en) * | 1997-10-31 | 1999-05-21 | Mitsubishi Electric Corp | Infrared video apparatus |
JP2000513518A (en) * | 1996-06-14 | 2000-10-10 | シマゲ オユ | Calibration method and system for imaging device |
JP2000295528A (en) * | 1999-04-02 | 2000-10-20 | Nissan Motor Co Ltd | Thermal infrared ray image pickup element |
JP2001008100A (en) * | 1999-06-23 | 2001-01-12 | Fujitsu Ltd | Infrared ray image pickup device and element defect compensation method |
JP2002181626A (en) * | 2000-12-15 | 2002-06-26 | Nippon Avionics Co Ltd | Infrared thermal image device |
JP2008185465A (en) * | 2007-01-30 | 2008-08-14 | Nec Electronics Corp | Method and apparatus for compensating infrared sensor for temperature |
JP2015014509A (en) * | 2013-07-04 | 2015-01-22 | 富士通株式会社 | Infrared detector |
JP2018200206A (en) * | 2017-05-26 | 2018-12-20 | 日本アビオニクス株式会社 | Infrared imaging device |
JP2019529899A (en) * | 2016-09-09 | 2019-10-17 | ザ ユニバーシティ オブ シェフィールド | Apparatus and method for generating thermal image data |
-
1990
- 1990-02-23 JP JP2044001A patent/JPH03246428A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07507389A (en) * | 1992-05-26 | 1995-08-10 | フリル システムズ アクチボラゲット | Infrared image recording device |
JPH07507390A (en) * | 1992-05-26 | 1995-08-10 | フリル システムズ アクチボラゲット | Detector calibration |
JP2000513518A (en) * | 1996-06-14 | 2000-10-10 | シマゲ オユ | Calibration method and system for imaging device |
JPH10111172A (en) * | 1996-10-09 | 1998-04-28 | Fujitsu Ltd | Sensitivity correcting method for infrared ray imaging device |
JPH10115557A (en) * | 1996-10-15 | 1998-05-06 | Nippon Avionics Co Ltd | Method and apparatus for temperature correction of infrared sensor as well as infrared thermography using two-dimensional infrared sensor |
JPH11132859A (en) * | 1997-10-31 | 1999-05-21 | Mitsubishi Electric Corp | Infrared video apparatus |
JP2000295528A (en) * | 1999-04-02 | 2000-10-20 | Nissan Motor Co Ltd | Thermal infrared ray image pickup element |
JP2001008100A (en) * | 1999-06-23 | 2001-01-12 | Fujitsu Ltd | Infrared ray image pickup device and element defect compensation method |
JP2002181626A (en) * | 2000-12-15 | 2002-06-26 | Nippon Avionics Co Ltd | Infrared thermal image device |
JP2008185465A (en) * | 2007-01-30 | 2008-08-14 | Nec Electronics Corp | Method and apparatus for compensating infrared sensor for temperature |
JP2015014509A (en) * | 2013-07-04 | 2015-01-22 | 富士通株式会社 | Infrared detector |
JP2019529899A (en) * | 2016-09-09 | 2019-10-17 | ザ ユニバーシティ オブ シェフィールド | Apparatus and method for generating thermal image data |
JP2018200206A (en) * | 2017-05-26 | 2018-12-20 | 日本アビオニクス株式会社 | Infrared imaging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6891160B2 (en) | Method and apparatus for temperature compensation of an uncooled focal plane array | |
US7235785B2 (en) | Imaging device with multiple fields of view incorporating memory-based temperature compensation of an uncooled focal plane array | |
US4466748A (en) | Thermal imaging apparatus | |
US6690013B2 (en) | Apparatus and method for compensating for pixel non-uniformity in a bolometer | |
US6267501B1 (en) | Ambient temperature micro-bolometer control, calibration, and operation | |
EP0534769B1 (en) | Readout system and process for IR detector arrays | |
US5994699A (en) | Thermal camera for infrared imaging | |
WO1996010883A1 (en) | Compact thermal camera | |
JPH03246428A (en) | Infrared video device | |
EP1366344B1 (en) | Method and apparatus for the read-out of a bolometer array by using multiple bias pulses | |
Blommel et al. | Effects of microscan operation on staring infrared sensor imagery | |
JP2004530893A (en) | Method and apparatus for reading composite microbolometer array | |
US4705945A (en) | Narcissus correction for infrared scanning microscope | |
RU2727349C1 (en) | Method of thermography of a remote object | |
Nichols et al. | Performance characteristics of a submarine panoramic infrared imaging sensor | |
Wood et al. | IR SnapShot camera | |
JP7143558B2 (en) | Infrared imaging device and program used therefor | |
RU2324151C1 (en) | Multichannel scanning radiometer with wide swath | |
US20040155195A1 (en) | Uncooled optical imaging device | |
Ropson et al. | a-Si 160 x 120 micro IR camera: operational performance | |
Krupiński et al. | Test stand for determining parameters of microbolometer camera | |
RU87854U1 (en) | IMAGE FORMING DEVICE | |
EP2156132A2 (en) | Method and system for measurement and correction of thermally induced changes of boresight, effective focal length, and focus | |
Pron et al. | Measurements without contact in heat transfer. Part B: Quantitative Infrared Thermography | |
JPH0553220B2 (en) |