JPH1038686A - Charge integration type photodetector - Google Patents

Charge integration type photodetector

Info

Publication number
JPH1038686A
JPH1038686A JP20055396A JP20055396A JPH1038686A JP H1038686 A JPH1038686 A JP H1038686A JP 20055396 A JP20055396 A JP 20055396A JP 20055396 A JP20055396 A JP 20055396A JP H1038686 A JPH1038686 A JP H1038686A
Authority
JP
Japan
Prior art keywords
photodetector
charge
integration
integrating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20055396A
Other languages
Japanese (ja)
Other versions
JP3292230B2 (en
Inventor
Akihiro Kawahara
章裕 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20055396A priority Critical patent/JP3292230B2/en
Publication of JPH1038686A publication Critical patent/JPH1038686A/en
Application granted granted Critical
Publication of JP3292230B2 publication Critical patent/JP3292230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce temperature drift to be caused by changes in temperature of a substrate in operation and to improve the S/N ratio. SOLUTION: This detector is constituted of a bolometer element 1 for detecting signal light, its integrating circuit, and an offset circuit by a bolometer element 8 for reference. The reference element 8 here is provided with a structure which does not generate resistance changes due to signal light by the provision of a light shielding plate, the leaving of a sacrifice layer, etc. As both of the elements 1 and 8 here are formed in the same shape and spatially in close proximity to each other, the only difference between the electrical characteristics of the two elements is the presence or absence of the change in current to incident light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光検出素子を含む電
荷積分型光検出器に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a charge integration type photodetector including a photodetector.

【0002】[0002]

【従来の技術】従来の電荷積分型光検出器について、本
発明関連部分、すなわち光検出素子を含む光検出回路を
中心に説明する。
2. Description of the Related Art A conventional charge-integrating photodetector will be described mainly with respect to a portion related to the present invention, that is, a photodetector circuit including a photodetector.

【0003】この種の光検出器は、光検出素子を電荷蓄
積用キャパシタに接続し、前記光検出素子で発生した電
荷を前記キャパシタで一定時間積分し、この結果生じた
キャパシタの端子電圧の変化を出力信号として読み出す
ように構成されている。なお、本発明の属する技術分野
において、電荷蓄積用のキャパシタを予め所定電圧に充
電して電荷を蓄積した後、このキャパシタに直列に接続
された、例えば、フォトダイオードのような光検出素子
で放電することを、光検出素子で発生した電荷をキャパ
シタで積分するという。
In this type of photodetector, a photodetector is connected to a charge storage capacitor, the charge generated by the photodetector is integrated by the capacitor for a certain period of time, and the resulting change in the terminal voltage of the capacitor occurs. As an output signal. In the technical field to which the present invention pertains, a charge accumulating capacitor is charged to a predetermined voltage in advance to accumulate electric charge, and then discharged by a photodetector such as a photodiode connected in series to the capacitor, for example. This is referred to as integrating the charge generated by the photodetector with a capacitor.

【0004】図3に従来の電荷積分型光検出器の例を示
す。従来の電荷積分型光検出器は、光検出素子1、定電
流素子2、素子選択スイッチ3、および電荷蓄積用キャ
パシタ4を備え、これらが直列に接続され積分回路を構
成している。
FIG. 3 shows an example of a conventional charge integration type photodetector. The conventional charge integration type photodetector includes a photodetection element 1, a constant current element 2, an element selection switch 3, and a charge storage capacitor 4, which are connected in series to form an integration circuit.

【0005】光検出素子1で発生した電荷は、素子選択
スイッチ3が投入されている間だけ定電流素子2を介し
て電荷蓄積用キャパシタ4で積分される。素子選択スイ
ッチ3が開放し、積分が終了すると、電荷蓄積用キャパ
シタ4の端子電圧が一定電圧に固定される。この時の端
子電圧が出力アンプ6を介して出力端子7に現れる。信
号読み出し後、リセットスイッチ5を投入することによ
り、電荷蓄積用キャパシタ4の端子電圧を再び積分前の
値に戻し、次の積分に備える。ここでは定電流素子2に
はNPN型バイポーラトランジスタを用い、上記積分動
作中に電荷蓄積用キャパシタ4の端子電圧が変化しても
放電が一定電流で行われるよう、そのゲート端子に一定
電圧を加える。
The charge generated by the photodetector 1 is integrated by the charge storage capacitor 4 via the constant current element 2 only while the element selection switch 3 is turned on. When the element selection switch 3 is opened and the integration is completed, the terminal voltage of the charge storage capacitor 4 is fixed at a constant voltage. The terminal voltage at this time appears at the output terminal 7 via the output amplifier 6. After reading out the signal, the reset switch 5 is turned on to return the terminal voltage of the charge storage capacitor 4 to the value before the integration again, in preparation for the next integration. Here, an NPN-type bipolar transistor is used as the constant current element 2, and a constant voltage is applied to the gate terminal of the charge storage capacitor 4 so that the discharge is performed with a constant current even if the terminal voltage changes during the integration operation. .

【0006】このように従来の電荷積分型光検出器は、
積分、読み出し、リセット動作を1サイクルとして動作
し、光検出素子に入射した光信号を積分して検出するこ
とを特徴としている。
As described above, the conventional charge integration type photodetector has:
The integration, reading, and reset operations are performed as one cycle, and an optical signal incident on the photodetector is integrated and detected.

【0007】[0007]

【発明が解決しようとする課題】ところで、ここで説明
した従来の電荷積分型光検出器では次の2点が問題とな
っている。
By the way, the following two problems arise in the conventional charge integration type photodetector described here.

【0008】第1に、動作中の光検出素子1の温度変動
にともなう出力の揺らぎ、いわゆる温度ドリフトが問題
となっている。例えば、このような光検出器の応用例と
して、光検出器を2次元アレイ状に配列した構成の光撮
像装置があるが、この光撮像装置では、温度ドリフトに
よる出力画像の劣化を補正するため、オフセット補正等
の画像補正が必要となる。従って、光撮像装置が環境温
度の変化が激しい野外の撮像に使用される際には、たび
たびこの操作が必要となり不都合を生じている。
First, there is a problem of output fluctuations due to temperature fluctuations of the photodetector 1 during operation, so-called temperature drift. For example, as an application example of such a photodetector, there is an optical imaging device having a configuration in which photodetectors are arranged in a two-dimensional array. In this optical imaging device, in order to correct the deterioration of an output image due to a temperature drift. And image correction such as offset correction. Therefore, when the optical imaging device is used for outdoor imaging in which the environmental temperature changes drastically, this operation is often required, which causes inconvenience.

【0009】第2に、前記光検出器を多素子配列した1
次元アレイ、または2次元アレセンサでは、素子毎の抵
抗ばらつきに起因する出力信号のオフセットばらつきが
大きく、これがシステム全体のダイナミックレンジを制
限している。バラツキを考慮してダイナミックレンジを
広げるためにゲインを小さくすると、光検出器のS/N
比が低下してしまうという欠点がある。
Second, the photodetector has a multi-element array.
In a two-dimensional array sensor or a two-dimensional array sensor, the offset variation of the output signal due to the resistance variation of each element is large, which limits the dynamic range of the entire system. If the gain is reduced to widen the dynamic range in consideration of variations, the S / N of the photodetector
There is a disadvantage that the ratio is reduced.

【0010】[0010]

【課題を解決するための手段】このような問題点を解決
するために本発明の光検出器は、光検出素子、電荷積分
用キャパシタ、定電流用素子、および素子選択スイッチ
が、放電経路を形成するように直列に接続された構成の
従来の積分回路に加え、新たにレファレンス素子を設
け、第2の定電流素子を介して前記電荷積分用キャパシ
タと放電経路を形成するように構成されている。
In order to solve such a problem, a photodetector according to the present invention comprises a photodetector, a charge integrating capacitor, a constant current element, and an element selection switch which are connected to a discharge path. A new reference element is provided in addition to the conventional integration circuit having a configuration connected in series so as to form, and a discharge path is formed with the charge integration capacitor through a second constant current element. I have.

【0011】ここでレファレンス素子は、次の2つの条
件を満たす必要がある。第1に光検出器の検出波長帯に
おいて光入射に起因する電流変化を生じないこと、第2
に光が入射していないときの抵抗値、およびその温度特
性等の電気特性が光検出素子として用いているボロメー
タ素子1と同じであることである。
Here, the reference element must satisfy the following two conditions. First, no change in current due to light incidence occurs in the detection wavelength band of the photodetector;
And the electrical characteristics such as the temperature characteristics thereof when no light is incident on the bolometer element 1 used as the light detection element.

【0012】[0012]

【作用】この構成により本発明の電荷積分型光検出器
は、入射光に起因する電流のみが電荷蓄積用キャパシタ
で積分される。このとき温度変動にともなう電流変化
は、光検出素子とレファレンス素子の両素子で等しく生
じるため積分中に相殺され、出力電圧として現われな
い。即ち、本発明の構成により、動作中の温度変化に起
因する温度ドリフトの低減と、S/N比の向上が実現で
きる。
With this configuration, in the charge integration type photodetector of the present invention, only the current caused by the incident light is integrated by the charge storage capacitor. At this time, the current change due to the temperature fluctuation is equally generated in both the light detection element and the reference element, and is canceled during integration, and does not appear as an output voltage. That is, with the configuration of the present invention, it is possible to reduce the temperature drift due to the temperature change during operation and to improve the S / N ratio.

【0013】[0013]

【発明の実施の形態】次に本発明の一実施の形態に係る
光検出素子としてボロメータ型赤外線検出素子を用いた
積分型光検出器について図面を参照して説明する。ボロ
メータ素子は、入射信号光の輻射加熱による抵抗変化を
検出する素子で、常温動作が可能なため、現在最も注目
されている赤外線検出素子の一つである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An integrating photodetector using a bolometer type infrared detecting element as a photodetecting element according to an embodiment of the present invention will be described below with reference to the drawings. The bolometer element is an element for detecting a resistance change due to radiant heating of the incident signal light, and is capable of operating at room temperature, and is one of the infrared detection elements that has been receiving the most attention at present.

【0014】図1に本発明の実施の形態に係る積分型光
検出器を示す。この例では、ボロメータ素子1、NPN
型バイポーラトランジスタ2、素子選択スイッチ3、お
よび電荷蓄積用キャパシタ4が積分回路を構成するが、
これに加えレファレンス素子8、PNP型バイポーラト
ランジスタ9、および第2の素子選択スイッチ10が備
えられている。
FIG. 1 shows an integrating photodetector according to an embodiment of the present invention. In this example, bolometer element 1, NPN
Type bipolar transistor 2, element selection switch 3, and charge storage capacitor 4 constitute an integration circuit.
In addition, a reference element 8, a PNP bipolar transistor 9, and a second element selection switch 10 are provided.

【0015】次にレファレンス素子の具体例を挙げる。
先ずひとつはボロメータ素子の光入射面に遮蔽板を設け
たものが、レファレンス素子として利用できる。このと
きレファレンス素子は遮蔽板を設置すること以外の点に
おいて、光検出素子として用いるボロメータ素子1と同
一の構造であり、同一の製造工程で形成している。
Next, specific examples of the reference element will be described.
First, a bolometer element provided with a shielding plate on the light incident surface can be used as a reference element. At this time, the reference element has the same structure as that of the bolometer element 1 used as the light detection element except for the provision of the shielding plate, and is formed in the same manufacturing process.

【0016】また、他の例として、実験によれば入射面
の吸収層を形成しないボロメータ素子もレファレンス素
子として利用できた。この場合も、先の例と同様にレフ
ァレンス素子は吸収層以外の点において、光検出素子と
して用いるボロメータ素子1と同一の構造であり、同一
の製造工程で形成した。
As another example, according to experiments, a bolometer element having no absorption layer on the incident surface could be used as a reference element. Also in this case, the reference element has the same structure as the bolometer element 1 used as the light detection element except for the absorption layer, and is formed in the same manufacturing process as in the previous example.

【0017】いずれのレファレンス素子においても、光
信号に起因する電流変化を伴わず、かつ電気特性は光検
出素子として用いたボロメータ素子1と同じであり、先
に挙げたレファレンス素子としての条件を満した。
In each of the reference elements, there is no change in current caused by an optical signal, and the electrical characteristics are the same as those of the bolometer element 1 used as the light detection element. did.

【0018】更に別のレファレンス素子の実施例とし
て、熱分離構造をとらないボロメータ素子を利用する方
法がある。ボロメータ素子は、受光素子の下部に犠牲層
と呼ばれる層を形成し、後からこれをエッチングするこ
とにより、受光素子を基板から熱的に分離する構造をと
っている。レファレンス素子では、エッチングを行わず
この犠牲層を最後まで残すことにより受光素子と基板を
熱的に接触させる。これにより入射光の輻射により発生
した熱は基板に拡散するため、光入射による電流変化を
抑えることができた。
As another embodiment of the reference element, there is a method using a bolometer element which does not have a thermal isolation structure. The bolometer element has a structure in which a layer called a sacrificial layer is formed below the light receiving element, and is etched later to thermally separate the light receiving element from the substrate. In the reference element, the light receiving element and the substrate are brought into thermal contact by leaving the sacrificial layer to the end without performing etching. As a result, the heat generated by the radiation of the incident light diffuses to the substrate, so that a change in current due to the incident light can be suppressed.

【0019】次に本実施の形態の具体的な動作について
説明する。2つの素子選択スイッチ3,10は同時に投
入され、積分動作が開始される。この間、光検出素子
1、およびレファレンス素子8で発生した電流に応じ
て、電荷蓄積用キャパシタの端子電圧が変化する。ここ
でレファレンス素子の両端電圧と光検出素子の両端電圧
が等くなるよう、NPN型バイポーラトランジスタ2の
ゲート電圧とPNP型バイポーラトランジスタ9のゲー
ト電圧を調節する。これにより光検出素子で入射光以外
の要因で発生した電流を、レファレンス素子が供給、相
殺する。一定時間後、再び2つの素子選択スイッチ3,
10を同時に開放し、電荷蓄積用キャパシタ4の端子電
圧を固定する。この時の端子電圧を出力アンプ6を介し
て出力端子7から読み出す。
Next, a specific operation of the present embodiment will be described. The two element selection switches 3 and 10 are turned on at the same time, and the integration operation is started. During this time, the terminal voltage of the charge storage capacitor changes in accordance with the current generated in the light detection element 1 and the reference element 8. Here, the gate voltage of the NPN-type bipolar transistor 2 and the gate voltage of the PNP-type bipolar transistor 9 are adjusted so that the voltage between both ends of the reference element and the voltage between the photodetectors are equal. As a result, the reference element supplies and cancels the current generated by the light detection element due to factors other than the incident light. After a certain time, the two element selection switches 3
10 are simultaneously opened, and the terminal voltage of the charge storage capacitor 4 is fixed. The terminal voltage at this time is read from the output terminal 7 via the output amplifier 6.

【0020】本回路は同一基板上に集積して形成するこ
とにより、リニアアレイセンサ、2次元アレイセンサに
も適用することができる。図2にXYアドレス選択型2
次元アレイセンサに適用した実施の形態を示す。ユニッ
トセル11はボロメータ素子1と、素子選択スイッチ3
で構成されている。ここで各ユニットセルは行シフトレ
ジスタ13により制御される素子選択スイッチ3と、列
シフトレジスタ14により制御される列選択スイッチ1
2により、順次選択される。選択されたユニットセル
は、NPN型バイポーラトランジスタ2と、電荷蓄積用
キャパシタ4で構成される回路と、レファレンス素子8
と、PNP型バイポーラトランジスタ9と、第2の素子
選択スイッチ10で構成される回路を含み、同時に積分
動作が行われる。ここで第2の素子選択スイッチ10は
任意の素子選択スイッチが投入されている間だけ、これ
に同期して投入される。このようにして任意のユニット
セルで検出された信号は出力アンプ6を介し、出力端子
7から順次現れる。
This circuit can be applied to a linear array sensor and a two-dimensional array sensor by being integrated on the same substrate. FIG. 2 shows an XY address selection type 2
An embodiment applied to a dimensional array sensor is shown. The unit cell 11 includes a bolometer element 1 and an element selection switch 3
It is composed of Here, each unit cell includes an element selection switch 3 controlled by a row shift register 13 and a column selection switch 1 controlled by a column shift register 14.
2 are sequentially selected. The selected unit cell includes a circuit including the NPN type bipolar transistor 2 and the charge storage capacitor 4, and a reference element 8.
And a circuit composed of a PNP-type bipolar transistor 9 and a second element selection switch 10, and the integration operation is performed at the same time. Here, the second element selection switch 10 is turned on in synchronization with an arbitrary element selection switch only while it is turned on. The signal detected in an arbitrary unit cell in this manner appears from the output terminal 7 via the output amplifier 6 in order.

【0021】以上説明した本発明の電荷積分型光検出器
の実施例において、基板温度の変動に伴う出力電圧のド
リフトは全く生じなかった。2次元アレイに適用した赤
外線撮像装置の実施例では、長時間にわたりオフセット
補正を必要とする画像のみだれは生じなかった。これは
基板温度の変動に伴う動作電流の変化が、光検出素子1
とレファレンス素子8の両素子で等しく生じ、積分中に
相殺されたためである。
In the above-described embodiment of the charge integration type photodetector of the present invention, no drift of the output voltage due to the fluctuation of the substrate temperature occurred. In the embodiment of the infrared imaging apparatus applied to the two-dimensional array, no image was generated for an image requiring offset correction for a long time. This is because the change in the operating current due to the change in the substrate temperature is caused by the photodetector 1
And the reference element 8 are equally generated and canceled during the integration.

【0022】また本発明の光検出器を2次元に配列した
実施例では、素子毎の特性ばらつきを含め、暗電流成
分、すなわちオフセット成分が除去され、光検出器のS
/N比が向上した。
In the embodiment in which the photodetectors of the present invention are two-dimensionally arranged, the dark current component, that is, the offset component, including the characteristic variation of each element, is removed, and the S detector of the photodetector is removed.
/ N ratio improved.

【0023】[0023]

【発明の効果】本発明の光検出器はその構成により、信
号光に起因する電流のみが電荷積分用キャパシタで積分
される。このとき、温度変動にともなうは電流変化は光
検出素子とレファレンス素子の両素子で等しいため、積
分中に相殺され、出力電圧として現われない。即ち、本
発明の構成により、動作中の温度変化に起因する温度ド
リフトの低減が実現できる。また、素子毎の特性ばらつ
きを含め、暗電流成分、すなわちオフセット成分が自動
的に除去されるため、光検出器のS/N比が向上する。
According to the structure of the photodetector of the present invention, only the current caused by the signal light is integrated by the charge integrating capacitor. At this time, a change in current due to a temperature change is equal in both the photodetector and the reference element, and therefore is canceled during integration and does not appear as an output voltage. That is, with the configuration of the present invention, it is possible to reduce the temperature drift caused by the temperature change during operation. Further, since the dark current component, that is, the offset component, including the characteristic variation for each element, is automatically removed, the S / N ratio of the photodetector is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光検出器の実施例である。FIG. 1 is an embodiment of a photodetector of the present invention.

【図2】本発明の光検出器を2次元アレイセンサに適用
した例である。
FIG. 2 is an example in which the photodetector of the present invention is applied to a two-dimensional array sensor.

【図3】従来の積分型光検出器の例である。FIG. 3 is an example of a conventional integrating photodetector.

【符号の説明】[Explanation of symbols]

1 光検出素子 2 NPN型バイポーラトランジスタ 3 素子選択スイッチ 4 電荷蓄積用キャパシタ 5 リセットスイッチ 6 出力アンプ 7 出力端子 8 レファレンス素子 9 PNP型バイポーラトランジスタ 10 レファレンス素子選択スイッチ 11 ユニットセル 12 列選択スイッチ 13 列シフトレジスタ 14 行シフトレジスタ DESCRIPTION OF SYMBOLS 1 Photodetection element 2 NPN type bipolar transistor 3 Element selection switch 4 Charge storage capacitor 5 Reset switch 6 Output amplifier 7 Output terminal 8 Reference element 9 PNP type bipolar transistor 10 Reference element selection switch 11 Unit cell 12 Column selection switch 13 Column shift Register 14 Row shift register

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光検出素子で発生した電荷を積分する電
荷積分用キャパシタにより光信号を検出するための電荷
積分型光検出器において、入射光量とは無関係に発生し
た電荷を電荷の積分中に、電荷積分用キャパシタに補給
し、相殺する手段を備えていることを特徴とする電荷積
分型光検出器。
1. A charge integration type photodetector for detecting an optical signal by a charge integration capacitor for integrating a charge generated by a photodetector, wherein the charge generated irrespective of an incident light amount is integrated during the charge integration. And a means for replenishing and canceling the charge integrating capacitor.
【請求項2】 請求項1の光検出器において、光検出素
子と、電荷の補給、相殺手段の全体、または一部を、同
一プロセスにより同一ウエハ上に近接して形成すること
を特徴とする電荷積分型光検出器。
2. The photodetector according to claim 1, wherein all or a part of the photodetection element and the charge replenishment / cancellation means are formed close to the same wafer by the same process. Charge integrating photodetector.
【請求項3】 請求項1、又は、2記載の光検出器の一
部、または全体を、複数個、同一シリコン基板上に形成
し、集積化したことを特徴とする電荷積分型光検出器。
3. A charge-integrating photodetector, wherein a part or the whole of the photodetector according to claim 1 or 2 is formed on the same silicon substrate and integrated. .
JP20055396A 1996-07-30 1996-07-30 Charge integration type photo detector Expired - Fee Related JP3292230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20055396A JP3292230B2 (en) 1996-07-30 1996-07-30 Charge integration type photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20055396A JP3292230B2 (en) 1996-07-30 1996-07-30 Charge integration type photo detector

Publications (2)

Publication Number Publication Date
JPH1038686A true JPH1038686A (en) 1998-02-13
JP3292230B2 JP3292230B2 (en) 2002-06-17

Family

ID=16426232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20055396A Expired - Fee Related JP3292230B2 (en) 1996-07-30 1996-07-30 Charge integration type photo detector

Country Status (1)

Country Link
JP (1) JP3292230B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441372B1 (en) 1998-10-05 2002-08-27 Nec Corporation Infrared focal plane array detector and method of producing the same
JP2002320148A (en) * 2001-04-24 2002-10-31 Fujitsu Ltd Photodetector
JP2008268135A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Infrared detector
JP2008268134A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Infrared detector
JP2014020875A (en) * 2012-07-17 2014-02-03 Hamamatsu Photonics Kk Measuring device
JP2014157156A (en) * 2008-09-16 2014-08-28 Ulis Device for infrared radiation detection having resistance type imaging bolometer, system having array of such bolometer, and correcting method of imaging bolometer integrated into such system
JP2019036957A (en) * 2017-08-15 2019-03-07 ▲電▼子科技大学University of Electronic Science and Technology of China Infrared focal plane readout circuit
KR20210158128A (en) * 2020-06-23 2021-12-30 주식회사 한영넉스 Photo sensor and control method of photo sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441372B1 (en) 1998-10-05 2002-08-27 Nec Corporation Infrared focal plane array detector and method of producing the same
JP2002320148A (en) * 2001-04-24 2002-10-31 Fujitsu Ltd Photodetector
JP4560988B2 (en) * 2001-04-24 2010-10-13 富士通株式会社 Photodetector
JP2008268135A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Infrared detector
JP2008268134A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Infrared detector
JP2014157156A (en) * 2008-09-16 2014-08-28 Ulis Device for infrared radiation detection having resistance type imaging bolometer, system having array of such bolometer, and correcting method of imaging bolometer integrated into such system
JP2014020875A (en) * 2012-07-17 2014-02-03 Hamamatsu Photonics Kk Measuring device
JP2019036957A (en) * 2017-08-15 2019-03-07 ▲電▼子科技大学University of Electronic Science and Technology of China Infrared focal plane readout circuit
KR20210158128A (en) * 2020-06-23 2021-12-30 주식회사 한영넉스 Photo sensor and control method of photo sensor

Also Published As

Publication number Publication date
JP3292230B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
EP0534769B1 (en) Readout system and process for IR detector arrays
US5196703A (en) Readout system and process for IR detector arrays
US7700919B2 (en) Device for detecting electromagnetic radiation, especially infrared radiation
US6441372B1 (en) Infrared focal plane array detector and method of producing the same
JP3866069B2 (en) Infrared solid-state imaging device
US7928387B2 (en) Device for detecting infrared radiation with bolometric detectors
US5757008A (en) Infrared-ray image sensor
KR900000360B1 (en) Dark current level regulation in solid-state devices
JP4257989B2 (en) Infrared detector and infrared detector array using the same
JP3292230B2 (en) Charge integration type photo detector
JP2008268155A (en) Thermal type infrared solid-state imaging element
JP4009598B2 (en) Infrared solid-state image sensor
CN212621140U (en) Focal plane infrared sensor
US7435961B2 (en) Imaging sensor
JPH10227689A (en) Infrared detector and infrared focal plane array
CN114136454A (en) Focal plane infrared sensor and signal reading method thereof
JP3793033B2 (en) Infrared sensor and driving method thereof
CN210513428U (en) Fast and stable uncooled infrared focal plane reading circuit
Tanaka et al. Influence of bias-heating on a titanium bolometer infrared sensor
CN213209277U (en) Focal plane infrared sensor
Eminoglu et al. A low-cost 64/spl times/64 uncooled infrared detector array in standard CMOS
US8283634B2 (en) Device for detecting electromagnetic radiation
CN110487420B (en) Fast and stable uncooled infrared focal plane reading circuit
WO2006038213A2 (en) Millimeter wave pixel and focal plane array imaging sensors thereof
JP3147856B2 (en) Linear infrared detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees