JP4300305B2 - Thermal infrared image sensor - Google Patents

Thermal infrared image sensor Download PDF

Info

Publication number
JP4300305B2
JP4300305B2 JP09664599A JP9664599A JP4300305B2 JP 4300305 B2 JP4300305 B2 JP 4300305B2 JP 09664599 A JP09664599 A JP 09664599A JP 9664599 A JP9664599 A JP 9664599A JP 4300305 B2 JP4300305 B2 JP 4300305B2
Authority
JP
Japan
Prior art keywords
temperature
pixel
diaphragm
support substrate
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09664599A
Other languages
Japanese (ja)
Other versions
JP2000295528A (en
Inventor
信一 森田
靖和 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP09664599A priority Critical patent/JP4300305B2/en
Publication of JP2000295528A publication Critical patent/JP2000295528A/en
Application granted granted Critical
Publication of JP4300305B2 publication Critical patent/JP4300305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、性能補正のための手段を有する熱型赤外線撮像素子に関する。
【0002】
【従来の技術】
熱型赤外線撮像素子は多数の画素(例えば数万〜数十万画素程度)を平面上に配列した構造になっているが、それらの各画素の感度は、均一性を欠いている。そのため各画素の感度の補正を行なわないで撮像を行なうと、撮像された画面が実際の被写体と異なってしまう可能性がある。したがって、熱型赤外線撮像素子の使用時には、画像の画質向上のため、素子の各画素の感度補正を行なう必要がある。図3に示した熱型赤外線撮像素子の平面図によって説明すると、熱型赤外線撮像素子は、熱吸収層2を有する熱型赤外線センサ1を画素として、多数の画素がm列×n行のアレイ状に配列されている。各画素にはスイッチング回路部3が形成されており、xアドレス線4とyアドレス線5を介して、各画素の信号を外部に読み出すようになっている(外部回路は図示省略)。
【0003】
従来の熱型赤外線撮像素子においては、図5に示すように、各画素の出力電圧(画素の状態変化を電圧信号に変換したものとして説明)は画素毎にアンバランスであるのが常である。このため、素子に外付けで増幅回路、A/D変換部、信号補正の記憶部などの信号処理部を設け、撮影する毎に各画素間のアンバランスを補正する必要が生じる。この画素間のアンバランスを補正する方法としては、熱型赤外線撮像素子を赤外線撮像カメラとして利用する際に、赤外線撮像カメラの前方に温度が比較的均一な物体を置いて、その時の入射赤外線エネルギーが均一であると仮定して各画素の出力電圧を記憶部に記憶させ、そのときの出力値に応じて各画素の感度を補正する方法がある。一般には室温に近い金属板や黒色板などを赤外線撮像カメラの前方に設置し、それを撮像した際の各画素の出力電圧に応じて感度補正を行なっている。
【0004】
【発明が解決しようとする課題】
しかし、上記ごとき補正方法では、赤外線撮像カメラを使用する度毎に赤外線撮像カメラの視野に入る大きさで、温度が均一な物体を準備して補正を行なう必要がある。例えば、実用的に正確な画像を得るためには、使用中でも10分間隔程度で補正をする必要があるので、非常に手間がかかるという問題があった。また、カメラの前に均一温度の物体を置く場合に、環境温度によっては、物体の熱容量にもよるが全面積で均一な温度に保持することが困難である。特に最近の赤外線カメラの場合には、NETD(雑音等価温度差)が0.1℃前後の性能のものも出現しているので、それに適応するような正確な均一温度に保持することは非常に困難となる。また、環境温度よりも高い温度の物体を用いるときも困難性が増す。
【0005】
本発明は、上記のごとき従来技術の問題を解決するためになされたものであり、容易、迅速かつ高精度で各画素間の感度補正を行なうことの出来る熱型赤外線撮像素子を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため本発明においては、特許請求の範囲に記載するように構成している。すなわち、請求項1に記載の発明においては、赤外線検知部を搭載したダイアフラムを支持基板に接触、離反させる手段と、前記支持基板を加熱する加熱手段と、前記支持基板もしくは前記ダイアフラムの温度を検出する温度検出手段と、前記ダイアフラムと前記支持基板とを接触させた際の温度と、そのときの画素の出力信号とを記憶する記憶手段と、前記記憶手段の記憶値に基づいて各画素の出力信号を補正する手段と、を備えるように構成している。なお、上記の温度とは、物体の温度そのもの(単位は℃でもKでも可)を示し、温度差を意味するものではない。また、上記記憶手段と各画素の出力信号を補正する手段は外付け回路として設ければよいが、素子上に空き領域があればその部分に形成してもよい。
【0007】
上記のように構成したことにより、加熱手段によって所定温度に加熱された支持基板にダイアフラムを接触させることで全画素を支持基板の温度と同じ所定温度に統一することが出来るので、そのときの各画素の出力信号を検出することによって各画素の感度を補正することが出来る。そして、従来のような均一温度の物体を準備する必要がないので感度補正に要する手順が極めて容易で迅速になり、かつ各画素の温度を正確に同じ温度にすることが出来るので、感度補正を高精度で行なうことが出来る。また、熱型赤外線撮像素子自体に加熱手段と温度検出手段とを備えているので、素子自身で温度設定が可能であり、高精度で温度の設定と検出が出来るので、精度をより向上させることが出来る。
【0008】
また、請求項2に記載の発明においては、静電的にダイアフラムと支持基板とを接触させるので、極めて迅速かつ容易に撮像の準備を行なうことが出来る。
【0009】
また、請求項3に記載の発明においては、感度補正を精密に行なうことが出来、特に各画素の温度特性が直線的でない場合であっても、3点以上の異なった温度における出力を検出することにより、非直線な特性でも正確な感度補正が可能になる。
【0010】
【発明の効果】
本発明によれば、赤外線撮像素子を構成する各画素の温度を、容易、迅速かつ正確に基板温度と同じ所定の温度にすることが出来る。したがって、そのときの出力信号に応じて各画素の性能の補正を容易に行なうことができる。また、各画素となる赤外線センサの温度特性が直線的でない場合でも補正可能である。したがって、従来のような均一温度の物体を準備することなく、容易、迅速かつ高精度で、熱型赤外線撮像素子の各画素の感度補正が可能になるという効果が得られる。
【0011】
【発明の実施の形態】
図1および図2は本発明の熱型赤外線撮像素子を構成する一つの赤外線センサ(画素)の実施の形態を示す図であり、図1は平面図、図2は断面図を示す。また、図3は上記のセンサを用いて形成した熱型赤外線撮像素子の概略構成を示す平面図である。
【0012】
まず、図1と図2を用いて画素の構造について説明する。ここでは、センサ(画素)として温度検出が可能なボロメータ型の赤外線センサについて説明する。ボロメータ型赤外線センサは温度変化により、抵抗体の電気抵抗が変化する特性を利用するものである。図1および図2において、11は支持基板となる半導体基板(例えばシリコン基板)である。12はダイアフラムであり、梁部13に支持されて、半導体基板11と微小な空隙20(例えば数μm程度)を隔てて対向している。このダイアフラム12上に抵抗体16、層間絶縁膜17、層間絶縁層19、熱吸収層25、電極30が形成され、全体としてダイアフラム部14を構成している。このダイアフラム部14は空隙20によって半導体基板11から熱的に分離されている。また、梁部13上には抵抗体16を外部に接続する配線15、電極30を外部に接続する配線31が形成され、その上を層間絶縁膜17で覆っている。また、半導体基板11上には温度検出手段40と加熱手段41が設けられている。このような画素が半導体基板11上に必要な個数だけアレイ状に形成されている(図3参照)。なお、図2から判るように、電極30の上に抵抗体16が形成され、さらにその上に熱吸収層25が形成されており、図1では実際には熱吸収層25だけが見えることになるが、説明の都合上、図示のように抵抗体16を表示し、電極30と熱吸収層25はほぼ同じ平面に形成されるので、電極30は黒破線で、熱吸収層25は黒太実線で示している。
【0013】
半導体基板11には、信号処理回路たとえばx,yアドレス用デコーダやプリアンプなどが形成されていてもよい。この半導体基板11の空き領域を用いて温度検出手段40(例えばボロメータ型またはpn接合型の温度センサ等)と加熱手段41(例えば金属膜の抵抗体等)を形成する。この加熱手段41は熱型赤外線撮像素子全体が均一の温度になるように加熱するので全体にわたって配置することが好ましい。温度検出手段40は各画素毎に設けてもよいが、半導体基板11全体の温度が均一であれば全体で1個設ければよい。なお、図では一例として温度検出手段40の存在する画素を示している。
【0014】
また、電極30と半導体基板11との間に電圧を印加する回路や温度検出とそのときの各画素の出力信号を記憶するメモリ(詳細後述)等が必要であるが、それらについては図示を省略している。これらの回路は素子に空き領域が有れば、その部分に形成してもよいし、或いは外付け回路にしてもよい。
【0015】
また、図2においては、加熱手段41を半導体基板11内に設けた例を示したが、半導体基板11に形成した層間絶縁層17の上や半導体基板11の下部に形成しても構わない。また、温度検出手段40も素子内ならば何処に設けても構わない。
【0016】
図3は、図1および図2に示した赤外線センサ1を用いた熱型赤外線撮像素子の平面図である。赤外線センサ1(画素)は熱吸収層2(図1、図2の25に相当)を有し、多数の画素がm列×n行のアレイ状に配列されている。各画素にはスイッチング回路部3が形成されており、xアドレス線4とyアドレス線5を介して、外部に信号を読み出すようになっている。なお、外付け回路や出力電圧を補正する回路等は図示省略している。
【0017】
以下、作用について説明する。
上記のごときボロメータ型赤外線センサでは、入射した赤外線を熱吸収層25で吸収し、それによる温度変化に対応して生じる抵抗体16の抵抗値の変化を検出(例えば電圧変化として検出)することにより、入射した赤外線に対応した信号を得るものである。
【0018】
本実施の形態においては、温度検出手段40で温度を検出しながら加熱手段41に電流を流して加熱することにより、半導体基板11の温度を所定の温度に保っておき、その状態で、各画素の赤外線検知部が形成されている熱分離構造のダイアフラム部14を半導体基板11に接触させて熱的に短絡させ、ダイアフラム部14に形成されている赤外線検知部(熱吸収層25、抵抗体16)の温度を基板温度と同じにする。なお、ダイアフラム部14の厚さは例えば数μm程度と極めて薄く、その熱容量は非常に小さいので、極めて短時間接触させれば同じ温度にすることが出来る。このように全ての画素を同一の温度にすれば、従来、赤外線カメラの前方に一定温度の物体を置いたときと同じ効果を得ることが出来る。なお、上記のごとき半導体基板11の温度制御は温度検出手段40の出力をフィードバックして所定温度に一致させるように加熱手段41を制御することによって達成できる。或いは加熱手段41を適当に作動させて加熱し、その時の温度を温度検出手段40で検出する方法も可能である。
上記のようにダイアフラム部14を半導体基板11に接触させて温度を所定値にした後、ダイアフラム部14を半導体基板11から離反させれば、撮像の準備状態が完了する。
【0019】
次に、上記のようにダイアフラム部14を半導体基板11に接触させたり離反させたりする機能について説明する。本実施の形態においては、ダイアフラム部14と半導体基板11とを静電力で接触させる。すなわち、ダイアフラム部14に形成されている電極30と半導体基板11との間に電界を印加する(電圧印加回路は図示省略)。例えば、半導体基板11側をアースに、電極側に正電圧を印加すると、静電力によってダイアフラム部14が引き寄せられ、梁部13が撓んで、ダイアフラム部14と半導体基板11が密着する。この時、半導体基板11側の温度がダイアフラム部14側に伝導し、熱容量の小さいダイアフラム部14は急速に半導体基板11と同じ温度になる。温度検出手段40でこのときの温度を測定する。なお、ダイアフラム部14の大きさは1辺が例えば数十〜数百μm程度で、空隙20は例えば1〜数μm程度であるから、低い電圧の印加で容易に密着させることが出来る。
【0020】
上記の印加電圧を除去すれば、梁部13の弾性力でダイアフラム部14は半導体基板11から離反する。なお、ダイアフラム部14が半導体基板11から容易に離れるように、半導体基板11側に金属層を設けたり、シリコン窒化膜との密着性の低い材料の層を形成してもよい。また、これらの層とダイアフラム部14との密着性を緩和するために、それらの層に溝を形成してもよい。
【0021】
なお、上記の説明は、半導体基板11が低抵抗(高不純物濃度)で電極として用いることが可能な場合の例であるが、半導体基板11の抵抗値が高い場合(低不純物濃度)や絶縁材料の支持基板を用いた場合には、支持基板上の電極30と対向する位置(ダイアフラム部14と空隙20を隔てて対向する位置)に第2の電極を設け、電極30と第2の電極との間に電圧を印加するように構成すればよい。
【0022】
次に、上記のような温度制御を用いて各画素の性能補正(感度較正)を行なう構成(各画素の出力信号を補正する手段)を説明する。
図4は、(m−1,n−1)番目の画素と(m,n)番目の画素について温度T1とT2の時の出力信号の概念を示した図である。なお、ここで云う温度とは物体の温度そのもの(単位は℃でもKでも可)を示し、温度差を意味するものではない。図3に示すような熱型赤外線撮像素子全体を加熱手段41を用いた前記のような方法により、温度T1に設定し、各画素のダイアフラム部14を基板に接触させたとする。この時は(m−1、n−1)番目の画素と(m,n)番目の画素の両方が同じ温度T1になる。この温度T1における(m−1,n−1)番目の画素の出力信号V1と(m,n)番目の画素の出力信号V1'を得る。なお、画素自体での温度変化は抵抗体16の抵抗値変化であるが、ここではそれを電圧に変換して出力したものとして扱う。次に、熱型赤外線撮像素子全体を温度T2(例えばT2>T1)に設定し、各画素のダイアフラム部14を基板に接触させ、温度T2における(m−1,n−1)番目の画素の出力信号V2と(m,n)番目の画素の出力信号V2'を得る。
【0023】
上記の温度T1とT2の差(T2−T1)をΔTとし、各画素の出力信号の差(V2−V1)をΔV1、(V2'−V1')をΔV1'とすれば、
(m−1,n−1)番目の画素では
△V1/△T=(V2−V1)/(T2−T1)
(m,n)番目の画素では
△V1'/△T=(V2'−V1')/(T2−T1)
が温度変化に対する出力信号変化となり、この値をそれぞれの素子についての出力信号の温度変化を示す比例定数として扱うことが出来る。同様のことを全画素について行い、全画素のこれらのデータを記憶部に保存し、赤外線カメラを利用する際に各画素の性能補正を実施する。
【0024】
以下、各画素の性能補正(較正)の例として、平均値を用いる場合について説明する。前記のようにして求めた(m,n)番目の画素の比例定数(前記の△V1'/△Tに相当)をA(m,n)、全画素の比例定数の平均値をAとして、(m,n)番目の画素についての感度補正を考える。
温度T1における(m,n)番目の画素の出力電圧V1と全画素の出力電圧の平均値Vとの差は(V−V1)となる。或る温度Txにおける(m,n)番目の画素の出力電圧をVxとすると、補正値は
〔Vx+(V−V1)〕×A/A(m,n)
となる。他の画素においても同様の補正を行なう。このような補正を行なうことにより、平均値を基準として全画素の性能補正が可能になる。
【0025】
次に、或る画素を基準として性能補正を行なう場合について説明する。例えば基準画素を(1,1)番目の画素とし、この(1,1)画素の比例定数をA0とする。温度T1における(m,n)番目の画素の出力電圧V1と(1,1)画素の出力電圧V0との差が(V0−V1)となる。或る温度Txにおける(m,n)番目の画素の出力電圧をVxとすると、補正値は
〔Vx+(V0−V1)〕×A0/A(m,n)
となる。他の画素においても同様の補正を行なう。このような補正を行なうことにより、平均値を基準として全画素の性能補正が可能になる。
上記のようにして各画素の感度の差を解消することが出来る。
【0026】
また、各画素の性能補正については、2点のデータから比例定数を求め、これによって、データの補正を行なう方法について述べたが、画素の出力信号と温度の関係が直線的な関係でない場合には、設定温度を3点以上にして、各温度での出力信号を計測し、各画素の温度特性曲線を求め、それに対応した補正を行なえば、高精度の性能補正ができる。
また、性能補正を行なう際の温度T1、T2等の設定は、例えば撮像する被写体の温度に近い値に設定することが望ましい。
【0027】
以上のような補正は、赤外線カメラをとおして赤外線が入射し、赤外線センサに照射されたとしても、半導体基板11を加熱するまでには至らないため、環境からの影響が無い。さらに、電気的方法を用いて加熱、温度検出を行なうため、性能補正のための均一温度物体が不要である。したがって、赤外線カメラの準備を素速く行なうことができる。
【0028】
次に、図1〜図3に示した素子の製造方法について説明する。
まず、半導体基板11の上で、空隙20となる領域に犠牲層となる酸化膜(例えばPSG膜)を形成する。ここで、PSGの犠牲層の形成方法について説明する。半導体基板11に厚さ1μm前後のPSG酸化膜をCVD法などで形成する。このPSG酸化膜は犠牲エッチング層であるため、ポリイミドなどでもよい。このPSG酸化膜に格子状の溝(幅1μm前後)をエッチングにより形成する。この上に同じPSG酸化膜をCVD法で形成し、一部を残してエッチング除去する。こうして空隙20となる部分(ダイアフラム部14と梁部13の下部)に犠牲層が形成される。犠牲層となる酸化膜は2μm位の厚さの単層でもよいが、上記のように溝を形成した上に再度PSG酸化膜を形成する方法を用いると、各溝に小さなトンネル(空洞もしくは「す」の入った状態)が形成され、犠牲層のエッチング時にそのトンネルを通ってエッチング液が浸透するので、エッチング速度を速くすることができる。
【0029】
次に、上記犠牲層の上にダイアフラムになる膜、例えばシリコン窒化膜をLPCVD法で形成する。これが梁部13とダイアフラム12の構造材となる。ダイアフラム12の上には電極30を形成する。電極30としては金属膜であればなんでもよいが、CMOSプロセスを考えるとA1膜が好ましい。この電極30の上に層間絶縁膜17例えばシリコン酸化物を形成し、さらに、温度変化に応じて電気抵抗が変化する抵抗体16を形成し、必要に応じてパターン化する。この上に層間絶縁膜19を形成した後、エッチング穴18を形成する。次に熱吸収層25を形成する。なお、熱吸収層25と層間絶縁層19の間に熱吸収層25の密着を高めるために、アモルファスSiの層を形成していてもよい。この場合には、熱吸収層25としては金黒膜が適当である。次に、上記エッチング穴18からエッチング液を注入して上記PSG酸化膜の犠牲層をエッチング除去することにより、空隙20を形成してダイアフラム部14を分離形成する。
【0030】
なお、これまでの説明は、ボロメータ型の赤外線センサを画素にする場合について説明してきたが、pn接合型の赤外線センサでも同様に構成することが出来る。
【図面の簡単な説明】
【図1】本発明の熱型赤外線撮像素子に用いる赤外線センサ(画素)の一実施の形態を示す平面図。
【図2】本発明の熱型赤外線撮像素子に用いる赤外線センサ(画素)の一実施の形態を示す断面図。
【図3】本発明の熱型赤外線撮像素子のアレイ構成を示す平面図。
【図4】二つの画素の出力信号の状態を示す特性図。
【図5】熱型赤外線撮像素子における各画素の出力信号のバラツキを示す特性図。
【符号の説明】
1…赤外線センサ 2…熱吸収層
3…スイッチング回路部 4…xアドレス線
5…yアドレス線 11…半導体基板
12…ダイアフラム 13…梁部
14…ダイアフラム部 15…配線
16…抵抗体 17…層間絶縁層
18…エッチング穴 19…層間絶縁層
20…空隙 25…熱吸収層
30…電極 31…配線
40…温度検出手段 41…加熱手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal infrared imaging device having means for performance correction.
[0002]
[Prior art]
The thermal infrared imaging device has a structure in which a large number of pixels (for example, about several tens of thousands to several hundred thousand pixels) are arranged on a plane, but the sensitivity of each pixel lacks uniformity. For this reason, if an image is captured without correcting the sensitivity of each pixel, the captured image may differ from the actual subject. Therefore, when using the thermal infrared imaging device, it is necessary to correct the sensitivity of each pixel of the device in order to improve the image quality of the image. Referring to the plan view of the thermal infrared imaging device shown in FIG. 3, the thermal infrared imaging device has an array of m columns × n rows, with the thermal infrared sensor 1 having the heat absorption layer 2 as a pixel and a large number of pixels. Are arranged in a shape. A switching circuit unit 3 is formed in each pixel, and a signal of each pixel is read out via the x address line 4 and the y address line 5 (external circuit is not shown).
[0003]
In a conventional thermal infrared imaging device, as shown in FIG. 5, the output voltage of each pixel (explained on the assumption that the state change of the pixel is converted into a voltage signal) is usually unbalanced for each pixel. . For this reason, it is necessary to provide an external signal processing unit such as an amplifier circuit, an A / D conversion unit, and a signal correction storage unit to correct an imbalance between pixels every time an image is taken. To correct this imbalance between pixels, when using a thermal infrared imaging device as an infrared imaging camera, place an object with a relatively uniform temperature in front of the infrared imaging camera, and the incident infrared energy at that time. There is a method in which the output voltage of each pixel is stored in a storage unit on the assumption that is uniform, and the sensitivity of each pixel is corrected according to the output value at that time. In general, a metal plate or black plate close to room temperature is installed in front of an infrared imaging camera, and sensitivity correction is performed according to the output voltage of each pixel when the image is captured.
[0004]
[Problems to be solved by the invention]
However, in the correction method as described above, it is necessary to prepare and correct an object with a temperature that is within the field of view of the infrared imaging camera every time the infrared imaging camera is used. For example, in order to obtain a practically accurate image, it is necessary to correct at intervals of about 10 minutes even during use. Further, when an object having a uniform temperature is placed in front of the camera, depending on the environmental temperature, it is difficult to maintain a uniform temperature over the entire area depending on the heat capacity of the object. Especially in the case of recent infrared cameras, a nett with a noise equivalent temperature difference (0.1TD) of around 0.1 ° C. has appeared. It becomes difficult. The difficulty also increases when using an object having a temperature higher than the ambient temperature.
[0005]
The present invention has been made to solve the above-described problems of the prior art, and provides a thermal infrared imaging device capable of correcting sensitivity between pixels easily, quickly, and with high accuracy. Objective.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as described in the claims. That is, in the first aspect of the present invention, means for contacting and separating the diaphragm having the infrared detector mounted thereon from the support substrate, heating means for heating the support substrate, and temperature of the support substrate or the diaphragm are detected. Temperature detection means, storage means for storing the temperature when the diaphragm and the support substrate are in contact with each other, and output signals of the pixels at that time, and output of each pixel based on the stored value of the storage means And a means for correcting the signal. In addition, said temperature shows the temperature of an object itself (a unit may be degree C or K), and does not mean a temperature difference. The storage means and the means for correcting the output signal of each pixel may be provided as an external circuit. However, if there is an empty area on the element, it may be formed in that portion.
[0007]
By configuring as described above, all the pixels can be unified at the same predetermined temperature as the temperature of the support substrate by bringing the diaphragm into contact with the support substrate heated to a predetermined temperature by the heating means. The sensitivity of each pixel can be corrected by detecting the output signal of the pixel. And since there is no need to prepare an object with a uniform temperature as in the prior art, the procedure required for sensitivity correction is extremely easy and quick, and the temperature of each pixel can be made exactly the same temperature. It can be performed with high accuracy. In addition, since the thermal infrared imaging device itself is equipped with a heating means and a temperature detection means, the temperature can be set by the element itself, and the temperature can be set and detected with high accuracy, thereby further improving the accuracy. I can do it.
[0008]
In the second aspect of the invention, since the diaphragm and the support substrate are electrostatically brought into contact with each other, preparation for imaging can be performed very quickly and easily.
[0009]
In the invention described in claim 3, sensitivity correction can be performed precisely, and outputs at three or more different temperatures are detected even when the temperature characteristic of each pixel is not linear. Thus, accurate sensitivity correction is possible even with non-linear characteristics.
[0010]
【The invention's effect】
According to the present invention, the temperature of each pixel constituting the infrared imaging element can be easily, quickly and accurately set to a predetermined temperature that is the same as the substrate temperature. Therefore, the performance of each pixel can be easily corrected according to the output signal at that time. Further, correction is possible even when the temperature characteristics of the infrared sensor serving as each pixel are not linear. Therefore, there is an effect that sensitivity correction of each pixel of the thermal infrared imaging device can be performed easily, quickly and with high accuracy without preparing an object having a uniform temperature as in the prior art.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 and FIG. 2 are diagrams showing an embodiment of one infrared sensor (pixel) constituting the thermal infrared imaging device of the present invention, FIG. 1 is a plan view, and FIG. 2 is a sectional view. FIG. 3 is a plan view showing a schematic configuration of a thermal infrared imaging element formed using the above sensor.
[0012]
First, a pixel structure will be described with reference to FIGS. Here, a bolometer type infrared sensor capable of detecting temperature as a sensor (pixel) will be described. The bolometer type infrared sensor utilizes the characteristic that the electric resistance of the resistor changes according to the temperature change. 1 and 2, reference numeral 11 denotes a semiconductor substrate (for example, a silicon substrate) that serves as a support substrate. A diaphragm 12 is supported by the beam portion 13 and faces the semiconductor substrate 11 with a minute gap 20 (for example, about several μm) therebetween. A resistor 16, an interlayer insulating film 17, an interlayer insulating layer 19, a heat absorption layer 25, and an electrode 30 are formed on the diaphragm 12, and the diaphragm portion 14 is configured as a whole. The diaphragm portion 14 is thermally separated from the semiconductor substrate 11 by the air gap 20. A wiring 15 for connecting the resistor 16 to the outside and a wiring 31 for connecting the electrode 30 to the outside are formed on the beam portion 13, and the interlayer insulating film 17 covers the wiring 31. A temperature detecting means 40 and a heating means 41 are provided on the semiconductor substrate 11. A required number of such pixels are formed in an array on the semiconductor substrate 11 (see FIG. 3). As can be seen from FIG. 2, the resistor 16 is formed on the electrode 30, and the heat absorption layer 25 is further formed thereon. In FIG. 1, only the heat absorption layer 25 is actually visible. However, for the convenience of explanation, the resistor 16 is displayed as shown in the figure, and the electrode 30 and the heat absorption layer 25 are formed on substantially the same plane. It is shown with a solid line.
[0013]
The semiconductor substrate 11 may be formed with a signal processing circuit such as an x, y address decoder or a preamplifier. A temperature detecting means 40 (for example, a bolometer type or pn junction type temperature sensor) and a heating means 41 (for example, a metal film resistor) are formed using the empty area of the semiconductor substrate 11. Since the heating means 41 heats the entire thermal infrared imaging device so as to have a uniform temperature, it is preferably arranged over the entire area. The temperature detecting means 40 may be provided for each pixel. However, if the temperature of the entire semiconductor substrate 11 is uniform, only one temperature detecting means 40 may be provided. In the figure, as an example, a pixel in which the temperature detecting means 40 exists is shown.
[0014]
In addition, a circuit for applying a voltage between the electrode 30 and the semiconductor substrate 11 and a memory for detecting the temperature and the output signal of each pixel at that time (details will be described later) are required. is doing. These circuits may be formed in a portion where the element has a vacant area or may be an external circuit.
[0015]
2 shows an example in which the heating means 41 is provided in the semiconductor substrate 11, it may be formed on the interlayer insulating layer 17 formed on the semiconductor substrate 11 or on the lower portion of the semiconductor substrate 11. Further, the temperature detecting means 40 may be provided anywhere within the element.
[0016]
FIG. 3 is a plan view of a thermal infrared imaging device using the infrared sensor 1 shown in FIGS. 1 and 2. The infrared sensor 1 (pixel) has a heat absorption layer 2 (corresponding to 25 in FIGS. 1 and 2), and a large number of pixels are arranged in an array of m columns × n rows. A switching circuit unit 3 is formed in each pixel, and a signal is read out through the x address line 4 and the y address line 5. An external circuit and a circuit for correcting the output voltage are not shown.
[0017]
The operation will be described below.
In the bolometer-type infrared sensor as described above, incident infrared rays are absorbed by the heat absorption layer 25, and a change in the resistance value of the resistor 16 that occurs in response to a temperature change caused thereby is detected (for example, detected as a voltage change). A signal corresponding to the incident infrared ray is obtained.
[0018]
In the present embodiment, the temperature of the semiconductor substrate 11 is kept at a predetermined temperature by supplying a current to the heating means 41 while heating the temperature detection means 40 while detecting the temperature, and in this state, each pixel is maintained. The thermal separation diaphragm 14 in which the infrared detection part is formed is brought into contact with the semiconductor substrate 11 and thermally short-circuited, and the infrared detection part (the heat absorption layer 25, the resistor 16 formed in the diaphragm part 14 is formed. ) Is the same as the substrate temperature. Note that the thickness of the diaphragm portion 14 is extremely thin, for example, about several μm, and its heat capacity is very small. Thus, if all the pixels are set to the same temperature, the same effect as when an object having a constant temperature is placed in front of the infrared camera can be obtained. Note that the temperature control of the semiconductor substrate 11 as described above can be achieved by controlling the heating means 41 so that the output of the temperature detection means 40 is fed back to coincide with a predetermined temperature. Alternatively, a method of heating the heating means 41 appropriately and detecting the temperature at that time by the temperature detection means 40 is also possible.
As described above, the diaphragm unit 14 is brought into contact with the semiconductor substrate 11 to set the temperature to a predetermined value, and then the diaphragm unit 14 is moved away from the semiconductor substrate 11 to complete the imaging preparation state.
[0019]
Next, the function of bringing the diaphragm portion 14 into contact with or separating from the semiconductor substrate 11 as described above will be described. In the present embodiment, the diaphragm portion 14 and the semiconductor substrate 11 are brought into contact with each other with an electrostatic force. That is, an electric field is applied between the electrode 30 formed on the diaphragm portion 14 and the semiconductor substrate 11 (voltage application circuit is not shown). For example, when the semiconductor substrate 11 side is grounded and a positive voltage is applied to the electrode side, the diaphragm portion 14 is attracted by the electrostatic force, the beam portion 13 is bent, and the diaphragm portion 14 and the semiconductor substrate 11 are in close contact with each other. At this time, the temperature on the semiconductor substrate 11 side is conducted to the diaphragm portion 14 side, and the diaphragm portion 14 having a small heat capacity rapidly becomes the same temperature as the semiconductor substrate 11. The temperature at this time is measured by the temperature detecting means 40. In addition, since the size of the diaphragm portion 14 is, for example, about several tens to several hundreds of μm on one side and the gap 20 is, for example, about 1 to several μm, it can be easily adhered by applying a low voltage.
[0020]
If the applied voltage is removed, the diaphragm portion 14 is separated from the semiconductor substrate 11 by the elastic force of the beam portion 13. It should be noted that a metal layer may be provided on the semiconductor substrate 11 side or a layer of a material having low adhesion to the silicon nitride film may be formed so that the diaphragm portion 14 can be easily separated from the semiconductor substrate 11. Moreover, in order to ease the adhesiveness between these layers and the diaphragm portion 14, grooves may be formed in these layers.
[0021]
Although the above description is an example in which the semiconductor substrate 11 can be used as an electrode with low resistance (high impurity concentration), the semiconductor substrate 11 has a high resistance value (low impurity concentration) or an insulating material. When the support substrate is used, a second electrode is provided at a position facing the electrode 30 on the support substrate (position facing the diaphragm portion 14 and the gap 20), and the electrode 30 and the second electrode A voltage may be applied between the two.
[0022]
Next, a configuration (means for correcting the output signal of each pixel) that performs performance correction (sensitivity calibration) of each pixel using the above temperature control will be described.
FIG. 4 is a diagram showing the concept of output signals at temperatures T1 and T2 for the (m−1, n−1) th pixel and the (m, n) th pixel. The temperature referred to here indicates the temperature of the object itself (the unit may be ° C. or K) and does not mean a temperature difference. Assume that the entire thermal infrared imaging device as shown in FIG. 3 is set to the temperature T1 by the method using the heating means 41 and the diaphragm portion 14 of each pixel is brought into contact with the substrate. At this time, both the (m−1, n−1) th pixel and the (m, n) th pixel have the same temperature T1. The output signal V1 of the (m−1, n−1) th pixel and the output signal V1 ′ of the (m, n) th pixel at this temperature T1 are obtained. Note that the temperature change in the pixel itself is a change in the resistance value of the resistor 16, but here it is treated as being converted into a voltage and output. Next, the entire thermal infrared imaging device is set to a temperature T2 (for example, T2> T1), the diaphragm portion 14 of each pixel is brought into contact with the substrate, and the (m−1, n−1) th pixel of the temperature T2 An output signal V2 and an output signal V2 ′ of the (m, n) th pixel are obtained.
[0023]
If the difference (T2−T1) between the temperatures T1 and T2 is ΔT, the output signal difference (V2−V1) of each pixel is ΔV1, and (V2′−V1 ′) is ΔV1 ′,
In the (m−1, n−1) th pixel, ΔV1 / ΔT = (V2−V1) / (T2−T1).
In the (m, n) th pixel, ΔV1 ′ / ΔT = (V2′−V1 ′) / (T2−T1)
Becomes an output signal change with respect to a temperature change, and this value can be treated as a proportional constant indicating the temperature change of the output signal for each element. The same process is performed for all the pixels, and the data of all the pixels is stored in the storage unit, and the performance of each pixel is corrected when the infrared camera is used.
[0024]
Hereinafter, a case where an average value is used will be described as an example of performance correction (calibration) of each pixel. The proportionality constant (corresponding to the above ΔV1 ′ / ΔT) of the (m, n) th pixel obtained as described above is A (m, n), and the average value of the proportionality constants of all the pixels is A. Consider sensitivity correction for the (m, n) th pixel.
The difference between the output voltage V1 of the (m, n) th pixel at the temperature T1 and the average value V of the output voltages of all the pixels is (V−V1). When the output voltage of the (m, n) th pixel at a certain temperature Tx is Vx, the correction value is [Vx + (V−V1)] × A / A (m, n).
It becomes. Similar correction is performed for other pixels. By performing such correction, it becomes possible to correct the performance of all the pixels based on the average value.
[0025]
Next, a case where performance correction is performed based on a certain pixel will be described. For example, the reference pixel is the (1,1) th pixel, and the proportionality constant of this (1,1) pixel is A0. The difference between the output voltage V1 of the (m, n) th pixel and the output voltage V0 of the (1, 1) pixel at the temperature T1 is (V0−V1). When the output voltage of the (m, n) th pixel at a certain temperature Tx is Vx, the correction value is [Vx + (V0−V1)] × A0 / A (m, n).
It becomes. Similar correction is performed for other pixels. By performing such correction, it becomes possible to correct the performance of all the pixels based on the average value.
As described above, the difference in sensitivity of each pixel can be eliminated.
[0026]
As for the performance correction of each pixel, the proportional constant is obtained from the data of two points, and the method for correcting the data by this is described. However, when the relationship between the output signal of the pixel and the temperature is not linear. If the set temperature is set to three or more points, the output signal at each temperature is measured, the temperature characteristic curve of each pixel is obtained, and correction corresponding thereto is performed, so that high-precision performance correction can be performed.
Further, it is desirable to set the temperature T1, T2, etc. when performing performance correction to a value close to the temperature of the subject to be imaged, for example.
[0027]
The correction as described above has no influence from the environment because the semiconductor substrate 11 is not heated even if the infrared ray is incident through the infrared camera and irradiated to the infrared sensor. Furthermore, since heating and temperature detection are performed using an electrical method, a uniform temperature object for performance correction is not necessary. Therefore, preparation of the infrared camera can be performed quickly.
[0028]
Next, a method for manufacturing the element shown in FIGS. 1 to 3 will be described.
First, an oxide film (for example, a PSG film) serving as a sacrificial layer is formed on the semiconductor substrate 11 in a region serving as the gap 20. Here, a method for forming a sacrificial layer of PSG will be described. A PSG oxide film having a thickness of about 1 μm is formed on the semiconductor substrate 11 by a CVD method or the like. Since the PSG oxide film is a sacrificial etching layer, polyimide or the like may be used. A lattice-like groove (width of about 1 μm) is formed in this PSG oxide film by etching. The same PSG oxide film is formed thereon by the CVD method, and is removed by etching leaving a part. In this way, a sacrificial layer is formed in the portion that becomes the gap 20 (below the diaphragm portion 14 and the beam portion 13). The oxide film serving as the sacrificial layer may be a single layer having a thickness of about 2 μm. However, when the method of forming the PSG oxide film again after forming the grooves as described above, a small tunnel (cavity or “ Since the etching solution permeates through the tunnel when the sacrificial layer is etched, the etching rate can be increased.
[0029]
Next, a film that becomes a diaphragm, for example, a silicon nitride film is formed on the sacrificial layer by LPCVD. This is a structural material for the beam portion 13 and the diaphragm 12. An electrode 30 is formed on the diaphragm 12. Any electrode 30 may be used as long as it is a metal film, but an A1 film is preferable in view of the CMOS process. An interlayer insulating film 17 such as silicon oxide is formed on the electrode 30, and a resistor 16 whose electric resistance changes according to a temperature change is formed and patterned as necessary. After the interlayer insulating film 19 is formed thereon, an etching hole 18 is formed. Next, the heat absorption layer 25 is formed. An amorphous Si layer may be formed between the heat absorption layer 25 and the interlayer insulating layer 19 in order to enhance the adhesion of the heat absorption layer 25. In this case, a gold black film is appropriate as the heat absorption layer 25. Next, an etching solution is injected from the etching hole 18 and the sacrificial layer of the PSG oxide film is removed by etching, thereby forming a void 20 and separately forming the diaphragm portion 14.
[0030]
In the above description, the case where the bolometer type infrared sensor is used as a pixel has been described. However, a pn junction type infrared sensor can be similarly configured.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of an infrared sensor (pixel) used in a thermal infrared imaging device of the present invention.
FIG. 2 is a cross-sectional view showing an embodiment of an infrared sensor (pixel) used in the thermal infrared imaging device of the present invention.
FIG. 3 is a plan view showing an array configuration of a thermal infrared imaging device of the present invention.
FIG. 4 is a characteristic diagram showing states of output signals of two pixels.
FIG. 5 is a characteristic diagram showing variations in output signals of pixels in a thermal infrared imaging device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Infrared sensor 2 ... Heat absorption layer 3 ... Switching circuit part 4 ... x address line 5 ... y address line 11 ... Semiconductor substrate 12 ... Diaphragm 13 ... Beam part 14 ... Diaphragm part 15 ... Wiring 16 ... Resistor 17 ... Interlayer insulation Layer 18 ... Etching hole 19 ... Interlayer insulating layer 20 ... Air gap 25 ... Heat absorption layer 30 ... Electrode 31 ... Wiring 40 ... Temperature detection means 41 ... Heating means

Claims (4)

支持基板から空隙を隔てて熱分離構造のダイアフラムが形成され、該ダイアフラム上に赤外線検知部が形成されている熱型赤外線センサを画素とし、複数の画素でアレイを形成した熱型赤外線撮像素子において、
前記ダイアフラムを前記支持基板に接触、離反させる手段と、
前記支持基板を加熱する加熱手段と、
前記支持基板もしくは前記ダイアフラムの温度を検出する温度検出手段と、
前記ダイアフラムと前記支持基板とを接触させた際の温度と、そのときの画素の出力信号とを記憶する記憶手段と、
前記記憶手段の記憶値に基づいて、各画素の出力信号を補正する手段と、
を備えたことを特徴とする熱型赤外線撮像素子。
In a thermal infrared imaging device in which a diaphragm having a thermal separation structure is formed with a gap from a support substrate, and an infrared detection unit is formed on the diaphragm, a pixel is used, and an array is formed by a plurality of pixels. ,
Means for contacting and separating the diaphragm from the support substrate;
Heating means for heating the support substrate;
Temperature detecting means for detecting the temperature of the support substrate or the diaphragm;
Storage means for storing a temperature when the diaphragm and the support substrate are in contact with each other, and an output signal of the pixel at that time;
Means for correcting the output signal of each pixel based on the stored value of the storage means;
A thermal infrared imaging device comprising:
前記ダイアフラムを前記支持基板に接触、離反させる手段は、前記ダイアフラムに形成された電極と前記支持基板または支持基板に設けた電極との間に電圧を印加することにより、静電力によって前記ダイアフラムと前記支持基板とを接触させるものであることを特徴とする請求項1に記載の熱型赤外線撮像素子。The means for bringing the diaphragm into contact with and separating from the support substrate is configured to apply a voltage between an electrode formed on the diaphragm and the electrode provided on the support substrate or the support substrate, thereby causing the diaphragm and the The thermal infrared imaging device according to claim 1, wherein the thermal infrared imaging device is in contact with a support substrate. 前記各画素の出力信号を補正する手段は、少なくとも二つの異なる温度およびそれぞれの温度における出力信号の値に応じて各画素の出力信号を補正するものであることを特徴とする請求項1または請求項2に記載の熱型赤外線撮像素子。The means for correcting the output signal of each pixel corrects the output signal of each pixel according to at least two different temperatures and the value of the output signal at each temperature. Item 3. The thermal infrared imaging device according to Item 2. 前記赤外線検知部はボロメータ型またはpn接合型の赤外線センサであることを特徴とする請求項1乃至請求項3の何れかに記載の熱型赤外線撮像素子。The thermal infrared imaging device according to any one of claims 1 to 3, wherein the infrared detector is a bolometer type or pn junction type infrared sensor.
JP09664599A 1999-04-02 1999-04-02 Thermal infrared image sensor Expired - Fee Related JP4300305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09664599A JP4300305B2 (en) 1999-04-02 1999-04-02 Thermal infrared image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09664599A JP4300305B2 (en) 1999-04-02 1999-04-02 Thermal infrared image sensor

Publications (2)

Publication Number Publication Date
JP2000295528A JP2000295528A (en) 2000-10-20
JP4300305B2 true JP4300305B2 (en) 2009-07-22

Family

ID=14170576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09664599A Expired - Fee Related JP4300305B2 (en) 1999-04-02 1999-04-02 Thermal infrared image sensor

Country Status (1)

Country Link
JP (1) JP4300305B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879819B1 (en) * 2004-12-21 2007-02-23 Ulis Soc Par Actions Simplifie COMPONENT FOR DETECTING ELECTROMAGNETIC RADIATION, IN PARTICULAR INFRARED
WO2006132155A1 (en) 2005-06-06 2006-12-14 Matsushita Electric Industrial Co., Ltd. Electronic device and fabrication method thereof
JP4441578B2 (en) 2006-10-11 2010-03-31 パナソニック株式会社 Electronic device and control method thereof
JP4978501B2 (en) 2008-02-14 2012-07-18 日本電気株式会社 Thermal infrared detector and method for manufacturing the same
JP5644530B2 (en) * 2011-01-19 2014-12-24 富士通株式会社 Infrared imaging device
KR102268714B1 (en) * 2014-06-23 2021-06-28 삼성전자주식회사 Image sensor and method of fabricating the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246428A (en) * 1990-02-23 1991-11-01 Fujitsu Ltd Infrared video device
JP2874662B2 (en) * 1995-08-11 1999-03-24 日本電気株式会社 Bolometer type infrared detector
JPH09329499A (en) * 1996-06-12 1997-12-22 Ishizuka Denshi Kk Infrared sensor and infrared detector
JPH10262186A (en) * 1997-03-19 1998-09-29 Mitsubishi Electric Corp Infrared ray camera

Also Published As

Publication number Publication date
JP2000295528A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
US7385199B2 (en) Microbolometer IR focal plane array (FPA) with in-situ mirco vacuum sensor and method of fabrication
US6335478B1 (en) Thermopile infrared sensor, thermopile infrared sensors array, and method of manufacturing the same
JP3409848B2 (en) Thermal infrared detector
US6737648B2 (en) Micromachined infrared sensitive pixel and infrared imager including same
US6441372B1 (en) Infrared focal plane array detector and method of producing the same
US7288765B2 (en) Device for detecting infrared radiation with bolometric detectors
US8232525B2 (en) Device for the detection of an electromagnetic radiation and electromagnetic radiation detector comprising such devices
JPWO2005015637A1 (en) Electronic device and manufacturing method thereof
JP2004317152A5 (en)
EP3765825B1 (en) Thermopile self-test and/or self-calibration
JPH10163539A (en) Thermal infrared detector and manufacture thereof
JP4300305B2 (en) Thermal infrared image sensor
US9097579B2 (en) Electrical calibrated radiometer
KR100355640B1 (en) Thermal functional device capable of high-speed response and a method of driving the device
JP2004530893A (en) Method and apparatus for reading composite microbolometer array
CN110140215B (en) Infrared sensor device
JPH10227689A (en) Infrared detector and infrared focal plane array
JP6345370B1 (en) Infrared sensor device
WO2006038213A2 (en) Millimeter wave pixel and focal plane array imaging sensors thereof
JP3495309B2 (en) Thermal infrared imaging device
JP3136649B2 (en) Combined infrared detector
US7560694B2 (en) Method and system for increasing signal-to-noise ratio in microbolometer arrays
Hunter et al. Development and optimization of microcantilever based IR imaging arrays
JP2007085917A (en) Infrared array sensor
JP3147856B2 (en) Linear infrared detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees