JP2000294221A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000294221A
JP2000294221A JP11099572A JP9957299A JP2000294221A JP 2000294221 A JP2000294221 A JP 2000294221A JP 11099572 A JP11099572 A JP 11099572A JP 9957299 A JP9957299 A JP 9957299A JP 2000294221 A JP2000294221 A JP 2000294221A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
battery
negative electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11099572A
Other languages
Japanese (ja)
Other versions
JP2000294221A5 (en
Inventor
Hiroshi Nakahara
浩 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11099572A priority Critical patent/JP2000294221A/en
Publication of JP2000294221A publication Critical patent/JP2000294221A/en
Publication of JP2000294221A5 publication Critical patent/JP2000294221A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-weight and safety nonaqueous electrolyte secondary battery. SOLUTION: In a nonaqueous electrolyte secondary battery comprising a generating element in a bag-shaped unit battery case, a thickness of a collector lead connected to a negative electrode plate and a collector lead connected to a positive electrode plate is 50 μm or more and 500 μm or less, a width thereof is 2 mm or more, the collector lead connected to the positive electrode plate is made of a metal of 100 kcal/(m.hr. deg.C) or more of heat conductivity, and the collector lead connected to the negative electrode plate is made of a metal of 70 kcal/(m.hr. deg.C) or more of heat conductivity, or the collector lead connected to the regulative electrode plate is made of a metal of 70 kcal/(m.hr. deg.C) or more of heat conductivity, and the collector lead connected to the positive electrode plate is made of a metal of 100 kcal/(m.hr. deg.C) or more of heat conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単電池が袋状ケー
スに収納された非水電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery in which unit cells are housed in a bag-like case.

【0002】[0002]

【従来の技術】近年、携帯用無線電話、携帯用パソコ
ン、携帯用ビデオカメラ等の電子機器が開発され、各種
電子機器が携帯可能な程度に小型化されている。それに
伴って、内蔵される電池としても、高エネルギー密度を
有し、且つ軽量なものが採用されている。そのような要
求を満たす典型的な電池は、特にリチウム金属やリチウ
ム合金等の活物質、又はリチウムイオンをホスト物質
(ここでホスト物質とは、リチウムイオンを吸蔵及び放
出できる物質をいう。)である炭素に吸蔵させたリチウ
ムインターカレーション化合物を負極材料とし、LiC
lO4、LiPF6等のリチウム塩を溶解した非プロトン
性の有機溶媒を電解液とする非水電解質二次電池であ
る。
2. Description of the Related Art In recent years, electronic devices such as a portable radio telephone, a portable personal computer, and a portable video camera have been developed, and various electronic devices have been reduced in size to be portable. Along with this, a battery having a high energy density and a light weight is also adopted as a built-in battery. A typical battery that satisfies such a requirement is an active material such as lithium metal or lithium alloy, or a host material containing lithium ions (here, a host material refers to a material that can occlude and release lithium ions). Lithium intercalation compound occluded in a certain carbon is used as a negative electrode material, and LiC
This is a non-aqueous electrolyte secondary battery using an aprotic organic solvent in which a lithium salt such as 10 4 or LiPF 6 is dissolved as an electrolyte.

【0003】この非水電解質二次電池は、上記の負極材
料をその支持体である負極集電体に保持してなる負極
板、リチウムコバルト複合酸化物のようにリチウムイオ
ンと可逆的に電気化学反応をする正極活物質をその支持
体である正極集電体に保持してなる正極板、電解液を保
持するとともに負極板と正極板との間に介在して両極の
短絡を防止するセパレータからなっている。
This non-aqueous electrolyte secondary battery has a negative electrode plate in which the above-mentioned negative electrode material is held on a negative electrode current collector as a support, and a reversible electrochemical reaction with lithium ions such as a lithium-cobalt composite oxide. The positive electrode plate, which holds the positive electrode active material that reacts on the positive electrode current collector that is the support, from the separator that holds the electrolytic solution and intervenes between the negative electrode plate and the positive electrode plate to prevent a short circuit between the two electrodes Has become.

【0004】そして、上記正極板、セパレータ及び負極
板は、いずれも薄いシートないし箔状に成形されたもの
を順に積層、又は螺旋状に巻いて、気密構造を有する金
属ラミネート樹脂フィルムからなる電池容器に収納され
る。
The above-mentioned positive electrode plate, separator and negative electrode plate are each formed of a thin sheet or foil and laminated or spirally wound in order to form a battery container made of a metal laminated resin film having an airtight structure. Is stored in.

【0005】この非水電解質二次電池を電子機器に用い
る場合、単電池又は複数個の直列接続したものとして目
的の電圧を得るようにする。この単数又は複数個の電池
は、充放電制御回路とともに樹脂もしくは金属と樹脂か
らなる筐体に収納され、内容物を取り出せないよう封口
して電池パックとして用いられる。
When this non-aqueous electrolyte secondary battery is used in electronic equipment, a desired voltage is obtained as a single battery or a plurality of batteries connected in series. The single or plural batteries are housed in a housing made of resin or metal and resin together with the charge / discharge control circuit, and sealed so that the contents cannot be taken out, and used as a battery pack.

【0006】また、近年の携帯機器の小形、軽量化が急
速に進む中、非水電解質電池に限らず電池を電源とする
機器の場合、電池の軽量化及び安全化、低価格化の要請
は尽きることがない。電池の小形、軽量化を実現するた
めには、ラミネート非水電解質単電池が好適であり、高
い安全性を備えたものであることが望ましい。
In recent years, as portable devices have been rapidly becoming smaller and lighter, demands for lighter, safer, and lower-priced batteries have been increasing not only for non-aqueous electrolyte batteries but also for devices powered by batteries. Never runs out. In order to reduce the size and weight of the battery, a laminated non-aqueous electrolyte unit cell is suitable and preferably has high safety.

【0007】[0007]

【発明が解決しようとする課題】非水電解質二次電池に
おいて、電解液の溶媒として可燃性有機化合物が用いら
れることが多い。従来、正極活物質として用いられてい
るコバルト酸リチウムの充電深度は、Li/Li+の平
衡電位に対して約4.2〜4.3Vの範囲としている
が、これは、充放電時にコバルト酸リチウムの結晶構造
が可逆的に維持できることと電解液の電位窓の上限で規
定されるものである。
In a non-aqueous electrolyte secondary battery, a flammable organic compound is often used as a solvent for an electrolytic solution. Conventionally, the charge depth of lithium cobalt oxide used as a positive electrode active material is in a range of about 4.2 to 4.3 V with respect to the Li / Li + equilibrium potential. It is defined by the fact that the crystal structure of lithium can be reversibly maintained and the upper limit of the potential window of the electrolyte.

【0008】正極電位が前記の電位を越えて充電され続
けると、有機電解液の分解反応や正極活物質の分解反応
などで発生した気体による電池の内圧の上昇や、前記反
応熱による電池温度の上昇を引き起こし、電池の破裂、
発火に至ってしまう。
[0008] When the positive electrode potential continues to be charged beyond the above potential, the internal pressure of the battery increases due to the gas generated by the decomposition reaction of the organic electrolyte solution or the decomposition reaction of the positive electrode active material, and the battery temperature increases due to the reaction heat. Cause the battery to rupture,
It will catch fire.

【0009】このため、非水電解質電池において、電池
が破裂、発火に至る前で、正極電位が規定電位を越えな
いように、保護回路を設けて電池の安全性を確保してい
る。さらに、何らかの原因によって保護回路が故障して
過充電状態となった場合においても、電池の安全性を確
保できることが望ましい。
For this reason, in a non-aqueous electrolyte battery, a protection circuit is provided to ensure the safety of the battery so that the positive electrode potential does not exceed a specified potential before the battery explodes or ignites. Furthermore, it is desirable that the safety of the battery can be ensured even when the protection circuit breaks down due to some cause and becomes overcharged.

【0010】過充電時に非水電解質二次電池が破裂、発
火を引き起こす原因の一つとして、非水電解質電池内に
おいて連鎖的に発生する種々の発熱反応が考えられる。
すなわち、非水電解質電池が過充電状態となった時、電
解液分解反応によって生じる熱によって電池温度が上昇
する。電池温度が約120℃に達すると、負極に用いら
れているグラファイト表面の皮膜の分解反応による発熱
やグラファイト表面での電解液分解反応が、電池の温度
上昇を促進するものと考えられる。これらの反応が電解
液の沸騰や既に電池内に存在する気体の膨張などを引き
起こし、電池の内圧を急激に上昇させるという問題があ
った。
As one of the causes of the explosion and ignition of the non-aqueous electrolyte secondary battery during overcharge, various exothermic reactions which occur in a chain in the non-aqueous electrolyte battery are considered.
That is, when the nonaqueous electrolyte battery is overcharged, the battery temperature rises due to heat generated by the electrolytic solution decomposition reaction. When the battery temperature reaches about 120 ° C., it is considered that the heat generated by the decomposition reaction of the film on the graphite surface used for the negative electrode and the electrolytic solution decomposition reaction on the graphite surface accelerate the temperature rise of the battery. These reactions cause boiling of the electrolytic solution, expansion of the gas already existing in the battery, and the like, and there is a problem that the internal pressure of the battery rapidly increases.

【0011】これらの発熱反応が断熱状態で進行すれ
ば、電池温度は正極活物質の自己分解反応による熱逸走
を引き起こして、電池の破裂あるいは発火に至るものと
考えられる。
If these exothermic reactions proceed in an adiabatic state, it is considered that the battery temperature causes thermal runaway due to the self-decomposition reaction of the positive electrode active material, leading to rupture or ignition of the battery.

【0012】したがって、前述のような非水電解質電池
の破裂や発火などの問題を解決するための手段として、
これらの電池の温度上昇を促進させる原因となる個々の
発熱反応を抑制するという手段とともに、熱逸走する温
度まで電池温度が上昇しないように、電池内で発生した
熱を効果的に電池外へ放出しなければならない。
[0012] Therefore, as a means for solving the above-described problems such as bursting and ignition of the non-aqueous electrolyte battery,
In addition to the means of suppressing individual exothermic reactions that cause these batteries to increase in temperature, the heat generated inside the batteries is effectively released outside the batteries so that the battery temperature does not rise to the temperature at which heat escapes. Must.

【0013】ここで、金属ラミネート樹脂フィルムを熱
溶着してなる電池ケースを用いた単電池(以下、「ラミ
ネート単電池」と略す)は、従来の金属製電池ケースを
用いた単電池と比較して、ケース自体の熱伝導率が小さ
いために、電池内で発熱が起こった場合、ケースを介し
て放熱されにくい。
Here, a unit cell using a battery case formed by heat-welding a metal laminated resin film (hereinafter abbreviated as “laminated unit cell”) is compared with a unit cell using a conventional metal battery case. Therefore, when heat is generated in the battery due to the small thermal conductivity of the case itself, heat is not easily radiated through the case.

【0014】また、ラミネート単電池は電池内で気体が
発生すると容易に膨張変形して、発電要素と電池ケース
の間に隙間ができてしまう。この発電要素と金属ラミネ
ート樹脂フィルムケース間の気体の層が断熱層として作
用して、発電要素で発生した熱が効果的に電池ケースに
伝導できず、放熱することができないものと考えられ
る。
Further, when gas is generated in the battery, the laminated unit cell is easily expanded and deformed, and a gap is formed between the power generating element and the battery case. It is considered that the gas layer between the power generating element and the metal laminated resin film case acts as a heat insulating layer, and the heat generated in the power generating element cannot be effectively conducted to the battery case and cannot be dissipated.

【0015】この結果、過充電時に気体が発生して電池
厚さが増加した時、金属製ケースを用いた単電池と比較
して、ラミネート単電池の方が発電要素の温度が上昇し
やすくなってしまうものと考えられる。
As a result, when gas is generated at the time of overcharging and the battery thickness increases, the temperature of the power generating element is more likely to rise in the laminated unit cell than in the unit cell using the metal case. It is thought to be.

【0016】すなわち、ラミネート単電池の過充電時に
おいては、前述の連鎖的に発生する各発熱反応そのもの
を抑制することとともに、これによって発生する熱を効
果的に電池系外へ放出することが非常に重要になってく
るものと考えられる。
That is, at the time of overcharging of the laminated unit cell, it is very important to suppress the above-mentioned chain-wise exothermic reactions themselves and to effectively release the heat generated thereby to the outside of the battery system. It is thought that it becomes important to.

【0017】非水電解質電池の過充電時の安全性を確保
することを目的として、正極電位が約4.6Vに達した
ときに分解する電解液添加物を用いることによって、正
極活物質の充電反応をそれ以上進行させずに、高電位に
おける正極活物質の分解発熱反応を抑制するという手法
などが提案されているが、この手法によっては、従来の
非水電解質電池より低電圧時あるいは高温放置時に、電
解液添加物の分解によって気体を発生してしまう。
For the purpose of ensuring the safety of the non-aqueous electrolyte battery at the time of overcharging, the use of an electrolyte additive that decomposes when the positive electrode potential reaches about 4.6 V makes it possible to charge the positive electrode active material. A method has been proposed that suppresses the decomposition and exothermic reaction of the positive electrode active material at a high potential without further progressing the reaction. However, depending on this method, it is left at a lower voltage or at a higher temperature than a conventional nonaqueous electrolyte battery. Occasionally, a gas is generated due to decomposition of the electrolyte additive.

【0018】このため、電池の膨張変形を生じやすいラ
ミネート単電池にこの手法を用いることは好ましくな
い。電解液の分解ガスによってラミネート単電池が膨張
変形すると、前述のように発電要素が放熱されにくくな
り、負極の皮膜分解による発熱反応を引き起こし、続い
て正極活物質の熱逸走を引き起こすからである。
For this reason, it is not preferable to use this method for a laminated unit cell in which battery expansion and deformation are likely to occur. This is because, when the laminated cell is expanded and deformed by the decomposition gas of the electrolytic solution, the power generation element is hardly dissipated as described above, causing an exothermic reaction due to decomposition of the film of the negative electrode, and subsequently causing thermal runaway of the positive electrode active material.

【0019】[0019]

【課題を解決するための手段】本発明になる非水電解質
電池は、上記問題を鑑みてなされたものであり、袋状単
電池ケースに、正極板と隔離体と負極板とを有する発電
要素を収納した非水電解質二次電池において、負極板に
接合された集電リード及び正極板に接合された集電リー
ドの厚さが50μm以上500μm以下で、幅が2mm
以上とし、正極板に接合された集電リードが熱伝導率1
00kcal/(m・hr・℃)以上の金属であるか、
負極板に接合された集電リードが熱伝導率70kcal
/(m・hr・℃)以上の金属であるか、あるいは、負
極板に接合された集電リードが熱伝導率70kcal/
(m・hr・℃)以上の金属であり、かつ正極板に接合
された集電リードが熱伝導率100kcal/(m・h
r・℃)以上の金属であることを特徴とするものであ
る。
SUMMARY OF THE INVENTION A non-aqueous electrolyte battery according to the present invention has been made in view of the above problems, and has a bag-shaped unit cell case, a power generating element having a positive electrode plate, an isolator, and a negative electrode plate. In the non-aqueous electrolyte secondary battery containing the battery, the thickness of the current collecting lead joined to the negative electrode plate and the current collecting lead joined to the positive electrode plate is 50 μm or more and 500 μm or less, and the width is 2 mm.
As described above, the current collecting lead bonded to the positive electrode plate has a thermal conductivity of 1
A metal of at least 00 kcal / (m · hr · ° C.)
The current collecting lead bonded to the negative electrode plate has a thermal conductivity of 70 kcal
/ (M · hr · ° C.) or more, or the current collecting lead bonded to the negative electrode plate has a thermal conductivity of 70 kcal /
(M · hr · ° C.) or more, and the current collecting lead bonded to the positive electrode plate has a thermal conductivity of 100 kcal / (m · h).
(r.degree. C.) or higher.

【0020】さらに、本発明は、袋状単電池ケースの材
質が金属ラミネート樹脂フィルムであることを特徴とす
る。
Further, the present invention is characterized in that the material of the bag-shaped unit cell case is a metal laminated resin film.

【0021】本発明によって、ラミネート単電池が膨張
変形して、電池ケースを介して発電要素の放熱が効果的
におこなわれない場合でも、正極板および負極板におけ
る発熱をリードを介して電池系外に効果的に放出して電
池温度の上昇を抑制し、次段階の発熱反応である正極活
物質の熱逸走を抑制することが可能となる。
According to the present invention, even when the laminated unit cell expands and deforms and heat radiation of the power generating element is not effectively performed through the battery case, heat generated in the positive electrode plate and the negative electrode plate is transferred to the outside of the battery system through the leads. To effectively suppress the rise in the battery temperature and suppress the thermal runaway of the positive electrode active material, which is the next exothermic reaction.

【0022】本発明によって、金属ラミネート樹脂フィ
ルムケースを用いた非水電解質二次電池において、従来
の金属製ケースと比較して重量エネルギー密度を向上さ
せることができ、このラミネート単電池を安全化するこ
とができる。
According to the present invention, in a nonaqueous electrolyte secondary battery using a metal laminated resin film case, the weight energy density can be improved as compared with a conventional metal case, and this laminated unit cell can be made safe. be able to.

【0023】[0023]

【発明の実施の形態】本発明になる非水電解質二次電池
は、箔状に成形した平板状の電極を隔離体を介して多数
積層した発電要素あるいはシート状極板を隔離体を介し
て巻回した発電要素を、袋状単電池ケースに収納し、発
電要素の負極板および正極板に接合された金属製リード
が、袋状単電池ケースの熱溶着部分から外部に取り出さ
れた構造である。特に、単電池ケースの材質としては、
金属ラミネート樹脂フィルムを使用する。
BEST MODE FOR CARRYING OUT THE INVENTION A non-aqueous electrolyte secondary battery according to the present invention comprises a power generating element or a sheet-like electrode formed by laminating a large number of flat electrodes formed into a foil shape via an isolator. The wound power generating element is housed in a bag-shaped unit cell case, and the metal leads joined to the negative and positive plates of the power generating element are taken out from the heat-welded part of the bag-shaped unit cell case. is there. In particular, as the material of the cell case,
Use a metal laminated resin film.

【0024】そして、負極板に接合された集電リード及
び正極板に接合された集電リードの、厚さが50μm以
上500μm以下で、幅が2mm以上とするものであ
る。リードの厚さが50μm未満の場合には、リードを
他の機器と接合する際、機械的強度が小さすぎて使用で
きず、また、リードの厚さが500μmを越えると、リ
ード部分の熱溶着封口が困難で、密封できない場合が生
じ、リード部分の重量も大きくなって、電池のエネルギ
ー密度を下げてしまう。
The current collecting lead joined to the negative electrode plate and the current collecting lead joined to the positive electrode plate have a thickness of 50 μm to 500 μm and a width of 2 mm or more. When the thickness of the lead is less than 50 μm, the mechanical strength is too small to be used when joining the lead to other equipment, and when the thickness of the lead exceeds 500 μm, the heat welding of the lead portion occurs. In some cases, sealing is difficult and sealing cannot be performed, and the weight of the lead portion also increases, lowering the energy density of the battery.

【0025】また、リードの幅が2mm未満になると、
電気抵抗が高くなって大電流での充放電では不利であ
り、さらに、取り扱いが困難になる。さらに、リードの
幅の最大値は、リード取り付け部の封口部の長さによっ
て制限を受ける。すなわち、封口部の長さに対して、リ
ードの幅が大きすぎると、封口部の熱溶着部分が短くな
って、封口部の剥離が起こり易くなる。そこで、リード
取り付け部の封口部の長さをLmmとした場合、この封
口部に正極リードと負極リードが取り付けられるため、
それぞれのリードの幅はL/2mm以上にはできない
が、封口部の熱溶着の剥離を防止するためには、リード
の幅は3L/8以下とすることが好ましい。
When the width of the lead is less than 2 mm,
The electric resistance is increased, which is disadvantageous in charging and discharging with a large current, and furthermore, handling becomes difficult. Further, the maximum value of the lead width is limited by the length of the sealing portion of the lead attachment portion. That is, if the width of the lead is too large with respect to the length of the sealing portion, the heat-welded portion of the sealing portion is shortened, and the sealing portion is easily peeled. Therefore, when the length of the sealing portion of the lead attachment portion is Lmm, since the positive electrode lead and the negative electrode lead are attached to this sealing portion,
Although the width of each lead cannot be set to L / 2 mm or more, it is preferable to set the width of the lead to 3L / 8 or less in order to prevent peeling of the thermal welding at the sealing portion.

【0026】そして、正極板に接合された集電リードが
熱伝導率100kcal/(m・hr・℃)以上の金属
であるか、負極板に接合された集電リードが熱伝導率7
0kcal/(m・hr・℃)以上の金属であるか、あ
るいは、負極板に接合された集電リードとしては熱伝導
率が70kcal/(m・hr・℃)以上の金属を使用
し、かつ正極板に接合された集電リードとしては熱伝導
率100kcal/(m・hr・℃)以上の金属を使用
することにより、本発明になる袋状単電池ケースを使用
した非水電解質二次電池は、電池内において何らかの発
熱が生じた時、その熱を、リードを介して効果的に電池
外に放出できるために、過充電時の安全性が高くなるも
のである。
The current collecting lead joined to the positive electrode plate is made of a metal having a thermal conductivity of 100 kcal / (m · hr · ° C.) or more, or the current collecting lead joined to the negative electrode plate has a thermal conductivity of 7 or more.
A metal of 0 kcal / (m · hr · ° C.) or more, or a metal having a thermal conductivity of 70 kcal / (m · hr · ° C.) or more as a current collecting lead bonded to the negative electrode plate; A non-aqueous electrolyte secondary battery using a bag-shaped unit cell case according to the present invention by using a metal having a thermal conductivity of 100 kcal / (m · hr · ° C.) or more as a current collecting lead bonded to a positive electrode plate When some kind of heat is generated in the battery, the heat can be effectively released to the outside of the battery through the lead, so that the safety at the time of overcharging is enhanced.

【0027】本発明は、発電要素を金属ラミネート樹脂
フィルムのような、例えば薄いシート状のソフトケース
に収納しているので、気密性に優れかつシーリング工程
の煩雑さを解消することができ、安価な製造、軽量化が
可能となる。
According to the present invention, since the power generation element is housed in a thin sheet-like soft case such as a metal laminated resin film, the air-tightness is excellent, the complexity of the sealing process can be eliminated, and the cost can be reduced. Production and weight reduction are possible.

【0028】加えて、単電池が気密性に優れるため、従
来のようにハードケース自体の気密性は問題にならな
い。それゆえに、ワンタッチ式の組立構造とすることが
できるため、電池パックの製造を極めて容易にすること
ができる。さらに、電池収納容器には、インサート成形
された外部機器接続用の端子が形成されているので、な
お一層製造工程の容易化並びに製造コストの削減ができ
る。
In addition, since the cells have excellent airtightness, the airtightness of the hard case itself does not matter as in the conventional case. Therefore, since a one-touch assembly structure can be provided, the manufacture of the battery pack can be extremely facilitated. Furthermore, since the terminal for connecting external devices formed by insert molding is formed in the battery housing, the manufacturing process can be further simplified and the manufacturing cost can be further reduced.

【0029】本発明において、金属ラミネート樹脂フィ
ルムの熱溶着部の材質としてポリエチレンを例として述
べたが、これは、ポリプロピレン、ポリエチレンテレフ
タレートなどの熱可塑性高分子材料を使用することがで
きる。
In the present invention, polyethylene has been described as an example of the material of the heat-welded portion of the metal laminate resin film, but a thermoplastic polymer material such as polypropylene or polyethylene terephthalate can be used.

【0030】また袋状単電池ケースとしては、金属ラミ
ネート樹脂フィルムを熱溶着することによって封筒状に
成形したラミネートケースや、2枚の金属ラミネート樹
脂シートの4辺を熱溶着したものや、一枚のシートを二
つ折りにして3辺を熱溶着したもの、金属ラミネート樹
脂シートをプレス成形してカップ状にしたものに発電要
素を入れるようなラミネートケースなど、あらゆる形状
の金属ラミネート樹脂フィルムケースを用いることがで
きる。
Examples of the bag-shaped unit cell case include a laminated case formed into an envelope by heat-sealing a metal-laminated resin film, a case in which four sides of two metal-laminated resin sheets are heat-sealed, and a single sheet. Use a metal-laminated resin film case of any shape, such as one obtained by folding the sheet in two and heat-welding the three sides, or a laminating case in which a power-generating element is placed in a cup-shaped metal-laminated resin sheet. be able to.

【0031】本発明になる非水電解質二次電池に使用す
る電解液溶媒としては、エチレンカーボネート、プロピ
レンカーボネート、ジメチルカーボネート、ジエチルカ
ーボネート、γ−ブチロラクトン、スルホラン、ジメチ
ルスルホキシド、アセトニトリル、ジメチルホルムアミ
ド、ジメチルアセトアミド、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、テトラヒドロフラン、
2−メチルテトラヒドロフラン、ジオキソラン、メチル
アセテート等の極性溶媒、もしくはこれらの混合物を使
用してもよい。
The electrolyte solvent used for the nonaqueous electrolyte secondary battery according to the present invention includes ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide. , 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran,
A polar solvent such as 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof may be used.

【0032】また、有機溶媒に溶解するリチウム塩とし
ては、LiPF6、LiClO4、LiBF4、LiAs
6、LiCF3CO2、LiCF3SO3、LiN(SO2
CF32、LiN(SO2CF2CF32、LiN(CO
CF32およびLiN(COCF2CF32などの塩も
しくはこれらの混合物でもよい。
Examples of lithium salts dissolved in an organic solvent include LiPF 6 , LiClO 4 , LiBF 4 , and LiAs.
F 6 , LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2
CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (CO
Salts such as CF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or mixtures thereof may be used.

【0033】また、北発明になる非水電解質二次電池の
隔離体としては、絶縁性のポリエチレン微多孔膜に電解
液を含浸したものや、高分子固体電解質、高分子固体電
解質に電解液を含有させたゲル状電解質等も使用でき
る。また、絶縁性の微多孔膜と高分子固体電解質等を組
み合わせて使用してもよい。さらに、高分子固体電解質
として有孔性高分子固体電解質膜を使用する場合、高分
子中に含有させる電解液と、細孔中に含有させる電解液
とが異なっていてもよい。
As the separator of the non-aqueous electrolyte secondary battery according to the north invention, an insulating solution obtained by impregnating an insulating microporous polyethylene film with an electrolyte, a solid polymer electrolyte, or a solid polymer electrolyte may be used. A gel electrolyte or the like may be used. Further, an insulating microporous film and a solid polymer electrolyte may be used in combination. Further, when a porous solid polymer electrolyte membrane is used as the solid polymer electrolyte, the electrolyte contained in the polymer and the electrolyte contained in the pores may be different.

【0034】さらに、正極材料たるリチウムを吸蔵放出
可能な化合物としては、無機化合物としては、組成式L
xMO2、またはLiy24(ただしM は遷移金属、
0≦x≦1、0≦y≦2 )で表される、複合酸化物、
トンネル状の空孔を有する酸化物、層状構造の金属カル
コゲン化物を用いることができる。その具体例として
は、LiCoO2 、LiNiO2、LiMn24 、Li
2Mn24 、MnO2、FeO2、V25、V613、T
iO2、TiS2等が挙げられる。また、有機化合物とし
ては、例えばポリアニリン等の導電性ポリマー等が挙げ
られる。さらに、無機化合物、有機化合物を問わず、上
記各種活物質を混合して用いてもよい。
Further, as a compound capable of inserting and extracting lithium as a positive electrode material, an inorganic compound is represented by a composition formula L
i x MO 2 or Li y M 2 O 4, (where M is a transition metal,
A composite oxide represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 2),
An oxide having tunnel-like holes and a metal chalcogenide having a layered structure can be used. As specific examples, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li
2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , T
iO 2 , TiS 2 and the like. Examples of the organic compound include a conductive polymer such as polyaniline. Further, the above-mentioned various active materials may be mixed and used regardless of an inorganic compound or an organic compound.

【0035】さらに、負極材料たる化合物としては、A
l、Si、Pb、Sn、Zn、Cd等とリチウムとの合
金、LiFe23、WO2、MoO2等の遷移金属酸化
物、グラファイト、カーボン等の炭素質材料、Li
5(Li3N)等の窒化リチウム、もしくは金属リチウム
箔、又はこれらの混合物を用いてもよい。
Further, as a compound as a negative electrode material, A
alloys of lithium with l, Si, Pb, Sn, Zn, Cd, etc., transition metal oxides such as LiFe 2 O 3 , WO 2 , MoO 2 , graphite, carbonaceous materials such as carbon, Li
Lithium nitride such as 5 (Li 3 N), or metallic lithium foil, or a mixture thereof may be used.

【0036】[0036]

【実施例】次に、本発明を好適な実施例にもとづき、図
面を参照して説明する。 [実施例1]図1は本発明になる非水電解質二次電池の
外観を示した図である。図1において、1は非水電解質
二次電池であり、2は金属ラミネート樹脂フィルムケー
ス、3および4は金属ラミネート樹脂フィルムケースの
熱溶着部、5は正極リード、6は負極リードである。正
極板、隔離体および負極板からなる電極群が非水系の電
解液(図示省略)とともに金属ラミネート樹脂フィルム
を熱溶着してなるラミネートフィルムケース2に収納し
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described based on preferred embodiments with reference to the drawings. Embodiment 1 FIG. 1 is a view showing the appearance of a non-aqueous electrolyte secondary battery according to the present invention. In FIG. 1, reference numeral 1 denotes a nonaqueous electrolyte secondary battery, 2 denotes a metal laminated resin film case, 3 and 4 denote heat-welded portions of the metal laminated resin film case, 5 denotes a positive electrode lead, and 6 denotes a negative electrode lead. An electrode group consisting of a positive electrode plate, a separator, and a negative electrode plate was housed in a laminated film case 2 formed by heat-welding a metal laminated resin film together with a non-aqueous electrolyte (not shown).

【0037】正極活物質にはリチウムコバルト複合酸化
物を用いた。正極板は集電体に上記リチウムコバルト複
合酸化物が活物質として保持したものである。集電体は
厚さ20μmのアルミニウム箔である。正極板は、結着
剤であるポリフッ化ビニリデン6部と導電剤であるアセ
チレンブラック3部とを活物質91部とともに混合し、
適宜N−メチルピロリドンを加えてペースト状に調製し
た後、その集電体材料の両面に塗布、乾燥することによ
って製作した。正極リードの寸法は幅3mm、厚さ10
0μm、ケースの外部に出ている部分の長さ10mmと
した。
As the positive electrode active material, a lithium cobalt composite oxide was used. The positive electrode plate has a current collector in which the above-described lithium cobalt composite oxide is held as an active material. The current collector is an aluminum foil having a thickness of 20 μm. The positive electrode plate was prepared by mixing 6 parts of polyvinylidene fluoride as a binder and 3 parts of acetylene black as a conductive agent together with 91 parts of an active material,
It was prepared by adding N-methylpyrrolidone appropriately to prepare a paste, and then applying and drying both surfaces of the current collector material. The dimensions of the positive electrode lead are 3 mm in width and 10 in thickness
0 μm, and the length of the portion protruding outside the case was 10 mm.

【0038】負極板は、集電体の両面に、ホスト物質と
してのグラファイト(黒鉛)92部と結着剤としてのポ
リフッ化ビニリデン8部とを混合し、適宜N−メチルピ
ロリドンを加えてペースト状に調製したものを塗布、乾
燥することによって製作した。負極板の集電体は厚さ1
4μmの銅箔を用いた。負極リードの寸法は幅3mm、
厚さ100μm、ケースの外部に出ている部分の長さ1
0mmとした。
The negative electrode plate was prepared by mixing 92 parts of graphite (graphite) as a host substance and 8 parts of polyvinylidene fluoride as a binder on both sides of a current collector, and adding N-methylpyrrolidone as appropriate. Was prepared by coating and drying. The current collector of the negative electrode plate has a thickness of 1
4 μm copper foil was used. The dimensions of the negative electrode lead are 3 mm wide,
Thickness 100μm, length 1 of the part outside the case
0 mm.

【0039】隔離体はポリエチレン微多孔膜とし、ま
た、電解液は、LiPF6を1mol/l含むエチレン
カーボネート:ジエチルカーボネート=3:7(体積
比)の混合液とした。
The separator was a microporous polyethylene membrane, and the electrolyte was a mixed solution of ethylene carbonate: diethyl carbonate = 3: 7 (volume ratio) containing 1 mol / l of LiPF 6 .

【0040】極板の寸法は、正極板が厚さ180μm、
幅49mm、セパレータが厚さ25μm、幅53mm、
負極板が厚さ170μm、幅51mmであり、順に重ね
合わせてポリエチレンの長方形状の巻芯を中心として、
その周囲に長円渦状に巻いた後、金属ラミネート樹脂フ
ィルムケースに収納した。
The dimensions of the electrode plate were such that the thickness of the positive electrode plate was 180 μm,
Width 49mm, separator thickness 25μm, width 53mm,
The negative electrode plate has a thickness of 170 μm and a width of 51 mm.
After being wound in an elliptical shape around it, it was stored in a metal laminated resin film case.

【0041】図2は、図1に示した非水電解質二次電池
のA−A′断面を示したものである。図2において、5
は正極リード、6は負極リード、10は最外層の表面保
護用の厚さ12μmのポリエチレンテレフタレート(P
ET)フィルム、11はバリア層としての厚さ9μmの
アルミニウム箔、12は熱溶着層としての厚さ100μ
mの酸変性ポリエチレン(PE)層であり、気密封口用
のラミネートフィルムケースは10と11と12からな
り、最外層の表面保護用PETフィルム10とバリア層
としてのアルミニウム箔11はウレタン系接着剤で接着
している。
FIG. 2 is a cross-sectional view of the non-aqueous electrolyte secondary battery shown in FIG. In FIG. 2, 5
Is a positive electrode lead, 6 is a negative electrode lead, 10 is a 12 μm thick polyethylene terephthalate (P) for protecting the surface of the outermost layer.
ET) film, 11 is an aluminum foil having a thickness of 9 μm as a barrier layer, and 12 is 100 μm as a heat welding layer.
m, which is an acid-modified polyethylene (PE) layer, the laminated film case for the hermetic opening is composed of 10, 11, and 12, and the outermost surface protective PET film 10 and the aluminum foil 11 as the barrier layer are a urethane-based adhesive. Glued.

【0042】また、図2において、13は接着層、14
は電解液バリア層であり、正極リード5および負極リー
ド6は、金属との接着層13を形成する100μmの酸
変性中密度ポリエチレン層を接着し、その外側に電解液
バリア層14として70μmのエバール樹脂(クラレ製
のエチレンビニルアルコール共重合樹脂)層を設けたも
のである。これらを図2のように重ねて接着すると良好
な気密性が得られる。
In FIG. 2, reference numeral 13 denotes an adhesive layer;
Denotes an electrolyte barrier layer, and the positive electrode lead 5 and the negative electrode lead 6 adhere to a 100 μm acid-modified medium density polyethylene layer forming an adhesive layer 13 with a metal, and have a 70 μm evar as an electrolyte barrier layer 14 outside thereof. A resin (ethylene-vinyl alcohol copolymer resin manufactured by Kuraray) layer is provided. When these are superposed and adhered as shown in FIG. 2, good airtightness can be obtained.

【0043】リードの材質として、正極にアルミニウ
ム、負極に銅を使用した電池をNo.1−1、正極にニ
ッケルメッキ銅、負極に銅を使用した電池をNo.1−
2、正極にアルミニウム、負極にニッケルを使用した電
池をNo.1−3、正極にアルミニウム、負極にステン
レススチール(SUS304)を使用した電池をNo.
1−4、正極にアルミニウム、負極にチタンを使用した
電池をNo.1−5、正極にニッケル、負極に銅を使用
した電池をNo.1−6とした。
As a lead material, a battery using aluminum for the positive electrode and copper for the negative electrode was designated as No. 1-1, a battery using nickel-plated copper for the positive electrode and copper for the negative electrode was designated as No. 1; 1-
No. 2, batteries using aluminum for the positive electrode and nickel for the negative electrode No. 1-3, a battery using aluminum for the positive electrode and stainless steel (SUS304) for the negative electrode was designated as No. 1-3.
Nos. 1-4, batteries using aluminum for the positive electrode and titanium for the negative electrode were designated as Nos. 1-4. No. 1-5, a battery using nickel for the positive electrode and copper for the negative electrode was designated as No. 1; 1-6.

【0044】このようにして、公称容量500mAhの
ラミネート単電池を試作した。 [実施例2]正極リードおよび負極リードを形成する金
属の材質が異なる以外は、実施例1と同様のラミネート
単電池を製作した。
In this manner, a trial production of a laminated unit cell having a nominal capacity of 500 mAh was made. Example 2 A laminated unit cell similar to that of Example 1 was manufactured except that the materials of the metal forming the positive electrode lead and the negative electrode lead were different.

【0045】リードの材質として、正極にニッケル、負
極にニッケルを使用した電池をNo.2−1、正極にニ
ッケル、負極にステンレススチール(SUS304)を
使用した電池をNo.2−2、正極にニッケル、負極に
チタンを使用した電池をNo.3−3とした。 [実施例3]正極リードおよび負極リードの幅が異なる
以外は、実施例1の電池No.1−1と同様のラミネー
ト単電池を製作した。
As a lead material, a battery using nickel for the positive electrode and nickel for the negative electrode was No. No. 2-1. A battery using nickel for the positive electrode and stainless steel (SUS304) for the negative electrode was designated as No. 2. No. 2-2, a battery using nickel for the positive electrode and titanium for the negative electrode was designated as No. 2. 3-3. [Example 3] Battery No. 1 of Example 1 was different except that the widths of the positive electrode lead and the negative electrode lead were different. A laminated unit cell similar to 1-1 was manufactured.

【0046】リードの幅を、正・負極とも1.5mmと
した電池をNo.3−1、2mmとした電池をNo.3
−2、2.5mmとした電池をNo.3−3とした。 [実施例4]正極リードおよび負極リードの厚さが異な
る以外は、実施例1の電池No.1−1と同様のラミネ
ート単電池を製作した。
A battery having a lead width of 1.5 mm for both the positive and negative electrodes was designated as No. Nos. 3-1 and 2 mm were used for the batteries. 3
-2, 2.5 mm batteries 3-3. Example 4 Battery No. 1 of Example 1 was different except that the thicknesses of the positive electrode lead and the negative electrode lead were different. A laminated unit cell similar to 1-1 was manufactured.

【0047】リードの厚さを、正・負極とも40μmと
した電池をNo.4−1、50μmとした電池をNo.
4−2、500μmとした電池をNo.4−3、520
μmとした電池をNo.4−4とした。
A battery having a lead thickness of 40 μm for both the positive and negative electrodes was designated as No. Nos. 4-1 and 50 μm,
No. 4-2, the battery of 500 μm was designated as No. 4-3, 520
No. of the battery having the size of μm. 4-4.

【0048】実施例1〜4のラミネート単電池の安全性
を比較するために、25℃において1A/10Vまで過
充電をおこなった。その結果を表1に示す。
To compare the safety of the laminated single batteries of Examples 1 to 4, overcharging was performed at 25 ° C. to 1 A / 10 V. Table 1 shows the results.

【0049】[0049]

【表1】 [Table 1]

【0050】注 熱伝導率の単位は、kcal/(mh
・r・℃) 表1より、No.1−1〜1−6、3−2、3−3、4
−1〜4−3の電池は、実施例No.2−1〜2−3、
3−1、4−4の電池と比較して、過充電時の安全性が
優れていることがわかる。
Note: The unit of the thermal conductivity is kcal / (mh
・ R ・ ℃) From Table 1, No. 1-1 to 1-6, 3-2, 3-3, 4
The batteries Nos. -1 to 4-3 are described in Example Nos. 2-1 to 2-3,
It turns out that the safety at the time of overcharge is superior to the batteries 3-1 and 4-4.

【0051】ここで、上記の結果となった原因を明らか
とするために、実施例No.1−1〜4−4の電池を、
電流1Aで充電し、端子電圧が5.8Vになった時に充電
を停止して、ドライ雰囲気下でこれらの電池の解体調査
をおこなった。
Here, in order to clarify the cause of the above result, the embodiment No. 1-1 to 4-4 batteries,
The batteries were charged at a current of 1 A, and when the terminal voltage reached 5.8 V, charging was stopped, and disassembly inspection of these batteries was performed in a dry atmosphere.

【0052】その結果、実施例No.1−1〜1−6、
3−2、3−3、4−1〜4−4の電池のエレメントに
おいて、セパレータは電池を製作した時と同等の白色を
保っていたが、実施例No.2−1〜2−3、3−1で
は、負極リード付近に対向していたセパレータが透明に
変色していた。また、実施例2−3では、正極リード付
近に対向していたセパレータが透明に変色していた。
As a result, Example No. 1-1 to 1-6,
In the battery elements of Nos. 3-2, 3-3, and 4-1 to 4-4, the separator maintained the same white color as when the battery was manufactured. In 2-1 to 2-3 and 3-1, the separator facing the vicinity of the negative electrode lead was discolored to be transparent. In Example 2-3, the separator facing the vicinity of the positive electrode lead was discolored to be transparent.

【0053】このようなセパレータの変色は、過充電時
に一度電池温度がセパレータの融点付近まで上昇したこ
とを示唆している。すなわち、実施例No.2−1〜2
−3、3−1の電池は、正極リードまたは負極リードの
熱伝導率が低く、電池内における発熱速度がリードによ
っておこなわれる放熱の速度よりも大きかったために、
実施例No.1−1〜1−6、3−2、3−3、4−1
〜4−4の電池と比較して、電池温度が上昇したものと
考えられる。このために、実施例No.2−1〜2−
3、3−1の電池では、電池温度が正極活物質の自己分
解温度にまで達して熱逸走を引き起こし、過充電時の安
全性が低かったものと推察される。
Such discoloration of the separator suggests that the battery temperature once increased to near the melting point of the separator during overcharge. That is, Example No. 2-1 to 2
In the batteries of -3 and 3-1, the heat conductivity of the positive electrode lead or the negative electrode lead was low, and the heat generation rate in the battery was higher than the rate of heat radiation performed by the leads.
Example No. 1-1 to 1-6, 3-2, 3-3, 4-1
It is considered that the battery temperature increased as compared with the batteries of Nos. 4-4. For this reason, in Example No. 2-1 to 2-
In the batteries of Nos. 3 and 3-1, it is presumed that the battery temperature reached the self-decomposition temperature of the positive electrode active material and caused thermal runaway, resulting in low safety during overcharge.

【0054】また、No.4−4の電池は、リードの熱
伝導に問題はなかったが、熱溶着部分の長さが不十分な
ため、内圧のわずかの上昇でも電池が破裂した。また、
No.4−1の電池は、過充電試験では問題はなかった
が、リード部分の機械的強度が弱く、取り扱いや他の機
器との接続の場合に問題を起こした。
In addition, No. The battery of No. 4-4 had no problem with the heat conduction of the lead, but the battery was ruptured even with a slight increase in the internal pressure because the length of the heat-welded portion was insufficient. Also,
No. The battery of 4-1 did not have any problem in the overcharge test, but the mechanical strength of the lead portion was weak, causing a problem in handling and connection with other devices.

【0055】以上のように、負極リード及び正極リード
の厚さが50μm以上500μm以下で、幅が2mm以
上であり、正極リードの熱伝導率が100kcal/
(mh・r・℃)以上、かつ負極リードの熱伝導率が7
0kcal/(mh・r・℃)以上である場合に、過充
電時の安全性が優れた非水電解質二次電池が得られるこ
とがわかった。
As described above, the thickness of the negative electrode lead and the positive electrode lead is 50 μm or more and 500 μm or less, the width is 2 mm or more, and the thermal conductivity of the positive electrode lead is 100 kcal /
(Mh.r..degree. C.) or more and the thermal conductivity of the negative electrode lead is 7
It was found that a non-aqueous electrolyte secondary battery having excellent safety at the time of overcharging can be obtained when it is 0 kcal / (mh · r · ° C.) or more.

【0056】[0056]

【発明の効果】本発明になる正極リードおよび負極リー
ドを使用することにより、電池内部で発熱が生じた場
合、その熱がリードを介して効果的に電池外部に放出さ
れるため、電池の安全化を確保でき、さらに、非水電解
質電池の軽量化および薄型化を可能となり、携帯用電子
機器の部品として有益である。
By using the positive electrode lead and the negative electrode lead according to the present invention, when heat is generated inside the battery, the heat is effectively released to the outside of the battery via the lead, so that the safety of the battery is improved. Therefore, the weight and thickness of the nonaqueous electrolyte battery can be reduced, which is useful as a component of a portable electronic device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる非水電解質二次電池の外観を示す
図。
FIG. 1 is a diagram showing the appearance of a non-aqueous electrolyte secondary battery according to the present invention.

【図2】本発明になる非水電解質二次電池のA−A′断
面図。
FIG. 2 is a sectional view taken along line AA ′ of the nonaqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 非水電解質二次電池 2 金属ラミネート樹脂フィルムケース 3、4 金属ラミネート樹脂フィルムケースの熱溶着部 5 正極リード 6 負極リード DESCRIPTION OF SYMBOLS 1 Non-aqueous electrolyte secondary battery 2 Metal laminated resin film case 3, 4 Heat-welded part of metal laminated resin film case 5 Positive electrode lead 6 Negative electrode lead

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H011 AA02 AA13 BB03 CC02 CC06 CC10 EE04 FF04 KK00 KK01 5H022 AA09 CC03 CC08 CC09 CC11 CC16 CC21 EE01 EE06 5H029 AJ12 AK02 AK03 AL02 AL03 AL06 AL07 AL08 AL12 AM03 AM04 AM05 AM06 DJ05 DJ07 EJ01 EJ11 HJ00 HJ04  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) EJ11 HJ00 HJ04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 袋状単電池ケースに、正極板と隔離体と
負極板とを有する発電要素を収納した非水電解質二次電
池において、負極板に接合された集電リード及び正極板
に接合された集電リードの厚さが50μm以上500μ
m以下で、幅が2mm以上であり、正極板に接合された
集電リードが熱伝導率100kcal/(m・hr・
℃)以上の金属であることを特徴とする非水電解質二次
電池。
1. A non-aqueous electrolyte secondary battery in which a power generating element having a positive electrode plate, an isolator, and a negative electrode plate is housed in a bag-shaped unit cell case, and joined to a current collecting lead and a positive electrode plate joined to the negative electrode plate. The thickness of the current collecting lead is 50 μm or more and 500 μm
m and a width of 2 mm or more, and the current collecting lead joined to the positive electrode plate has a thermal conductivity of 100 kcal / (m · hr ·
C) or higher metal.
【請求項2】 袋状単電池ケースに、正極板と隔離体と
負極板とを有する発電要素を収納した非水電解質二次電
池において、負極板に接合された集電リード及び正極板
に接合された集電リードの厚さが50μm以上500μ
m以下で、幅が2mm以上であり、負極板に接合された
集電リードが熱伝導率70kcal/(m・hr・℃)
以上の金属であることを特徴とする非水電解質二次電
池。
2. A non-aqueous electrolyte secondary battery in which a power generation element having a positive electrode plate, an isolator, and a negative electrode plate is housed in a bag-shaped unit cell case, and joined to a current collecting lead and a positive electrode plate joined to the negative electrode plate. The thickness of the current collecting lead is 50 μm or more and 500 μm
m and a width of 2 mm or more, and the current collecting lead bonded to the negative electrode plate has a thermal conductivity of 70 kcal / (m · hr · ° C.).
A non-aqueous electrolyte secondary battery comprising the above metal.
【請求項3】 袋状単電池ケースに、正極板と隔離体と
負極板とを有する発電要素を収納した非水電解質二次電
池において、負極板に接合された集電リード及び正極板
に接合された集電リードの厚さが50μm以上500μ
m以下で、幅が2mm以上であり、負極板に接合された
集電リードが熱伝導率70kcal/(m・hr・℃)
以上の金属であり、かつ正極板に接合された集電リード
が熱伝導率100kcal/(m・hr・℃)以上の金
属であることを特徴とする非水電解質二次電池。
3. A non-aqueous electrolyte secondary battery in which a power generation element having a positive electrode plate, a separator, and a negative electrode plate is housed in a bag-shaped unit cell case, and joined to a current collecting lead and a positive electrode plate joined to the negative electrode plate. The thickness of the current collecting lead is 50 μm or more and 500 μm
m and a width of 2 mm or more, and the current collecting lead bonded to the negative electrode plate has a thermal conductivity of 70 kcal / (m · hr · ° C.).
A non-aqueous electrolyte secondary battery comprising the above metal, and the current collecting lead bonded to the positive electrode plate is a metal having a thermal conductivity of 100 kcal / (m · hr · ° C.) or more.
【請求項4】 袋状単電池ケースの材質が金属ラミネー
ト樹脂フィルムであることを特徴とする、請求項1〜3
記載の非水電解質二次電池。
4. The material of the bag-shaped unit cell case is a metal laminated resin film.
The nonaqueous electrolyte secondary battery according to the above.
JP11099572A 1999-04-07 1999-04-07 Nonaqueous electrolyte secondary battery Withdrawn JP2000294221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11099572A JP2000294221A (en) 1999-04-07 1999-04-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11099572A JP2000294221A (en) 1999-04-07 1999-04-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000294221A true JP2000294221A (en) 2000-10-20
JP2000294221A5 JP2000294221A5 (en) 2006-05-25

Family

ID=14250839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11099572A Withdrawn JP2000294221A (en) 1999-04-07 1999-04-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000294221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345090A (en) * 2000-05-31 2001-12-14 Yuasa Corp Sealed-type battery
US7368202B2 (en) 2003-07-07 2008-05-06 Tdk Corporation Electrochemical device having opposing electrodes
JP2009541971A (en) * 2006-06-26 2009-11-26 エルジー・ケム・リミテッド Battery cell electrode plate and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345090A (en) * 2000-05-31 2001-12-14 Yuasa Corp Sealed-type battery
US7368202B2 (en) 2003-07-07 2008-05-06 Tdk Corporation Electrochemical device having opposing electrodes
JP2009541971A (en) * 2006-06-26 2009-11-26 エルジー・ケム・リミテッド Battery cell electrode plate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4977375B2 (en) Lithium ion battery and battery pack using the same
EP1445806B1 (en) Electric cell
JP4862211B2 (en) Sealed secondary battery
JP4432146B2 (en) Nonaqueous electrolyte secondary battery
JP5462304B2 (en) Battery pack using lithium-ion battery
JP2000156227A (en) Nonaqueous electrolyte battery
JP2001167752A (en) Non-aqueous electrolyte secondary battery
JP3579227B2 (en) Thin rechargeable battery
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP2001273930A (en) Manufacturing method of polymer battery
JP2010040227A (en) Lithium-ion secondary battery
JP2002151020A (en) Electrochemical device
JP2000277159A (en) Nonaqueous electrolyte secondary battery
JP2000353501A (en) Nonaqueous electrolyte secondary battery
JP2000357536A (en) Nonaqueous electrolyte battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JPH11162436A (en) Thin secondary battery
JP2000285902A (en) Battery
JP2000156211A (en) Battery and battery pack
JP2000294221A (en) Nonaqueous electrolyte secondary battery
JP2000021368A (en) Battery and battery pack
JP2000277160A (en) Nonaqueous electrolyte secondary battery
JP2000100404A (en) Nonaqueous electrolyte battery and battery pack
JP4736329B2 (en) Lithium ion secondary battery
JP2000277092A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070427