JP2009541971A - Battery cell electrode plate and method of manufacturing the same - Google Patents

Battery cell electrode plate and method of manufacturing the same Download PDF

Info

Publication number
JP2009541971A
JP2009541971A JP2009517960A JP2009517960A JP2009541971A JP 2009541971 A JP2009541971 A JP 2009541971A JP 2009517960 A JP2009517960 A JP 2009517960A JP 2009517960 A JP2009517960 A JP 2009517960A JP 2009541971 A JP2009541971 A JP 2009541971A
Authority
JP
Japan
Prior art keywords
electrode
current collector
tap
electrode plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009517960A
Other languages
Japanese (ja)
Other versions
JP5112429B2 (en
Inventor
ユー、スンジェ
キム、ミン、ス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2009541971A publication Critical patent/JP2009541971A/en
Application granted granted Critical
Publication of JP5112429B2 publication Critical patent/JP5112429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

一対の電極板を備えた電極板装置であり、電極板が異種材料(a、b)から形成された集電体を備えており、電極タップがそれぞれの集電体に形成されており、且つ各集電体の電極タップを除いた各集電体の少なくとも一つの主面に電極活物質が適用されている構造に構成されている電極板装置において、材料(b)から形成された金属片が、材料(a)から形成された集電体の端部に溶着されて前記電極タップを形成しており、電極活物質は金属片が前記集電体に溶着された後に集電体に適用されたものである、電極板装置が開示されている。さらに、この電極板装置の製造方法も開示されている。本発明による電極板は、電極板を備えた2個のバッテリーセルを互いに直列に接続してバッテリーモジュールを製造するとき、カソード端子とアノード端子との間の溶接性を向上できる効果がある。さらに、本発明による電極板は、塩を含む雰囲気中での耐腐食性を向上できる効果がある。  An electrode plate device comprising a pair of electrode plates, the electrode plates comprising current collectors formed from different materials (a, b), electrode taps being formed on each current collector, and In an electrode plate device configured to have an electrode active material applied to at least one main surface of each current collector excluding electrode taps of each current collector, a metal piece formed from material (b) However, the electrode tap is formed by welding to the end of the current collector formed of the material (a), and the electrode active material is applied to the current collector after the metal piece is welded to the current collector. An electrode plate device is disclosed. Furthermore, a method for manufacturing the electrode plate device is also disclosed. The electrode plate according to the present invention has an effect of improving the weldability between the cathode terminal and the anode terminal when a battery module is manufactured by connecting two battery cells provided with the electrode plate in series with each other. Furthermore, the electrode plate according to the present invention has an effect of improving the corrosion resistance in an atmosphere containing salt.

Description

発明の分野Field of Invention

本発明は、バッテリーセル用電極板に関する。より詳細には、本発明は、一対の電極板を備えた電極板装置であり、前記電極板が異種材料(a、b)から形成された集電体を備えており、電極タップがそれぞれの集電体に形成されており、且つ各集電体の電極タップを除いた各集電体の少なくとも一つの主面に電極活物質が適用されている構造に構成されている電極板装置において、前記材料(b)から形成された金属片が、前記材料(a)から形成された集電体の端部に溶着されて前記電極タップを形成しており、前記電極活物質は前記金属片が前記集電体に溶着された後に前記集電体に適用されたものである、電極板装置に関する。   The present invention relates to an electrode plate for a battery cell. More specifically, the present invention is an electrode plate device including a pair of electrode plates, wherein the electrode plates include current collectors formed from different materials (a, b), and the electrode taps are respectively provided. In the electrode plate device that is formed on the current collector and is configured to have an electrode active material applied to at least one main surface of each current collector excluding the electrode taps of each current collector, The metal piece formed from the material (b) is welded to the end of the current collector formed from the material (a) to form the electrode tap, and the electrode active material is formed from the metal piece. The present invention relates to an electrode plate device that is applied to the current collector after being welded to the current collector.

最近、充放電できる二次電池が、ワイヤレス携帯機器用エネルギー源として広く使用されている。また、二次電池は、化石燃料を用いた既存のガソリン自動車及びディーゼル自動車により生じる空気汚染等の問題を解決するために開発された電気自動車(EV)及びハイブリッド電気自動車(HEV)用電源としてもかなり注目されている。   Recently, secondary batteries that can be charged and discharged have been widely used as energy sources for wireless portable devices. The secondary battery is also used as a power source for electric vehicles (EV) and hybrid electric vehicles (HEV) developed to solve problems such as air pollution caused by existing gasoline and diesel vehicles using fossil fuels. It has attracted considerable attention.

小型携帯機器は、各機器には一つ又は数個のバッテリーセルを使用している。一方、車両等の中型又は大型装置では、中型又は大型装置には高出力及び大容量が必要であることから、複数の互いに電気的に接続されたバッテリーセルを備えた中型又は大型バッテリーモジュールが使用されている。   Small portable devices use one or several battery cells for each device. On the other hand, medium-sized or large-sized devices such as vehicles require medium-sized or large-sized devices that require a high output and large capacity, so a medium-sized or large-sized battery module having a plurality of battery cells electrically connected to each other is used. Has been.

好ましくは、中型又は大型バッテリーモジュールは、可能ならば小サイズ、軽重量で製造される。このため、高集積度で積層でき且つ重量対容量比が小さい、角柱バッテリー又はポーチ状バッテリーを、通常中型又は大型バッテリーモジュールのバッテリーセルとして使用する。とりわけ、現在、被覆部材としてアルミニウム積層シートを使用したポーチ状バッテリーに大きな関心がもたれるようになってきている。これは、ポーチ状バッテリーが軽量であること、ポーチ状バッテリーの製造コストが低いことによる。   Preferably, the medium or large battery module is manufactured in a small size and a light weight if possible. For this reason, prismatic batteries or pouch-shaped batteries that can be stacked with a high degree of integration and have a small weight-to-capacity ratio are usually used as battery cells for medium- or large-sized battery modules. In particular, at present, there is a great interest in pouch-shaped batteries using an aluminum laminated sheet as a covering member. This is because the pouch-shaped battery is lightweight and the manufacturing cost of the pouch-shaped battery is low.

ポーチ状バッテリーは、カソードとアノードとの間にそれぞれセパレータを配置しながら複数のカソードと複数のアノードとを順次積層した構造に構成された電極アセンブリを備えている。カソードとアノードから、複数のカソードタップ及び複数のアノードタップが突き出ている。これらのカソードタップ及びアノードタップは、溶着によりそれぞれカソードリード及びアノードリードに結合されて外部入力端子及び外部出力端子を形成している。ポーチ状バッテリーでは、カソードは通常アルミニウムから形成されており、一方、アノードは通常銅から形成されている。具体的には、各カソードを構成しているカソード集電体、カソードタップ及びカソードリードはアルミニウムから形成されており、一方、各アノードを構成しているアノード集電体、アノードタップ及びアノードリードは銅から形成されている。したがって、カソード及びアノードを構成している部品が溶着により互いに結合しているけれども、多量の熱は発生しない。   The pouch-shaped battery includes an electrode assembly configured to have a structure in which a plurality of cathodes and a plurality of anodes are sequentially stacked while a separator is disposed between the cathode and the anode. A plurality of cathode taps and a plurality of anode taps protrude from the cathode and the anode. These cathode taps and anode taps are joined to the cathode lead and the anode lead, respectively, by welding to form an external input terminal and an external output terminal. In pouch-shaped batteries, the cathode is usually made of aluminum, while the anode is usually made of copper. Specifically, the cathode current collector, cathode tap and cathode lead constituting each cathode are made of aluminum, while the anode current collector, anode tap and anode lead constituting each anode are It is made of copper. Therefore, although the parts constituting the cathode and the anode are bonded to each other by welding, a large amount of heat is not generated.

一方、中型又は大型バッテリーモジュールでは、高出力を得るために、バッテリーセルが互いに直列に接続されている。   On the other hand, in the middle- or large-sized battery module, the battery cells are connected in series with each other in order to obtain high output.

ポーチ状バッテリーセルは、アルミニウムから形成されたカソードリードと銅から形成されたアノードリードとの間に位置するカップリングを介して互いに接続されている。この接続は溶着によりおこなうことができる。しかしながら、異種材料から形成された2つの電極リードを溶着により互いに結合したときには、多量の熱が発生する。発生した熱は、電極集電体に適用した電極活物質に伝わり、その結果、電極活物質が劣化する。また、バッテリーセルが、塩等の腐食を生じる材料を含む環境にさらされると、アルミニウムの腐食性が比較的大きいために、バッテリーセル間の接続部で腐食が生じる可能性が高くなる。   The pouch-shaped battery cells are connected to each other through a coupling located between a cathode lead made of aluminum and an anode lead made of copper. This connection can be made by welding. However, when two electrode leads formed of different materials are bonded to each other by welding, a large amount of heat is generated. The generated heat is transferred to the electrode active material applied to the electrode current collector, and as a result, the electrode active material is deteriorated. Further, when the battery cell is exposed to an environment including a material that causes corrosion such as salt, the corrosiveness of aluminum is relatively high, so that the possibility of corrosion occurring at the connection portion between the battery cells is increased.

上記の問題を解決するために、日本国特許公開公報第2004−247244号は、銅とアルミニウムから形成されたカソードリード及び銅から形成されたアノードリードを用いてバッテリーセルを構成する技術を開示している。具体的には、銅をカソードリードのアルミニウム端に接合し、接合領域を電気絶縁部材で覆って、カソードリードとアノードリードが、それらの間の電気接続領域が同じ材料から形成されるようにすることにより、溶接プロセスが熱を発生することなく容易におこなうことができる。しかしながら、カソードリードの銅部とアルミニウム部の間の接合領域は、溶着ではなく樹脂を適用することにより形成されたものであり、そして銅部とアルミニウム部が互いに接触しているので、この接合領域での銅とアルミニウムとの間の結合力は小さい。さらに、バッテリーセルの電気電導中の接続抵抗が増加する。さらに、銅/アルミニウム接合領域が電極リード上に位置しており、したがって、銅/アルミニウム接合領域がバッテリーケースの封止領域に隣接する可能性がある。このため、バッテリーケースの封止部のサイズを大きくする必要がある。一方、電極アセンブリと封止部との間の空間、すなわち、電極タップと電極リードが互いに結合されている領域の空間が増加するので、バッテリーの安全性が低下するとともに、バッテリーのサイズが増加する。   In order to solve the above problem, Japanese Patent Publication No. 2004-247244 discloses a technique for forming a battery cell using a cathode lead formed from copper and aluminum and an anode lead formed from copper. ing. Specifically, copper is bonded to the aluminum end of the cathode lead and the bonding region is covered with an electrically insulating member so that the cathode lead and the anode lead are formed of the same material between the cathode lead and the anode lead. Thus, the welding process can be easily performed without generating heat. However, the bonding area between the copper part and the aluminum part of the cathode lead is formed by applying resin instead of welding, and this bonding area is in contact with the copper part and the aluminum part. The bonding force between copper and aluminum is small. Furthermore, the connection resistance during the electrical conduction of the battery cell increases. Furthermore, the copper / aluminum junction region is located on the electrode lead, and therefore the copper / aluminum junction region may be adjacent to the battery case sealing region. For this reason, it is necessary to increase the size of the sealing part of the battery case. On the other hand, since the space between the electrode assembly and the sealing portion, that is, the space where the electrode tap and the electrode lead are coupled to each other is increased, the safety of the battery is lowered and the size of the battery is increased. .

また、日本国特許公開公報第2005−339931号は、銅から形成されたアノードリードの他にアルミニウムから形成されたカソードリードを備えた各バッテリーセルの外に突き出ているアノードリードの突出部をアルミニウムでコーティングし、カソードリードとアノードリードにスルーホールを形成することにより、溶着せずにバッテリーセル間を結合し、したがって、バッテリーセル間の結合領域での腐食を防止する技術を開示している。   Japanese Patent Application Publication No. 2005-339931 discloses an anode lead protruding outside each battery cell having a cathode lead formed of aluminum in addition to an anode lead formed of copper. In this technique, the through holes are formed in the cathode lead and the anode lead to bond the battery cells without welding, thus preventing the corrosion in the bonding region between the battery cells.

しかしながら、上記の技術では、アノードリードにアルミニウムをコーティングする過程でメッキ等の追加のプロセスが必要である。その結果、製造方法が複雑であり、したがって、バッテリーセルの製造コストが増加する。   However, the above technique requires an additional process such as plating in the process of coating the anode lead with aluminum. As a result, the manufacturing method is complicated, thus increasing the manufacturing cost of the battery cell.

したがって、バッテリーセルを互いに直列に接続する際のカソードリードとアノードリードとの間の溶接性を向上、及び塩を含む雰囲気中での腐食抵抗を向上させる技術が非常に必要とされている。   Therefore, there is a great need for a technique for improving the weldability between the cathode lead and the anode lead when battery cells are connected in series with each other and improving the corrosion resistance in an atmosphere containing salt.

したがって、本発明は、上記の問題及び解決すべき他の技術上の問題を解決するためになされたものである。   Therefore, the present invention has been made to solve the above problems and other technical problems to be solved.

本発明の目的は、2つの隣接するバッテリーセルを互いに直列に接続してバッテリーモジュールを製造する際のカソードリードとアノードリードとの溶接性を向上することができる電極板を提供することである。   An object of the present invention is to provide an electrode plate that can improve the weldability between a cathode lead and an anode lead when a battery module is manufactured by connecting two adjacent battery cells in series.

本発明の別の目的は、塩を含む雰囲気中での腐食抵抗を向上させることができる電極板を提供することである。   Another object of the present invention is to provide an electrode plate capable of improving corrosion resistance in an atmosphere containing salt.

本発明のさらなる目的は、上記電極板の製造方法、上記電極板の製造方法により製造された電極板を備えたバッテリーセル、及び複数のバッテリーセルを単位セルとして備えた中型又は大型のバッテリーモジュールを提供することである。   A further object of the present invention is to provide a method for producing the above electrode plate, a battery cell comprising the electrode plate produced by the method for producing the electrode plate, and a medium or large battery module comprising a plurality of battery cells as unit cells. Is to provide.

本発明の一態様によれば、上記及び他の目的は、一対の電極板を備えた電極板装置であり、前記電極板が異種材料(a、b)から形成された集電体を備えており、電極タップがそれぞれの集電体に形成されており、且つ各集電体の電極タップを除いた各集電体の少なくとも一つの主面に電極活物質が適用されている構造に構成されている電極板装置において、前記材料(b)から形成された金属片が、前記材料(a)から形成された集電体の端部に溶着されて前記電極タップを形成しており、前記電極活物質は前記金属片が前記集電体に溶着された後に前記集電体に適用されたものである、電極板装置を提供することにより達成することができる。   According to an aspect of the present invention, the above and other objects are an electrode plate device including a pair of electrode plates, and the electrode plates include a current collector formed of different materials (a, b). The electrode taps are formed on the respective current collectors, and the electrode active material is applied to at least one main surface of each current collector excluding the electrode taps of each current collector. In the electrode plate apparatus, a metal piece formed from the material (b) is welded to an end of a current collector formed from the material (a) to form the electrode tap, and the electrode The active material can be achieved by providing an electrode plate device that is applied to the current collector after the metal piece is welded to the current collector.

本発明による電極板においては、カソード集電体及びアノード集電体は異種材料(a、b)から形成され、一方、カソード集電体及びアノード集電体から突き出た電極タップは同じ材料(b)から形成されている。   In the electrode plate according to the present invention, the cathode current collector and the anode current collector are formed of different materials (a, b), while the electrode taps protruding from the cathode current collector and the anode current collector are the same material (b ).

したがって、バッテリーセルを本発明による電極板を用いて製造するとき、バッテリーセルから突き出たカソードタップ及びアノードタップを、同じ材料から形成するので、カソードタップ及びアノードタップと同じ材料から形成された電極リードをカソードタップ及びアノードタップに結合することができる。   Therefore, when the battery cell is manufactured using the electrode plate according to the present invention, the cathode tap and the anode tap protruding from the battery cell are formed from the same material, so that the electrode lead formed from the same material as the cathode tap and the anode tap. Can be coupled to the cathode and anode taps.

その結果、複数のバッテリーセルを互いに電気的に接続するとき、同じ材料から形成された電極リードを互いに結合することにより、電極タップと電極リードとの間の溶接性及びそれぞれの電極リード間の溶接性が向上する。また、異種材料間の結合領域は電極タップ上に位置しているので、バッテリーセルのサイズは増加せず、そして従来のバッテリーセルとサイズが同じであるバッテリーケースの封止部での封止性は減少しない。さらに、材料(a)が比較的高い耐腐食性を有している場合には、材料(a)をバッテリーセルの内部に位置されることにより、塩を含む雰囲気中での耐腐食性を向上させる。   As a result, when a plurality of battery cells are electrically connected to each other, the electrode leads formed of the same material are coupled to each other, so that the weldability between the electrode tap and the electrode lead and the welding between the respective electrode leads are achieved. Improves. Also, since the bonding region between different materials is located on the electrode tap, the size of the battery cell does not increase, and the sealing performance at the sealing part of the battery case that is the same size as the conventional battery cell Will not decrease. Furthermore, when the material (a) has a relatively high corrosion resistance, the corrosion resistance in an atmosphere containing salt is improved by positioning the material (a) inside the battery cell. Let

好ましくは、金属片の集電体への溶着は、レーザーシーム溶接又は抵抗溶接によりおこなう。一般的に、レーザーシーム溶接又は抵抗溶接により、高結合力が得られる。しかしながら、結合領域では多量の熱が発生する。したがって、レーザーシーム溶接又は抵抗溶接を、電極活物質が適用された集電体から突き出ている電極タップに対しておこなうと、溶接熱が集電体に伝わり、その結果、電極活物質が劣化し、したがって、結合力が低下する。このため、溶接プロセスは、結合力は低いけれども溶接熱量が比較的小さいことから、通常超音波溶接方法を用いておこなう。   Preferably, the metal piece is welded to the current collector by laser seam welding or resistance welding. In general, high bond strength is obtained by laser seam welding or resistance welding. However, a large amount of heat is generated in the bonding region. Therefore, when laser seam welding or resistance welding is performed on an electrode tap protruding from a current collector to which an electrode active material is applied, welding heat is transferred to the current collector, resulting in deterioration of the electrode active material. Therefore, the binding force is reduced. For this reason, the welding process is usually performed using an ultrasonic welding method because the welding force is low but the heat of welding is relatively small.

一方、本発明によれば、金属片を集電体に溶着して電極タップを形成した後、電極活物質を集電体に適用する。その結果、高結合力が得られるレーザーシーム溶接又は抵抗溶接を使用することができる。   On the other hand, according to the present invention, after the metal piece is welded to the current collector to form the electrode tap, the electrode active material is applied to the current collector. As a result, it is possible to use laser seam welding or resistance welding that provides a high bond strength.

材料(b)から形成された金属片を、材料(a)から形成された集電体に直接溶着してもよい。しかしながら、好ましくは、材料(b)から形成された金属片を、集電体から突き出た小サイズの溶着部に溶着する。集電体の溶着部により、金属片の溶接操作がさらに容易になる。   The metal piece formed from the material (b) may be directly welded to the current collector formed from the material (a). However, preferably, the metal piece formed from the material (b) is welded to a small-sized welded portion protruding from the current collector. The welding operation of the metal piece is further facilitated by the welded portion of the current collector.

好ましい実施態様によれば、電極板対を構成している電極板のうちの一つ、すなわち、材料(a)から形成された電極板はアルミニウムから形成された集電体を備えており、電極板対を構成している電極板のうちの他の電極板、すなわち、材料(b)から形成された電極板は銅から形成された集電体を備えている。例えば、アルミニウムから形成された集電体をカソード板として使用するとき、銅から形成された集電体をアノード板として使用してもよい。   According to a preferred embodiment, one of the electrode plates constituting the electrode plate pair, that is, the electrode plate formed from the material (a) comprises a current collector formed from aluminum, The other electrode plate among the electrode plates constituting the plate pair, that is, the electrode plate formed from the material (b) includes a current collector formed from copper. For example, when a current collector formed from aluminum is used as the cathode plate, a current collector formed from copper may be used as the anode plate.

この場合、銅から形成された金属片をアルミニウムから形成された集電体に溶着して電極タップ(第一電極タップ)を形成し、銅から形成された集電体は集電体と同じ材料、すなわち、銅から形成された電極タップ(第二電極タップ)を備えている。電極タップは集電体から延びている。好ましくは、第一電極タップと第二電極タップは、同じ長さを有している。好ましい実施態様によれば、上記したように、アルミニウムから形成された前記集電体が、そこから突出した溶着部を有しており、前記溶着部の長さが前記第二電極タップの長さの1/4〜2/3であり、銅から形成された金属片がアルミニウムから形成された前記集電体の前記溶着部に溶着されて、前記第二電極タップとほぼ同じ大きさの前記第一電極タップを形成している。   In this case, a metal piece formed from copper is welded to a current collector formed from aluminum to form an electrode tap (first electrode tap). The current collector formed from copper is the same material as the current collector. That is, an electrode tap (second electrode tap) formed of copper is provided. The electrode tap extends from the current collector. Preferably, the first electrode tap and the second electrode tap have the same length. According to a preferred embodiment, as described above, the current collector formed of aluminum has a welded portion protruding therefrom, and the length of the welded portion is the length of the second electrode tap. The metal piece formed of copper is welded to the welding portion of the current collector formed of aluminum, and the second electrode tab is approximately the same size as the second electrode tab. One electrode tap is formed.

本発明の別の態様によれば、上記したように構成された電極板の製造方法であって、(i)材料(b)から形成された複数の金属片を、材料(a)から形成された長いシート状集電体(A)に溶着して、複数の電極タップ(第一電極タップ)を形成する工程と;(ii)前記第一電極タップを形成した領域を除く前記集電体(A)の少なくとも一つの主面に電極活物質を適用する工程と;(iii)材料(b)から形成された長いシート状集電体(B)の少なくとも一つの主面に電極活物質を適用するが、但し、前記集電体(B)から延びている前記集電体(B)と同じ材料(b)から形成された複数の電極タップ(第二電極タップ)が形成された領域を除いて適用する工程と;(iv)前記活物質を適用した前記2つの集電体(A、B)を、前記電極タップの少なくとも一つを含む所定のサイズに切断する工程とを含む、製造方法が提供される。   According to another aspect of the present invention, there is provided a method of manufacturing an electrode plate configured as described above, wherein (i) a plurality of metal pieces formed from the material (b) are formed from the material (a). Welding a long sheet-shaped current collector (A) to form a plurality of electrode taps (first electrode taps); and (ii) the current collector excluding the region where the first electrode taps are formed ( (A) applying an electrode active material to at least one main surface; (iii) applying an electrode active material to at least one main surface of a long sheet-shaped current collector (B) formed from the material (b) However, except for a region where a plurality of electrode taps (second electrode taps) formed from the same material (b) as the current collector (B) extending from the current collector (B) are formed. And (iv) applying the two current collectors (A, B) to which the active material is applied. And a step of cutting into a predetermined size comprising at least one of the electrode taps, manufacturing method is provided.

好ましい実施態様によれば、前記方法は、前記工程(i)の代わりに、材料(b)から形成された長い金属ストリップを、材料(a)から形成された前記長いシート状集電体(A)に溶着して、前記電極タップ(第一電極タップ)に相当する領域を形成する工程を含む。この場合、金属ストリップを工程(iv)で第一電極タップの形態に切断してもよい。   According to a preferred embodiment, instead of the step (i), the method comprises replacing a long metal strip formed from material (b) with the long sheet current collector (A) formed from material (a). ) And forming a region corresponding to the electrode tap (first electrode tap). In this case, the metal strip may be cut in the form of a first electrode tap in step (iv).

本発明の別の態様によれば、上記したように構成した電極板を備えたバッテリーセルが提供される。具体的には、バッテリーセルは、複数の電極板が順次積層されている構造に構成された電極アセンブリを備えており、前記電極板と同じ材料から形成された電極リードが前記電極板から突き出ている電極タップの端部に接続されている。   According to another aspect of the present invention, a battery cell including an electrode plate configured as described above is provided. Specifically, the battery cell includes an electrode assembly having a structure in which a plurality of electrode plates are sequentially stacked, and an electrode lead formed of the same material as the electrode plate protrudes from the electrode plate. Connected to the end of the electrode tap.

電極リードは、種々の方法で電極タップに接続できる。好ましくは、電極リードは、超音波溶接により電極タップに接続されている。この理由は、同じ材料から形成された電極タップと電極リードを互いに接続するとき、超音波溶接のみを使用して所望の結合力を十分に得ることができるからである。すなわち、集電体に適用した電極活物質への熱伝導を最小限に抑えながら、電極タップと電極リードとの間の電気的接続をおこなうことができる。   The electrode lead can be connected to the electrode tap in various ways. Preferably, the electrode lead is connected to the electrode tap by ultrasonic welding. This is because when the electrode tap and the electrode lead formed of the same material are connected to each other, a desired bonding force can be sufficiently obtained by using only ultrasonic welding. That is, the electrical connection between the electrode tap and the electrode lead can be made while minimizing the heat conduction to the electrode active material applied to the current collector.

一方、電極リードを電極タップに接続した後に、電極活物質を集電体に適用するとき、電極タップと電極リードとの間の接続は上記したようにレーザーシーム溶接又は抵抗溶接によりおこなうことができる。   On the other hand, when the electrode active material is applied to the current collector after connecting the electrode lead to the electrode tap, the connection between the electrode tap and the electrode lead can be performed by laser seam welding or resistance welding as described above. .

電極リードが電極リードを接続した電極タップと同じ材料から形成されている限り、電極リードの材料は特に限定されない。すなわち、電極リードは種々の材料から形成することができる。具体的には、本発明によるバッテリーセルのカソードタップ及びアノードタップの外端は上記したように同じ材料から形成されており、したがって、カソードタップ及びアノードタップに接続したカソードリード及びアノードリードは同じ材料から形成されていてもよい。   As long as the electrode lead is made of the same material as the electrode tap to which the electrode lead is connected, the material of the electrode lead is not particularly limited. That is, the electrode lead can be formed from various materials. Specifically, the outer ends of the cathode tap and the anode tap of the battery cell according to the present invention are formed of the same material as described above, and therefore the cathode lead and the anode lead connected to the cathode tap and the anode tap are the same material. It may be formed from.

この構造では、電極リードが銅から形成されていることが好ましい。   In this structure, the electrode lead is preferably formed from copper.

本発明によるバッテリーセルは、積層シート、好ましくは金属層及び樹脂層を備えたアルミニウム積層シートから形成されたバッテリーセルに取り付けられた電極アセンブリを備えたポーチ状バッテリーに使用することが好ましい。   The battery cell according to the present invention is preferably used for a pouch-shaped battery comprising an electrode assembly attached to a battery cell formed from a laminated sheet, preferably an aluminum laminated sheet comprising a metal layer and a resin layer.

好ましくは、絶縁フィルムが、前記電極リードの上面と下面であって、前記電極リードがバッテリーケースと接触している領域に取り付けられていることにより、前記バッテリーケースと前記電極リードとの間の絶縁がなされている。   Preferably, the insulating film is provided on the upper surface and the lower surface of the electrode lead, and the electrode lead is attached to a region in contact with the battery case, whereby insulation between the battery case and the electrode lead is achieved. Has been made.

本発明のさらなる態様によれば、高出力且つ大容量の中型又は大型バッテリーモジュールであって、前記バッテリーモジュールが複数のバッテリーセルを単位セルとして備えているものである、バッテリーモジュールが提供される。   According to a further aspect of the present invention, there is provided a battery module which is a high-power, large-capacity medium- or large-sized battery module, wherein the battery module includes a plurality of battery cells as unit cells.

好ましくは、前記バッテリーセルのカソードとアノードが互いに直結するように、前記バッテリーセルの少なくとも一部が互いに直列に接続されていることにより、前記バッテリーモジュールの高出力を可能にしている。本発明によるバッテリーモジュールにおいて、カソードリードとアノードリードは同じ材料から形成されており、したがって、追加のバスバーを用いることなくバッテリーセル間に所望の電気的接続をおこなうことができる。   Preferably, at least a part of the battery cells are connected in series so that the cathode and the anode of the battery cell are directly connected to each other, thereby enabling high output of the battery module. In the battery module according to the present invention, the cathode lead and the anode lead are formed of the same material, so that a desired electrical connection can be made between the battery cells without using an additional bus bar.

本発明の上記及び他の目的、特徴及び他の利点は、添付図面とともに以下の詳細な説明からより明瞭に理解できるであろう。
本発明の好ましい実施態様による複数の電極板を備えたバッテリーセルを示す分解斜視図である。 バッテリーセルを組み立てた後の図1に示すバッテリーセルの正面透視図である。 本発明の典型的な方法によるカソード板の製造方法を示す正面図である。 本発明の典型的な方法によるカソード板の製造方法を示す正面図である。 本発明の典型的な方法によるカソード板の製造方法を示す正面図である。 本発明の別の典型的な方法によるカソード板の製造方法を示す正面図である。 本発明の別の典型的な方法によるカソード板の製造方法を示す正面図である。 本発明の別の典型的な方法によるカソード板の製造方法を示す正面図である。 2つのバッテリーセル(それらのうちの一つは図1に示すものである)を互いに接続することにより製造されたバッテリーモジュールを示す斜視図である。
The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings.
1 is an exploded perspective view showing a battery cell having a plurality of electrode plates according to a preferred embodiment of the present invention. FIG. 2 is a front perspective view of the battery cell shown in FIG. 1 after assembling the battery cell. It is a front view which shows the manufacturing method of the cathode plate by the typical method of this invention. It is a front view which shows the manufacturing method of the cathode plate by the typical method of this invention. It is a front view which shows the manufacturing method of the cathode plate by the typical method of this invention. It is a front view which shows the manufacturing method of the cathode plate by another typical method of this invention. It is a front view which shows the manufacturing method of the cathode plate by another typical method of this invention. It is a front view which shows the manufacturing method of the cathode plate by another typical method of this invention. FIG. 2 is a perspective view showing a battery module manufactured by connecting two battery cells (one of which is shown in FIG. 1) to each other.

ここで、本発明の好ましい実施態様を、添付図面を参照しながら詳細に説明する。しかしながら、本発明の範囲は、説明する実施態様には限定されない。   Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. However, the scope of the invention is not limited to the described embodiments.

図1は、本発明の好ましい実施態様による複数の電極板を備えたバッテリーセルを示す分解斜視図である。説明の面からの便宜上、図面では一部の電極タップを省略している。   FIG. 1 is an exploded perspective view showing a battery cell having a plurality of electrode plates according to a preferred embodiment of the present invention. For convenience of explanation, some electrode taps are omitted in the drawings.

図1では、バッテリーセル600は、電極アセンブリ400を備えている。電極アセンブリ400は、複数のカソード板100、101、102・・・と複数のアノード板200、201、202・・・とを順次積層した構造であって、カソード板100、101、102・・・とアノード板200、201、202・・・とのそれぞれの間にセパレータ300を配置してバッテリーケース500に取り付けた構造に構成されている。   In FIG. 1, the battery cell 600 includes an electrode assembly 400. The electrode assembly 400 has a structure in which a plurality of cathode plates 100, 101, 102... And a plurality of anode plates 200, 201, 202. And the anode plates 200, 201, 202... Are arranged so as to be attached to the battery case 500.

カソード板100は、カソード活物質120をカソード集電体110に適用して備えている。カソードタップ130は、カソード板100の反対端から突き出ている。各カソードタップ130は、銅から形成された金属片(以下、銅片150と称する)をアルミニウムから形成されたカソード集電体110から突き出た小サイズの溶着部140に溶着された構造に構成されている。   The cathode plate 100 includes a cathode active material 120 applied to the cathode current collector 110. The cathode tap 130 protrudes from the opposite end of the cathode plate 100. Each cathode tap 130 has a structure in which a metal piece made of copper (hereinafter referred to as a copper piece 150) is welded to a small-sized welded portion 140 protruding from a cathode current collector 110 made of aluminum. ing.

一方、アノード板200は、アノード活物質220をアノード集電体210に適用して備えている。アノードタップ230は、アノード板200の反対端から突き出ている。   Meanwhile, the anode plate 200 includes an anode active material 220 applied to the anode current collector 210. The anode tap 230 protrudes from the opposite end of the anode plate 200.

カソード板100、101、102・・・とアノード板200、201、202・・・が積層された構造において、カソード板100、101、102・・・及びアノード板200、201、202・・・から突き出ている複数のカソードタップ130及び複数のアノードタップ230はそれぞれ更なる電極リード410及び更なる電極リード420に接続されている。この構造は、バッテリーセルを組み立てた後の図1のバッテリーセルを模式的に示している図2の正面透視図に明瞭に示されている。   In the structure in which the cathode plates 100, 101, 102,... And the anode plates 200, 201, 202,... Are stacked, the cathode plates 100, 101, 102,. The protruding plurality of cathode taps 130 and the plurality of anode taps 230 are connected to a further electrode lead 410 and a further electrode lead 420, respectively. This structure is clearly shown in the front perspective view of FIG. 2, which schematically shows the battery cell of FIG. 1 after the battery cell is assembled.

図2において、バッテリーセル600は、カソードリード410とアノードリード420がバッテリーケース500の対向端からバッテリーケース500の外に突き出ている構造に構成されている。   In FIG. 2, the battery cell 600 has a structure in which a cathode lead 410 and an anode lead 420 protrude from the opposite end of the battery case 500 to the outside of the battery case 500.

カソードリード410とアノードリード420は、銅から形成されている。カソードリード410とアノードリード420は、それぞれカソードタップ130及びアノードタップ230の銅片150に接続されている。更なる絶縁フィルム430が、バッテリーケース500の封止領域210のカソードリード410及びアノードリード420に適用されている。   The cathode lead 410 and the anode lead 420 are made of copper. The cathode lead 410 and the anode lead 420 are connected to the copper pieces 150 of the cathode tap 130 and the anode tap 230, respectively. A further insulating film 430 is applied to the cathode lead 410 and the anode lead 420 in the sealing region 210 of the battery case 500.

図3〜図5は、本発明の典型的な方法によるカソード板の製造方法を示す模式的正面図である。   3 to 5 are schematic front views showing a method of manufacturing a cathode plate according to a typical method of the present invention.

これらの図において、複数の銅片150、151、152・・・が、長いシート型アルミニウム集電体110aの所定の領域に溶接で固定されており、カソード活物質120が集電体110aに適用されており、そしてこの集電体110aを図5に示すように切断してカソード板110を製造する。カソード板110は、カソードタップ130を備えていてもよい。このカソードタップ130は、銅片150、151、152・・・がチャンファー構造Aに固定されている集電体110aの領域の対向側部を切断することによる、銅片150とアルミニウム集電体110aとの間の溶着部140により構成されている。   In these drawings, a plurality of copper pieces 150, 151, 152... Are fixed to a predetermined region of a long sheet-type aluminum current collector 110a by welding, and the cathode active material 120 is applied to the current collector 110a. The current collector 110a is cut as shown in FIG. 5 to manufacture the cathode plate 110. The cathode plate 110 may include a cathode tap 130. The cathode tap 130 is formed by cutting the opposite side portion of the region of the current collector 110a where the copper pieces 150, 151, 152,... Are fixed to the chamfer structure A, and the aluminum current collector. It is comprised by the welding part 140 between 110a.

図6〜図8は、本発明の別の典型的な方法によるカソード板の製造方法を示す模式的正面図である。   6 to 8 are schematic front views showing a method of manufacturing a cathode plate according to another typical method of the present invention.

これらの図に示されている製造方法は、長い銅ストリップ160が溶接によりアルミニウム集電体110aに固定された後銅ストリップ160を切断することを除いて、図3及び図4に示した製造方法と同じである。   The manufacturing method shown in these drawings is the same as the manufacturing method shown in FIGS. 3 and 4 except that the copper strip 160 is cut after the long copper strip 160 is fixed to the aluminum current collector 110a by welding. Is the same.

図9は、2つのバッテリーセル(それらのうちの一つは図1に示すものである)を互いに接続することにより製造されたバッテリーモジュールを示す模式的斜視図である。   FIG. 9 is a schematic perspective view showing a battery module manufactured by connecting two battery cells (one of which is shown in FIG. 1) to each other.

図9において、バッテリーモジュール700は、2つのバッテリーセル(第一バッテリーセル100及び第二バッテリーセル101)を備えている。第一バッテリーセル100はカソードリード410とアノードリード420を有しており、第二バッテリーセル101はカソードリード412とアノードリード422を有しており、カソードリード410、412及びアノードリード420、422の全ては銅から形成され、カソードリード410、412及びアノードリード420、422はそれぞれバッテリーセル100及び101の対向端から突き出ている。これらの2つのバッテリーセル100及び101は、第一バッテリーセル100のカソードリード410と第二バッテリーセル101のアノードリード422との間の結合により互いに直列に接続されている。このとき、カソードリード410とアノードリード422の両方が銅から形成されているので、カソードリード410とアノードリード422とを溶接により容易に結合することができる。   In FIG. 9, a battery module 700 includes two battery cells (a first battery cell 100 and a second battery cell 101). The first battery cell 100 has a cathode lead 410 and an anode lead 420, and the second battery cell 101 has a cathode lead 412 and an anode lead 422, and each of the cathode leads 410, 412 and the anode leads 420, 422. All are made of copper, and the cathode leads 410 and 412 and the anode leads 420 and 422 protrude from the opposite ends of the battery cells 100 and 101, respectively. These two battery cells 100 and 101 are connected to each other in series by a coupling between the cathode lead 410 of the first battery cell 100 and the anode lead 422 of the second battery cell 101. At this time, since both the cathode lead 410 and the anode lead 422 are made of copper, the cathode lead 410 and the anode lead 422 can be easily coupled by welding.

以下、本発明の実施例をより詳細に説明する。しかしながら、本発明の範囲は、これらの実施例には限定されない。   Hereinafter, examples of the present invention will be described in more detail. However, the scope of the present invention is not limited to these examples.

[実施例1]
長さ5cm、幅1cm及び厚さ500μmの2枚の矩形銅シートを銅シートの長手方向に約1cmだけ銅シートの端部が互いに重なるように超音波溶接機上に配置し、溶接ヘッドを銅シート間の重なり領域と接触させ、周波数約40KHzの超音波エネルギーを銅シート間の重なり領域に加えた。このようにして、超音波溶接をおこなった。
[Example 1]
Two rectangular copper sheets with a length of 5 cm, a width of 1 cm and a thickness of 500 μm are placed on an ultrasonic welder so that the ends of the copper sheets overlap each other by about 1 cm in the longitudinal direction of the copper sheet, and the welding head is made of copper. Ultrasonic energy having a frequency of about 40 KHz was applied to the overlapping region between the copper sheets in contact with the overlapping region between the sheets. In this way, ultrasonic welding was performed.

[比較例1]
長さ5cm、幅1cm及び厚さ500μmの矩形銅シートと、矩形銅シートと同じサイズの矩形アルミニウムシートを使用した以外は、2枚の金属シートを実施例1と同様の方法により超音波溶接で互いに固定した。
[Comparative Example 1]
Two metal sheets were ultrasonically welded by the same method as in Example 1 except that a rectangular copper sheet having a length of 5 cm, a width of 1 cm and a thickness of 500 μm and a rectangular aluminum sheet having the same size as the rectangular copper sheet were used. Fixed to each other.

[実験例1]
実施例1及び比較例1で溶着した金属シートの溶着強さを、ASTM試験法により測定した。測定結果から、実施例1で溶着した金属シートの溶着強さは11.1kg/cmであることが分かった。一方、測定結果から、比較例1で溶着した金属シートの溶着強さは7.8kg/cmであることが分かった。この結果が得られた理由は、同じ材料(銅)のシート間の溶接性が異種材料(銅とアルミニウム)のシート間の溶接性よりも優れていたことによる。
[Experiment 1]
The welding strength of the metal sheets welded in Example 1 and Comparative Example 1 was measured by the ASTM test method. From the measurement results, it was found that the welding strength of the metal sheet welded in Example 1 was 11.1 kg / cm 2 . On the other hand, it was found from the measurement results that the welding strength of the metal sheet welded in Comparative Example 1 was 7.8 kg / cm 2 . The reason why this result was obtained is that the weldability between sheets of the same material (copper) was superior to the weldability between sheets of different materials (copper and aluminum).

[実施例2]
2−1カソード板の製造
図6に示すように、長い銅ストリップを、長いシート型アルミニウム箔の所定の領域にレーザーシーム溶接により接続した。LiCoO95重量%と、Super−P(導電剤)2.5重量%と、PVdf(結合剤)2.5重量%とを、溶媒としてのN−メチル−2−ピロリドン(NMP)に添加することにより調製したカソード混合物スラリーを、アルミニウム箔の対向主面に適用した。続いて、図8に示すようにアルミニウム箔を切断して、一方の側にカソードタップを形成したカソード板を製造した。
[Example 2]
2-1 Production of Cathode Plate As shown in FIG. 6, a long copper strip was connected to a predetermined region of a long sheet type aluminum foil by laser seam welding. 95% by weight of LiCoO 2, 2.5% by weight of Super-P (conductive agent) and 2.5% by weight of PVdf (binder) are added to N-methyl-2-pyrrolidone (NMP) as a solvent. The cathode mixture slurry thus prepared was applied to the opposing main surface of the aluminum foil. Subsequently, as shown in FIG. 8, the aluminum foil was cut to produce a cathode plate having a cathode tap formed on one side.

2−2.アノード板の製造
人工黒鉛95重量%と、Super−P(導電剤)2.5重量%と、PVdf(結合剤)2.5重量%とを、溶媒としてのNMPに添加することにより調製したアノード混合物スラリーを、長いシート型銅箔の対向主面に適用した。続いて、銅箔を切断して図8に示すチャンファー構造として、一方の側にアノードタップが形成されたアノード板を製造した。
2-2. Manufacture of anode plate An anode prepared by adding 95% by weight of artificial graphite, 2.5% by weight of Super-P (conductive agent), and 2.5% by weight of PVdf (binder) to NMP as a solvent The mixture slurry was applied to the opposing main surface of a long sheet-type copper foil. Subsequently, the copper foil was cut to produce an anode plate having an anode tap formed on one side as a chamfer structure shown in FIG.

2−3.バッテリーセルの製造
上記2−1に記載した方法により製造したカソード板と上記2−2に記載した方法により製造したアノード板を積層した。この際、セパレータを各カソード板とアノード板との間に配置した。カソード板及びアノード板の対向端から突き出ているカソードタップとアノードタップを、銅から形成されたカソードリード及び銅から形成されたアノードリードにそれぞれ接続した。この電極アセンブリをバッテリーケースに取り付け、電解質を電極アセンブリに注入した。このようにして、バッテリーセルを製造した。
2-3. Production of Battery Cell A cathode plate produced by the method described in 2-1 above and an anode plate produced by the method described in 2-2 above were laminated. At this time, a separator was disposed between each cathode plate and anode plate. A cathode tap and an anode tap protruding from opposite ends of the cathode plate and the anode plate were connected to a cathode lead made of copper and an anode lead made of copper, respectively. The electrode assembly was attached to the battery case, and the electrolyte was injected into the electrode assembly. In this way, a battery cell was manufactured.

2−4.バッテリーモジュールの製造
上記2−3に記載した方法で製造した3個のバッテリーセルを、互いに直列に接続してバッテリーモジュールを製造した。超音波溶接により、バッテリーセルの電極リード間の接続をおこなった。
2-4. Production of Battery Module A battery module was produced by connecting the three battery cells produced by the method described in 2-3 above in series. Connection between the electrode leads of the battery cell was performed by ultrasonic welding.

[比較例2]
各カソード板が一端にアルミニウムから形成されたカソードタップを備えたものであり、そして各カソードリードがアルミニウムから形成されたものであることを除いて、実施例2と同様の方法によりバッテリーモジュールを製造した。
[Comparative Example 2]
A battery module is manufactured in the same manner as in Example 2 except that each cathode plate is provided with a cathode tap formed from aluminum at one end, and each cathode lead is formed from aluminum. did.

[実験例2]
実施例2で製造したバッテリーモジュールの電極リードと比較例2で製造したバッテリーモジュールの電極リードとの間の結合力の差を確認するために、電極リード間の接続領域を、接続領域が破壊されるまで電極リードを引っ張って、接続領域の引張り力を測定した。測定結果から、実施例1で製造したバッテリーセルを備えたバッテリーモジュールの電極リード間の結合力は、比較例1で製造したバッテリーセルを備えたバッテリーモジュールの電極リード間の結合力の約1.5倍であった。この結果が得られた理由は、同じ材料、すなわち、銅から形成されたカソードリードとアノードリードを互いに結合した実施例2で製造したバッテリーモジュールが、カソードリードとアノードリードを超音波溶接により互いに結合したときに、比較例2で製造したバッテリーモジュールよりも優れた結合力を有していることによるものである。
[Experimental example 2]
In order to confirm the difference in bonding force between the electrode lead of the battery module manufactured in Example 2 and the electrode lead of the battery module manufactured in Comparative Example 2, the connection region between the electrode leads was destroyed. The electrode lead was pulled until measured, and the tensile force in the connection region was measured. From the measurement results, the bonding force between the electrode leads of the battery module provided with the battery cell manufactured in Example 1 is about 1 of the bonding force between the electrode leads of the battery module including the battery cell manufactured in Comparative Example 1. It was 5 times. This result was obtained because the battery module manufactured in Example 2 in which the cathode lead and the anode lead formed of the same material, that is, copper, were bonded to each other was bonded to each other by ultrasonic welding. This is because it has a better binding force than the battery module manufactured in Comparative Example 2.

[比較例3]
電極活物質をカソード集電体の対向主面に適用し、銅タップを、カソード集電体の電極活物質が適用されなかった領域にレーザーシーム溶接により接続した後、カソード集電体を切断した以外は、実施例2の上記2−1〜2−3に記載の方法によりバッテリーセルを製造した。
[Comparative Example 3]
The electrode active material was applied to the opposing main surface of the cathode current collector, the copper tap was connected to the area where the electrode active material of the cathode current collector was not applied by laser seam welding, and then the cathode current collector was cut. Except for the above, battery cells were produced by the methods described in Examples 2-1 to 2-3 in Example 2.

[比較例4]
バッテリーセルを互いに直列に接続するときに、電極リード間の結合をレーザーシーム溶接によりおこなった以外は、実施例2と同様の方法でバッテリーモジュールを製造した。
[Comparative Example 4]
A battery module was manufactured in the same manner as in Example 2 except that when the battery cells were connected in series, the electrode leads were joined by laser seam welding.

[実験例3]
最初に、実施例2及び比較例3で製造したバッテリーセルのサイクル特性を、10Cレートパルスサイクル条件で試験した。試験結果から、比較例3で製造したバッテリーセルが、充放電サイクル中に、実施例2で製造したバッテリーセルよりも早く容量の減少が生じることが分かった。具体的には、比較例3で製造したバッテリーセルの容量は、実施例2で製造したバッテリーセルの容量と比較して100サイクルで約20%減少した。また、比較例3で製造したバッテリーセルの容量は、実施例2で製造したバッテリーセルの容量と比較して200サイクルで約28%減少した。この結果が得られたのは、活物質を適用して備えているカソード集電体に対してレーザーシーム溶接をおこなったときに活物質の一部が伝導熱で劣化したことによるものである。
[Experiment 3]
First, the cycle characteristics of the battery cells manufactured in Example 2 and Comparative Example 3 were tested under 10C rate pulse cycle conditions. From the test results, it was found that the capacity reduction of the battery cell manufactured in Comparative Example 3 occurred earlier than the battery cell manufactured in Example 2 during the charge / discharge cycle. Specifically, the capacity of the battery cell manufactured in Comparative Example 3 was reduced by about 20% in 100 cycles compared to the capacity of the battery cell manufactured in Example 2. In addition, the capacity of the battery cell manufactured in Comparative Example 3 was reduced by about 28% in 200 cycles compared to the capacity of the battery cell manufactured in Example 2. This result was obtained because a part of the active material was deteriorated by conduction heat when laser seam welding was performed on the cathode current collector provided with the active material.

さらに、実施例2及び比較例4で製造したバッテリーモジュールのサイクル特性を、10Cレートパルスサイクル条件で試験した。試験結果から、比較例4で製造したバッテリーモジュールの出力が、実施例2で製造したバッテリーモジュールの出力と比較して200サイクルで約34%減少した。また、比較例4で製造したバッテリーモジュールの容量は、実施例2で製造したバッテリーモジュールの容量と比較して200サイクルで約26%減少した。この結果が得られた理由は、電極リードを接続するのにレーザーシーム溶接をおこなったときに、発生した高温の熱により活物質の一部が劣化したために、比較例4で製造したバッテリーモジュールの容量及び出力が高出力条件でかなり減少したことにある。一方、実施例2で製造したバッテリーモジュールについては、電極リード間の接続を熱の発生量が比較的すくない超音波溶接によりおこなったので、実施例2で製造したバッテリーモジュールは、高出力充放電条件であっても、高出力及び高容量維持率を示した。   Furthermore, the cycle characteristics of the battery modules manufactured in Example 2 and Comparative Example 4 were tested under 10C rate pulse cycle conditions. From the test results, the output of the battery module manufactured in Comparative Example 4 was reduced by about 34% in 200 cycles compared to the output of the battery module manufactured in Example 2. In addition, the capacity of the battery module manufactured in Comparative Example 4 was reduced by about 26% in 200 cycles compared to the capacity of the battery module manufactured in Example 2. This result was obtained because part of the active material deteriorated due to the generated high-temperature heat when laser seam welding was performed to connect the electrode leads, so that the battery module manufactured in Comparative Example 4 The capacity and power are significantly reduced under high power conditions. On the other hand, with respect to the battery module manufactured in Example 2, the connection between the electrode leads was performed by ultrasonic welding, which generates a relatively small amount of heat. Therefore, the battery module manufactured in Example 2 has a high output charge / discharge condition. Even so, it showed high output and high capacity retention.

以上の説明から明らかなように、本発明による電極板は、電極板を備えた2個のバッテリーセルを互いに直列に接続してバッテリーモジュールを製造するとき、カソード端子とアノード端子との間の溶接性を向上できる効果がある。さらに、本発明による電極板は、塩を含む雰囲気中での耐腐食性を向上できる効果がある。   As is apparent from the above description, the electrode plate according to the present invention is welded between the cathode terminal and the anode terminal when two battery cells having the electrode plate are connected in series with each other to manufacture a battery module. This has the effect of improving the performance. Furthermore, the electrode plate according to the present invention has an effect of improving the corrosion resistance in an atmosphere containing salt.

本発明の好ましい実施態様を説明の目的で開示したが、当業者には、添付の特許請求の範囲に開示されている本発明の範囲及び精神から逸脱することなく、種々の修正、追加及び置換が可能であることは理解できるであろう。   While preferred embodiments of the invention have been disclosed for purposes of illustration, those skilled in the art will recognize that various modifications, additions and substitutions can be made without departing from the scope and spirit of the invention as disclosed in the appended claims. It will be understood that this is possible.

Claims (16)

一対の電極板を備えた電極板装置であって、
前記電極板が、前記電極板が異種材料(a、b)から形成された集電体を備えており、電極タップがそれぞれの集電体に形成されており、且つ各集電体の電極タップを除いた各集電体の少なくとも一つの主面に電極活物質が適用されている構造に構成されてなり、
前記材料(b)から形成された金属片が、前記材料(a)から形成された集電体の端部に溶着されて前記電極タップを形成しており、
前記電極活物質が前記金属片が前記集電体に溶着された後に前記集電体に適用されたものである、電極板装置。
An electrode plate device comprising a pair of electrode plates,
The electrode plate includes a current collector in which the electrode plate is formed of a different material (a, b), an electrode tap is formed on each current collector, and the electrode tap of each current collector It is configured in a structure in which an electrode active material is applied to at least one main surface of each current collector excluding
A metal piece formed from the material (b) is welded to an end of a current collector formed from the material (a) to form the electrode tap,
The electrode plate device, wherein the electrode active material is applied to the current collector after the metal piece is welded to the current collector.
前記金属片の前記集電体への溶着がレーザーシーム溶接又は抵抗溶接によりおこなわれたものである、請求項1に記載の電極板装置。   The electrode plate apparatus according to claim 1, wherein the metal piece is welded to the current collector by laser seam welding or resistance welding. 前記材料(b)から形成された前記金属片が、前記材料(a)から形成された前記集電体、あるいは前記集電体から突き出ている小さな溶着部に直接溶着されている、請求項1に記載の電極板装置。   The said metal piece formed from the said material (b) is directly welded to the said collector formed from the said material (a), or the small welding part protruded from the said collector. An electrode plate device according to the above. 前記電極板対のうちの一つの電極板、すなわち、前記材料(a)から形成された前記電極板がアルミニウムから形成された集電体を備えており、
前記電極板対のうちの他の電極板、すなわち、前記材料(b)から形成された前記電極板が銅から形成された集電体を備えている、請求項1に記載の電極板装置。
One electrode plate of the electrode plate pair, that is, the electrode plate formed from the material (a) comprises a current collector formed from aluminum,
2. The electrode plate device according to claim 1, wherein another electrode plate of the electrode plate pair, that is, the electrode plate formed of the material (b) includes a current collector formed of copper.
銅から形成された金属片がアルミニウムから形成された前記集電体に溶着されて電極タップ(第一電極タップ)を形成しており、
銅から形成された前記集電体が前記集電体と同じ材料、すなわち、銅から形成されている電極タップ(第二電極タップ)を備えており、
前記電極タップが前記集電体から延びている、請求項4に記載の電極板装置。
A metal piece formed of copper is welded to the current collector formed of aluminum to form an electrode tap (first electrode tap),
The current collector formed from copper includes the same material as the current collector, that is, an electrode tap (second electrode tap) formed from copper,
The electrode plate apparatus according to claim 4, wherein the electrode tap extends from the current collector.
前記第一電極タップと前記第二電極タップが同じ長さを有している、請求項1に記載の電極板装置。   The electrode plate apparatus according to claim 1, wherein the first electrode tap and the second electrode tap have the same length. アルミニウムから形成された前記集電体が、そこから突出した溶着部を有しており、
前記溶着部の長さが前記第二電極タップの長さの1/4〜2/3であり、
銅から形成された金属片がアルミニウムから形成された前記集電体の前記溶着部に溶着されて、前記第二電極タップとほぼ同じ大きさの前記第一電極タップを形成している、請求項6に記載の電極板装置。
The current collector formed of aluminum has a welded portion protruding therefrom;
The length of the welded portion is 1/4 to 2/3 of the length of the second electrode tap,
The metal piece formed of copper is welded to the welding portion of the current collector formed of aluminum to form the first electrode tap having substantially the same size as the second electrode tab. 6. The electrode plate device according to 6.
請求項1〜7のいずれか1項に記載の電極板装置の製造方法であって、
(i)材料(b)から形成された複数の金属片を、材料(a)から形成された長いシート状集電体(A)に溶着して、複数の電極タップ(第一電極タップ)を形成する工程と、
(ii)前記第一電極タップを形成した領域を除く前記集電体(A)の少なくとも一つの主面に電極活物質を適用する工程と、
(iii)材料(b)から形成された長いシート状集電体(B)の少なくとも一つの主面に電極活物質を適用するが、但し、前記集電体(B)から延びている前記集電体(B)と同じ材料(b)から形成された複数の電極タップ(第二電極タップ)が形成された領域を除いて適用する工程と、
(iv)前記活物質を適用した前記2つの集電体(A、B)を、前記電極タップの少なくとも一つを含む所定のサイズに切断する工程を含む、製造方法。
It is a manufacturing method of the electrode plate device according to any one of claims 1 to 7,
(I) A plurality of metal pieces formed from the material (b) are welded to a long sheet-shaped current collector (A) formed from the material (a), and a plurality of electrode taps (first electrode taps) are attached. Forming, and
(Ii) applying an electrode active material to at least one main surface of the current collector (A) excluding the region where the first electrode tap is formed;
(Iii) An electrode active material is applied to at least one main surface of the long sheet-shaped current collector (B) formed from the material (b), provided that the current collector extends from the current collector (B). A step of applying except a region where a plurality of electrode taps (second electrode taps) formed of the same material (b) as the electric body (B) are formed;
(Iv) A manufacturing method including a step of cutting the two current collectors (A, B) to which the active material is applied into a predetermined size including at least one of the electrode taps.
前記工程(i)の代わりに、材料(b)から形成された長い金属ストリップを、材料(a)から形成された前記長いシート状集電体(A)に溶着して、前記電極タップ(第一電極タップ)に相当する領域を形成することを含む、請求項8に記載の方法。   Instead of the step (i), a long metal strip formed from the material (b) is welded to the long sheet-shaped current collector (A) formed from the material (a), and the electrode tap (first The method according to claim 8, comprising forming a region corresponding to one electrode tap. 電極アセンブリを備えたバッテリーセルであって、
前記電極アセンブリが、請求項1〜7のいずれか1項に記載の複数の電極板が順次積層されている構造に構成されてなり、
前記電極タップと同じ材料から形成された電極リードが前記電極板から突き出ている電極タップの端部に接続されている、バッテリーセル。
A battery cell comprising an electrode assembly,
The electrode assembly is configured to have a structure in which a plurality of electrode plates according to any one of claims 1 to 7 are sequentially laminated,
A battery cell, wherein an electrode lead formed of the same material as the electrode tab is connected to an end of the electrode tap protruding from the electrode plate.
前記電極リードが、超音波溶接により前記電極タップに接続されている、請求項10に記載のバッテリーセル。   The battery cell according to claim 10, wherein the electrode lead is connected to the electrode tap by ultrasonic welding. 前記電極リードが、銅から形成されたものである、請求項10に記載のバッテリーセル。   The battery cell according to claim 10, wherein the electrode lead is made of copper. 前記電極アセンブリが、金属層と樹脂層とを含む積層シートから形成されたバッテリーケースに取り付けられたものである、請求項10に記載のバッテリーセル。   The battery cell according to claim 10, wherein the electrode assembly is attached to a battery case formed of a laminated sheet including a metal layer and a resin layer. 前記電極リードがバッテリーケースと接触している領域に、絶縁フィルムが、前記電極リードの上面と下面に取り付けられて、前記バッテリーケースと前記電極リードとの間の絶縁がなされている、請求項13に記載のバッテリーセル。   The insulating film is attached to the upper surface and the lower surface of the electrode lead in a region where the electrode lead is in contact with the battery case, and insulation between the battery case and the electrode lead is made. The battery cell as described in. 高出力且つ大容量の中型又は大型バッテリーモジュールであって、
前記バッテリーモジュールが請求項10に記載の複数のバッテリーセルを単位セルとして備えているものである、バッテリーモジュール。
A medium or large battery module with high output and large capacity,
A battery module comprising the plurality of battery cells according to claim 10 as unit cells.
前記バッテリーセルの少なくとも一部が互いに直列に接続されて、前記バッテリーセルのカソードとアノードが互いに直結し、前記バッテリーモジュールの高出力を可能にしている、請求項15に記載のバッテリーモジュール。   The battery module according to claim 15, wherein at least some of the battery cells are connected in series with each other, and a cathode and an anode of the battery cell are directly connected to each other to enable high output of the battery module.
JP2009517960A 2006-06-26 2007-06-13 Battery cell electrode plate and method of manufacturing the same Active JP5112429B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0057182 2006-06-26
KR20060057182 2006-06-26
PCT/KR2007/002857 WO2008002024A1 (en) 2006-06-26 2007-06-13 Electrode plate for battery cell and process of preparing the same

Publications (2)

Publication Number Publication Date
JP2009541971A true JP2009541971A (en) 2009-11-26
JP5112429B2 JP5112429B2 (en) 2013-01-09

Family

ID=38845753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009517960A Active JP5112429B2 (en) 2006-06-26 2007-06-13 Battery cell electrode plate and method of manufacturing the same

Country Status (5)

Country Link
JP (1) JP5112429B2 (en)
KR (1) KR100878700B1 (en)
CN (1) CN101507016B (en)
TW (1) TWI344234B (en)
WO (1) WO2008002024A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237237B1 (en) 2010-06-07 2013-02-26 주식회사 엘지화학 Battery module and methods for bonding a cell terminal of a battery to an interconnect member
JP2013134893A (en) * 2011-12-26 2013-07-08 Toyota Industries Corp Connection structure, secondary battery, and vehicle
KR101354580B1 (en) * 2011-06-24 2014-01-22 에스케이이노베이션 주식회사 Battery having Tab made with two different kind metals
JP2017123306A (en) * 2016-01-08 2017-07-13 トヨタ自動車株式会社 Laminate battery

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2382679B1 (en) 2009-01-23 2020-04-22 Johnson Controls Advanced Power Solutions LLC Battery module having electrochemical cells with integrally formed terminals
CN102308415B (en) 2009-02-05 2016-04-20 Evt电能公司 For the multiple conductivity matrix of the current collection fluid of battery
KR101136156B1 (en) 2009-11-02 2012-04-17 삼성에스디아이 주식회사 Secondary battery and method of making the secondary battery
TWI398978B (en) * 2010-06-25 2013-06-11 Simplo Technology Co Ltd Method for manufacturing battery case
CN103503196B (en) 2011-06-30 2016-02-03 株式会社Lg化学 There is the secondary cell of the contact resistance of improvement
CN104137303B (en) 2012-04-16 2017-08-08 株式会社Lg 化学 Include positive pole and the electrode assemblie of negative pole and the secondary cell for including the electrode assemblie with different weld part shapes
KR101510518B1 (en) 2012-05-23 2015-04-10 주식회사 엘지화학 Fabricating method of electrode assembly
EP2814103B1 (en) 2013-02-15 2017-12-06 LG Chem, Ltd. Electrode assembly and polymer secondary battery cell comprising same
KR101598682B1 (en) 2013-02-15 2016-03-02 주식회사 엘지화학 Electrode assembly and fabricating method of electrode assembly
CN104584307B (en) 2013-02-15 2017-09-15 株式会社Lg 化学 Electrode assemblie and its manufacture method
JP2015526857A (en) 2013-02-15 2015-09-10 エルジー・ケム・リミテッド Electrode assembly and polymer secondary battery cell including the same
EP2876721B1 (en) 2013-02-15 2022-09-14 LG Energy Solution, Ltd. Electrode assembly
WO2014126432A1 (en) 2013-02-15 2014-08-21 주식회사 엘지화학 Electrode assembly having improved safety and production method therefor
CN103137937B (en) * 2013-02-25 2015-08-26 四川万凯丰稀土新能源科技有限公司 A kind of rectangular cell and manufacture method
CN104662725B (en) 2013-05-23 2020-07-03 株式会社Lg 化学 Electrode assembly and base unit for the same
TWI505535B (en) * 2013-05-23 2015-10-21 Lg Chemical Ltd Method of manufacturing electrode assembly
PL2882028T3 (en) 2013-05-23 2020-06-01 Lg Chem, Ltd. Method for manufacturing electrode assembly
KR101620173B1 (en) 2013-07-10 2016-05-13 주식회사 엘지화학 A stepwise electrode assembly with good stability and the method thereof
TWI491099B (en) * 2013-08-29 2015-07-01 Htc Corp Battery structure, electronic device and manufacturing method of battery structure
WO2016004079A1 (en) 2014-06-30 2016-01-07 Black & Decker Inc. Battery pack for a cordless power tools
CN114104369B (en) * 2022-01-24 2022-04-08 昆山鸿仕达智能科技有限公司 Automatic film coating equipment and film coating method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249855A (en) * 1990-12-28 1992-09-04 Sanyo Electric Co Ltd Manufacture of organic electrolyte battery
JPH11329411A (en) * 1998-05-08 1999-11-30 Japan Storage Battery Co Ltd Electrode
JP2000294221A (en) * 1999-04-07 2000-10-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001052681A (en) * 1999-08-05 2001-02-23 Hitachi Maxell Ltd Polymer electrolyte battery
JP2005019213A (en) * 2003-06-26 2005-01-20 Nec Lamilion Energy Ltd Structure of electric lead, electric device having lead structure, battery and battery pack

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153490A (en) * 1993-11-26 1995-06-16 Haibaru:Kk Battery
KR970031038A (en) * 1995-11-08 1997-06-26 윤종용 Electrode Manufacturing Method of Alkaline Secondary Battery
EP2315300B1 (en) * 1999-09-30 2017-07-19 Sony Corporation Solid electrolyte cell
KR100457625B1 (en) * 2002-09-03 2004-11-17 삼성에스디아이 주식회사 Battery and method for making it
KR100889769B1 (en) * 2002-10-22 2009-03-24 삼성에스디아이 주식회사 Prismatic type lithium secondary battery and the fabrication method of the same
JP2004247244A (en) 2003-02-17 2004-09-02 Nec Lamilion Energy Ltd Laminated battery, joint terminal, battery pack, and manufacturing method of battery pack
KR100496303B1 (en) 2003-05-19 2005-06-17 삼성에스디아이 주식회사 Battery umit and lithium secondary battery applying the same
KR100589347B1 (en) * 2004-04-27 2006-06-14 삼성에스디아이 주식회사 Secondary battery
KR100614398B1 (en) * 2004-10-28 2006-08-21 삼성에스디아이 주식회사 Prismatic type lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249855A (en) * 1990-12-28 1992-09-04 Sanyo Electric Co Ltd Manufacture of organic electrolyte battery
JPH11329411A (en) * 1998-05-08 1999-11-30 Japan Storage Battery Co Ltd Electrode
JP2000294221A (en) * 1999-04-07 2000-10-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001052681A (en) * 1999-08-05 2001-02-23 Hitachi Maxell Ltd Polymer electrolyte battery
JP2005019213A (en) * 2003-06-26 2005-01-20 Nec Lamilion Energy Ltd Structure of electric lead, electric device having lead structure, battery and battery pack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237237B1 (en) 2010-06-07 2013-02-26 주식회사 엘지화학 Battery module and methods for bonding a cell terminal of a battery to an interconnect member
KR101354580B1 (en) * 2011-06-24 2014-01-22 에스케이이노베이션 주식회사 Battery having Tab made with two different kind metals
US9543561B2 (en) 2011-06-24 2017-01-10 Sk Innovation Co., Ltd. Battery
JP2013134893A (en) * 2011-12-26 2013-07-08 Toyota Industries Corp Connection structure, secondary battery, and vehicle
JP2017123306A (en) * 2016-01-08 2017-07-13 トヨタ自動車株式会社 Laminate battery

Also Published As

Publication number Publication date
KR100878700B1 (en) 2009-01-14
KR20070122370A (en) 2007-12-31
JP5112429B2 (en) 2013-01-09
TW200807792A (en) 2008-02-01
CN101507016A (en) 2009-08-12
CN101507016B (en) 2012-06-27
WO2008002024A1 (en) 2008-01-03
TWI344234B (en) 2011-06-21

Similar Documents

Publication Publication Date Title
JP5112429B2 (en) Battery cell electrode plate and method of manufacturing the same
KR101001841B1 (en) Laminate type battery
JP5830953B2 (en) Secondary battery, battery unit and battery module
US7008720B2 (en) Battery having a terminal lead surface covering layer and related method
JP5231235B2 (en) Secondary battery for medium and large battery modules
US20080070111A1 (en) Sheet-type secondary battery and manufacturing method therefor
WO2013065523A1 (en) Cell assembly, and rectangular secondary cell for use in cell assembly
JP5537409B2 (en) Battery module manufacturing method
WO2014178130A1 (en) Prismatic battery and assembled battery
KR102366429B1 (en) Electrodes with Improved Welding Characteristics of Electrode Tabs and Secondary Battery Using the same
KR101170881B1 (en) High Power Secondary Battery of Series Connection Structure
JP2006054189A (en) Battery for automobile
US9034500B2 (en) Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
US20220352606A1 (en) Secondary battery and method for manufacturing same
JP5685434B2 (en) Voltage detection terminal, terminal plate and battery module
KR20130108688A (en) Battery cell of improved connection reliability and battery pack comprising the same
US9257727B2 (en) Assembled battery and battery pack
JP2002313309A (en) Electrochemical device and its manufacturing method
KR101520168B1 (en) pauch type lithium secondary battery
KR20140056912A (en) Secondary battery having novel electrode tap-lead joint portion
JP2001283824A (en) Lithium secondary battery
JP5110832B2 (en) Method for manufacturing power storage element
JP4929587B2 (en) Bipolar battery, manufacturing method thereof, and assembled battery
JP2001006654A (en) Lithium secondary battery
JP2007257849A (en) Battery module of laminate outer package flat battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250