WO2013065523A1 - Cell assembly, and rectangular secondary cell for use in cell assembly - Google Patents

Cell assembly, and rectangular secondary cell for use in cell assembly Download PDF

Info

Publication number
WO2013065523A1
WO2013065523A1 PCT/JP2012/077322 JP2012077322W WO2013065523A1 WO 2013065523 A1 WO2013065523 A1 WO 2013065523A1 JP 2012077322 W JP2012077322 W JP 2012077322W WO 2013065523 A1 WO2013065523 A1 WO 2013065523A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
external terminal
positive
negative
bus bar
Prior art date
Application number
PCT/JP2012/077322
Other languages
French (fr)
Japanese (ja)
Inventor
山内 康弘
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013541710A priority Critical patent/JP6038802B2/en
Publication of WO2013065523A1 publication Critical patent/WO2013065523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an assembled battery in which a plurality of prismatic secondary batteries are connected, and a prismatic secondary battery for use in the assembled battery.
  • Lithium ion secondary batteries as power sources for portable electronic devices such as today's mobile phones, portable personal computers, portable music players, or power sources for hybrid electric vehicles (HEV, PHEV) and electric vehicles (EV) Secondary batteries such as nickel hydrogen secondary batteries are widely used. These secondary batteries have a higher need for prismatic batteries than cylindrical ones, particularly when space efficiency is required.
  • a secondary battery has a low electromotive force in a single battery and is about 4 V even in a lithium ion secondary battery, which is said to have a relatively high electromotive force. Therefore, when these batteries are used as in-vehicle batteries such as an electric vehicle (EV) or a hybrid electric vehicle (HEV, PHEV), a large amount of power is required. It is used as an assembled battery in which a large number of batteries connected in series are connected in parallel (hereinafter, this connection is referred to as “multiple-multiple parallel connection”).
  • the terminals of each battery are extended, and the extended terminals are bent with each other and overlapped with adjacent battery terminals to be connected by welding connection or bolt fastening, or bus bar
  • Such a connection member is used for welding between adjacent battery terminals by welding connection or bolt fastening.
  • in-vehicle batteries have a requirement to reduce the dimension in the height direction in the in-vehicle space, but in order to meet this requirement for in-vehicle batteries that are connected in multiple and multi-parallel connection, welding connection rather than bolt fastening is required. Is more advantageous.
  • the positive electrode terminal is usually made of an aluminum material and the negative electrode terminal is made of a copper material. Therefore, when the bus bar is made of a single material such as a copper material or an aluminum material, either the positive electrode side or the negative electrode side is melt-bonded with a dissimilar metal of copper / aluminum. For this reason, when the positive electrode terminal and the negative electrode terminal are directly welded and connected by a bus bar formed of a single material, a melt-bonded portion between dissimilar metals is formed, resulting in insufficient weld strength based on the formation of brittle intermetallic compounds, cracking. There is a concern that the welding quality may deteriorate due to sputtering or the like.
  • Patent Document 1 a positive electrode external terminal formed of the same material as the negative electrode terminal is connected to the positive electrode terminal, and the positive electrode external terminal and the negative electrode terminal are connected by a bus bar formed of the same material as the negative electrode terminal.
  • the invention of the assembled battery having the above structure is described.
  • Patent Document 2 a positive electrode external terminal formed of the same material as the negative electrode terminal is connected to a positive electrode terminal with a corrosion inhibitor interposed therebetween, and the negative electrode external device formed of the same material as the negative electrode terminal is connected to the negative electrode terminal.
  • An invention of an assembled battery having a configuration in which terminals are connected and a positive external terminal and a negative external terminal are connected by a bus bar formed of the same material as the negative terminal is described.
  • FIGS. 8A is a perspective view of the assembled battery disclosed in Patent Document 1 below
  • FIG. 8B is a schematic plan view of the assembled battery of FIG. 8A
  • 9A is a perspective view of an assembled battery disclosed in Patent Document 2 below
  • FIG. 9B is a cross-sectional view taken along line IXB-IXB in FIG. 9A.
  • a rectangular secondary battery 50 disclosed in Patent Document 1 below includes a plurality of rectangular secondary batteries 51 arranged in parallel in a staggered manner, and one rectangular secondary battery 51.
  • a bus bar 54 is provided that connects the positive terminal 52 (or negative terminal 53) and the negative terminal 53 (or positive terminal 52) of the other prismatic secondary battery 51 in series.
  • the bus bar 54 includes a rectangular plate-shaped base portion 54a and connection portions 54b bent at right angles from both ends of the base portion 54a, and is formed of a copper material in a U-shape.
  • the positive electrode terminal 52 is formed by ultrasonically welding a positive electrode external terminal 52b made of a copper material on a surface perpendicular to the sealing body 55 in a base portion 52a made of an aluminum material.
  • the bus bar 54 made of copper is melt-bonded to the positive electrode external terminal 52b made of copper and the negative electrode terminal 53 made of copper by arc welding.
  • the assembled battery 60 disclosed in Patent Document 2 includes, as shown in FIGS. 9A and 9B, copper positive electrodes (first fixtures) 62 made of an aluminum material of each rectangular secondary battery 61.
  • a positive electrode external terminal (first terminal) 63 made of a material is connected, a negative electrode external terminal (second terminal) 65 made of a copper material is connected to a negative electrode terminal (second fixture) 64 made of a copper material, and a positive electrode external terminal 63 and the negative electrode external terminal 65 are connected by a bus bar (connecting member) 66 made of a copper material.
  • a corrosion preventing member 67 made of a metal having an ionization tendency between aluminum and copper, for example, nickel, stainless steel, aluminum-copper clad metal, etc. 9B).
  • the positive electrode external terminal 63 and the negative electrode external terminal 65 and the bus bar 66 are melt-bonded by laser welding.
  • a positive electrode external terminal 52b made of a copper material is ultrasonically welded to a base portion 52a made of an aluminum material. Accordingly, in the prismatic secondary battery 50 disclosed in Patent Document 1, the positive external terminal 52b is made of the same copper material as the negative electrode terminal 53, and can be melt-bonded by the bus bar 54 made of copper. .
  • the positive electrode external terminal 52b is connected to a surface perpendicular to the sealing body 55 in the positive electrode base portion 52a, and thereafter, the vertical secondary battery 52 is perpendicular to the sealing body 55.
  • a bus bar 54 is connected to the surface.
  • the welding surface to the positive external terminal 52b is positioned on the opposite side between adjacent batteries, which is shown in FIG. 8B.
  • the distance L1 between both ends of one bus bar is different from the distance L2 between both ends of the other bus bar.
  • the prismatic secondary battery 50 disclosed in Patent Document 1 it is necessary to use two types of bus bars having different lengths or to adjust the thicknesses of the positive terminal, the positive external terminal, the negative terminal, and the bus bar. There is a problem that the number of parts increases or the thickness of each member is limited.
  • the bus bar 54 is fused and welded directly to the positive electrode terminal 52 and the negative electrode terminal 53, so that the sealing body 55 and the positive electrode terminal 52 are formed by heat input during welding.
  • the resin insulating seal members 56 and 57 installed between the negative electrode terminal 53 and the negative electrode terminal 53 may be affected by heat and the sealing performance may be deteriorated.
  • the connection between the positive electrode terminal 62 and the positive electrode external terminal 63 and the connection between the negative electrode terminal 64 and the negative electrode external terminal 65 are by caulking (rivets). Even if the bus bar 66 is melt welded to the positive electrode external terminal 63 and the negative electrode external terminal 65, the resin insulating seal members 69a to 69c installed between the positive electrode terminal 62 and the negative electrode terminal 64 and the sealing body 68 are affected by heat. It is difficult to reduce the sealing performance. However, the presence of such a caulking connection portion may lead to fluctuations in the contact resistance of the caulking portion due to a lot of vibration when used as a vehicle-mounted battery.
  • the present invention has been made to solve the problems of the prior art as described above. That is, the present invention provides a welded portion between the positive electrode terminal and the positive electrode external terminal and between the negative electrode terminal and the negative electrode external terminal, a welded portion between the positive electrode external terminal and the bus bar, and a welded portion between the negative electrode external terminal and the bus bar. , All of the same kind of metal can be melt-bonded, and even if the material is the same as the positive electrode terminal and the negative electrode terminal, a single-shaped bus bar can be used, and the weld quality is reduced. It is an object of the present invention to provide an assembled battery having no fear and a prismatic secondary battery for use in the assembled battery.
  • the assembled battery of the present invention includes a positive electrode terminal and a negative electrode terminal that penetrate the sealing body and are insulated from each other by an insulating member.
  • a plurality of prismatic secondary batteries comprising a positive external terminal and a negative external terminal electrically connected to the positive terminal and the negative terminal, respectively;
  • the external terminals of different polarities of the plurality of adjacent square secondary batteries are connected to each other in series by a bus bar,
  • regions connected to the positive terminal and the negative terminal are formed of the same metal as the positive terminal and the negative terminal, respectively, and the region connected to the bus bar is the bus bar.
  • the bus bar is made of the same metal as the positive terminal or the negative terminal, The positive terminal and the positive external terminal, the negative terminal and the negative external terminal, and the bus bar, the positive external terminal, and the negative external terminal are welded, respectively.
  • the regions connected to the positive terminal and the negative terminal are formed of the same kind of metal as the positive terminal and the negative terminal, respectively, and the region connected to the bus bar is the bus bar. It is made of the same kind of metal.
  • the positive electrode terminal is usually made of aluminum or an aluminum alloy (hereinafter referred to as “aluminum material”), and the negative electrode terminal is copper or a copper alloy (hereinafter referred to as “copper material”). ).
  • the bus bar is made of a copper material
  • the positive electrode external terminal is made of an aluminum material on the positive electrode terminal side
  • the bus bar side is made of a copper material
  • the negative electrode external terminal is made of a copper material on both the negative electrode terminal side and the bus bar side. Consists of.
  • the bus bar is made of an aluminum material
  • the positive electrode external terminal is made of an aluminum material on both the positive electrode terminal side and the bus bar side
  • the negative electrode external terminal is made of a copper material on the negative electrode terminal side
  • the bus bar side is made of an aluminum material.
  • the positive electrode terminal, the negative electrode terminal, the positive electrode external terminal, the negative electrode external terminal, and the bus bar may have a plating film made of a different metal on the surface of the base material.
  • a plating film made of a different metal of Ni or Sn may be formed on the surface.
  • the part that is in contact connection with the other member is formed for the purpose of reducing the contact resistance, and the part that is welded to other member is weldable by high energy rays if a plating film is present. Deteriorate.
  • the welded connection may be welded without forming a plated coating or by peeling the plated coating from the welded connection so that the base metals are the same metal.
  • a plating film made of a different metal such as Ni or Sn may be formed on the surface. It is formed for the purpose of preventing an increase in contact resistance due to an increase in the oxide film, and improves weldability (particularly in the case of welding with high-energy radiation) for parts that are welded to other members. It is formed as a purpose. In such a case, if the welding connection is made as it is, the base material of the terminal to be connected and the base material of the bus bar are both welded and connected to each other while penetrating the plating film.
  • the “same kind of metal” in the present invention indicates each constituent metal itself when a plating film is not formed on the surface, and a plating film when a plating film is formed on the surface. It is used to indicate the constituent metal of the base material excluding.
  • the thickness of the bus bar is set larger than the thickness of the positive electrode external terminal and the negative electrode external terminal, and the connection of each of the positive electrode external terminal and the negative electrode external terminal and the bus bar is set. Since it is desired to increase the connection strength, it is necessary to increase the weld trace (nugget) of each welded portion of the positive electrode external terminal and the negative electrode external terminal and the bus bar, and heat generation during welding increases.
  • connection part of the positive electrode terminal and the positive electrode external terminal and the connection part of the negative electrode terminal and the negative electrode external terminal large welding nuggets such as the respective welded parts of the positive electrode external terminal and the negative electrode external terminal and the bus bar are not necessary. Heat generation during welding can be reduced.
  • the positive external terminal and the negative external terminal are interposed between the positive terminal and the bus bar and between the negative terminal and the bus bar, respectively. It is difficult for the heat generated during welding to be applied to the insulating member. In addition, since the heat generated during welding at the connecting portion between the positive electrode terminal and the positive electrode external terminal and the connecting portion between the negative electrode terminal and the negative electrode external terminal is small, the insulating member is not easily damaged, and the possibility that the sealing performance of the battery is lowered is reduced. .
  • the thickness of the positive electrode external terminal or the negative electrode external terminal is set in consideration of reducing the height of the assembled battery, ensuring mechanical strength, and making it difficult for heat generated during welding to be applied to the insulating member. It is preferably about 5 mm to 5 mm, more preferably 1.5 mm to 2.5 mm.
  • the positive electrode terminal and the negative electrode terminal pass through through holes provided in the positive electrode external terminal and the negative electrode external terminal, respectively, and are upper surfaces of the positive electrode external terminal and the negative electrode external terminal. It is preferable to be welded on the side.
  • connection strength between the positive electrode terminal and the positive electrode external terminal and between the negative electrode terminal and the negative electrode external terminal can be increased.
  • At least one of the positive electrode terminal and the negative electrode terminal is fixed by crimping to the positive electrode external terminal or the negative electrode external terminal and welded and connected at the crimping fixing portion.
  • connection strength between the positive electrode terminal and the positive electrode external terminal or between the negative electrode terminal and the negative electrode external terminal can be increased, but also the positive electrode terminal or the negative electrode terminal.
  • the positive electrode terminal or the negative electrode terminal Are connected to the positive external terminal or the negative external terminal so that the connection strength is increased. Therefore, it is not necessary to increase the connection strength by welding so that heat generation at the time of welding can be suppressed. Deterioration can be further suppressed.
  • the positive electrode external terminal and the negative electrode external terminal are all made of the same type of metal as the bus bar in the region where the bus bar is connected. .
  • the positive electrode external terminal and the negative electrode external terminal are all made of the same type of metal as the bus bar in the region where the bus bar is connected, respectively. There is no possibility that the welding quality will deteriorate.
  • the positive electrode external terminal and the negative electrode external terminal are respectively arranged around the through holes of the positive electrode terminal and the negative electrode terminal in the thickness direction, and the upper surface side is the positive electrode terminal and the negative electrode terminal. It is preferable that the lower surface is the same type of metal as the bus bar.
  • connection area between different metal members can be increased without reducing the area connected to the bus bar in the positive external terminal and the negative external terminal, so the positive external terminal and the negative external terminal And the connection strength between the bus bar can be improved.
  • the positive electrode external terminal and the negative electrode external terminal are arranged such that their respective wide surfaces are substantially parallel to the sealing body, and the positive electrode external terminal and the negative electrode external terminal It is preferable that the bus bar is connected to the wide surface.
  • connection area between the positive electrode external terminal and the negative electrode external terminal and the bus bar can be increased, so that the connectivity is good, and different types of prismatic secondary batteries and 1
  • An assembled battery can be manufactured with various types of bus bars.
  • substantially parallel in the present invention is most preferably completely parallel, but it may not necessarily be completely parallel, but may have an inclination of about ⁇ 10 °. ing.
  • both the positive terminal and the bus bar are made of an aluminum-based metal.
  • the weight of the assembled battery can be reduced because the aluminum-based metal is lighter than the copper-based metal.
  • the welding connection can be made by irradiation with high energy rays.
  • a welding connection by irradiation with high energy rays is adopted, a predetermined region can be accurately welded, so that an assembled battery with less variation in internal resistance of the welding connection can be obtained.
  • a laser beam and an electron beam can be employed as the high energy beam.
  • the positive electrode external terminal and the negative electrode external terminal are respectively the same type of metal as the metal constituting the positive electrode terminal and the negative electrode terminal, and the same type of metal as the metal constituting the bus bar.
  • the clad material may be used.
  • the prismatic secondary battery of the present invention for producing any one of the above assembled batteries has a bottomed electrode body in which a flat electrode body in which a positive electrode plate and a negative electrode plate are stacked or wound via a separator has an opening. Housed in a rectangular tube-shaped exterior body, the opening is sealed by the sealing body, and the positive electrode current collector and the negative electrode current collector electrically connected to the negative electrode plate are connected to the positive electrode plate, respectively. A terminal and the negative terminal are electrically connected.
  • an assembled battery exhibiting any of the effects described above can be easily manufactured.
  • FIG. 1A is a front view of a prismatic nonaqueous electrolyte secondary battery according to an embodiment
  • FIG. 1B is a plan view
  • FIG. 1C is a side view
  • 2A is a partial cross-sectional view taken along line IIA-IIA in FIG. 1B
  • FIG. 2B is a partial cross-sectional view taken along line IIB-IIB in FIG. 1B.
  • FIG. 4 is a partial cross-sectional view taken along line IV-IV in FIG. 3.
  • FIG. 11 is a partial cross-sectional view taken along the line IIB-IIB in FIG.
  • FIG. 10 is a partial cross-sectional view taken along the line IIB-IIB in FIG.
  • FIG. 10 is a partial cross-sectional view taken along the line IIB-IIB in FIG.
  • FIG. 10 is a partial cross-sectional view taken along the line IIB-IIB in FIG. 1B of Modification 3.
  • FIG. 8A is a perspective view of a conventional assembled battery
  • FIG. 8B is a schematic plan view of the assembled battery of FIG. 8A.
  • FIG. 9A is a perspective view of another conventional assembled battery
  • FIG. 9B is a cross-sectional view taken along line IXB-IXB in FIG. 9A.
  • FIGS. 1 and 2 are views of the prismatic nonaqueous electrolyte secondary battery
  • FIG. 1B is a plan view
  • FIG. 1C is a side view
  • 2A is a cross-sectional view taken along line IIA-IIA in FIG. 1B
  • FIG. 2B is a cross-sectional view taken along line IIB-IIB in FIG. 1B.
  • this rectangular nonaqueous electrolyte secondary battery 10 has a flat electrode body in which a positive electrode plate and a negative electrode plate are wound or laminated with a separator interposed therebetween.
  • the positive electrode plate is produced by applying a positive electrode active material mixture on both surfaces of a positive electrode core body made of aluminum foil, drying and rolling, and then slitting the aluminum foil so as to be exposed in a strip shape.
  • the negative electrode plate is produced by applying a negative electrode active material mixture on both sides of a negative electrode core made of copper foil, drying and rolling, and then slitting the copper foil so as to be exposed in a strip shape.
  • the positive electrode plate and the negative electrode plate obtained as described above are shifted so that the aluminum foil exposed portion of the positive electrode plate and the copper foil exposed portion of the negative electrode plate do not overlap with the facing active material mixture, respectively.
  • the positive electrode plate and the negative electrode plate obtained as described above are shifted so that the aluminum foil exposed portion of the positive electrode plate and the copper foil exposed portion of the negative electrode plate do not overlap with the facing active material mixture, respectively.
  • by laminating or winding through a polyolefin porous separator one end is provided with a plurality of overlapping positive electrode core exposed portions, and the other end is provided with a plurality of overlapping negative electrode core exposed portions.
  • the flat electrode body provided is produced.
  • a plurality of laminated positive electrode core exposed portions are connected to a positive electrode terminal 11 made of aluminum material through a positive electrode current collector made of aluminum material, and a plurality of laminated negative electrode core exposed portions are made of copper material. It is connected to a negative electrode terminal 12 also made of a copper material through a negative electrode current collector. As shown in FIGS. 2A and 2B, the positive electrode terminal 11 and the negative electrode terminal 12 are fixed to the sealing plate 15 via insulating members 13 and 14 and resin gaskets 13a and 14a, respectively. The positive terminal 11 and the negative terminal 12 are connected to a positive external terminal 21 and a negative external terminal 22 disposed on the insulating members 13 and 14, respectively.
  • the flat electrode body manufactured as described above is inserted into the rectangular outer casing 16, and then the sealing plate 15 is laser-opened in the opening of the outer casing 16.
  • the non-aqueous electrolyte solution is injected from the electrolyte solution injection hole 17 and then the electrolyte solution injection hole 17 is sealed.
  • the sealing plate 15 is provided with a gas discharge valve 18 as a safety means.
  • a plurality of prismatic non-aqueous electrolyte secondary batteries 10 having such a configuration are connected in series to form an assembled battery 30 (see FIG. 3).
  • the positive electrode terminal 11 is also made of an aluminum material, there is no problem as in the case of dissimilar metal joining even if both are directly melt welded.
  • the positive electrode terminal 11 has the penetration portion of the sealing body 15 covered with the resin gasket 13a, if the bus bar 31 is directly melt welded to the positive electrode terminal 11, heat during welding is applied to the resin gasket 13a. There is a possibility that problems may arise in the insulation and sealing properties of the resin gasket 13a.
  • a positive electrode external terminal 21 made of only a flat aluminum material is used, a through hole 21a is formed in the positive electrode external terminal 21, and a positive electrode terminal is formed in the through hole 21a. 11, and crimping the end of the positive electrode terminal 11 to form a caulking fixing portion 11 a, and the positive electrode terminal 11 is fixed to the positive electrode external terminal 21 by the caulking fixing portion 11 a. Further, a part of the positive external terminal 21 is used as a connection region R ⁇ b> 1 with the bus bar 31.
  • the caulking fixing portion 11a is fusion welded with a high energy beam, for example, a laser beam.
  • the caulking fixing part 11a can secure some connection strength, so that it is not necessary to increase the connection strength by welding so much, so heat generation during welding can be suppressed, and insulation can be achieved. Deterioration of the member 13 and the resin gasket 13a can be suppressed.
  • the negative electrode terminal 12 is made of a copper material. Therefore, when the bus bar 31 and the negative electrode terminal 12 are directly melt welded, different metal joints are formed, so that a brittle intermetallic compound may be generated. is there. Therefore, as shown in FIG. 2B, a clad material having a clad region composed of a copper material portion 22 b and an aluminum material portion 22 c is used as the negative electrode external terminal 22. As in the case of the positive electrode external terminal 21, the negative electrode external terminal 22 has a through hole 22a.
  • the upper surface side (outer surface side) around the through hole 22a is a copper material portion 22b, and the lower surface side ( The inner surface side) is a clad region made of an aluminum material portion 22c, and a region made only of the aluminum material portion 22c is formed on the side surface connected to the clad material region.
  • the surface of the negative electrode terminal 12 may be plated with Ni.
  • the thickness of the region consisting only of the aluminum material portion 22c in the negative electrode external terminal 22 is, for example, about 1.5 to 2.0 mm, and the copper material portion 22b and the copper material portion 22b in the clad region of the aluminum material portion 22c.
  • the thickness is, for example, 0.4 to 1.0 mm.
  • a part of the region formed only of the aluminum material portion 22 c formed on the side surface of the clad material region is a connection region R ⁇ b> 2 with the bus bar 31 in the negative electrode external terminal 22.
  • the thickness of the positive electrode external terminal 21 to the negative electrode external terminal 22 takes into consideration that the height of the assembled battery 30 is reduced and that the mechanical strength is ensured and that heat generated during welding is difficult to be applied to the insulating member.
  • the thickness is preferably about 1 to 5 mm, more preferably 1.5 to 2.5 mm.
  • the negative electrode terminal 12 is inserted into a through hole 22a formed in the negative electrode external terminal 22, and the end portion of the negative electrode terminal 12 is crimped to form a crimping fixing portion 12a.
  • the crimping fixing portion 12a allows the negative electrode terminal 12 to be
  • the negative electrode external terminal 22 is fixed to the copper material portion 22b.
  • the caulking fixing portion 12a is fusion welded with a high energy beam, for example, a laser beam.
  • the wide surface of the negative electrode external terminal 22 is made substantially parallel to the sealing body.
  • substantially parallel is most preferably completely parallel, but it is difficult to make it completely parallel in manufacturing, and therefore, there may be an inclination of about ⁇ 10 °.
  • both the negative electrode terminal 12 and the negative electrode external terminal 22 are made of a copper material, problems such as dissimilar metal bonding do not occur even if fusion welding is performed in the caulking fixing portion 22a. Moreover, since some connection strength can be ensured by the caulking fixing portion 12a, it is not necessary to increase the connection strength by welding so that heat generation during welding can be suppressed. Deterioration of the gasket 14a can be suppressed.
  • connection region R1 of the positive electrode external terminal 21 and the connection region R2 of the negative electrode external terminal 22 are respectively on both side ends of the square nonaqueous electrolyte secondary battery 10. It is formed so that it may become equidistant from.
  • FIG. 3 is a plan view of the assembled battery of the embodiment.
  • FIG. 4 is a partial cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 3 shows an example in which three prismatic nonaqueous electrolyte secondary batteries 10 are connected in series. However, it is necessary to determine how many prismatic nonaqueous electrolyte secondary batteries 10 are connected in series. What is necessary is just to determine suitably according to a voltage.
  • a plurality of prismatic nonaqueous electrolyte secondary batteries 10 are alternately arranged in parallel at predetermined intervals. This interval may be “0”, but heat is generated during charging / discharging, and is set at a certain distance in consideration of heat dissipation efficiency.
  • the positive electrode external terminal 21 and the negative electrode external terminal 22 of the adjacent rectangular nonaqueous electrolyte secondary battery 10 are arranged adjacent to each other, and the connection region R1 of the positive electrode external terminal 21 and the connection region R2 of the negative electrode external terminal 22 are arranged. Adjacent state.
  • connection region R1 of the positive external terminal 21 is made of an aluminum material
  • connection region R2 of the negative electrode external terminal 22 is also an aluminum material portion 22c.
  • bus bar 31 is made of an aluminum material
  • the bus bar 31, the connection region R1 of the positive external terminal 21 and the connection region R2 of the negative external terminal 22 are all made of the same material.
  • the bus bar 31 is connected to the connection region R1 of the positive electrode external terminal 21 of one rectangular nonaqueous electrolyte secondary battery 10 and the negative electrode of the other rectangular nonaqueous electrolyte secondary battery 10.
  • Laser welding is performed so as to straddle the connection region R2 of the external terminal 22 so that a welding mark (nugget) 32 having a sufficient depth is formed from the bus bar 31 side.
  • a plating film is not formed in a region where the bus bar 31 is welded in the connection region R1, or the connection region By peeling the plating film in the region welded to the bus bar 31 in R1, the aluminum material portion of the base material is exposed. Further, when a plating film made of Ni or Sn is formed on the surface of the negative electrode external terminal 22, no plating film is formed in the connection region R2 in the region to be welded to the bus bar 31, or in the connection region R2. By peeling the plating film in the region welded to the bus bar 31, the aluminum material portion of the base material is exposed.
  • a different metal plating film made of Ni or Sn is formed on the surface of the bus bar 31, it is welded and connected to the connection region R1 of the positive external terminal 21 or the connection region R2 of the negative external terminal 22.
  • the plating film is not formed in the region to be removed, or the plating film in the region that is welded to the connection region R1 of the positive external terminal 21 or the region that is welded to the connection region R2 of the negative external terminal 22 is peeled off. Thus, the aluminum material portion of the base material is exposed.
  • connection region R1 of the positive electrode external terminal 21 and the connection region R2 of the negative electrode external terminal 22 between the adjacent rectangular nonaqueous electrolyte secondary batteries 10 is constant. Therefore, if a bus bar 31 having a single shape made of an aluminum material is used, a plurality of prismatic nonaqueous electrolyte secondary batteries can be connected in series.
  • 3 and 4 show an example in which laser welding is performed at two locations in a connection region R1 of one positive external terminal 21 with the bus bar 31 or a connection region R2 with the bus bar 31 formed on the negative external terminal 22. Indicated. Even in this case, the number of laser weldings may be selected in consideration of the capacity of the rectangular nonaqueous electrolyte secondary battery 10, the required output, the allowable current of the bus bar 31, and the like. Or three or more locations.
  • the thickness of the bus bar 31 is usually necessary to make the thickness of the bus bar 31 larger than the thickness of the positive electrode external terminal 21 or the negative electrode external terminal 22 as compared with the case of only the serial connection. Although it depends on the width of the bus bar 31 and the range of current used, in the case of a bus bar made of an aluminum material, the bus bar needs to have a thickness of about 3 to 4 mm, and the larger the bus bar thickness, the greater the welding energy (welding depth) is required. Become.
  • the bus bar 31 is made of an aluminum material.
  • the bus bar 31 made of a copper material that is a constituent material of the negative electrode terminal 12 of the nonaqueous electrolyte secondary battery 10 can also be used.
  • the positive electrode terminal 11 is made of an aluminum material
  • the upper surface side (outer surface side) is made of an aluminum material
  • the lower surface side (inner surface side) and the side surface side are made of a copper material around the positive electrode terminal 11.
  • the connecting region R1 of the positive electrode terminal 11 to the bus bar 31 is made of a copper material
  • the negative electrode external terminal 22 is made of a copper material that is the same material as the negative electrode terminal 12 Good.
  • connection region R1 of the positive external terminal 21 is made of copper
  • connection region R2 of the negative external terminal 22 is also made of copper
  • bus bar 31 is also made of copper.
  • the connection region R1 of the positive external terminal 21 and the connection region R2 of the negative external terminal 22 are all made of the same material.
  • the dissimilar metal plating film which consists of Ni or Sn is formed in the surface of the positive electrode external terminal 21, the negative electrode external terminal 22, and a bus-bar, if it welds as it is, it will be a base material of the terminal which should be connected. Both the copper material portion and the copper material portion which is the base material of the bus bar are in a state where they are welded to each other while penetrating the plated portion.
  • the same operation and effect as when the bus bar 31 is made of an aluminum material can be obtained.
  • the specific gravity of the copper material is larger than the specific gravity of the aluminum material, in order to reduce the mass of the assembled battery 30, it is applied to those using an aluminum material as the bus bar 31 in order to reduce the amount of copper material used. You should do it.
  • the positive electrode terminal 11 is made of an aluminum / BR> J material and the negative electrode terminal 12 is made of a rectangular non-aqueous electrolyte secondary battery 10 made of a copper material has been described.
  • the present invention is not limited to this, and a rectangular secondary battery in which the positive electrode terminal and the negative electrode terminal are made of different materials can be equally applied by selecting the same material as the positive electrode terminal or the negative electrode terminal for the bus bar.
  • the bus bar 31 is made of an aluminum material
  • the negative electrode external terminal 22 is made of a clad material in which the peripheral portion of the negative electrode terminal 12 has a copper material portion 22b and an aluminum material portion 22c.
  • the negative electrode external terminal 22 may be formed of a copper material at the other part as long as only the connection region R2 with the bus bar 31 is made of an aluminum material.
  • FIG. 5 is a partial cross-sectional view taken along the line IIB-IIB in FIG.
  • the negative electrode external terminal 22 of the prismatic nonaqueous electrolyte secondary battery of Modification 1 has a clad region of the copper material portion 22b and the aluminum portion 22c on the side opposite to the connection region R2 of the negative electrode external terminal 22 with the negative electrode terminal 12 as the center. It is formed in all of the positions. With such a configuration, it becomes easier to manufacture than the negative electrode external terminal 22 of the prismatic nonaqueous electrolyte secondary battery 10 of the embodiment.
  • the negative electrode external terminal 22 of the rectangular nonaqueous electrolyte secondary battery of Modification 2 is formed so that the clad region of the copper material portion 22b and the aluminum portion 22c is only the connection region R2 of the negative electrode external terminal 22, and the like. Are all copper parts 22b.
  • the thickness of the negative electrode external terminal 22 can be reduced.
  • the thickness of the aluminum material portion 22c in the clad region is reduced, a brittle intermetallic compound may be generated between the aluminum and copper when the welding depth between the bus bar and the bus bar is increased. Thickness and welding depth are required.
  • FIG. 7 is a cross-sectional view taken along the line IIB-IIB of FIG. 1B in which the length L of the cladding region is shortened in the external terminal 22 of Modification 2 so that only the aluminum material portion 22c is formed. It is a fragmentary sectional view of negative electrode external terminal 22 'portion of modification 3 corresponding to a line portion.
  • the length L of the cladding region is shortened, the area of the connection region R2 with respect to the bus bar seems to be widened, but the bonding strength of the cladding region is weakened.
  • the length L of the cladding region is preferably set to be 1/2 or more of the length of the region in contact with the bus bar in the connection region R2 to the bus bar (the length in the direction parallel to the longitudinal direction of the negative electrode external terminal 22 ′).
  • SYMBOLS 10 Square nonaqueous electrolyte secondary battery 11 ... Positive electrode terminal 11a ... Caulking fixed part 12 ... Negative electrode terminal 13, 14 ... Insulating member 13a, 14a ... Resin gasket 15 ... Sealing body 16 ... Exterior body 17 ... Electrolyte injection hole DESCRIPTION OF SYMBOLS 18 ... Gas discharge valve 21 ... Positive electrode external terminal 21a ... Through hole (of positive electrode external terminal) 22 ... Negative electrode external terminal 22a ... Through hole (of negative electrode external terminal) 22b ... Copper material part 22c (of negative electrode external terminal) ... (Negative electrode) Aluminum part of external terminal 30 ... Battery battery 31 ... Bus bar 32 ... Wear mark R1 ... Connection area of positive external terminal R2 ... Connection area of negative external terminal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

[Problem] To provide a cell assembly and a rectangular secondary cell for use in a cell assembly, the assembly and the cell being capable of having all weld locations be fusion joints of the same type of metal, being capable of using a single shape of bus bar even if the bus bar has a positive-electrode terminal and a negative-electrode terminal of the same type of material, and not being liable to suffer a reduction in weld quality. [Solution] In this cell assembly (30), the regions of a positive-electrode external terminal (21) and a negative-electrode external terminal (22) that are connected to a positive-electrode terminal (11) and a negative-electrode terminal (12), respectively, are formed of the same type of metal as the positive-electrode terminal (11) and the negative-electrode terminal (12); the region connected to a bus bar (31) is formed of the same type of metal as the bus bar (31); the bus bar (31) is formed of the same type of metal as the positive-electrode terminal (11) or the negative-electrode terminal (12); and the positive-electrode terminal (11) and the positive-electrode external terminal (21), the negative-electrode terminal (12) and the negative-electrode external terminal (22), and the bus bar (31) and the positive-electrode external terminal (21) and the negative-electrode external terminal (22) are all, respectively, connected by welding.

Description

組電池及びこの組電池に使用するための角形二次電池Battery pack and prismatic secondary battery for use in the battery pack
 本発明は、角形二次電池を複数個接続した組電池及びこの組電池に使用するための角形二次電池に関する。 The present invention relates to an assembled battery in which a plurality of prismatic secondary batteries are connected, and a prismatic secondary battery for use in the assembled battery.
 今日の携帯電話機、携帯型パーソナルコンピューター、携帯型音楽プレイヤー等の携帯型電子機器の駆動電源、あるいは、ハイブリッド電気自動車(HEV、PHEV)や電気自動車(EV)用の電源として、リチウムイオン二次電池やニッケル水素二次電池等の二次電池が広く利用されている。これらの二次電池は、特にスペース効率が要求される場合においては円筒形のものよりも角形の電池に対するニーズが高い。 Lithium ion secondary batteries as power sources for portable electronic devices such as today's mobile phones, portable personal computers, portable music players, or power sources for hybrid electric vehicles (HEV, PHEV) and electric vehicles (EV) Secondary batteries such as nickel hydrogen secondary batteries are widely used. These secondary batteries have a higher need for prismatic batteries than cylindrical ones, particularly when space efficiency is required.
 二次電池は、単独の電池では起電力が低く、比較的起電力が高いといわれているリチウムイオン二次電池でも4V程度である。そのため、これらの電池を例えば電気自動車(EV)ないしハイブリッド電気自動車(HEV、PHEV)などの車載用電池として使用する場合、大電力が必要とされるために、電池を多数個直列に接続すると共に直列接続された電池をさらに多数個並列に接続(以下、この接続を「多直多並列接続」という)した組電池として用いられている。この組電池においては、それぞれの電池の端子を延設し、これらの延設された端子を互いに折り曲げて隣接する電池の端子と重ね合わせて溶接接続ないしボルト締結による接続が行われ、あるいは、バスバーなどの接続部材を用いて隣接する電池の端子同士との間を溶接接続ないしボルト締結による接続などによって行われている。 A secondary battery has a low electromotive force in a single battery and is about 4 V even in a lithium ion secondary battery, which is said to have a relatively high electromotive force. Therefore, when these batteries are used as in-vehicle batteries such as an electric vehicle (EV) or a hybrid electric vehicle (HEV, PHEV), a large amount of power is required. It is used as an assembled battery in which a large number of batteries connected in series are connected in parallel (hereinafter, this connection is referred to as “multiple-multiple parallel connection”). In this assembled battery, the terminals of each battery are extended, and the extended terminals are bent with each other and overlapped with adjacent battery terminals to be connected by welding connection or bolt fastening, or bus bar Such a connection member is used for welding between adjacent battery terminals by welding connection or bolt fastening.
 ボルト締結の場合は、容易に電気的に接続を形成することができるが、車載用電池のように振動が多い用途に使用するとボルト締結部分の内部抵抗の変動が生じ易い。そのため車載用電池に用いられる角形二次電池を多直多並列接続するには、端子間の接続部を溶接接続することが好ましい。加えて、車載用電池では車載スペースにおける高さ方向の寸法削減の要求もあるが、多直多並列接続された車載用電池に対してこの要求に対応するには、ボルト締結よりも溶接接続の方が有利となる。 In the case of bolt fastening, it is possible to easily form an electrical connection. However, when used in applications where there is a lot of vibration such as in-vehicle batteries, fluctuations in the internal resistance of the bolt fastening portion are likely to occur. Therefore, in order to connect the prismatic secondary batteries used for the vehicle-mounted battery in a multi-series and multi-parallel connection, it is preferable to connect the connection portions between the terminals by welding. In addition, in-vehicle batteries have a requirement to reduce the dimension in the height direction in the in-vehicle space, but in order to meet this requirement for in-vehicle batteries that are connected in multiple and multi-parallel connection, welding connection rather than bolt fastening is required. Is more advantageous.
 しかしながら、正極、負極の両端子が電池の天面(封口体上)に設置された角形非水電解質二次電池では、通常、正極端子はアルミニウム材からなり、負極端子は銅材からなる。そのため、バスバーの材質が銅材やアルミニウム材の単一材料からなるものであると、正極側と負極側とのどちらか一方が銅/アルミニウムの異種金属による溶融接合となる。そのため、正極端子と負極端子とを単一の材料で形成されたバスバーによって直接溶接接続する場合、異種金属間での溶融接合部分が生じるので、脆い金属間化合物の生成に基づく溶接強度不足、クラッック、スパッタ等による溶接品質の低下が懸念される。 However, in a rectangular nonaqueous electrolyte secondary battery in which both the positive electrode and negative electrode terminals are installed on the top surface (on the sealing body) of the battery, the positive electrode terminal is usually made of an aluminum material and the negative electrode terminal is made of a copper material. Therefore, when the bus bar is made of a single material such as a copper material or an aluminum material, either the positive electrode side or the negative electrode side is melt-bonded with a dissimilar metal of copper / aluminum. For this reason, when the positive electrode terminal and the negative electrode terminal are directly welded and connected by a bus bar formed of a single material, a melt-bonded portion between dissimilar metals is formed, resulting in insufficient weld strength based on the formation of brittle intermetallic compounds, cracking. There is a concern that the welding quality may deteriorate due to sputtering or the like.
 そのため、下記特許文献1には、正極端子に負極端子と同一の材料で形成された正極外部端子を接続し、正極外部端子と負極端子とを負極端子と同一の材料で形成されたバスバーによって接続した構成の組電池の発明が記載されている。同じく、下記特許文献2には、正極端子に腐食防止材を挟んで負極端子と同一の材料で形成された正極外部端子を接続し、負極端子に負極端子と同一の材料で形成された負極外部端子を接続し、正極外部端子と負極外部端子とを負極端子と同一の材料で形成されたバスバーによって接続した構成の組電池の発明が記載されている。 Therefore, in Patent Document 1 below, a positive electrode external terminal formed of the same material as the negative electrode terminal is connected to the positive electrode terminal, and the positive electrode external terminal and the negative electrode terminal are connected by a bus bar formed of the same material as the negative electrode terminal. The invention of the assembled battery having the above structure is described. Similarly, in Patent Document 2 below, a positive electrode external terminal formed of the same material as the negative electrode terminal is connected to a positive electrode terminal with a corrosion inhibitor interposed therebetween, and the negative electrode external device formed of the same material as the negative electrode terminal is connected to the negative electrode terminal. An invention of an assembled battery having a configuration in which terminals are connected and a positive external terminal and a negative external terminal are connected by a bus bar formed of the same material as the negative terminal is described.
 ここで、図8及び図9を参照して、下記特許文献1及び2に開示されている組電池の発明を説明する。なお、図8Aは下記特許文献1に開示されている組電池の斜視図であり、図8Bは図8Aの組電池の模式平面図である。また、図9Aは下記特許文献2に開示されている組電池の斜視図であり、図9Bは図9AのIXB-IXB線に沿った断面図である。 Here, the invention of the assembled battery disclosed in Patent Documents 1 and 2 below will be described with reference to FIGS. 8A is a perspective view of the assembled battery disclosed in Patent Document 1 below, and FIG. 8B is a schematic plan view of the assembled battery of FIG. 8A. 9A is a perspective view of an assembled battery disclosed in Patent Document 2 below, and FIG. 9B is a cross-sectional view taken along line IXB-IXB in FIG. 9A.
 下記特許文献1に開示されている角形二次電池50は、図8Aに示したように、互い違いに平行配置された直方体状の複数の角形二次電池51と、一方の角形二次電池51の正極端子52(又は負極端子53)と他方の角形二次電池51の負極端子53(又は正極端子52)とを直列に接続するバスバー54とを備えている。バスバー54は、図8Bに示すように、長方形板状の基部54aと、基部54aの両端から直角に折曲された接続部54bとからなり、銅材をコ字状に形成したものである。正極端子52は、アルミニウム材からなる基部52aにおける封口体55に対して垂直な面に銅材からなる正極外部端子52bを超音波溶接して形成されている。そして、銅材からなるバスバー54は銅からなる正極外部端子52b及び銅材からなる負極端子53とアーク溶接により溶融接合されている。 As shown in FIG. 8A, a rectangular secondary battery 50 disclosed in Patent Document 1 below includes a plurality of rectangular secondary batteries 51 arranged in parallel in a staggered manner, and one rectangular secondary battery 51. A bus bar 54 is provided that connects the positive terminal 52 (or negative terminal 53) and the negative terminal 53 (or positive terminal 52) of the other prismatic secondary battery 51 in series. As shown in FIG. 8B, the bus bar 54 includes a rectangular plate-shaped base portion 54a and connection portions 54b bent at right angles from both ends of the base portion 54a, and is formed of a copper material in a U-shape. The positive electrode terminal 52 is formed by ultrasonically welding a positive electrode external terminal 52b made of a copper material on a surface perpendicular to the sealing body 55 in a base portion 52a made of an aluminum material. The bus bar 54 made of copper is melt-bonded to the positive electrode external terminal 52b made of copper and the negative electrode terminal 53 made of copper by arc welding.
 また、上記特許文献2に開示されている組電池60は、図9A及び図9Bに示したように、個々の角形二次電池61のアルミニウム材からなる正極端子(第1固定具)62に銅材からなる正極外部端子(第1端子)63が接続され、銅材からなる負極端子(第2固定具)64に銅材からなる負極外部端子(第2端子)65が接続され、正極外部端子63と負極外部端子65とが銅材からなるバスバー(連結部材)66によって連結された構成を備えている。そして、正極端子62と正極外部端子63との間には、アルミニウムと銅との間のイオン化傾向を有する金属、例えばニッケル、ステンレス鋼、アルミニウム-銅のクラッドメタル等からなる腐食防止部材67(図9B参照)が設けられている。この組電池60では、正極外部端子63及び負極外部端子65とバスバー66との間はレーザ溶接により溶融接合されている。 In addition, the assembled battery 60 disclosed in Patent Document 2 includes, as shown in FIGS. 9A and 9B, copper positive electrodes (first fixtures) 62 made of an aluminum material of each rectangular secondary battery 61. A positive electrode external terminal (first terminal) 63 made of a material is connected, a negative electrode external terminal (second terminal) 65 made of a copper material is connected to a negative electrode terminal (second fixture) 64 made of a copper material, and a positive electrode external terminal 63 and the negative electrode external terminal 65 are connected by a bus bar (connecting member) 66 made of a copper material. Between the positive electrode terminal 62 and the positive electrode external terminal 63, a corrosion preventing member 67 made of a metal having an ionization tendency between aluminum and copper, for example, nickel, stainless steel, aluminum-copper clad metal, etc. 9B). In the assembled battery 60, the positive electrode external terminal 63 and the negative electrode external terminal 65 and the bus bar 66 are melt-bonded by laser welding.
特開2011-124024号公報JP 2011-124024 A 特開2011-077039号公報JP 2011-077039 A
 上記特許文献1に開示されている角形二次電池50の正極端子52は、アルミニウム材からなる基部52aに銅材からなる正極外部端子52bを超音波溶接している。それによって、上記特許文献1に開示されている角形二次電池50では、正極外部端子52bが負極端子53と同じ銅材からなるようにし、銅材からなるバスバー54によって溶融接合できるようにしている。 In the positive electrode terminal 52 of the prismatic secondary battery 50 disclosed in Patent Document 1, a positive electrode external terminal 52b made of a copper material is ultrasonically welded to a base portion 52a made of an aluminum material. Accordingly, in the prismatic secondary battery 50 disclosed in Patent Document 1, the positive external terminal 52b is made of the same copper material as the negative electrode terminal 53, and can be melt-bonded by the bus bar 54 made of copper. .
 しかしながら、上記特許文献1に開示されている角形二次電池50では、正極基部52aにおける封口体55に対して垂直な面に正極外部端子52bを接続し、その後、封口体55に対して垂直な面にバスバー54を接続している。この構成において、単一種類の角形二次電池を用いて直列接続する場合、正極外部端子52bへの溶接面が隣接する電池間ではそれぞれ反対側に位置するようになるので、図8Bに示したように、一方のバスバーの両端間距離L1と他方のバスバーの両端間距離L2とは相違してしまう。 However, in the prismatic secondary battery 50 disclosed in Patent Document 1, the positive electrode external terminal 52b is connected to a surface perpendicular to the sealing body 55 in the positive electrode base portion 52a, and thereafter, the vertical secondary battery 52 is perpendicular to the sealing body 55. A bus bar 54 is connected to the surface. In this configuration, when a single type of prismatic secondary battery is used for series connection, the welding surface to the positive external terminal 52b is positioned on the opposite side between adjacent batteries, which is shown in FIG. 8B. Thus, the distance L1 between both ends of one bus bar is different from the distance L2 between both ends of the other bus bar.
 そのため、上記特許文献1に開示されている角形二次電池50では、長さの異なる2種類のバスバーを用いるか、あるいは、正極端子ないし正極外部端子、負極端子及びバスバーの厚さを調節する必要があり、部品点数が増加したり、あるいは、各部材の厚みの制限が生じるという課題が生じる。また、上記特許文献1に開示されている角形二次電池50では、正極端子52及び負極端子53に直接バスバー54を溶融溶接しているので、溶接時の入熱により封口体55と正極端子52及び負極端子53との間に設置した樹脂製絶縁シール部材56、57が熱影響を受け、シール性が低下する虞がある。加えて、上記特許文献1にはバスバーとしてアルミニウム材からなるものを用いることについて示唆する記載はない。 Therefore, in the prismatic secondary battery 50 disclosed in Patent Document 1, it is necessary to use two types of bus bars having different lengths or to adjust the thicknesses of the positive terminal, the positive external terminal, the negative terminal, and the bus bar. There is a problem that the number of parts increases or the thickness of each member is limited. In the prismatic secondary battery 50 disclosed in Patent Document 1, the bus bar 54 is fused and welded directly to the positive electrode terminal 52 and the negative electrode terminal 53, so that the sealing body 55 and the positive electrode terminal 52 are formed by heat input during welding. In addition, the resin insulating seal members 56 and 57 installed between the negative electrode terminal 53 and the negative electrode terminal 53 may be affected by heat and the sealing performance may be deteriorated. In addition, there is no description in the above-mentioned Patent Document 1 that suggests using a bus bar made of an aluminum material.
 また、上記特許文献2に開示されている組電池60では、正極端子62と正極外部端子63との間及び負極端子64と負極外部端子65との間の接続はカシメ(リベット)によるものであるから、正極外部端子63及び負極外部端子65にバスバー66を溶融溶接しても、正極端子62及び負極端子64と封口体68の間に設置した樹脂製絶縁シール部材69a~69cは熱影響を受け難くなっており、シール性の低下が生じ難くなっている。しかしながら、このようなカシメ接続部の存在は、車載用電池として使用する場合、振動が多いためにカシメ部の接触抵抗の変動に繋がる虞がある。 In the assembled battery 60 disclosed in Patent Document 2, the connection between the positive electrode terminal 62 and the positive electrode external terminal 63 and the connection between the negative electrode terminal 64 and the negative electrode external terminal 65 are by caulking (rivets). Even if the bus bar 66 is melt welded to the positive electrode external terminal 63 and the negative electrode external terminal 65, the resin insulating seal members 69a to 69c installed between the positive electrode terminal 62 and the negative electrode terminal 64 and the sealing body 68 are affected by heat. It is difficult to reduce the sealing performance. However, the presence of such a caulking connection portion may lead to fluctuations in the contact resistance of the caulking portion due to a lot of vibration when used as a vehicle-mounted battery.
 しかも、上記特許文献2に開示されている組電池60においては、単一種類の角形二次電池61を用いて直列接続する場合であっても、単一種類のバスバー66を用いることができるが、正極端子62と正極外部端子63との間には、アルミニウムと銅との間のイオン化傾向を有する金属からなる腐食防止部材67が設けられているため、複雑な構成となってしまうという問題点が存在する。加えて、上記特許文献2にはバスバーとしてアルミニウム材からなるものを用いることについて示唆する記載はない。 Moreover, in the assembled battery 60 disclosed in Patent Document 2, a single type of bus bar 66 can be used even when connected in series using a single type of rectangular secondary battery 61. In addition, since the corrosion prevention member 67 made of a metal having an ionization tendency between aluminum and copper is provided between the positive electrode terminal 62 and the positive electrode external terminal 63, the configuration becomes complicated. Exists. In addition, there is no description in the above-mentioned Patent Document 2 that suggests using a bus bar made of an aluminum material.
 本発明は上述のような従来技術の問題点を解決すべくなされたものである。すなわち、本発明は、正極端子と正極外部端子との間及び負極端子と負極外部端子との間の溶接部、正極外部端子とバスバーとの間及び負極外部端子とバスバーとの間の溶接部等、全て同種金属同士の溶融接合とすることができ、また、正極端子及び負極端子のどちらと同種の材質であっても、単一形状のバスバーを用いることができ、しかも、溶接品質の低下の虞がない組電池及びこの組電池に使用するための角形二次電池を提供することを目的とする。 The present invention has been made to solve the problems of the prior art as described above. That is, the present invention provides a welded portion between the positive electrode terminal and the positive electrode external terminal and between the negative electrode terminal and the negative electrode external terminal, a welded portion between the positive electrode external terminal and the bus bar, and a welded portion between the negative electrode external terminal and the bus bar. , All of the same kind of metal can be melt-bonded, and even if the material is the same as the positive electrode terminal and the negative electrode terminal, a single-shaped bus bar can be used, and the weld quality is reduced. It is an object of the present invention to provide an assembled battery having no fear and a prismatic secondary battery for use in the assembled battery.
 上記目的を達成するため、本発明の組電池は、封口体を貫通し、前記封口体との間が絶縁部材によってそれぞれ絶縁されている正極端子及び負極端子と、
 前記正極端子及び前記負極端子にそれぞれ電気的に接続されている正極外部端子及び負極外部端子と、を備える角形二次電池を複数個有し、
 隣接する前記複数個の角形二次電池の異なる極性の外部端子同士がバスバーによって互いに直列接続されており、
 前記正極外部端子及び前記負極外部端子は、前記正極端子及び前記負極端子と接続される領域はそれぞれ前記正極端子及び前記負極端子と同種の金属で形成され、前記バスバーと接続される領域は前記バスバーと同種の金属で形成され、
 前記バスバーは前記正極端子又は前記負極端子と同種の金属で形成されており、
 前記正極端子と前記正極外部端子との間、前記負極端子と前記負極外部端子との間、前記バスバーと前記正極外部端子及び前記負極外部端子との間は、それぞれ溶接接続されていることを特徴とする。
In order to achieve the above object, the assembled battery of the present invention includes a positive electrode terminal and a negative electrode terminal that penetrate the sealing body and are insulated from each other by an insulating member.
A plurality of prismatic secondary batteries comprising a positive external terminal and a negative external terminal electrically connected to the positive terminal and the negative terminal, respectively;
The external terminals of different polarities of the plurality of adjacent square secondary batteries are connected to each other in series by a bus bar,
In the positive external terminal and the negative external terminal, regions connected to the positive terminal and the negative terminal are formed of the same metal as the positive terminal and the negative terminal, respectively, and the region connected to the bus bar is the bus bar. It is made of the same kind of metal as
The bus bar is made of the same metal as the positive terminal or the negative terminal,
The positive terminal and the positive external terminal, the negative terminal and the negative external terminal, and the bus bar, the positive external terminal, and the negative external terminal are welded, respectively. And
 本発明の組電池では、正極外部端子及び負極外部端子において、正極端子及び負極端子と接続される領域はそれぞれ正極端子及び負極端子と同種の金属で形成され、バスバーと接続される領域はバスバーと同種の金属で形成されている。例えば、角形二次電池が非水電解質二次電池の場合、通常、正極端子はアルミニウム又はアルミニウム合金(以下「アルミニウム材」という)からなり、負極端子は銅又は銅合金(以下「銅材」という)からなっている。本発明の組電池では、バスバーが銅材からなるものであれば、正極外部端子は正極端子側がアルミニウム材からなり、バスバー側が銅材からなり、負極外部端子は負極端子側及びバスバー側共に銅材からなる。逆に、バスバーがアルミニウム材からなるものであれば、正極外部端子は正極端子側及びバスバー側共にアルミニウム材からなり、負極外部端子は負極端子側が銅材からなり、バスバー側がアルミニウム材からなる。 In the assembled battery of the present invention, in the positive external terminal and the negative external terminal, the regions connected to the positive terminal and the negative terminal are formed of the same kind of metal as the positive terminal and the negative terminal, respectively, and the region connected to the bus bar is the bus bar. It is made of the same kind of metal. For example, when the prismatic secondary battery is a non-aqueous electrolyte secondary battery, the positive electrode terminal is usually made of aluminum or an aluminum alloy (hereinafter referred to as “aluminum material”), and the negative electrode terminal is copper or a copper alloy (hereinafter referred to as “copper material”). ). In the assembled battery of the present invention, if the bus bar is made of a copper material, the positive electrode external terminal is made of an aluminum material on the positive electrode terminal side, the bus bar side is made of a copper material, and the negative electrode external terminal is made of a copper material on both the negative electrode terminal side and the bus bar side. Consists of. Conversely, if the bus bar is made of an aluminum material, the positive electrode external terminal is made of an aluminum material on both the positive electrode terminal side and the bus bar side, and the negative electrode external terminal is made of a copper material on the negative electrode terminal side, and the bus bar side is made of an aluminum material.
 なお、正極端子、負極端子、正極外部端子、負極外部端子及びバスバーは、母材の表面に異種金属からなるメッキ被膜が形成されることがある。例えば、正極端子、正極外部端子及びバスバーの母材がアルミニウム材から形成されている場合、表面にNiあるいはSnの異種金属からなるメッキ被膜が形成される場合があるが、このメッキ被膜は、他の部材と接触接続する部分においては接触抵抗の低減を目的として形成されるものであり、他の部材と溶接接続される部分については、メッキ被膜が存在していると高エネルギー線による溶接性が悪くなる。このような場合には、溶接接続部にはメッキ被膜を形成せずに、あるいは溶接接続部のメッキ被膜を剥離して母材同士が同種金属となるようにして溶接接続すればよい。 In addition, the positive electrode terminal, the negative electrode terminal, the positive electrode external terminal, the negative electrode external terminal, and the bus bar may have a plating film made of a different metal on the surface of the base material. For example, when the positive electrode terminal, the positive electrode external terminal, and the base material of the bus bar are made of an aluminum material, a plating film made of a different metal of Ni or Sn may be formed on the surface. The part that is in contact connection with the other member is formed for the purpose of reducing the contact resistance, and the part that is welded to other member is weldable by high energy rays if a plating film is present. Deteriorate. In such a case, the welded connection may be welded without forming a plated coating or by peeling the plated coating from the welded connection so that the base metals are the same metal.
 また、負極端子、負極外部端子及びバスバーが銅材からなる場合、表面にNiあるいはSnの異種金属からなるメッキ被膜が形成される場合があるが、他の部材と接触接続される部分については表面酸化皮膜の増加による接触抵抗の増加を防止することを目的として形成されるものであり、他の部材と溶接接続される部分については溶接性の向上(特に高エネルギー線照射による溶接の場合)を目的として形成されるものである。このような場合には、そのまま溶接接続すれば、接続すべき端子の母材とバスバーの母材とが共にメッキ被膜を貫通した状態で互いに溶接接続された状態となる。以上のことから、本発明における「同種の金属」とは、表面にメッキ被膜が形成されていない場合にはそれぞれの構成金属そのものを示し、表面にメッキ被膜が形成されている場合にはメッキ被膜を除いた母材の構成金属を示すものとして用いられている。 In addition, when the negative electrode terminal, the negative electrode external terminal, and the bus bar are made of a copper material, a plating film made of a different metal such as Ni or Sn may be formed on the surface. It is formed for the purpose of preventing an increase in contact resistance due to an increase in the oxide film, and improves weldability (particularly in the case of welding with high-energy radiation) for parts that are welded to other members. It is formed as a purpose. In such a case, if the welding connection is made as it is, the base material of the terminal to be connected and the base material of the bus bar are both welded and connected to each other while penetrating the plating film. From the above, the “same kind of metal” in the present invention indicates each constituent metal itself when a plating film is not formed on the surface, and a plating film when a plating film is formed on the surface. It is used to indicate the constituent metal of the base material excluding.
 本発明の組電池においては、正極端子と正極外部端子との間及び負極端子と負極外部端子との間の溶接部、正極外部端子とバスバーとの間及び負極外部端子とバスバーとの間の溶接部も、全て同種金属同士の溶融接合となるので、例えばアルミニウムと銅のような異種金属間を溶融接合した場合のような脆い金属間化合物が生じることがなくなり、溶接品質が向上する。しかも、本発明の組電池によれば、単一材料かつ単一形状のバスバーで正極側でも負極側でも、複数の角形二次電池を直列接続することができるようになる。 In the assembled battery of the present invention, the welded portion between the positive electrode terminal and the positive electrode external terminal and between the negative electrode terminal and the negative electrode external terminal, the weld between the positive electrode external terminal and the bus bar, and the negative electrode external terminal and the bus bar. Since all the parts are also melt-bonded between the same kind of metals, a brittle intermetallic compound is not generated, for example, when different metals such as aluminum and copper are melt-bonded, and the welding quality is improved. Moreover, according to the assembled battery of the present invention, a plurality of prismatic secondary batteries can be connected in series on the positive electrode side or the negative electrode side with a single material and single shape bus bar.
 なお、正極端子ないし負極端子とバスバーを直接溶接接続した場合、溶接時の発熱により、封口体と正極端子ないし負極端子を絶縁する絶縁部材(ガスケット)がダメージを受け、電池の封止性が低下する虞がある。また、一般に、組電池の機械的強度を大きくするため、バスバーの厚みは正極外部端子及び負極外部端子の厚みよりも大きく設定し、正極外部端子及び負極外部端子とバスバーとのそれぞれの接続部の接続強度を大きくすることが要望されているため、正極外部端子及び負極外部端子とバスバーとのそれぞれの溶接部の溶接痕(ナゲット)を大きくする必要があり、溶接時の発熱が大きくなる。しかしながら、正極端子と正極外部端子の接続部及び負極端子と負極外部端子の接続部においては、正極外部端子及び負極外部端子とバスバーとのそれぞれの溶接部のような大きな溶接ナゲットは必要ないため、溶接時の発熱を小さくできる。 When the positive terminal or negative terminal and the bus bar are directly connected by welding, heat generated during welding damages the insulating member (gasket) that insulates the sealing body from the positive terminal or negative terminal, reducing the sealing performance of the battery. There is a risk of doing. In general, in order to increase the mechanical strength of the assembled battery, the thickness of the bus bar is set larger than the thickness of the positive electrode external terminal and the negative electrode external terminal, and the connection of each of the positive electrode external terminal and the negative electrode external terminal and the bus bar is set. Since it is desired to increase the connection strength, it is necessary to increase the weld trace (nugget) of each welded portion of the positive electrode external terminal and the negative electrode external terminal and the bus bar, and heat generation during welding increases. However, in the connection part of the positive electrode terminal and the positive electrode external terminal and the connection part of the negative electrode terminal and the negative electrode external terminal, large welding nuggets such as the respective welded parts of the positive electrode external terminal and the negative electrode external terminal and the bus bar are not necessary. Heat generation during welding can be reduced.
 そのため、本発明の組電池では、正極端子とバスバーとの間及び負極端子とバスバーとの間にそれぞれ正極外部端子及び負極外部端子が介在されているので、バスバーと正極外部端子及び負極外部端子との間の溶接時に発生する熱は絶縁部材に加わり難くなっている。また、正極端子と正極外部端子の接続部及び負極端子と負極外部端子の接続部における溶接時の発熱は小さいので、絶縁部材がダメージを受け難く、電池の封止性が低下する虞が少なくなる。なお、正極外部端子ないし負極外部端子の厚さは、組電池の高さを低くすることと、機械的強度の確保及び溶接時に発生する熱が絶縁部材に加わり難くすることとを考慮し、1~5mm程度とすることが好ましく、1.5~2.5mmのものを用いることがより好ましい。 Therefore, in the assembled battery of the present invention, the positive external terminal and the negative external terminal are interposed between the positive terminal and the bus bar and between the negative terminal and the bus bar, respectively. It is difficult for the heat generated during welding to be applied to the insulating member. In addition, since the heat generated during welding at the connecting portion between the positive electrode terminal and the positive electrode external terminal and the connecting portion between the negative electrode terminal and the negative electrode external terminal is small, the insulating member is not easily damaged, and the possibility that the sealing performance of the battery is lowered is reduced. . Note that the thickness of the positive electrode external terminal or the negative electrode external terminal is set in consideration of reducing the height of the assembled battery, ensuring mechanical strength, and making it difficult for heat generated during welding to be applied to the insulating member. It is preferably about 5 mm to 5 mm, more preferably 1.5 mm to 2.5 mm.
 また、本発明の組電池においては、前記正極端子及び前記負極端子は、それぞれ前記正極外部端子及び前記負極外部端子に設けられた貫通穴を貫通し、前記正極外部端子及び前記負極外部端子の上面側で溶接接続されているものとすることが好ましい。 In the battery pack of the present invention, the positive electrode terminal and the negative electrode terminal pass through through holes provided in the positive electrode external terminal and the negative electrode external terminal, respectively, and are upper surfaces of the positive electrode external terminal and the negative electrode external terminal. It is preferable to be welded on the side.
 このような構成を備えていると、正極端子と正極外部端子との間及び負極端子と負極外部端子との間の接続強度を強くすることができるようになる。 With such a configuration, the connection strength between the positive electrode terminal and the positive electrode external terminal and between the negative electrode terminal and the negative electrode external terminal can be increased.
 また、本発明の組電池においては、前記正極端子及び前記負極端子の少なくとも一方は、前記正極外部端子ないし前記負極外部端子にカシメ固定され、前記カシメ固定部において溶接接続されていることが好ましい。 In the assembled battery of the present invention, it is preferable that at least one of the positive electrode terminal and the negative electrode terminal is fixed by crimping to the positive electrode external terminal or the negative electrode external terminal and welded and connected at the crimping fixing portion.
 このような構成を備えていると、正極端子と正極外部端子との間ないし負極端子と負極外部端子との間の接続強度を強くすることができるようになるだけでなく、正極端子ないし負極端子がそれぞれ正極外部端子ないし負極外部端子にカシメ固定されているために接続強度が増大するので、溶接による接続強度をそれほど高くする必要がなくなるため、溶接時の発熱を抑えることができ、絶縁部材の劣化をより抑制することができるようになる。 With such a configuration, not only the connection strength between the positive electrode terminal and the positive electrode external terminal or between the negative electrode terminal and the negative electrode external terminal can be increased, but also the positive electrode terminal or the negative electrode terminal. Are connected to the positive external terminal or the negative external terminal so that the connection strength is increased. Therefore, it is not necessary to increase the connection strength by welding so that heat generation at the time of welding can be suppressed. Deterioration can be further suppressed.
 また、本発明の組電池においては、前記正極外部端子及び前記負極外部端子は、それぞれ前記バスバーが接続される領域においては厚さ方向の全てがバスバーと同種の金属となるようにすることが好ましい。 In the assembled battery of the present invention, it is preferable that the positive electrode external terminal and the negative electrode external terminal are all made of the same type of metal as the bus bar in the region where the bus bar is connected. .
 組電池の強度を大きくするため、正極外部端子及び負極外部端子とバスバーの接続部の接続強度も大きくすることが好ましい。そのため、正極外部端子及び負極外部端子とバスバーの溶接部の溶接深さを深くすることが必要となる。しかしながら、バスバーが接続される領域において、正極外部端子及び負極外部端子の厚さ方向にバスバーとは異種の金属が存在する場合、溶接部がバスバーとは異種の金属部分まで達してしまうと、溶接品質が低下する虞がある。本発明の組電池によれば、正極外部端子及び負極外部端子は、それぞれバスバーが接続される領域においては厚さ方向の全てがバスバーと同種の金属となるようになされているので、上記のような溶接品質が低下する恐れは生じなくなる。 In order to increase the strength of the assembled battery, it is preferable to increase the connection strength between the positive electrode external terminal and the negative electrode external terminal and the connection portion of the bus bar. Therefore, it is necessary to increase the welding depth of the welded portion of the positive electrode external terminal and the negative electrode external terminal and the bus bar. However, in the region where the bus bar is connected, if there is a metal different from the bus bar in the thickness direction of the positive electrode external terminal and the negative electrode external terminal, the welded part reaches the metal part different from the bus bar. There is a risk of quality degradation. According to the assembled battery of the present invention, the positive electrode external terminal and the negative electrode external terminal are all made of the same type of metal as the bus bar in the region where the bus bar is connected, respectively. There is no possibility that the welding quality will deteriorate.
 また、本発明の組電池においては、前記正極外部端子及び前記負極外部端子は、それぞれ前記正極端子及び前記負極端子の貫通穴の周囲は、厚さ方向において、上面側が前記正極端子及び前記負極端子と同種の金属であり、下面側が前記バスバーと同種の金属であることが好ましい。 In the assembled battery of the present invention, the positive electrode external terminal and the negative electrode external terminal are respectively arranged around the through holes of the positive electrode terminal and the negative electrode terminal in the thickness direction, and the upper surface side is the positive electrode terminal and the negative electrode terminal. It is preferable that the lower surface is the same type of metal as the bus bar.
 このような構成を備えていると、正極外部端子及び負極外部端子において、バスバーと接続される領域を小さくすることなく、異種金属部材間の接続面積を大きくできるので、正極外部端子及び負極外部端子とバスバーとの接続強度を向上できるようになる。 With such a configuration, the connection area between different metal members can be increased without reducing the area connected to the bus bar in the positive external terminal and the negative external terminal, so the positive external terminal and the negative external terminal And the connection strength between the bus bar can be improved.
 また、本発明の組電池においては、前記正極外部端子及び前記負極外部端子は、それぞれの幅広面が前記封口体と略平行になるように配置されており、前記正極外部端子及び前記負極外部端子における前記幅広面に前記バスバーが接続されているものとすることが好ましい。 In the assembled battery of the present invention, the positive electrode external terminal and the negative electrode external terminal are arranged such that their respective wide surfaces are substantially parallel to the sealing body, and the positive electrode external terminal and the negative electrode external terminal It is preferable that the bus bar is connected to the wide surface.
 このような構成を備えていると、正極外部端子及び負極外部端子とバスバーとの間の接続面積を大きくすることができるので、接続性が良好となり、しかも、異種類の角形二次電池及び1種類のバスバーで組電池を作製することができるようになる。なお、本発明における「略平行」とは、完全に平行であることが最も望ましいが、必ずしも完全に平行状態となっていなくても±10°程度までの傾きがあってもよいことを意味している。 With such a configuration, the connection area between the positive electrode external terminal and the negative electrode external terminal and the bus bar can be increased, so that the connectivity is good, and different types of prismatic secondary batteries and 1 An assembled battery can be manufactured with various types of bus bars. Note that “substantially parallel” in the present invention is most preferably completely parallel, but it may not necessarily be completely parallel, but may have an inclination of about ± 10 °. ing.
 また、本発明の組電池においては、前記正極端子及び前記バスバーは、いずれもアルミニウム系金属からなるものとすることが好ましい。 In the assembled battery of the present invention, it is preferable that both the positive terminal and the bus bar are made of an aluminum-based metal.
 このような構成を備えていると、アルミニウム系金属は銅系金属よりも軽量であるから、組電池の質量を軽量化できる。 With such a configuration, the weight of the assembled battery can be reduced because the aluminum-based metal is lighter than the copper-based metal.
 また、本発明の組電池においては、前記溶接接続は、高エネルギー線の照射によるものとすることができる。 Further, in the assembled battery of the present invention, the welding connection can be made by irradiation with high energy rays.
 高エネルギー線の照射による溶接接続を採用すると、所定の領域を正確に溶接接続することができるので、溶接接続の内部抵抗のばらつきが少ない組電池が得られる。なお、高エネルギー線としては、レーザ光及び電子ビームを採用することができる。 If a welding connection by irradiation with high energy rays is adopted, a predetermined region can be accurately welded, so that an assembled battery with less variation in internal resistance of the welding connection can be obtained. Note that a laser beam and an electron beam can be employed as the high energy beam.
 また、本発明の組電池においては、前記正極外部端子及び前記負極外部端子は、それぞれ前記正極端子及び前記負極端子を構成する金属と同種の金属と、前記バスバーを構成する金属と同種の金属とのクラッド材からなるものとしてもよい。 In the assembled battery of the present invention, the positive electrode external terminal and the negative electrode external terminal are respectively the same type of metal as the metal constituting the positive electrode terminal and the negative electrode terminal, and the same type of metal as the metal constituting the bus bar. The clad material may be used.
 このような構成を備えていると、正極端子と正極外部端子との間、負極端子と負極外部端子との間、正極外部端子とバスバーとの間及び負極外部端子とバスバーとの間の同種金属同士の溶融接合とすることが容易となる。 With such a configuration, the same kind of metal between the positive electrode terminal and the positive electrode external terminal, between the negative electrode terminal and the negative electrode external terminal, between the positive electrode external terminal and the bus bar, and between the negative electrode external terminal and the bus bar. It becomes easy to make a melt-bonding between each other.
 さらに、上記いずれかの組電池を製造するための本発明の角形二次電池は、正極板と負極板とがセパレータを介して積層ないし巻回された偏平状電極体が、開口を有する有底角筒状の外装体に収納され、前記開口は前記封口体により封止され、前記正極板に接続され正極集電体及び前記負極板に電気的に接続された負極集電体がそれぞれ前記正極端子及び前記負極端子に電気的に接続されていることを特徴とする。 Further, the prismatic secondary battery of the present invention for producing any one of the above assembled batteries has a bottomed electrode body in which a flat electrode body in which a positive electrode plate and a negative electrode plate are stacked or wound via a separator has an opening. Housed in a rectangular tube-shaped exterior body, the opening is sealed by the sealing body, and the positive electrode current collector and the negative electrode current collector electrically connected to the negative electrode plate are connected to the positive electrode plate, respectively. A terminal and the negative terminal are electrically connected.
 本発明の角形二次電池によれば、上記いずれかに記載の効果を奏する組電池を容易に作製できるようになる。 According to the prismatic secondary battery of the present invention, an assembled battery exhibiting any of the effects described above can be easily manufactured.
図1Aは実施形態の角形非水電解質二次電池の正面図であり、図1Bは平面図であり、図1Cは側面図である。1A is a front view of a prismatic nonaqueous electrolyte secondary battery according to an embodiment, FIG. 1B is a plan view, and FIG. 1C is a side view. 図2Aは図1BのIIA-IIA線に沿った部分断面図であり、図2Bは図1BのIIB-IIB線に沿った部分断面図である。2A is a partial cross-sectional view taken along line IIA-IIA in FIG. 1B, and FIG. 2B is a partial cross-sectional view taken along line IIB-IIB in FIG. 1B. 実施形態の組電池の平面図である。It is a top view of the assembled battery of embodiment. 図3のIV-IV部分の部分断面図である。FIG. 4 is a partial cross-sectional view taken along line IV-IV in FIG. 3. 変形例1の図1BのIIB-IIB線部分の部分断面図である。FIG. 11 is a partial cross-sectional view taken along the line IIB-IIB in FIG. 変形例2の図1BのIIB-IIB線部分の部分断面図である。FIG. 10 is a partial cross-sectional view taken along the line IIB-IIB in FIG. 変形例3の図1BのIIB-IIB線部分の部分断面図である。FIG. 10 is a partial cross-sectional view taken along the line IIB-IIB in FIG. 1B of Modification 3. 図8Aは従来の組電池の斜視図であり、図8Bは図8Aの組電池の模式平面図である。FIG. 8A is a perspective view of a conventional assembled battery, and FIG. 8B is a schematic plan view of the assembled battery of FIG. 8A. 図9Aは別の従来例の組電池の斜視図であり、図9Bは図9AのIXB-IXB線に沿った断面図である。FIG. 9A is a perspective view of another conventional assembled battery, and FIG. 9B is a cross-sectional view taken along line IXB-IXB in FIG. 9A.
 以下に本発明の実施形態を図面を用いて詳細に説明する。ただし、以下に示す各実施形態は、本発明の技術思想を理解するために例示するものであって、本発明をこの実施形態に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。なお、この明細書における説明のために用いられた各図面においては、各部材を図面上で認識可能な程度の大きさとするため、各部材毎に適宜縮尺を異ならせて表示しており、必ずしも実際の寸法に比例して表示されているものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, each embodiment shown below is illustrated for understanding the technical idea of the present invention, and is not intended to specify the present invention to this embodiment. The present invention can be equally applied to various modifications without departing from the technical idea shown in the scope. In addition, in each drawing used for the description in this specification, in order to make each member a size that can be recognized on the drawing, the scale is appropriately changed for each member. It is not displayed in proportion to the actual dimensions.
[実施形態]
 最初に、実施形態の角形二次電池の例として角形非水電解質二次電池を図1及び図2を用いて説明する。なお、図1Aは角形非水電解質二次電池の正面図であり、図1Bは平面図であり、図1Cは側面図である。また、図2Aは図1BのIIA-IIA線に沿った断面図であり、図2Bは図1BのIIB-IIB線に沿った断面図である。
[Embodiment]
First, a prismatic nonaqueous electrolyte secondary battery will be described with reference to FIGS. 1 and 2 as an example of the prismatic secondary battery of the embodiment. 1A is a front view of a prismatic nonaqueous electrolyte secondary battery, FIG. 1B is a plan view, and FIG. 1C is a side view. 2A is a cross-sectional view taken along line IIA-IIA in FIG. 1B, and FIG. 2B is a cross-sectional view taken along line IIB-IIB in FIG. 1B.
 この角形非水電解質二次電池10は、図示省略したが、正極板と負極板とがセパレータを介して巻回ないし積層された偏平状の電極体を有している。正極板は、アルミニウム箔からなる正極芯体の両面に正極活物質合剤を塗布し、乾燥及び圧延した後、アルミニウム箔が帯状に露出するようにスリットすることにより作製されている。また、負極板は、銅箔からなる負極芯体の両面に負極活物質合剤を塗布し、乾燥及び圧延した後、銅箔が帯状に露出するようにスリットすることによって作製されている。 Although not shown in the drawings, this rectangular nonaqueous electrolyte secondary battery 10 has a flat electrode body in which a positive electrode plate and a negative electrode plate are wound or laminated with a separator interposed therebetween. The positive electrode plate is produced by applying a positive electrode active material mixture on both surfaces of a positive electrode core body made of aluminum foil, drying and rolling, and then slitting the aluminum foil so as to be exposed in a strip shape. The negative electrode plate is produced by applying a negative electrode active material mixture on both sides of a negative electrode core made of copper foil, drying and rolling, and then slitting the copper foil so as to be exposed in a strip shape.
 そして、上述のようにして得られた正極板及び負極板を、正極板のアルミニウム箔露出部と負極板の銅箔露出部とがそれぞれ対向する電極の活物質合剤とそれぞれ重ならないようにずらして、ポリオレフィン製多孔質セパレータを介して積層ないし巻回することで、一方の端には複数枚重なった正極芯体露出部を備え、他方の端には複数枚重なった負極芯体露出部を備えた偏平状の電極体が作製されている。 Then, the positive electrode plate and the negative electrode plate obtained as described above are shifted so that the aluminum foil exposed portion of the positive electrode plate and the copper foil exposed portion of the negative electrode plate do not overlap with the facing active material mixture, respectively. Then, by laminating or winding through a polyolefin porous separator, one end is provided with a plurality of overlapping positive electrode core exposed portions, and the other end is provided with a plurality of overlapping negative electrode core exposed portions. The flat electrode body provided is produced.
 複数枚積層された正極芯体露出部はアルミニウム材からなる正極集電体を介して同じくアルミニウム材からなる正極端子11に接続され、同じく複数枚積層された負極芯体露出部は銅材からなる負極集電体を介して同じく銅材からなる負極端子12に接続されている。正極端子11、負極端子12は、図2A及び図2Bに示したように、それぞれ絶縁部材13、14、樹脂製ガスケット13a、14aを介して封口板15に固定されている。また、正極端子11、負極端子12は、それぞれ絶縁部材13、14上に配置された正極外部端子21及び負極外部端子22に接続されている。 A plurality of laminated positive electrode core exposed portions are connected to a positive electrode terminal 11 made of aluminum material through a positive electrode current collector made of aluminum material, and a plurality of laminated negative electrode core exposed portions are made of copper material. It is connected to a negative electrode terminal 12 also made of a copper material through a negative electrode current collector. As shown in FIGS. 2A and 2B, the positive electrode terminal 11 and the negative electrode terminal 12 are fixed to the sealing plate 15 via insulating members 13 and 14 and resin gaskets 13a and 14a, respectively. The positive terminal 11 and the negative terminal 12 are connected to a positive external terminal 21 and a negative external terminal 22 disposed on the insulating members 13 and 14, respectively.
 実施形態の角形非水電解質二次電池10は、上述のようにして作製された偏平状の電極体を角形の外装体16内に挿入した後、封口板15を外装体16の開口部にレーザ溶接し、その後、電解液注液孔17から非水電解液を注液し、この電解液注液孔17を密閉することにより作製されている。なお、封口板15には安全手段としてのガス排出弁18が形成されている。このような構成を備える角形非水電解質二次電池10は、複数個が直列接続されて組電池30(図3参照)が形成される。 In the rectangular nonaqueous electrolyte secondary battery 10 according to the embodiment, the flat electrode body manufactured as described above is inserted into the rectangular outer casing 16, and then the sealing plate 15 is laser-opened in the opening of the outer casing 16. The non-aqueous electrolyte solution is injected from the electrolyte solution injection hole 17 and then the electrolyte solution injection hole 17 is sealed. The sealing plate 15 is provided with a gas discharge valve 18 as a safety means. A plurality of prismatic non-aqueous electrolyte secondary batteries 10 having such a configuration are connected in series to form an assembled battery 30 (see FIG. 3).
 ここで、この組電池30における各角形非水電解質二次電池10を接続するためのバスバー31(図3参照)としてアルミニウム材からなるものを用いる場合について、正極外部端子21及び負極外部端子22の具体的構成を図2A及び図2Bを用いて説明する。 Here, in the case where an aluminum material is used as the bus bar 31 (see FIG. 3) for connecting each rectangular nonaqueous electrolyte secondary battery 10 in the assembled battery 30, the positive electrode external terminal 21 and the negative electrode external terminal 22 A specific configuration will be described with reference to FIGS. 2A and 2B.
 バスバー31がアルミニウム材からなる場合、正極端子11もアルミニウム材からなるので、両者を直接溶融溶接しても異種金属接合の場合のような問題点は生じない。しかしながら、正極端子11は、封口体15の貫通部が樹脂製ガスケット13aによって被覆されているので、直接バスバー31を正極端子11に溶融溶接すると、溶接時の熱が樹脂製ガスケット13aに加わって、樹脂製ガスケット13aの絶縁性や封止性に問題が生じる虞がある。 When the bus bar 31 is made of an aluminum material, since the positive electrode terminal 11 is also made of an aluminum material, there is no problem as in the case of dissimilar metal joining even if both are directly melt welded. However, since the positive electrode terminal 11 has the penetration portion of the sealing body 15 covered with the resin gasket 13a, if the bus bar 31 is directly melt welded to the positive electrode terminal 11, heat during welding is applied to the resin gasket 13a. There is a possibility that problems may arise in the insulation and sealing properties of the resin gasket 13a.
 そこで、ここでは、図2Aに示したように、正極外部端子21として平板状のアルミニウム材のみからなるものを用い、この正極外部端子21に貫通穴21aを形成し、この貫通穴21aに正極端子11を挿通して正極端子11の端部をカシメることによってカシメ固定部11aを形成し、このカシメ固定部11aによって正極端子11を正極外部端子21に固定している。また、この正極外部端子21の一部をバスバー31との接続領域R1としている。そして、実施形態の角形非水電解質二次電池10では、このカシメ固定部11aを高エネルギー線、例えばレーザ線によって溶融溶接している。 Therefore, here, as shown in FIG. 2A, a positive electrode external terminal 21 made of only a flat aluminum material is used, a through hole 21a is formed in the positive electrode external terminal 21, and a positive electrode terminal is formed in the through hole 21a. 11, and crimping the end of the positive electrode terminal 11 to form a caulking fixing portion 11 a, and the positive electrode terminal 11 is fixed to the positive electrode external terminal 21 by the caulking fixing portion 11 a. Further, a part of the positive external terminal 21 is used as a connection region R <b> 1 with the bus bar 31. In the prismatic nonaqueous electrolyte secondary battery 10 according to the embodiment, the caulking fixing portion 11a is fusion welded with a high energy beam, for example, a laser beam.
 このような構成とすると、カシメ固定部11aによって幾分かの接続強度を確保することができるので、溶接による接続強度をそれほど高くする必要がなくなるから、溶接時の発熱を抑えることができ、絶縁部材13及び樹脂製ガスケット13aの劣化を抑制することができる。 With such a configuration, the caulking fixing part 11a can secure some connection strength, so that it is not necessary to increase the connection strength by welding so much, so heat generation during welding can be suppressed, and insulation can be achieved. Deterioration of the member 13 and the resin gasket 13a can be suppressed.
 一方、バスバー31がアルミニウム材からなる場合、負極端子12は銅材からなるので、バスバー31と負極端子12とを直接溶融溶接すると、異種金属接合となるので、脆い金属間化合物が生成する虞がある。そこで、図2Bに示したように、負極外部端子22として、銅材部分22b及びアルミニウム材部分22cからなるクラッド領域を有するクラッド材を用いている。この負極外部端子22は、正極外部端子21の場合と同様に、貫通穴22aが形成されているが、この貫通穴22aの周囲の上面側(外面側)が銅材部分22bとなり、下面側(内面側)がアルミニウム材部分22cからなるクラッド領域となっており、このクラッド材領域に連なる側面にはアルミニウム材部分22cのみからなる領域が形成されている。ここで、負極端子12の表面にはNiメッキを施すことができる。 On the other hand, when the bus bar 31 is made of an aluminum material, the negative electrode terminal 12 is made of a copper material. Therefore, when the bus bar 31 and the negative electrode terminal 12 are directly melt welded, different metal joints are formed, so that a brittle intermetallic compound may be generated. is there. Therefore, as shown in FIG. 2B, a clad material having a clad region composed of a copper material portion 22 b and an aluminum material portion 22 c is used as the negative electrode external terminal 22. As in the case of the positive electrode external terminal 21, the negative electrode external terminal 22 has a through hole 22a. The upper surface side (outer surface side) around the through hole 22a is a copper material portion 22b, and the lower surface side ( The inner surface side) is a clad region made of an aluminum material portion 22c, and a region made only of the aluminum material portion 22c is formed on the side surface connected to the clad material region. Here, the surface of the negative electrode terminal 12 may be plated with Ni.
 なお、この負極外部端子22におけるアルミニウム材部分22cのみからなる領域の厚さは例えば1.5~2.0mm程度であり、銅材部分22b及びアルミニウム材部分22cのクラッド領域における銅材部分22bの厚みは例えば0.4~1.0mmである。このクラッド材領域の側面に形成されたアルミニウム材部分22cのみからなる領域の一部が負極外部端子22におけるバスバー31との接続領域R2となっている。なお、正極外部端子21ないし負極外部端子22の厚さは、組電池30の高さを低くすることと、機械的強度の確保及び溶接時に発生する熱が絶縁部材に加わり難くすることとを考慮し、1~5mm程度とすることが好ましく、1.5~2.5mmのものを用いることがより好ましい。 The thickness of the region consisting only of the aluminum material portion 22c in the negative electrode external terminal 22 is, for example, about 1.5 to 2.0 mm, and the copper material portion 22b and the copper material portion 22b in the clad region of the aluminum material portion 22c. The thickness is, for example, 0.4 to 1.0 mm. A part of the region formed only of the aluminum material portion 22 c formed on the side surface of the clad material region is a connection region R <b> 2 with the bus bar 31 in the negative electrode external terminal 22. The thickness of the positive electrode external terminal 21 to the negative electrode external terminal 22 takes into consideration that the height of the assembled battery 30 is reduced and that the mechanical strength is ensured and that heat generated during welding is difficult to be applied to the insulating member. The thickness is preferably about 1 to 5 mm, more preferably 1.5 to 2.5 mm.
 そして、負極端子12を負極外部端子22に形成された貫通穴22aに挿通し、負極端子12の端部をカシメることによってカシメ固定部12aを形成し、このカシメ固定部12aによって負極端子12を負極外部端子22の銅材部分22bに固定している。加えて、実施形態の角形非水電解質二次電池10では、このカシメ固定部12aを高エネルギー線、例えばレーザ線によって溶融溶接している。なお、ここでも、負極外部端子22の接続領域R2の面積が大きくなるようにするため、負極外部端子22の幅広面が封口体と略平行になるようになるようにしている。ここで、「略平行」とは、完全に平行であることが最も望ましいが、製造上完全に平行にすることは困難であるので、±10°程度までの傾きがあってもよい。 Then, the negative electrode terminal 12 is inserted into a through hole 22a formed in the negative electrode external terminal 22, and the end portion of the negative electrode terminal 12 is crimped to form a crimping fixing portion 12a. The crimping fixing portion 12a allows the negative electrode terminal 12 to be The negative electrode external terminal 22 is fixed to the copper material portion 22b. In addition, in the prismatic nonaqueous electrolyte secondary battery 10 of the embodiment, the caulking fixing portion 12a is fusion welded with a high energy beam, for example, a laser beam. In this case as well, in order to increase the area of the connection region R2 of the negative electrode external terminal 22, the wide surface of the negative electrode external terminal 22 is made substantially parallel to the sealing body. Here, “substantially parallel” is most preferably completely parallel, but it is difficult to make it completely parallel in manufacturing, and therefore, there may be an inclination of about ± 10 °.
 このような構成とすると、負極端子12と負極外部端子22とは共に銅材からなるため、カシメ固定部22aにおいて溶融溶接を行っても異種金属接合のような問題点は生じなくなる。また、カシメ固定部12aによって幾分かの接続強度を確保することができるので、溶接による接続強度をそれほど高くする必要がなくなるから、溶接時の発熱を抑えることができ、絶縁部材14及び樹脂製ガスケット14aの劣化を抑制することができる。 With such a configuration, since both the negative electrode terminal 12 and the negative electrode external terminal 22 are made of a copper material, problems such as dissimilar metal bonding do not occur even if fusion welding is performed in the caulking fixing portion 22a. Moreover, since some connection strength can be ensured by the caulking fixing portion 12a, it is not necessary to increase the connection strength by welding so that heat generation during welding can be suppressed. Deterioration of the gasket 14a can be suppressed.
 なお、実施形態の角形非水電解質二次電池10は、正極外部端子21の接続領域R1と負極外部端子22の接続領域R2との位置は、それぞれ角形非水電解質二次電池10の両側端側から等距離となるように形成されている。 In the rectangular nonaqueous electrolyte secondary battery 10 according to the embodiment, the positions of the connection region R1 of the positive electrode external terminal 21 and the connection region R2 of the negative electrode external terminal 22 are respectively on both side ends of the square nonaqueous electrolyte secondary battery 10. It is formed so that it may become equidistant from.
 次いで、上述のような構成の角形非水電解質二次電池10を複数個直列に接続して形成した実施形態の組電池30の構成を図3及び図4を用いて説明する。なお、図3は実施形態の組電池の平面図である。図4は図3のIV-IV部分の部分断面図である。なお、図3においては、3個の角形非水電解質二次電池10を直列に接続した例が示されているが、角形非水電解質二次電池10を何個直列にするかは必要とする電圧に応じて適宜決定すればよい。 Next, the configuration of the assembled battery 30 according to the embodiment formed by connecting a plurality of prismatic nonaqueous electrolyte secondary batteries 10 having the above-described configuration in series will be described with reference to FIGS. 3 and 4. FIG. 3 is a plan view of the assembled battery of the embodiment. FIG. 4 is a partial cross-sectional view taken along the line IV-IV in FIG. FIG. 3 shows an example in which three prismatic nonaqueous electrolyte secondary batteries 10 are connected in series. However, it is necessary to determine how many prismatic nonaqueous electrolyte secondary batteries 10 are connected in series. What is necessary is just to determine suitably according to a voltage.
 まず、複数の角形非水電解質二次電池10を、所定間隔を隔てて、それぞれ互い違いに平行に配置する。この間隔は、「0」でもよいが、充放電時に発熱が生じるので、放熱効率を考慮して一定距離に定める。そうすると、隣接する角形非水電解質二次電池10の正極外部端子21と負極外部端子22とが隣接する状態に配置され、正極外部端子21の接続領域R1と負極外部端子22の接続領域R2とが隣接した状態となる。 First, a plurality of prismatic nonaqueous electrolyte secondary batteries 10 are alternately arranged in parallel at predetermined intervals. This interval may be “0”, but heat is generated during charging / discharging, and is set at a certain distance in consideration of heat dissipation efficiency. Then, the positive electrode external terminal 21 and the negative electrode external terminal 22 of the adjacent rectangular nonaqueous electrolyte secondary battery 10 are arranged adjacent to each other, and the connection region R1 of the positive electrode external terminal 21 and the connection region R2 of the negative electrode external terminal 22 are arranged. Adjacent state.
 正極外部端子21はアルミニウム材で形成されているので、正極外部端子21の接続領域R1もアルミニウム材からなっている。また、負極外部端子22の接続領域R2もアルミニウム材部分22cとなっている。一方、バスバー31はアルミニウム材からなるので、バスバー31、正極外部端子21の接続領域R1及び負極外部端子22の接続領域R2も全て同種材質となっている。 Since the positive external terminal 21 is made of an aluminum material, the connection region R1 of the positive external terminal 21 is also made of an aluminum material. The connection region R2 of the negative electrode external terminal 22 is also an aluminum material portion 22c. On the other hand, since the bus bar 31 is made of an aluminum material, the bus bar 31, the connection region R1 of the positive external terminal 21 and the connection region R2 of the negative external terminal 22 are all made of the same material.
 そのため、バスバー31と正極外部端子21の接続領域R1との間及びバスバー31と負極外部端子22の接続領域R2との間は、溶融溶接を行っても異種金属接合のような問題点は生じなくなる。そこで、隣接する角形非水電解質二次電池10間において、バスバー31を一方の角形非水電解質二次電池10の正極外部端子21の接続領域R1と他方の角形非水電解質二次電池10の負極外部端子22の接続領域R2とに跨がるように載置し、バスバー31側から、十分な深さの溶接痕(ナゲット)32が形成されるように、レーザ溶接を行う。 Therefore, a problem such as dissimilar metal joining does not occur between the bus bar 31 and the connection region R1 of the positive external terminal 21 and between the connection region R2 of the bus bar 31 and the negative external terminal 22 even if fusion welding is performed. . Therefore, between adjacent rectangular nonaqueous electrolyte secondary batteries 10, the bus bar 31 is connected to the connection region R1 of the positive electrode external terminal 21 of one rectangular nonaqueous electrolyte secondary battery 10 and the negative electrode of the other rectangular nonaqueous electrolyte secondary battery 10. Laser welding is performed so as to straddle the connection region R2 of the external terminal 22 so that a welding mark (nugget) 32 having a sufficient depth is formed from the bus bar 31 side.
 なお、正極外部端子21の表面にNiあるいはSnからなる異種金属メッキ被膜を形成する場合は、接続領域R1においてバスバー31と溶接接続される領域にはメッキ被膜を形成せずに、あるいは、接続領域R1においてバスバー31と溶接接続される領域のメッキ被膜を剥離することにより、母材のアルミニウム材部分を露出させる。また、負極外部端子22の表面にNiあるいはSnからなるメッキ被膜を形成する場合は、接続領域R2においてバスバー31と溶接接続される領域にはメッキ被膜を形成せずに、あるいは、接続領域R2においてバスバー31と溶接接続される領域のメッキ被膜を剥離することにより、母材のアルミニウム材部分を露出させる。さらに、バスバー31の表面にNiあるいはSnからなる異種金属メッキ被膜を形成する場合には、正極外部端子21の接続領域R1と溶接接続される領域ないし負極外部端子22の接続領域R2と溶接接続される領域にはメッキ被膜を形成せずに、あるいは、正極外部端子21の接続領域R1と溶接接続される領域ないし負極外部端子22の接続領域R2と溶接接続される領域のメッキ被膜を剥離することにより、母材のアルミニウム材部分を露出させる。 In the case where a dissimilar metal plating film made of Ni or Sn is formed on the surface of the positive electrode external terminal 21, a plating film is not formed in a region where the bus bar 31 is welded in the connection region R1, or the connection region By peeling the plating film in the region welded to the bus bar 31 in R1, the aluminum material portion of the base material is exposed. Further, when a plating film made of Ni or Sn is formed on the surface of the negative electrode external terminal 22, no plating film is formed in the connection region R2 in the region to be welded to the bus bar 31, or in the connection region R2. By peeling the plating film in the region welded to the bus bar 31, the aluminum material portion of the base material is exposed. Further, in the case where a different metal plating film made of Ni or Sn is formed on the surface of the bus bar 31, it is welded and connected to the connection region R1 of the positive external terminal 21 or the connection region R2 of the negative external terminal 22. The plating film is not formed in the region to be removed, or the plating film in the region that is welded to the connection region R1 of the positive external terminal 21 or the region that is welded to the connection region R2 of the negative external terminal 22 is peeled off. Thus, the aluminum material portion of the base material is exposed.
 この際、隣接する角形非水電解質二次電池10間の正極外部端子21の接続領域R1と負極外部端子22の接続領域R2との間の距離は、一定となる。そのため、バスバー31としてはアルミニウム材からなる単一形状のものを用いれば、複数の角形非水電解質二次電池を直列接続することができるようになる。 At this time, the distance between the connection region R1 of the positive electrode external terminal 21 and the connection region R2 of the negative electrode external terminal 22 between the adjacent rectangular nonaqueous electrolyte secondary batteries 10 is constant. Therefore, if a bus bar 31 having a single shape made of an aluminum material is used, a plurality of prismatic nonaqueous electrolyte secondary batteries can be connected in series.
 なお、図3及び図4には、一つの正極外部端子21のバスバー31との接続領域R1ないし負極外部端子22に形成されているバスバー31との接続領域R2において2箇所ずつレーザ溶接した例を示した。この場合においても、何カ所レーザ溶接するかは、角形非水電解質二次電池10の容量、要求される出力、バスバー31の許容電流等を考慮の上で選択すればよく、1箇所であっても、3箇所以上であってもよい。 3 and 4 show an example in which laser welding is performed at two locations in a connection region R1 of one positive external terminal 21 with the bus bar 31 or a connection region R2 with the bus bar 31 formed on the negative external terminal 22. Indicated. Even in this case, the number of laser weldings may be selected in consideration of the capacity of the rectangular nonaqueous electrolyte secondary battery 10, the required output, the allowable current of the bus bar 31, and the like. Or three or more locations.
 なお、正極外部端子21及び負極外部端子22と正極端子11及び負極端子12との溶接部については、1つの角形非水電解質二次電池10に流れる電流値に合わせて、部材発熱を考慮した部材厚及び溶接深度を設定すればよい。しかしながら、バスバー31と正極外部端子21ないし負極外部端子22との溶接部に関しては、並列接続の場合は1つの角形非水電解質二次電池10に流れる電流値×並列数の電流値を考慮する必要があるため、通常は、直列接続のみの場合よりも正極外部端子21ないし負極外部端子22の厚みよりもバスバー31の厚みを大きくする必要がある。バスバー31の幅寸法や使用電流範囲により異なるが、アルミニウム材からなるバスバーの場合、バスバーは3~4mm程度の厚みが必要となり、バスバーの厚みが大きい分、大きな溶接エネルギー(溶接深度)が必要となる。 In addition, about the welding part of the positive electrode external terminal 21 and the negative electrode external terminal 22, and the positive electrode terminal 11 and the negative electrode terminal 12, it is the member which considered member heat_generation | fever according to the electric current value which flows into the one square nonaqueous electrolyte secondary battery 10. What is necessary is just to set thickness and a welding depth. However, regarding the welded portion between the bus bar 31 and the positive electrode external terminal 21 or the negative electrode external terminal 22, in the case of parallel connection, it is necessary to consider the current value flowing through one rectangular nonaqueous electrolyte secondary battery 10 × the current value of the number of parallel connections. Therefore, it is usually necessary to make the thickness of the bus bar 31 larger than the thickness of the positive electrode external terminal 21 or the negative electrode external terminal 22 as compared with the case of only the serial connection. Although it depends on the width of the bus bar 31 and the range of current used, in the case of a bus bar made of an aluminum material, the bus bar needs to have a thickness of about 3 to 4 mm, and the larger the bus bar thickness, the greater the welding energy (welding depth) is required. Become.
 また、実施形態では、バスバー31としてアルミニウム材からなるものを用いる場合について説明したが、非水電解質二次電池10の負極端子12の構成材料である銅材からなるバスバー31を用いることもできる。この場合、正極端子11がアルミニウム材からなるので、正極外部端子21としては、正極端子11の周囲において、上面側(外面側)がアルミニウム材からなり、下面側(内面側)及び側面側が銅材からなるクラッド材を用い、正極端子11のバスバー31との接続領域R1が銅材からなるものとし、負極外部端子22としては全て負極端子12と同材料である銅材からなるものを使用すればよい。 In the embodiment, the case where the bus bar 31 is made of an aluminum material has been described. However, the bus bar 31 made of a copper material that is a constituent material of the negative electrode terminal 12 of the nonaqueous electrolyte secondary battery 10 can also be used. In this case, since the positive electrode terminal 11 is made of an aluminum material, the upper surface side (outer surface side) is made of an aluminum material and the lower surface side (inner surface side) and the side surface side are made of a copper material around the positive electrode terminal 11. If the connecting region R1 of the positive electrode terminal 11 to the bus bar 31 is made of a copper material, and the negative electrode external terminal 22 is made of a copper material that is the same material as the negative electrode terminal 12 Good.
 このような構成とすれば、正極外部端子21の接続領域R1は銅材からなり、負極外部端子22の接続領域R2も銅材からなり、しかも、バスバー31も銅材からなるので、バスバー31、正極外部端子21の接続領域R1及び負極外部端子22の接続領域R2も全て同種の材質となる。なお、正極外部端子21、負極外部端子22及びバスバーの表面にNiあるいはSnからなる異種金属メッキ被膜が形成されている場合には、そのまま溶接接続を行えば、接続すべき端子の母材である銅材部分とバスバーの母材である銅材部分とが共にメッキ部分を貫通した状態で互いに溶接接続された状態となる。そのため、この場合においても、上述したバスバー31としてアルミニウム材からなるものとした場合と同様の作用効果を奏することができるようになる。ただし、銅材の比重はアルミニウム材の比重よりも大きいので、組電池30の質量を小さくするためには、銅材の使用量を減少させるために、バスバー31としてアルミニウム材を使用するものに適用した方がよい。 With this configuration, the connection region R1 of the positive external terminal 21 is made of copper, the connection region R2 of the negative external terminal 22 is also made of copper, and the bus bar 31 is also made of copper. The connection region R1 of the positive external terminal 21 and the connection region R2 of the negative external terminal 22 are all made of the same material. In addition, when the dissimilar metal plating film which consists of Ni or Sn is formed in the surface of the positive electrode external terminal 21, the negative electrode external terminal 22, and a bus-bar, if it welds as it is, it will be a base material of the terminal which should be connected. Both the copper material portion and the copper material portion which is the base material of the bus bar are in a state where they are welded to each other while penetrating the plated portion. Therefore, also in this case, the same operation and effect as when the bus bar 31 is made of an aluminum material can be obtained. However, since the specific gravity of the copper material is larger than the specific gravity of the aluminum material, in order to reduce the mass of the assembled battery 30, it is applied to those using an aluminum material as the bus bar 31 in order to reduce the amount of copper material used. You should do it.
 また、上記実施形態では、正極端子11がアルミ・BR>Jウム材からなり、負極端子12が銅材からなる角形非水電解質二次電池10の場合について説明したが、本発明は、これに限らず、正極端子と負極端子がそれぞれ異なる材質からなる角形二次電池であれば、バスバーの材質をそれぞれ正極端子ないし負極端子と同材質のものを選択することにより、等しく適用し得る。 Further, in the above-described embodiment, the case where the positive electrode terminal 11 is made of an aluminum / BR> J material and the negative electrode terminal 12 is made of a rectangular non-aqueous electrolyte secondary battery 10 made of a copper material has been described. The present invention is not limited to this, and a rectangular secondary battery in which the positive electrode terminal and the negative electrode terminal are made of different materials can be equally applied by selecting the same material as the positive electrode terminal or the negative electrode terminal for the bus bar.
[変形例1~3]
 実施形態の組電池では、バスバー31としてアルミニウム材からなるものを使用し、負極外部端子22として、負極端子12の周囲部分が銅材部分22b及びアルミニウム材部分22cを有するクラッド材からなるものを用いた例を示した。しかしながら、負極外部端子22は、バスバー31との接続領域R2のみがアルミニウム材からなっていれば、他の部分は銅材で形成されていてもよい。このような構成の変形例1及び2の負極外部端子部分の構成を図5及び図6を用いて説明する。なお、図5は変形例1の角形非水電解質二次電池の図1BのIIB-IIB線部分の部分断面図である。図6は変形例2の角形非水電解質二次電池の図1BのIIB-IIB線部分の部分断面図である。また、図5及び図6においては、実施形態の角形非水電解質二次電池10と同一の構成部分については同一の参照符号を付与してその詳細な説明は省略する。
[Modifications 1 to 3]
In the assembled battery of the embodiment, the bus bar 31 is made of an aluminum material, and the negative electrode external terminal 22 is made of a clad material in which the peripheral portion of the negative electrode terminal 12 has a copper material portion 22b and an aluminum material portion 22c. An example was given. However, the negative electrode external terminal 22 may be formed of a copper material at the other part as long as only the connection region R2 with the bus bar 31 is made of an aluminum material. The configuration of the negative electrode external terminal portion of Modifications 1 and 2 having such a configuration will be described with reference to FIGS. 5 and 6. FIG. 5 is a partial cross-sectional view taken along the line IIB-IIB in FIG. 1B of the prismatic nonaqueous electrolyte secondary battery of Modification 1. 6 is a partial cross-sectional view taken along the line IIB-IIB in FIG. 1B of the prismatic non-aqueous electrolyte secondary battery of Modification 2. 5 and 6, the same components as those of the prismatic nonaqueous electrolyte secondary battery 10 according to the embodiment are given the same reference numerals, and detailed description thereof is omitted.
 変形例1の角形非水電解質二次電池の負極外部端子22は、銅材部分22bとアルミニウム部分22cとのクラッド領域を負極端子12を中心として負極外部端子22の接続領域R2とは反対側の位置の全てに形成したものである。このような構成であれば、実施形態の角形非水電解質二次電池10の負極外部端子22よりも製造し易くなる The negative electrode external terminal 22 of the prismatic nonaqueous electrolyte secondary battery of Modification 1 has a clad region of the copper material portion 22b and the aluminum portion 22c on the side opposite to the connection region R2 of the negative electrode external terminal 22 with the negative electrode terminal 12 as the center. It is formed in all of the positions. With such a configuration, it becomes easier to manufacture than the negative electrode external terminal 22 of the prismatic nonaqueous electrolyte secondary battery 10 of the embodiment.
 また、変形例2の角形非水電解質二次電池の負極外部端子22は、銅材部分22bとアルミニウム部分22cとのクラッド領域を負極外部端子22の接続領域R2のみとなるように形成し、他は全て銅材部分22bとなるようにしたものである。このような構成であれば、銅材の比抵抗はアルミニウム材の比抵抗よりも小さいので、負極外部端子22の厚さを薄くすることができる。しかしながら、クラッド領域におけるアルミニウム材部分22cの厚さが薄くなるので、バスバーとの間の溶接深度を深くすると、アルミニウムと銅との間に脆い金属間化合物が生成する虞が生じるので、これを考慮した厚さ及び溶接深度とする必要がある。 Further, the negative electrode external terminal 22 of the rectangular nonaqueous electrolyte secondary battery of Modification 2 is formed so that the clad region of the copper material portion 22b and the aluminum portion 22c is only the connection region R2 of the negative electrode external terminal 22, and the like. Are all copper parts 22b. With such a configuration, since the specific resistance of the copper material is smaller than the specific resistance of the aluminum material, the thickness of the negative electrode external terminal 22 can be reduced. However, since the thickness of the aluminum material portion 22c in the clad region is reduced, a brittle intermetallic compound may be generated between the aluminum and copper when the welding depth between the bus bar and the bus bar is increased. Thickness and welding depth are required.
 なお、図7は、変形例2の外部端子22において、クラッド領域の長さLが短くなるようにして、アルミニウム材部分22cのみからなる部分が形成されるようにした、図1BのIIB-IIB線部分に対応する変形例3の負極外部端子22'部分の部分断面図である。このようにクラッド領域の長さLが短くなると、バスバーに対する接続領域R2の面積は広くなるように見えるが、クラッド領域の接合強度が弱くなる。そのため、クラッド領域の長さLは、バスバーに対する接続領域R2においてバスバーと接する領域の長さ(負極外部端子22'の長手方向と平行な方向の長さ)の1/2以上とした方がよい。 FIG. 7 is a cross-sectional view taken along the line IIB-IIB of FIG. 1B in which the length L of the cladding region is shortened in the external terminal 22 of Modification 2 so that only the aluminum material portion 22c is formed. It is a fragmentary sectional view of negative electrode external terminal 22 'portion of modification 3 corresponding to a line portion. Thus, when the length L of the cladding region is shortened, the area of the connection region R2 with respect to the bus bar seems to be widened, but the bonding strength of the cladding region is weakened. For this reason, the length L of the cladding region is preferably set to be 1/2 or more of the length of the region in contact with the bus bar in the connection region R2 to the bus bar (the length in the direction parallel to the longitudinal direction of the negative electrode external terminal 22 ′). .
 10…角形非水電解質二次電池 11…正極端子 11a…カシメ固定部 12…負極端子 13、14…絶縁部材 13a、14a…樹脂製ガスケット 15…封口体 16…外装体 17…電解液注液孔 18…ガス排出弁 21…正極外部端子 21a…(正極外部端子の)貫通穴 22…負極外部端子 22a…(負極外部端子の)貫通穴 22b…(負極外部端子の)銅材部分 22c…(負極外部端子の)アルミニウム材部分 30…組電池 31…バスバー 32…溶接痕 R1…(正極外部端子の)接続領域 R2…(負極外部端子の)接続領域
 
 
 
DESCRIPTION OF SYMBOLS 10 ... Square nonaqueous electrolyte secondary battery 11 ... Positive electrode terminal 11a ... Caulking fixed part 12 ... Negative electrode terminal 13, 14 ... Insulating member 13a, 14a ... Resin gasket 15 ... Sealing body 16 ... Exterior body 17 ... Electrolyte injection hole DESCRIPTION OF SYMBOLS 18 ... Gas discharge valve 21 ... Positive electrode external terminal 21a ... Through hole (of positive electrode external terminal) 22 ... Negative electrode external terminal 22a ... Through hole (of negative electrode external terminal) 22b ... Copper material part 22c (of negative electrode external terminal) ... (Negative electrode) Aluminum part of external terminal 30 ... Battery battery 31 ... Bus bar 32 ... Wear mark R1 ... Connection area of positive external terminal R2 ... Connection area of negative external terminal

Claims (10)

  1.  封口体を貫通し、前記封口体との間が絶縁部材によってそれぞれ絶縁されている正極端子及び負極端子と、
     前記正極端子及び前記負極端子にそれぞれ電気的に接続されている正極外部端子及び負極外部端子と、を備える角形二次電池を複数個有し、
     隣接する前記複数個の角形二次電池の異なる極性の外部端子同士がバスバーによって互いに直列接続されている組電池において、
     前記正極外部端子及び前記負極外部端子は、前記正極端子及び前記負極端子と接続される領域はそれぞれ前記正極端子及び前記負極端子と同種の金属で形成され、前記バスバーと接続される領域は前記バスバーと同種の金属で形成され、
     前記バスバーは前記正極端子又は前記負極端子と同種の金属で形成されており、
     前記正極端子と前記正極外部端子との間、前記負極端子と前記負極外部端子との間、前記バスバーと前記正極外部端子及び前記負極外部端子との間は、それぞれ溶接接続されていることを特徴とする組電池。
    A positive electrode terminal and a negative electrode terminal that penetrate through the sealing body and are insulated from each other by an insulating member;
    A plurality of prismatic secondary batteries comprising a positive external terminal and a negative external terminal electrically connected to the positive terminal and the negative terminal,
    In the assembled battery in which the external terminals of different polarities of the plurality of adjacent square secondary batteries adjacent to each other are connected in series by a bus bar,
    In the positive external terminal and the negative external terminal, regions connected to the positive terminal and the negative terminal are formed of the same metal as the positive terminal and the negative terminal, respectively, and the region connected to the bus bar is the bus bar. It is made of the same kind of metal as
    The bus bar is made of the same metal as the positive terminal or the negative terminal,
    The positive terminal and the positive external terminal, the negative terminal and the negative external terminal, and the bus bar, the positive external terminal, and the negative external terminal are welded, respectively. The assembled battery.
  2.  前記正極端子及び前記負極端子は、それぞれ前記正極外部端子及び前記負極外部端子に設けられた貫通穴を貫通し、前記正極外部端子及び前記負極外部端子の上面側で溶接接続されていることを特徴とする請求項1に記載の組電池。 The positive electrode terminal and the negative electrode terminal pass through through holes provided in the positive electrode external terminal and the negative electrode external terminal, respectively, and are welded and connected on the upper surface sides of the positive electrode external terminal and the negative electrode external terminal. The assembled battery according to claim 1.
  3.  前記正極端子及び前記負極端子の少なくとも一方は、前記正極外部端子ないし前記負極外部端子にカシメ固定され、前記カシメ固定部において溶接接続されていることを特徴とする請求項2に記載の組電池。 3. The assembled battery according to claim 2, wherein at least one of the positive electrode terminal and the negative electrode terminal is caulked and fixed to the positive external terminal or the negative external terminal, and is welded and connected at the caulking fixing portion.
  4.  前記正極外部端子及び前記負極外部端子は、それぞれ前記バスバーが接続される領域においては厚さ方向の全てがバスバーと同種の金属であることを特徴とする請求項1に記載の組電池。 2. The assembled battery according to claim 1, wherein the positive electrode external terminal and the negative electrode external terminal are all of the same type of metal as the bus bar in a region where the bus bar is connected.
  5.  前記正極外部端子及び前記負極外部端子は、それぞれ前記正極端子及び前記負極端子の貫通穴の周囲では、厚さ方向において、上面側が前記正極端子及び前記負極端子と同種の金属であり、下面側が前記バスバーと同種の金属であることを特徴とする請求項4に記載の組電池。 The positive electrode external terminal and the negative electrode external terminal are respectively the same type of metal as the positive electrode terminal and the negative electrode terminal in the thickness direction around the through holes of the positive electrode terminal and the negative electrode terminal, and the lower surface side is the metal The assembled battery according to claim 4, wherein the battery is the same type of metal as the bus bar.
  6.  前記正極外部端子及び前記負極外部端子は、それぞれの幅広面が前記封口体と略平行になるように配置されており、
     前記正極外部端子及び前記負極外部端子における前記幅広面に前記バスバーが接続されていることを特徴とする請求項1に記載の組電池。
    The positive external terminal and the negative external terminal are arranged so that the respective wide surfaces thereof are substantially parallel to the sealing body,
    The assembled battery according to claim 1, wherein the bus bar is connected to the wide surface of the positive external terminal and the negative external terminal.
  7.  前記正極端子及び前記バスバーは、いずれもアルミニウム系金属からなることを特徴とする請求項1に記載の組電池。 The assembled battery according to claim 1, wherein the positive terminal and the bus bar are both made of an aluminum-based metal.
  8.  前記溶接接続は、高エネルギー線の照射によるものであることを特徴とする請求項1に記載の組電池。 The assembled battery according to claim 1, wherein the welding connection is by irradiation with a high energy beam.
  9.  前記正極外部端子又は前記負極外部端子は、前記正極端子又は前記負極端子を構成する金属と同種の金属と、前記バスバーを構成する金属と同種の金属とのクラッド材からなることを特徴とする請求項1に記載の組電池。  The positive electrode external terminal or the negative electrode external terminal is made of a clad material of the same kind of metal as the metal constituting the positive electrode terminal or the negative electrode terminal, and the same kind of metal as the metal constituting the bus bar. Item 4. The assembled battery according to Item 1. *
  10.  正極板と負極板とがセパレータを介して積層ないし巻回された偏平状電極体が、開口を有する有底角筒状の外装体に収納され、
     前記開口は前記封口体により封止され、
     前記正極板に電気的に接続され正極集電体及び前記負極板に電気的に接続された負極集電体がそれぞれ前記正極端子及び前記負極端子に接続されていることを特徴とする、請求項1の組電池に使用するための角形二次電池。
     
     
     
    A flat electrode body in which a positive electrode plate and a negative electrode plate are laminated or wound via a separator is housed in a bottomed rectangular tube-shaped exterior body having an opening,
    The opening is sealed by the sealing body,
    The positive electrode current collector electrically connected to the positive electrode plate and the negative electrode current collector electrically connected to the negative electrode plate are connected to the positive electrode terminal and the negative electrode terminal, respectively. A prismatic secondary battery for use in one assembled battery.


PCT/JP2012/077322 2011-10-31 2012-10-23 Cell assembly, and rectangular secondary cell for use in cell assembly WO2013065523A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013541710A JP6038802B2 (en) 2011-10-31 2012-10-23 Battery pack and prismatic secondary battery for use in the battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011239078 2011-10-31
JP2011-239078 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065523A1 true WO2013065523A1 (en) 2013-05-10

Family

ID=48191877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077322 WO2013065523A1 (en) 2011-10-31 2012-10-23 Cell assembly, and rectangular secondary cell for use in cell assembly

Country Status (2)

Country Link
JP (1) JP6038802B2 (en)
WO (1) WO2013065523A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222620A (en) * 2013-05-14 2014-11-27 日立オートモティブシステムズ株式会社 Square secondary battery
JP2014229483A (en) * 2013-05-22 2014-12-08 日立オートモティブシステムズ株式会社 Square secondary battery
JP2015065048A (en) * 2013-09-25 2015-04-09 日立オートモティブシステムズ株式会社 Square secondary battery and battery pack
JP2015517728A (en) * 2012-05-21 2015-06-22 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation Bimetal busbar assembly
JP2015153534A (en) * 2014-02-12 2015-08-24 トヨタ自動車株式会社 Method of manufacturing secondary battery
JP2016162482A (en) * 2015-02-26 2016-09-05 株式会社フジクラ Power storage device and power storage module
EP3159953A4 (en) * 2014-06-18 2017-04-26 Nissan Motor Co., Ltd Battery pack tab welding method
JP2017199555A (en) * 2016-04-27 2017-11-02 株式会社豊田自動織機 Power storage device
JP2018055892A (en) * 2016-09-27 2018-04-05 日立化成株式会社 Module battery
CN109103363A (en) * 2018-08-13 2018-12-28 珠海格力电器股份有限公司 A kind of battery cover board, aluminum-shell battery and battery modules
EP3544086A1 (en) * 2018-03-20 2019-09-25 Samsung SDI Co., Ltd. Battery pack
US11108117B2 (en) 2017-12-15 2021-08-31 Toyota Jidosha Kabushiki Kaisha Sealed battery, battery module, and method of manufacturing battery module
WO2021225035A1 (en) 2020-05-08 2021-11-11 株式会社Gsユアサ Electricity storage device and method for manufacturing electricity storage device
WO2021230330A1 (en) * 2020-05-14 2021-11-18 株式会社Gsユアサ Electrical storage element
US11342618B2 (en) 2016-09-26 2022-05-24 Sanyo Electric Co., Ltd. Secondary battery, method of manufacturing the same, and method of manufacturing conductive member for the same
CN114709567A (en) * 2022-04-19 2022-07-05 江苏正力新能电池技术有限公司 Battery module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108601A (en) * 2009-11-20 2011-06-02 Hitachi Maxell Ltd Battery
JP2011138765A (en) * 2009-12-28 2011-07-14 Sb Limotive Co Ltd Battery module
JP2011210725A (en) * 2010-03-30 2011-10-20 Sb Limotive Co Ltd Secondary battery and secondary battery module
JP2011210480A (en) * 2010-03-29 2011-10-20 Kobe Steel Ltd Bus bar, and method for producing bus bar
JP2011210720A (en) * 2010-03-30 2011-10-20 Sb Limotive Co Ltd Secondary battery and secondary battery module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108601A (en) * 2009-11-20 2011-06-02 Hitachi Maxell Ltd Battery
JP2011138765A (en) * 2009-12-28 2011-07-14 Sb Limotive Co Ltd Battery module
JP2011210480A (en) * 2010-03-29 2011-10-20 Kobe Steel Ltd Bus bar, and method for producing bus bar
JP2011210725A (en) * 2010-03-30 2011-10-20 Sb Limotive Co Ltd Secondary battery and secondary battery module
JP2011210720A (en) * 2010-03-30 2011-10-20 Sb Limotive Co Ltd Secondary battery and secondary battery module

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517728A (en) * 2012-05-21 2015-06-22 タイコ・エレクトロニクス・コーポレイションTyco Electronics Corporation Bimetal busbar assembly
JP2014222620A (en) * 2013-05-14 2014-11-27 日立オートモティブシステムズ株式会社 Square secondary battery
JP2014229483A (en) * 2013-05-22 2014-12-08 日立オートモティブシステムズ株式会社 Square secondary battery
JP2015065048A (en) * 2013-09-25 2015-04-09 日立オートモティブシステムズ株式会社 Square secondary battery and battery pack
JP2015153534A (en) * 2014-02-12 2015-08-24 トヨタ自動車株式会社 Method of manufacturing secondary battery
EP3159953A4 (en) * 2014-06-18 2017-04-26 Nissan Motor Co., Ltd Battery pack tab welding method
JP2016162482A (en) * 2015-02-26 2016-09-05 株式会社フジクラ Power storage device and power storage module
JP2017199555A (en) * 2016-04-27 2017-11-02 株式会社豊田自動織機 Power storage device
US11342618B2 (en) 2016-09-26 2022-05-24 Sanyo Electric Co., Ltd. Secondary battery, method of manufacturing the same, and method of manufacturing conductive member for the same
JP2018055892A (en) * 2016-09-27 2018-04-05 日立化成株式会社 Module battery
US11108117B2 (en) 2017-12-15 2021-08-31 Toyota Jidosha Kabushiki Kaisha Sealed battery, battery module, and method of manufacturing battery module
EP3544086A1 (en) * 2018-03-20 2019-09-25 Samsung SDI Co., Ltd. Battery pack
CN110311082A (en) * 2018-03-20 2019-10-08 三星Sdi株式会社 Battery pack
US11145937B2 (en) 2018-03-20 2021-10-12 Samsung Sdi Co., Ltd. Battery pack
CN110311082B (en) * 2018-03-20 2022-02-22 三星Sdi株式会社 Battery pack
CN109103363A (en) * 2018-08-13 2018-12-28 珠海格力电器股份有限公司 A kind of battery cover board, aluminum-shell battery and battery modules
WO2021225035A1 (en) 2020-05-08 2021-11-11 株式会社Gsユアサ Electricity storage device and method for manufacturing electricity storage device
WO2021230330A1 (en) * 2020-05-14 2021-11-18 株式会社Gsユアサ Electrical storage element
CN114709567A (en) * 2022-04-19 2022-07-05 江苏正力新能电池技术有限公司 Battery module

Also Published As

Publication number Publication date
JPWO2013065523A1 (en) 2015-04-02
JP6038802B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6038802B2 (en) Battery pack and prismatic secondary battery for use in the battery pack
JP5112429B2 (en) Battery cell electrode plate and method of manufacturing the same
US8673470B2 (en) Secondary cell
JP5656592B2 (en) Secondary battery
US8906545B2 (en) Prismatic secondary battery
JP5300788B2 (en) Secondary battery
JP2011060623A (en) Battery pack
JP2009515298A (en) Secondary battery for medium and large battery modules
JP4358789B2 (en) Secondary battery
US20130122345A1 (en) Electrode lead connection body, nonaqueous electrolyte electricity storing device and method of manufacturing the same
JP2016162544A (en) Secondary battery and manufacturing method for the same
JP2019106274A (en) Square secondary battery and manufacturing method thereof
JP2015015237A (en) Battery pack
JP6184747B2 (en) Prismatic secondary battery
KR101734327B1 (en) Pouch type secondary battery
KR20150043093A (en) Electrode lead and secondary battery comprising the same
JP6192992B2 (en) Prismatic secondary battery
KR101520168B1 (en) pauch type lithium secondary battery
JP5558878B2 (en) Assembled battery, resistance welding method, and assembled battery manufacturing method
JP7288456B2 (en) secondary battery
WO2013001644A1 (en) Assembled battery
JP4691919B2 (en) Welding method for metal parts
JP6133680B2 (en) Prismatic secondary battery
JP2007257849A (en) Battery module of laminate outer package flat battery
JP7296996B2 (en) Electrode terminal and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846448

Country of ref document: EP

Kind code of ref document: A1