JP2000292152A - Thickness measurement method and surface shape measurement method - Google Patents

Thickness measurement method and surface shape measurement method

Info

Publication number
JP2000292152A
JP2000292152A JP11096556A JP9655699A JP2000292152A JP 2000292152 A JP2000292152 A JP 2000292152A JP 11096556 A JP11096556 A JP 11096556A JP 9655699 A JP9655699 A JP 9655699A JP 2000292152 A JP2000292152 A JP 2000292152A
Authority
JP
Japan
Prior art keywords
measured
measuring means
measuring
thickness
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11096556A
Other languages
Japanese (ja)
Other versions
JP3404318B2 (en
Inventor
Kaoru Naoi
薫 直居
Kozo Abe
耕三 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Super Silicon Crystal Research Institute Corp
Kuroda Precision Industries Ltd
Original Assignee
Super Silicon Crystal Research Institute Corp
Kuroda Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Super Silicon Crystal Research Institute Corp, Kuroda Precision Industries Ltd filed Critical Super Silicon Crystal Research Institute Corp
Priority to JP09655699A priority Critical patent/JP3404318B2/en
Publication of JP2000292152A publication Critical patent/JP2000292152A/en
Application granted granted Critical
Publication of JP3404318B2 publication Critical patent/JP3404318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily, securely, and accurately measure the thickness and surface shape of an object to be measured by subtracting distance corresponding to one surface and the other surface of an object to be measured from the corresponding relative distance of relative distance data. SOLUTION: An object 37 to be measured is supported between measurement means 39 and 41, and the thickness of the object 37 to be measured is measured. The measurement is made by moving a measurement means and a slider along a guide axis and continuously measuring distances L1x and L2x from a surface 37a of the object 37 to be measured to a surface 37b using a measuring instrument. Then, by subtracting the corresponding distances L1x and L2x up to the surfaces 37a and 37b of the object 37 to be measured from corresponding relative distance Sx of the relative distance data that has been obtained in advance, a thickness Tx of the object 37 to be measured is obtained. Further, by adding corresponding deviation ΔLx of straightness data that has been obtained in advance to the corresponding distance L1x up to the surface 37a of the object 37 to be measured, the surface shape of the surface 37a of the object 37 to be measured is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウェーハ
等の被測定物の厚みおよび表面形状を精密に測定するた
めの厚み測定方法および表面形状測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thickness measuring method and a surface shape measuring method for precisely measuring a thickness and a surface shape of an object to be measured such as a silicon wafer.

【0002】[0002]

【従来の技術】従来、シリコンウェーハ等の薄板の表面
形状を測定するための装置として、例えば、特公平5−
77179号公報,特開平10−47949号公報等に
開示されるものが知られている。図5は、特公平5−7
7179号公報に開示される装置を示すもので、この装
置では、回転可能な真空チャック1にシリコンウェーハ
等の薄板2が吸着支持されている。
2. Description of the Related Art Conventionally, as an apparatus for measuring the surface shape of a thin plate such as a silicon wafer, for example, Japanese Patent Publication No.
Japanese Patent Application Laid-Open No. 77179, Japanese Patent Application Laid-Open No. 10-47949, and the like are known. Figure 5 shows the Japanese Patent Publication 5-7.
1 shows an apparatus disclosed in Japanese Patent Publication No. 7179, in which a thin plate 2 such as a silicon wafer is suction-supported by a rotatable vacuum chuck 1.

【0003】薄板2の両側には、変位計3が配置され、
これ等の変位計3がアーム4および支持部材5により支
持されている。そして、この装置では、薄板2の形状評
価においては、薄板2の用途が、例えば、平面等の基準
面に密着されることを前提としていることから、必要と
される領域内において測定された厚さのデータ群のバラ
ツキが薄板2の平坦度とされている。
[0003] Displacement gauges 3 are arranged on both sides of the thin plate 2,
These displacement gauges 3 are supported by an arm 4 and a support member 5. In this apparatus, since the use of the thin plate 2 is assumed to be in close contact with, for example, a reference surface such as a flat surface in the evaluation of the shape of the thin plate 2, the thickness measured in a required area is determined. The variation of the data group is the flatness of the thin plate 2.

【0004】しかしながら、このような従来の評価方法
では、薄板2の基準平面に密着される面に局所的な凹凸
があり、あるいは、厚みが一定でも小さな周期のうねり
を有しており、この面が基準平面に充分に密着されなか
った場合にも、あたかも、その凹凸あるいはうねりが、
その反対面に存在する形状として表現されてしまい、例
えば、その表面に微細なパターンの描画あるいは転写を
行うシリコンウェーハ等の形状評価において過大もしく
は過小評価が生じるおそれがあるという問題があった。
However, in such a conventional evaluation method, the surface of the thin plate 2 which is in close contact with the reference plane has local irregularities, or has a small undulation even if the thickness is constant. Even if is not fully adhered to the reference plane, as if the unevenness or undulation,
This is expressed as a shape existing on the opposite surface, and there is a problem that, for example, there is a possibility that an over- or under-evaluation may occur in the shape evaluation of a silicon wafer or the like on which a fine pattern is drawn or transferred on the surface.

【0005】すなわち、例えば、図6の(a)に示すよ
うに、シリコンウェーハからなる薄板2の裏面2a側
に、数mmから数十mmの長さの局所的な凹部2bが存
在している場合には、パターン転写時に、真空吸着盤の
吸引力では、薄板2を基準面Kに確実に密着することが
できず、厚さデータを基にした平坦度の評価結果は、図
の(a’)に示すように薄板2の表面2c側に凹部2b
が存在することになり、本来、パターンを良好に転写可
能な形状でありながら不良と判断されることになる。
More specifically, for example, as shown in FIG. 6A, a local concave portion 2b having a length of several mm to several tens mm exists on the back surface 2a side of a thin plate 2 made of a silicon wafer. In this case, the thin plate 2 cannot be securely adhered to the reference surface K by the suction force of the vacuum suction plate at the time of pattern transfer, and the evaluation result of the flatness based on the thickness data is shown in FIG. '), A recess 2b is formed on the surface 2c side of the thin plate 2 as shown in FIG.
This means that a pattern is originally determined to be defective while having a shape capable of transferring a pattern satisfactorily.

【0006】また、例えば、図6の(b)に示すよう
に、薄板2の裏面2a側に、数mmから数十mmの長さ
の局所的な凸部2dが存在している場合には、凸部2d
の周辺部を基準面Kに確実に密着することができず、厚
さデータを基にした平坦度の評価結果は、図の(b’)
に示すように薄板2の表面2c側に実際より小さい凸部
2dが存在することになり、評価よりも広い範囲におい
てパターンの転写不良が生じることになる。
For example, as shown in FIG. 6B, when a local convex portion 2d having a length of several mm to several tens mm exists on the back surface 2a side of the thin plate 2. , Convex part 2d
Cannot be securely adhered to the reference plane K, and the evaluation result of the flatness based on the thickness data is shown in FIG.
As shown in (1), there is a projection 2d smaller than the actual one on the surface 2c side of the thin plate 2, and a pattern transfer failure occurs in a wider range than the evaluation.

【0007】さらに、例えば、図6の(c)に示すよう
に、薄板2の厚さが均一で短い周期のうねりが存在して
いる場合には、凸部2eの裏面2a側を基準面Kに確実
に密着することができず、厚さデータを基にした平坦度
の評価結果は、図の(c’)に示すように平坦状態にな
り、評価では想像できないパターンの転写不良が生じる
ことになる。
Further, for example, as shown in FIG. 6C, when the thin plate 2 has a uniform thickness and undulations with a short period, the back surface 2a side of the convex portion 2e is set to the reference surface K. The result of the evaluation of the flatness based on the thickness data is a flat state as shown in (c ′) of the figure, and a pattern transfer failure that cannot be imagined by the evaluation occurs. become.

【0008】また、従来の装置では、薄板2の厚さを測
定することを目的としているため、薄板2の両面を測定
する一対の変位計3の相対的な距離を一定に保つように
しておけば良いことから、図7に示すように、薄板2を
挟みこむようにして二股状の保持部6を位置させ、この
保持部6の先端に変位計3を配置し、保持部6の根元部
7を支持して保持部6を移動するように構成しているた
め、以下に述べるような問題があった。
Further, in the conventional apparatus, since the purpose is to measure the thickness of the thin plate 2, the relative distance between the pair of displacement meters 3 for measuring both sides of the thin plate 2 should be kept constant. For this reason, as shown in FIG. 7, the bifurcated holding portion 6 is positioned so as to sandwich the thin plate 2, the displacement meter 3 is disposed at the tip of the holding portion 6, and the root portion 7 of the holding portion 6 is Since the holding section 6 is configured to move while being supported, there are the following problems.

【0009】すなわち、このような構造では、例えば、
薄板2の直径が300mmの大きさになると、薄板2の
全面を測定するためには、二股状の保持部6の長さが少
なくとも150mm以上必要になり、しかも、その根元
部7も変位計3から150mm以上離れてしまうため、
根元部7の移動精度が拡大され、変位計3の直進性に起
因する誤差が発生し、また、一対の変位計3の測定点が
ずれてしまうことによるアッベ誤差が発生するという問
題が生じる。
That is, in such a structure, for example,
When the diameter of the thin plate 2 is 300 mm, in order to measure the entire surface of the thin plate 2, the length of the bifurcated holding portion 6 needs to be at least 150 mm or more, and the base 7 of the thin plate 2 also has the displacement meter 3. Is more than 150mm away from
There is a problem that the movement accuracy of the root portion 7 is increased, an error occurs due to the straightness of the displacement meter 3, and an Abbe error occurs due to a shift of the measurement points of the pair of displacement meters 3.

【0010】また、二股状の保持部6が、音叉のように
振動した場合には、一対の変位計3の相対的な距離が変
動し、誤差が発生するという問題が生じる。本出願人
は、先に、かかる従来の問題を解決することができる薄
板の表面形状測定装置を開発し、これを特願平10−1
58892号として出願した。図8は、この出願に係わ
る薄板の表面形状測定装置を示しており、この装置は、
薄板11を同一平面内において回動自在に支持する支持
手段13を有している。
When the forked holding part 6 vibrates like a tuning fork, the relative distance between the pair of displacement gauges 3 fluctuates, causing a problem that an error occurs. The present applicant has previously developed a thin plate surface shape measuring device capable of solving such a conventional problem, and has proposed this device in Japanese Patent Application No. 10-1.
No. 58892. FIG. 8 shows an apparatus for measuring the surface profile of a thin plate according to the present application.
It has a support means 13 for rotatably supporting the thin plate 11 in the same plane.

【0011】薄板11の平面の一側および他側には、平
面に平行に、かつ相互に平行になるように第1および第
2の案内軸15,17が配置されている。第1および第
2の案内軸15,17には、第1および第2の案内軸1
5,17に沿って独立に移動する第1および第2のスラ
イダ19,21が配置されている。そして、第1および
第2のスライダ19,21には、薄板11の一面および
他面までの距離を独立して測定する第1および第2の計
測手段23,25が配置されている。
On one side and the other side of the plane of the thin plate 11, first and second guide shafts 15, 17 are arranged so as to be parallel to the plane and parallel to each other. The first and second guide shafts 15 and 17 are provided with the first and second guide shafts 1.
First and second sliders 19 and 21 which independently move along the lines 5 and 17 are arranged. The first and second sliders 19 and 21 are provided with first and second measuring means 23 and 25 for independently measuring the distance to one surface and the other surface of the thin plate 11.

【0012】このような装置では、簡易な構成により、
薄板11の表面形状を高い精度で測定することができ
る。
In such an apparatus, with a simple configuration,
The surface shape of the thin plate 11 can be measured with high accuracy.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の装置では、薄板11の両側に、測定の基準と
なる平行2平面を形成しているため、その平行2平面を
生成するための第1および第2のスライダ19,21の
各々の真直度と、相互の平行度が、その測定精度に直接
影響を及ぼす要因となっていた。
However, in such a conventional apparatus, since two parallel planes are formed on both sides of the thin plate 11 as a reference for measurement, a second plane for generating the two parallel planes is formed. The straightness of each of the first and second sliders 19 and 21 and the degree of parallelism between them have directly affected the measurement accuracy.

【0014】従って、真直度および平行度を高精度に仕
上げ、配置するのは勿論のこと、装置設置後において
も、定期的にこれらを確認し、必要に応じてデータの補
正を行うことが高信頼性,再現性を得るために不可欠で
あった。そして、従来、真直度および平行度の測定は、
図9に示すように、高価でかつ取り扱いに慎重さを要す
るガラス製の真直マスタ27を、装置の測定面に治具等
を用いてセットし、第1および第2のスライダ19,2
1の運動線19A,21Aに対しての真直マスタ27ま
での距離L1,L2を各々測定し、各々の運動線19
A,21Aに対する基準直線19B,21Bを設定する
ことにより行われている。
Therefore, it is not only necessary to finish and arrange the straightness and the parallelism with high precision, but also to check these periodically after the apparatus is installed, and to correct the data as necessary. It was indispensable for obtaining reliability and reproducibility. And conventionally, measurement of straightness and parallelism is
As shown in FIG. 9, a glass straight master 27 which is expensive and requires careful handling is set on a measuring surface of the apparatus by using a jig or the like, and first and second sliders 19 and 2 are set.
The distances L1 and L2 to the straight master 27 with respect to the first movement lines 19A and 21A are measured, and each movement line 19
This is performed by setting reference straight lines 19B and 21B for A and 21A.

【0015】また、これ等の運動線19A,21Aの平
行度の確認にあたっては、第1および第2のスライダ1
9,21の移動方向での所定の位置を2ヶ所設定し、そ
こにおける運動線19A,21A相互の相対的な距離L
3,L4を測定し、距離L3に、基準直線19B,21
Bからの偏差Δ11,Δ12を加算し、距離L4に、基
準直線19B,21Bからの偏差Δ21,Δ22を加算
することにより平行度の算出が行われている。
In order to check the parallelism between these movement lines 19A and 21A, the first and second sliders 1
Two predetermined positions in the moving directions of the moving parts 9 and 21 are set, and the relative distance L between the motion lines 19A and 21A there is set.
3 and L4, and the reference straight lines 19B and 21 are added to the distance L3.
The parallelism is calculated by adding the deviations Δ11 and Δ12 from B and adding the deviations Δ21 and Δ22 from the reference straight lines 19B and 21B to the distance L4.

【0016】しかしながら、このような従来の測定方法
では、以下のような点から測定の誤差要因を含むことが
懸念され、また、その作業効率が非常に悪いという問題
があった。すなわち、各運動線19A,21Aの真直度
を各々独立して測定した後に、所定の2点のみで平行度
を確認するために、平行度の計算にあたっては、各々の
運動線19A,21Aの真直度を補正し、所定の2点に
おける相対距離の変化分に、この補正値を重畳し、さら
に、得られた平行度データより再度2軸の運動線19
A,21Aの真直度の補正値を計算し直すといった複雑
な手続きが必要であった。
[0016] However, such a conventional measuring method has a problem that it includes a measurement error factor from the following points, and its working efficiency is very poor. That is, after measuring the straightness of each of the motion lines 19A and 21A independently, to check the parallelism at only two predetermined points, in calculating the parallelism, the straightness of each of the motion lines 19A and 21A is calculated. The correction value is superimposed on the change of the relative distance between the two predetermined points, and the two-axis motion line 19 is again obtained from the obtained parallelism data.
A complicated procedure such as recalculating the straightness correction values of A and 21A was required.

【0017】また、2点における相対距離の変化分のみ
で平行度を算出するために、移動範囲全域での両運動線
19A,21Aの相対的な距離変化を把握することがで
きず、ひいては測定データの信頼性を低下することが懸
念されていた。さらに、運動線19A,21Aの真直度
の測定には、高価でかつ取り扱いに慎重さを要するガラ
ス製の真直マスタ27を、装置の測定面に治具を用いて
セットする必要があるため、高い技能を要求され、装置
の使用者に対してこれを日常点検とした場合には、長い
作業時間が必要になり、また、装置の自動化が困難なも
のになる。
Further, since the parallelism is calculated only by the change in the relative distance at the two points, the relative change in the distance between the two motion lines 19A and 21A in the entire moving range cannot be grasped, and the measurement is not performed. There was concern that data reliability would be reduced. Further, in measuring the straightness of the motion lines 19A and 21A, it is necessary to set a glass straight master 27, which is expensive and requires careful handling, using a jig on the measurement surface of the apparatus. If a skill is required and the user of the device performs this daily inspection, a long working time is required, and automation of the device becomes difficult.

【0018】本発明は、かかる従来の問題点を解決する
ためになされたもので、被測定物の厚みおよび表面形状
を容易,確実に高い精度で測定することができる厚み測
定方法および表面形状測定方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem, and a thickness measuring method and a surface shape measuring method capable of easily and reliably measuring the thickness and the surface shape of an object to be measured with high accuracy. The aim is to provide a method.

【0019】[0019]

【課題を解決するための手段】請求項1の厚み測定方法
は、第1の案内軸と第2の案内軸とを略平行に配置し、
前記第1および第2の案内軸に沿って移動する第1およ
び第2の計測手段により、前記第1および第2の計測手
段の間に配置される被測定物の一面および他面までの距
離を連続的に測定し、前記被測定物の厚みを連続的に得
るための厚み測定方法において、予め前記第1および第
2の計測手段を、前記第1および第2の案内軸に沿って
同期して移動することにより、前記第1の計測手段と第
2の計測手段との相対距離を連続的に測定し軸長方向の
相対距離データを得た後、前記第1および第2の計測手
段を前記第1および第2の案内軸に沿って移動し、前記
被測定物の一面および他面までの距離を連続的に測定
し、それぞれの軸長方向位置において、前記相対距離デ
ータの対応する相対距離から、前記被測定物の一面およ
び他面までの対応する距離を減算することにより前記被
測定物の厚みを得ることを特徴とする。
According to a first aspect of the present invention, there is provided a thickness measuring method, wherein a first guide shaft and a second guide shaft are arranged substantially in parallel,
Distances between one surface and another surface of an object to be measured arranged between the first and second measuring means by the first and second measuring means moving along the first and second guide axes. Is continuously measured, and the first and second measuring means are synchronized in advance along the first and second guide shafts in the thickness measuring method for continuously obtaining the thickness of the object to be measured. Moving, the relative distance between the first measuring means and the second measuring means is continuously measured to obtain relative distance data in the axial direction, and then the first and second measuring means Are moved along the first and second guide shafts, and the distances to one surface and the other surface of the object to be measured are continuously measured. Correspondence from the relative distance to one surface and the other surface of the DUT Characterized in that to obtain the thickness of the object to be measured by subtracting the distance.

【0020】請求項2の厚み測定方法は、請求項1記載
の厚み測定方法において、前記第1の計測手段と第2の
計測手段との相対距離の連続的な測定を、前記第1また
は第2の計測手段に基準ゲージを装着し、前記第2また
は第1の計測手段により前記基準ゲージまでの間隔を連
続的に測定することにより行うことを特徴とする。請求
項3の厚み測定方法は、請求項1記載の厚み測定方法に
おいて、前記被測定物は、シリコンウェーハであること
を特徴とする。
According to a second aspect of the present invention, in the thickness measuring method according to the first aspect, the continuous measurement of the relative distance between the first measuring means and the second measuring means is performed by the first or the second measuring means. The measurement is performed by attaching a reference gauge to the second measuring means and continuously measuring the distance to the reference gauge by the second or first measuring means. According to a third aspect of the present invention, in the thickness measuring method according to the first aspect, the object to be measured is a silicon wafer.

【0021】請求項4の表面形状測定方法は、第1の案
内軸と第2の案内軸とを略平行に配置し、前記第1およ
び第2の案内軸に沿って移動する第1および第2の計測
手段により、前記第1および第2の計測手段の間に配置
される被測定物の一面および他面までの距離を連続的に
測定し、前記被測定物の一面および他面の表面形状を得
るための表面形状測定方法において、予め、前記第1の
案内軸に沿って移動する第1の計測手段の真直度を測定
し、基準直線に対する偏差をそれぞれの軸長方向位置に
おいて求め真直度データを得るとともに、前記第1およ
び第2の計測手段を、前記第1および第2の案内軸に沿
って同期して移動することにより、前記第1の計測手段
と第2の計測手段との相対距離を連続的に測定し軸長方
向の相対距離データを得た後、前記第1および第2の計
測手段を前記第1および第2の案内軸に沿って移動し、
前記被測定物の一面および他面までの距離を連続的に測
定し、それぞれの軸長方向位置において、前記相対距離
データの対応する相対距離から、前記被測定物の一面お
よび他面までの対応する距離を減算することにより前記
被測定物の厚みを得、さらに、それぞれの軸長方向位置
において、前記被測定物の一面までの対応する距離に、
前記真直度データの対応する偏差を加算することにより
前記被測定物の一面の表面形状を得、この一面の表面形
状に前記被測定物の厚みを加算することにより被測定物
の他面の表面形状を得ることを特徴とする。
According to a fourth aspect of the present invention, the first and second guide shafts are arranged substantially parallel to each other, and the first and second guide shafts move along the first and second guide shafts. The distance to one surface and the other surface of the object to be measured arranged between the first and second measuring devices is continuously measured by the second measuring device, and the surfaces of the one surface and the other surface of the object to be measured are measured. In the surface shape measuring method for obtaining the shape, the straightness of the first measuring means moving along the first guide axis is measured in advance, and the deviation from the reference straight line is determined at each position in the axial length direction. The first measurement means and the second measurement means are obtained by obtaining the degree data and simultaneously moving the first and second measurement means along the first and second guide axes. Is measured continuously, and the relative distance data After obtaining, moving the first and second measuring means along said first and second guide shafts,
The distance to one surface and the other surface of the DUT is continuously measured, and at each axial position, the corresponding distance from the corresponding relative distance of the relative distance data to the one surface and the other surface of the DUT. The thickness of the object to be measured is obtained by subtracting the distance to be measured, and further, at the respective axial length positions, to the corresponding distance to one surface of the object to be measured,
The surface shape of one surface of the object to be measured is obtained by adding the corresponding deviation of the straightness data, and the surface of the other surface of the object to be measured is obtained by adding the thickness of the object to be measured to the surface shape of one surface. It is characterized by obtaining a shape.

【0022】(作用)請求項1の厚み測定方法では、予
め第1および第2の計測手段を、第1および第2の案内
軸に沿って同期して移動することにより、第1の計測手
段と第2の計測手段との相対距離が連続的に測定され軸
長方向の相対距離データが得られる。次に、第1および
第2の計測手段を第1および第2の案内軸に沿って移動
することにより、被測定物の一面および他面までの距離
が連続的に測定される。
(Function) In the thickness measuring method of the first aspect, the first and second measuring means are moved in advance along the first and second guide shafts in synchronization with each other, so that the first measuring means is provided. The relative distance between the first measuring means and the second measuring means is continuously measured to obtain relative distance data in the axial direction. Next, by moving the first and second measuring means along the first and second guide axes, the distances to one surface and the other surface of the measured object are continuously measured.

【0023】そして、それぞれの軸長方向位置におい
て、相対距離データの対応する相対距離から、被測定物
の一面および他面までの対応する距離を減算することに
より被測定物の厚みが測定される。請求項2の厚み測定
方法では、第1の計測手段と第2の計測手段との相対距
離の連続的な測定が、第1または第2の計測手段に基準
ゲージを装着し、第2または第1の計測手段により基準
ゲージまでの間隔を連続的に測定することにより行われ
る。
At each axial position, the thickness of the measured object is measured by subtracting the corresponding distance to one surface and the other surface of the measured object from the corresponding relative distance in the relative distance data. . In the thickness measuring method according to the second aspect, the continuous measurement of the relative distance between the first measuring means and the second measuring means is performed by attaching a reference gauge to the first or second measuring means, The measurement is performed by continuously measuring the interval to the reference gauge by the first measuring means.

【0024】請求項3の厚み測定方法では、被測定物
が、薄板状のシリコンウェーハとされ、シリコンウェー
ハの厚みが測定される。請求項4の表面形状測定方法で
は、予め、第1の案内軸に沿って移動する第1の計測手
段の真直度を測定することにより、基準直線に対する偏
差がそれぞれの軸長方向位置において求められ真直度デ
ータとされる。
According to a third aspect of the present invention, the object to be measured is a thin silicon wafer, and the thickness of the silicon wafer is measured. According to the surface shape measuring method of the present invention, the straightness of the first measuring means moving along the first guide axis is measured in advance, and the deviation from the reference straight line is obtained at each axial position. Straightness data is used.

【0025】また、予め、第1および第2の計測手段
を、第1および第2の案内軸に沿って同期して移動する
ことにより、第1の計測手段と第2の計測手段との相対
距離が連続的に測定され軸長方向の相対距離データが得
られる。次に、第1および第2の計測手段を第1および
第2の案内軸に沿って移動し、被測定物の一面および他
面までの距離を連続的に測定し、それぞれの軸長方向位
置において、相対距離データの対応する相対距離から、
被測定物の一面および他面までの対応する距離を減算す
ることにより被測定物の厚みが求められる。
Further, by moving the first and second measuring means in advance along the first and second guide shafts in advance, the relative position between the first and second measuring means is increased. The distance is continuously measured, and relative distance data in the axial direction is obtained. Next, the first and second measuring means are moved along the first and second guide shafts to continuously measure the distance to one surface and the other surface of the object to be measured, and to measure the respective axial length positions. In, from the corresponding relative distance of the relative distance data,
The thickness of the measured object is obtained by subtracting the corresponding distance to one surface and the other surface of the measured object.

【0026】そして、それぞれの軸長方向位置におい
て、被測定物の一面までの対応する距離に、真直度デー
タの対応する偏差を加算することにより被測定物の一面
の表面形状が求められる。また、この一面の表面形状に
被測定物の厚みを加算することにより被測定物の他面の
表面形状が得られる。
At each axial position, the surface shape of one surface of the measured object is obtained by adding the corresponding deviation of the straightness data to the corresponding distance to one surface of the measured object. Further, the surface shape of the other surface of the object to be measured can be obtained by adding the thickness of the object to be measured to the surface shape of the one surface.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて詳細に説明する。図1は、本発明の測定方法の一
実施形態が適用される測定装置を示している。この測定
装置では、ベース部材31上に第1の案内軸33および
第2の案内軸35が配置されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a measuring apparatus to which one embodiment of the measuring method of the present invention is applied. In this measuring device, a first guide shaft 33 and a second guide shaft 35 are arranged on a base member 31.

【0028】この第1の案内軸33と第2の案内軸35
とは、所定間隔を置いて平行に配置されている。第1の
案内軸33と第2の案内軸35との間には、例えば、薄
板状のシリコンウェーハからなる被測定物37が着脱自
在に支持されている。第1の案内軸33および第2の案
内軸35には、被測定物37の一面37aおよび他面3
7bまでの距離を測定する第1の計測手段39および第
2の計測手段41が配置されている。
The first guide shaft 33 and the second guide shaft 35
Are arranged in parallel at predetermined intervals. Between the first guide shaft 33 and the second guide shaft 35, an object to be measured 37 made of, for example, a thin silicon wafer is detachably supported. The first guide shaft 33 and the second guide shaft 35 have one surface 37 a and the other surface 3
A first measuring means 39 and a second measuring means 41 for measuring the distance to 7b are arranged.

【0029】第1の計測手段39は、第1の案内軸33
に沿って移動される第1のスライダ43と、この第1の
スライダ43に固定される第1の測定器45を備えてい
る。また、第2の計測手段41は、第2の案内軸35に
沿って移動される第2のスライダ47と、この第2のス
ライダ47に固定される第2の測定器49を備えてい
る。
The first measuring means 39 includes a first guide shaft 33
And a first measuring device 45 fixed to the first slider 43. The second measuring means 41 includes a second slider 47 moved along the second guide shaft 35, and a second measuring device 49 fixed to the second slider 47.

【0030】なお、この実施形態では、第1および第2
の測定器45,49には、非接触レーザ変位計が使用さ
れる。上述した測定装置では、被測定物37の厚みおよ
び表面形状の測定が以下述べるようにして行われる。先
ず、第1の案内軸33に沿って移動する第1の計測手段
39の真直度が測定され、図2に示すように、基準直線
51に対する偏差ΔLxがそれぞれの軸長方向位置にお
いて求められ所定の真直度データが得られる。
Note that, in this embodiment, the first and second
Non-contact laser displacement meters are used for the measuring devices 45 and 49. In the above-described measuring device, the thickness and the surface shape of the measured object 37 are measured as described below. First, the straightness of the first measuring means 39 which moves along the first guide shaft 33 is measured, and as shown in FIG. Is obtained.

【0031】なお、第1の計測手段39の真直度の測定
は、装置が設置された時点において高精度に行われる。
また、図2において、曲線Aは第1の計測手段39の運
動線を、曲線Bは第2の計測手段41の運動線を示して
いる。この真直度の測定は、例えば、図3に示すよう
に、被測定物37の配置位置に、ガラス製の真直マスタ
53を、治具等を用いてセットし、第1の案内軸33に
沿って第1のスライダ43を移動し、第1の測定器45
により、真直マスタ53との間隔を連続的に精密測定す
ることにより行われる。
The straightness of the first measuring means 39 is measured with high accuracy when the apparatus is installed.
In FIG. 2, a curve A indicates a motion line of the first measuring means 39, and a curve B indicates a motion line of the second measuring means 41. The straightness is measured, for example, as shown in FIG. 3, by setting a straightness master 53 made of glass using a jig or the like at the position of the object 37 to be measured, and along the first guide shaft 33. To move the first slider 43 so that the first measuring device 45
Thus, the interval between the straight master 53 and the straight master 53 is continuously and precisely measured.

【0032】そして、この測定データを基にして基準直
線51が決定され、基準直線51に対する偏差ΔLxが
それぞれの軸長方向位置において求められ所定の真直度
データが生成される。なお、基準直線51は、例えば、
最小二乗法を使用して、偏差ΔLxの総和が最も小さく
なるように設定される。
Then, a reference straight line 51 is determined based on the measured data, and a deviation ΔLx with respect to the reference straight line 51 is obtained at each position in the axial direction, and predetermined straightness data is generated. The reference straight line 51 is, for example,
Using the least-squares method, the sum of the deviations ΔLx is set to be the smallest.

【0033】また、この実施形態では、基準直線51に
対して真直マスタ53側に第1の測定器45が変位して
いる場合の偏差ΔLxが正(+)とされ、反対側に変位
している場合の偏差ΔLxが負(−)とされる。次に、
第1および第2の計測手段39,41を、第1および第
2の案内軸33,35に沿って同期して移動することに
より、第1の計測手段39と第2の計測手段41との相
対距離Sxが連続的に測定され軸長方向の相対距離デー
タが得られる。
In this embodiment, the deviation ΔLx when the first measuring device 45 is displaced toward the straight master 53 with respect to the reference straight line 51 is positive (+), and the deviation ΔLx is displaced to the opposite side. Is negative (-). next,
By moving the first and second measuring means 39 and 41 synchronously along the first and second guide shafts 33 and 35, the first measuring means 39 and the second measuring means 41 The relative distance Sx is continuously measured to obtain relative distance data in the axial direction.

【0034】この測定は、例えば、図4に示すように、
第2の計測手段41の第2の測定器49の前面に、ブロ
ックゲージ等の基準ゲージ55を装着し、第1のスライ
ダ43と第2のスライダ47とを同期して、すなわち、
第1の測定器45の中心と第2の測定器49の中心との
軸長方向x位置が常に同じ位置になるようにして移動さ
せながら、第1の計測手段39の第1の測定器45によ
り基準ゲージ55までの間隔を連続的に測定し、測定さ
れた値から基準ゲージ55の厚みを減算することにより
行われる。
This measurement is performed, for example, as shown in FIG.
A reference gauge 55 such as a block gauge is mounted on the front surface of the second measuring device 49 of the second measuring means 41, and the first slider 43 and the second slider 47 are synchronized, that is,
The first measuring device 45 of the first measuring means 39 is moved while moving such that the center of the first measuring device 45 and the center of the second measuring device 49 are always at the same position in the axial direction x. Is performed by continuously measuring the distance to the reference gauge 55, and subtracting the thickness of the reference gauge 55 from the measured value.

【0035】なお、この測定は、装置が設置された時点
において行われ、また、被測定物37の測定作業の前に
必要に応じて行われ、最新の値にデータが更新される。
次に、図1に示したように、測定すべき被測定物37
が、第1の計測手段39と第2の計測手段41との間に
支持され、被測定物37の厚みが測定される。この測定
は、第1および第2の計測手段39,41の第1および
第2のスライダ47を、第1および第2の案内軸33,
35に沿って移動し、被測定物37の一面37aおよび
他面37bまでの距離L1x,L2xを、第1および第
2の測定器45,49により連続的に測定することによ
り行われる。
Note that this measurement is performed at the time the apparatus is installed, and is performed as needed before the work of measuring the DUT 37, and the data is updated to the latest values.
Next, as shown in FIG.
Is supported between the first measuring means 39 and the second measuring means 41, and the thickness of the measured object 37 is measured. In this measurement, the first and second sliders 47 of the first and second measuring means 39 and 41 are moved to the first and second guide shafts 33 and 41, respectively.
This is performed by moving along the line 35 and continuously measuring the distances L1x and L2x to the one surface 37a and the other surface 37b of the measured object 37 by the first and second measuring devices 45 and 49.

【0036】そして、図2に示したように、それぞれの
軸長方向位置において、予め求められた相対距離データ
の対応する相対距離Sxから、被測定物37の一面37
aおよび他面37bまでの対応する距離L1x,L2x
を減算することにより被測定物37の厚みTxが求めら
れる。さらに、それぞれの軸長方向位置において、被測
定物37の一面37aまでの対応する距離L1xに、予
め求めてある真直度データの対応する偏差ΔLxを加算
することにより被測定物37の一面37aの表面形状が
求められる。
Then, as shown in FIG. 2, at each axial length position, one surface 37 of the DUT 37 is calculated from the relative distance Sx corresponding to the previously obtained relative distance data.
a and corresponding distances L1x, L2x to the other surface 37b
Is subtracted, the thickness Tx of the measured object 37 is obtained. Further, at each axial direction position, the corresponding deviation ΔLx of the straightness data obtained in advance is added to the corresponding distance L1x to the one surface 37a of the DUT 37, thereby obtaining the one surface 37a of the DUT 37. Surface shape is required.

【0037】すなわち、これにより、基準直線51から
被測定物37の一面37aまでの距離が連続して精密に
求められ、この値が被測定物37の一面37aの表面形
状に対応する値となっている。また、この一面37aの
表面形状に被測定物37の厚みTxを加算することによ
り被測定物37の他面37bの表面形状が得られる。
That is, as a result, the distance from the reference straight line 51 to the one surface 37a of the measured object 37 is continuously and precisely obtained, and this value becomes a value corresponding to the surface shape of the one surface 37a of the measured object 37. ing. The surface shape of the other surface 37b of the measured object 37 can be obtained by adding the thickness Tx of the measured object 37 to the surface shape of the one surface 37a.

【0038】上述した厚み測定方法では、それぞれの軸
長方向位置において、相対距離データの対応する相対距
離Sxから、被測定物37の一面37aおよび他面37
bまでの対応する距離L1x,L2xを減算することに
より被測定物37の厚みTxが測定されるため、真直度
および平行度を別途求めることなく、被測定物37の厚
みTxを容易,確実に高い精度で測定することができ
る。
In the thickness measuring method described above, at each axial direction position, one surface 37a and the other surface 37a of the measured object 37 are calculated from the corresponding relative distance Sx of the relative distance data.
The thickness Tx of the DUT 37 is measured by subtracting the corresponding distances L1x and L2x up to b, so that the thickness Tx of the DUT 37 can be easily and reliably determined without separately obtaining straightness and parallelism. Measurement can be performed with high accuracy.

【0039】また、上述した厚み測定方法では、第1の
計測手段39と第2の計測手段41との相対距離Sxの
連続的な測定を、第2の計測手段41に基準ゲージ55
を装着し、第1の計測手段39により基準ゲージ55ま
での間隔を連続的に測定することにより行うようにした
ので、第1の計測手段39と第2の計測手段41との相
対距離Sxを容易,確実に高い精度で測定することがで
きる。
In the above-described thickness measuring method, the continuous measurement of the relative distance Sx between the first measuring means 39 and the second measuring means 41 is performed by the second measuring means 41 using the reference gauge 55.
Is mounted, and the distance between the first measuring means 39 and the second measuring means 41 is determined by continuously measuring the distance to the reference gauge 55 by the first measuring means 39. Measurement can be performed easily and reliably with high accuracy.

【0040】さらに、上述した厚み測定方法では、被測
定物37であるシリコンウェーハの厚みTxを、容易,
確実に高い精度で測定することができる。また、上述し
た表面形状測定方法では、それぞれの軸長方向位置にお
いて、被測定物37の一面37aまでの対応する距離L
1x,L2xに、真直度データの対応する偏差ΔLxを
加算することにより被測定物37の一面37aの表面形
状が求められ、また、この一面37aの表面形状に被測
定物37の厚みTxを加算することにより被測定物37
の他面37bの表面形状が得られるため、被測定物37
の表面形状を容易,確実に高い精度で測定することがで
きる。
Further, in the above-described thickness measuring method, the thickness Tx of the silicon wafer as the object to be measured 37 can be easily and easily measured.
Measurement can be reliably performed with high accuracy. Further, in the above-described surface shape measuring method, the corresponding distance L to one surface 37a of the object 37 is measured at each axial length direction position.
The surface shape of one surface 37a of the measured object 37 is obtained by adding the corresponding deviation ΔLx of the straightness data to 1x and L2x, and the thickness Tx of the measured object 37 is added to the surface shape of the one surface 37a. By doing, the DUT 37
Since the surface shape of the other surface 37b is obtained,
The surface shape can be easily and reliably measured with high accuracy.

【0041】なお、上述した実施形態では、本発明をシ
リコンウェーハからなる被測定物37の測定に適用した
例について説明したが、本発明はかかる実施形態に限定
されるものではなく、例えば、液晶用ガラス,マスク部
材等の厚みおよび表面形状の測定に広く用いることがで
きる。
In the above-described embodiment, an example in which the present invention is applied to the measurement of the device under test 37 made of a silicon wafer has been described. However, the present invention is not limited to this embodiment. It can be widely used for measuring the thickness and surface shape of glass for use, mask members and the like.

【0042】また、上述した実施形態では、第1の案内
軸33と第2の案内軸35とを水平面内において平行に
配置した例について説明したが、本発明はかかる実施形
態に限定されるものではなく、例えば、垂直面内におい
て平行に配置するようにしても良い。さらに、上述した
実施形態では、第1の測定器45および第2の測定器4
9に非接触レーザ変位計を使用した例について説明した
が、本発明はかかる実施形態に限定されるものではな
く、例えば、静電容量型変位計等の変位計を使用するこ
とができる。
In the above-described embodiment, an example in which the first guide shaft 33 and the second guide shaft 35 are arranged in parallel in a horizontal plane has been described. However, the present invention is not limited to such an embodiment. Instead, for example, they may be arranged in parallel in a vertical plane. Furthermore, in the embodiment described above, the first measuring device 45 and the second measuring device 4
Although an example in which a non-contact laser displacement meter is used has been described in Section 9, the present invention is not limited to such an embodiment. For example, a displacement meter such as a capacitance type displacement meter can be used.

【0043】[0043]

【発明の効果】以上述べたように、請求項1の厚み測定
方法では、それぞれの軸長方向位置において、相対距離
データの対応する相対距離から、被測定物の一面および
他面までの対応する距離を減算することにより被測定物
の厚みが測定されるため、真直度および平行度を別途求
めることなく、被測定物の厚みを容易,確実に高い精度
で測定することができる。
As described above, according to the thickness measuring method of the present invention, at each axial length position, the corresponding distance from the corresponding relative distance of the relative distance data to one surface and the other surface of the object to be measured. Since the thickness of the object to be measured is measured by subtracting the distance, the thickness of the object to be measured can be measured easily and reliably with high accuracy without separately obtaining straightness and parallelism.

【0044】請求項2の厚み測定方法では、第1の計測
手段と第2の計測手段との相対距離の連続的な測定を、
第1または第2の計測手段に基準ゲージを装着し、第2
または第1の計測手段により基準ゲージまでの間隔を連
続的に測定することにより行うようにしたので、第1の
計測手段と第2の計測手段との相対距離を容易,確実に
高い精度で測定することができる。
According to the thickness measuring method of the second aspect, the continuous measurement of the relative distance between the first measuring means and the second measuring means is performed by:
Attach a reference gauge to the first or second measuring means,
Alternatively, since the distance to the reference gauge is continuously measured by the first measuring means, the relative distance between the first measuring means and the second measuring means can be measured easily and reliably with high accuracy. can do.

【0045】請求項3の厚み測定方法では、シリコンウ
ェーハの厚みを、容易,確実に高い精度で測定すること
ができる。請求項4の表面形状測定方法では、それぞれ
の軸長方向位置において、被測定物の一面までの対応す
る距離に、真直度データの対応する偏差ΔLxを加算す
ることにより被測定物の一面の表面形状が求められ、ま
た、この一面の表面形状に被測定物の厚みを加算するこ
とにより被測定物の他面の表面形状が得られるため、被
測定物の表面形状を容易,確実に高い精度で測定するこ
とができる。
According to the thickness measuring method of the third aspect, the thickness of the silicon wafer can be easily and reliably measured with high accuracy. In the surface shape measuring method according to claim 4, the surface of one surface of the object is added by adding the corresponding deviation ΔLx of the straightness data to the corresponding distance to one surface of the object at each axial position. The shape is required, and the surface shape of the other surface of the measured object can be obtained by adding the thickness of the measured object to the surface shape of the one surface. Can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定方法の一実施形態が適用される測
定装置を概略的に示す説明図である。
FIG. 1 is an explanatory view schematically showing a measuring apparatus to which one embodiment of a measuring method of the present invention is applied.

【図2】本発明の測定方法の一実施形態を概念的に示す
説明図である。
FIG. 2 is an explanatory view conceptually showing one embodiment of the measuring method of the present invention.

【図3】第1の計測手段の真直度を測定している状態を
示す説明図である。
FIG. 3 is an explanatory diagram showing a state in which the straightness of a first measuring unit is being measured.

【図4】第1の計測手段と第2の計測手段との相対距離
を測定している状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state in which a relative distance between a first measuring unit and a second measuring unit is being measured.

【図5】従来の薄板の表面形状測定装置を示す説明図で
ある。
FIG. 5 is an explanatory view showing a conventional thin plate surface shape measuring apparatus.

【図6】従来の薄板の表面形状測定装置による測定例を
示す説明図である。
FIG. 6 is an explanatory diagram showing an example of measurement by a conventional thin plate surface shape measuring apparatus.

【図7】従来の薄板の表面形状測定装置の二股状の保持
部材を示す説明図である。
FIG. 7 is an explanatory view showing a forked holding member of a conventional thin plate surface shape measuring apparatus.

【図8】本出願人が先に出願した表面形状測定装置を示
す斜視図である。
FIG. 8 is a perspective view showing a surface shape measuring device previously applied by the present applicant.

【図9】図8の測定装置の平行度の測定方法を示す説明
図である。
FIG. 9 is an explanatory view showing a method of measuring the parallelism of the measuring device of FIG. 8;

【符号の説明】[Explanation of symbols]

33 第1の案内軸 35 第2の案内軸 37 被測定物 37a 一面 37b 他面 39 第1の計測手段 41 第2の計測手段 51 基準直線 55 基準ゲージ Sx 相対距離 ΔLx 偏差 Tx 厚み 33 first guide shaft 35 second guide shaft 37 object to be measured 37a one surface 37b other surface 39 first measurement means 41 second measurement means 51 reference straight line 55 reference gauge Sx relative distance ΔLx deviation Tx thickness

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 耕三 群馬県安中市中野谷555番地の1 株式会 社スーパーシリコン研究所内 Fターム(参考) 2F069 AA46 AA54 AA55 BB15 CC06 DD16 GG04 GG06 GG07 GG58 GG63 HH09 JJ06 JJ25 MM04 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kozo Abe 555 Nakanoya, Annaka-shi, Gunma F-term in the Super Silicon Research Laboratories (reference) 2F069 AA46 AA54 AA55 BB15 CC06 DD16 GG04 GG06 GG07 GG58 GG63 HH09 JJ06 JJ25 MM04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1の案内軸と第2の案内軸とを略平行
に配置し、前記第1および第2の案内軸に沿って移動す
る第1および第2の計測手段により、前記第1および第
2の計測手段の間に配置される被測定物の一面および他
面までの距離を連続的に測定し、前記被測定物の厚みを
連続的に得るための厚み測定方法において、 予め前記第1および第2の計測手段を、前記第1および
第2の案内軸に沿って同期して移動することにより、前
記第1の計測手段と第2の計測手段との相対距離を連続
的に測定し軸長方向の相対距離データを得た後、前記第
1および第2の計測手段を前記第1および第2の案内軸
に沿って移動し、前記被測定物の一面および他面までの
距離を連続的に測定し、それぞれの軸長方向位置におい
て、前記相対距離データの対応する相対距離から、前記
被測定物の一面および他面までの対応する距離を減算す
ることにより前記被測定物の厚みを得ることを特徴とす
る厚み測定方法。
1. A first guide shaft and a second guide shaft are arranged substantially parallel to each other, and said first and second measuring means move along said first and second guide shafts. In a thickness measuring method for continuously measuring a distance to one surface and another surface of an object to be measured disposed between the first and second measuring means and continuously obtaining a thickness of the object to be measured, By moving the first and second measuring means synchronously along the first and second guide axes, the relative distance between the first and second measuring means is continuously changed. And the first and second measuring means are moved along the first and second guide shafts to obtain one surface and the other surface of the object to be measured. Are continuously measured, and at each axial length position, a pair of the relative distance data Thickness measuring method characterized by obtaining a thickness of the object to be measured by the relative distance, subtracting the corresponding distance to the one surface and the other surface of the object to be measured.
【請求項2】 請求項1記載の厚み測定方法において、 前記第1の計測手段と第2の計測手段との相対距離の連
続的な測定を、前記第1または第2の計測手段に基準ゲ
ージを装着し、前記第2または第1の計測手段により前
記基準ゲージまでの間隔を連続的に測定することにより
行うことを特徴とする厚み測定方法。
2. The thickness measuring method according to claim 1, wherein a continuous measurement of a relative distance between the first measuring means and the second measuring means is performed by the first or second measuring means. And measuring the distance to the reference gauge continuously by the second or first measuring means.
【請求項3】 請求項1記載の厚み測定方法において、 前記被測定物は、シリコンウェーハであることを特徴と
する厚み測定方法。
3. The thickness measuring method according to claim 1, wherein the object to be measured is a silicon wafer.
【請求項4】 第1の案内軸と第2の案内軸とを略平行
に配置し、前記第1および第2の案内軸に沿って移動す
る第1および第2の計測手段により、前記第1および第
2の計測手段の間に配置される被測定物の一面および他
面までの距離を連続的に測定し、前記被測定物の一面お
よび他面の表面形状を得るための表面形状測定方法にお
いて、 予め、前記第1の案内軸に沿って移動する第1の計測手
段の真直度を測定し、基準直線に対する偏差をそれぞれ
の軸長方向位置において求め真直度データを得るととも
に、前記第1および第2の計測手段を、前記第1および
第2の案内軸に沿って同期して移動することにより、前
記第1の計測手段と第2の計測手段との相対距離を連続
的に測定し軸長方向の相対距離データを得た後、前記第
1および第2の計測手段を前記第1および第2の案内軸
に沿って移動し、前記被測定物の一面および他面までの
距離を連続的に測定し、それぞれの軸長方向位置におい
て、前記相対距離データの対応する相対距離から、前記
被測定物の一面および他面までの対応する距離を減算す
ることにより前記被測定物の厚みを得、さらに、それぞ
れの軸長方向位置において、前記被測定物の一面までの
対応する距離に、前記真直度データの対応する偏差を加
算することにより前記被測定物の一面の表面形状を得、
この一面の表面形状に前記被測定物の厚みを加算するこ
とにより被測定物の他面の表面形状を得ることを特徴と
する表面形状測定方法。
4. A first guide shaft and a second guide shaft are disposed substantially parallel to each other, and said first and second measuring means are moved along said first and second guide shafts. Surface shape measurement for continuously measuring the distance to one surface and the other surface of the object placed between the first and second measuring means and obtaining the surface shapes of the one surface and the other surface of the object to be measured In the method, the straightness of the first measuring means moving along the first guide axis is measured in advance, the deviation from the reference straight line is obtained at each axial position, and the straightness data is obtained. The relative distance between the first and second measuring means is continuously measured by synchronously moving the first and second measuring means along the first and second guide axes. After obtaining the relative distance data in the axial length direction, the first and second Is moved along the first and second guide axes to continuously measure the distance to one surface and the other surface of the object to be measured, and at each axial position, the relative distance data is measured. From the corresponding relative distance, the thickness of the object to be measured is obtained by subtracting the corresponding distance to one surface and the other surface of the object to be measured, and further, at each axial position, the object to be measured is To the corresponding distance to one surface, to obtain the surface shape of one surface of the DUT by adding the corresponding deviation of the straightness data,
A surface shape measuring method, characterized in that the surface shape of the other surface of the object to be measured is obtained by adding the thickness of the object to be measured to the surface shape of the one surface.
JP09655699A 1999-04-02 1999-04-02 Surface shape measurement method Expired - Lifetime JP3404318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09655699A JP3404318B2 (en) 1999-04-02 1999-04-02 Surface shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09655699A JP3404318B2 (en) 1999-04-02 1999-04-02 Surface shape measurement method

Publications (2)

Publication Number Publication Date
JP2000292152A true JP2000292152A (en) 2000-10-20
JP3404318B2 JP3404318B2 (en) 2003-05-06

Family

ID=14168343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09655699A Expired - Lifetime JP3404318B2 (en) 1999-04-02 1999-04-02 Surface shape measurement method

Country Status (1)

Country Link
JP (1) JP3404318B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041380A1 (en) * 2000-11-16 2002-05-23 Shin-Etsu Handotai Co.,Ltd. Wafer shape evaluating method and device and device producing method, wafer and wafer selecting method
WO2002050893A2 (en) * 2000-12-19 2002-06-27 Speedfam-Ipec Corporation Process for monitoring a process, planarizing a surface, and for quantifying the results of a planarization process
WO2003106925A1 (en) * 2002-06-13 2003-12-24 信越半導体株式会社 Semiconductor wafer shape evaluating method and shape evaluating device
JP2005106824A (en) * 2003-09-30 2005-04-21 General Electric Co <Ge> Method and system for reconstructing internal feature
JP2006234679A (en) * 2005-02-25 2006-09-07 Kuroda Precision Ind Ltd Surface shape measuring device of thin plate
JP2006308296A (en) * 2005-04-26 2006-11-09 Kuroda Precision Ind Ltd Measurement part supporting mechanism and surface shape measurement device for lamella equipped with same
JP2007046946A (en) * 2005-08-08 2007-02-22 Toshiba Mach Co Ltd Measuring system of double-sided profile of substrate, and measuring method for the double-sided profile of substrate
JP2007057502A (en) * 2005-08-26 2007-03-08 Toshiba Mach Co Ltd System for measuring profile of both sides of substrate
JP2007147289A (en) * 2005-11-24 2007-06-14 Kobe Steel Ltd Apparatus and method for measuring shape
JP2007171026A (en) * 2005-12-22 2007-07-05 Toshiba Mach Co Ltd Vertical two-dimensional surface scan mechanism and method
JP2007286072A (en) * 2007-08-06 2007-11-01 Kobe Steel Ltd Method and apparatus for measuring flatness
JP2008145439A (en) * 2000-07-31 2008-06-26 Ade Corp Improvement in shape accuracy using new calibration method
JP2008256715A (en) * 2008-06-18 2008-10-23 Kuroda Precision Ind Ltd Surface shape measuring device of thin plate
JP2013224940A (en) * 2012-04-19 2013-10-31 Alstom Technology Ltd Measuring tool for disc coil

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145439A (en) * 2000-07-31 2008-06-26 Ade Corp Improvement in shape accuracy using new calibration method
WO2002041380A1 (en) * 2000-11-16 2002-05-23 Shin-Etsu Handotai Co.,Ltd. Wafer shape evaluating method and device and device producing method, wafer and wafer selecting method
US6828163B2 (en) 2000-11-16 2004-12-07 Shin-Etsu Handotai Co., Ltd. Wafer shape evaluating method and device producing method, wafer and wafer selecting method
CN100339969C (en) * 2000-11-16 2007-09-26 信越半导体株式会社 Wafer shape evaluating method and device and device producing method, wafer and wafer selecting method
WO2002050893A2 (en) * 2000-12-19 2002-06-27 Speedfam-Ipec Corporation Process for monitoring a process, planarizing a surface, and for quantifying the results of a planarization process
WO2002050893A3 (en) * 2000-12-19 2004-01-08 Speedfam Ipec Corp Process for monitoring a process, planarizing a surface, and for quantifying the results of a planarization process
US7209857B2 (en) 2002-06-13 2007-04-24 Shin-Etsu Handotai Co., Ltd. Method of evaluating shape of semiconductor wafer and apparatus for evaluating shape of semiconductor wafer
WO2003106925A1 (en) * 2002-06-13 2003-12-24 信越半導体株式会社 Semiconductor wafer shape evaluating method and shape evaluating device
JP2005106824A (en) * 2003-09-30 2005-04-21 General Electric Co <Ge> Method and system for reconstructing internal feature
JP2006234679A (en) * 2005-02-25 2006-09-07 Kuroda Precision Ind Ltd Surface shape measuring device of thin plate
JP4592445B2 (en) * 2005-02-25 2010-12-01 黒田精工株式会社 Thin plate surface shape measuring device
JP2006308296A (en) * 2005-04-26 2006-11-09 Kuroda Precision Ind Ltd Measurement part supporting mechanism and surface shape measurement device for lamella equipped with same
JP4636928B2 (en) * 2005-04-26 2011-02-23 黒田精工株式会社 Measuring unit support mechanism and thin plate surface shape measuring apparatus having the same
JP2007046946A (en) * 2005-08-08 2007-02-22 Toshiba Mach Co Ltd Measuring system of double-sided profile of substrate, and measuring method for the double-sided profile of substrate
US7677121B2 (en) 2005-08-08 2010-03-16 Toshiba Kikai Kabushiki Kaisha Apparatus and methods for measuring shape of both sides of a plate
JP2007057502A (en) * 2005-08-26 2007-03-08 Toshiba Mach Co Ltd System for measuring profile of both sides of substrate
JP2007147289A (en) * 2005-11-24 2007-06-14 Kobe Steel Ltd Apparatus and method for measuring shape
JP4531685B2 (en) * 2005-11-24 2010-08-25 株式会社神戸製鋼所 Shape measuring device and shape measuring method
JP2007171026A (en) * 2005-12-22 2007-07-05 Toshiba Mach Co Ltd Vertical two-dimensional surface scan mechanism and method
JP2007286072A (en) * 2007-08-06 2007-11-01 Kobe Steel Ltd Method and apparatus for measuring flatness
JP2008256715A (en) * 2008-06-18 2008-10-23 Kuroda Precision Ind Ltd Surface shape measuring device of thin plate
JP2013224940A (en) * 2012-04-19 2013-10-31 Alstom Technology Ltd Measuring tool for disc coil

Also Published As

Publication number Publication date
JP3404318B2 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
JP3404318B2 (en) Surface shape measurement method
TWI286599B (en) Apparatus and method for measuring shape of both sides of a plate
TWI655708B (en) Alignment device for two substrates
JPH11351857A (en) Method and apparatus for measurement of surface shape of thin plate
Widdershoven et al. Realization and calibration of the" Isara 400" ultra-precision CMM
CN109781002A (en) A kind of lathe holoaxial journey accurate positioning method based on machine vision
JP4717639B2 (en) Method and apparatus for measuring both sides of substrate shape
JP4599728B2 (en) Non-contact film thickness measuring device
JPH05209741A (en) Method and apparatus for measuring surface shape
JPH11125520A (en) Member for supporting semiconductor wafer, and flatness measuring instrument for semiconductor wafer
JP2007057502A (en) System for measuring profile of both sides of substrate
Weichert et al. Integration of a step gauge measurement capability at the PTB Nanometer Comparator–concept and preliminary tests
JP4326356B2 (en) Phase correction value measurement method
CN2597944Y (en) Apparatus for measuring workpiece parallel degree
KR100736005B1 (en) Method and system for measuring axis squareness of object using vision apparatus and optical master used in the same
JP2003075147A (en) Method and device for measurement of flatness
JPS6275209A (en) Method and instrument for measuring dimension of plate type body
JP3940819B2 (en) Semiconductor wafer surface shape measuring apparatus and surface shape measuring method
JP2001041733A (en) Surface shape measuring device
JPH04319614A (en) Measuring apparatus for thickness of thin plate
RU2214324C2 (en) Method for measuring deviation from mutual normality of guides of metal cutting machine tools
JP2004082228A (en) Controller of robot
JPS60123716A (en) X-y cross-angle measuring method and apparatus for x-y stage
JPH1124236A (en) Photomask, device and method for supporting the photomask
JPH01238014A (en) Gap controlling exposure method and device therefor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term