JP4326356B2 - Phase correction value measurement method - Google Patents
Phase correction value measurement method Download PDFInfo
- Publication number
- JP4326356B2 JP4326356B2 JP2004020349A JP2004020349A JP4326356B2 JP 4326356 B2 JP4326356 B2 JP 4326356B2 JP 2004020349 A JP2004020349 A JP 2004020349A JP 2004020349 A JP2004020349 A JP 2004020349A JP 4326356 B2 JP4326356 B2 JP 4326356B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- measurement
- interference
- contact
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012937 correction Methods 0.000 title claims description 65
- 238000000691 measurement method Methods 0.000 title claims description 6
- 238000005259 measurement Methods 0.000 claims description 244
- 230000003287 optical effect Effects 0.000 claims description 83
- 230000008859 change Effects 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 26
- 230000000052 comparative effect Effects 0.000 claims description 19
- 230000003746 surface roughness Effects 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 230000001427 coherent effect Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 230000009897 systematic effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
本発明は位相補正値測定方法、特に光波干渉測定による寸法測定値に対する位相補正値の測定方法の改良に関する。 The present invention relates to a method for measuring a phase correction value, and more particularly to an improvement in a method for measuring a phase correction value for a dimension measurement value by optical interference measurement.
従来より長さの基準として端度器が用いられている。端度器は両端の面間距離で規定の寸法を表す標準であり、代表的なものとしてブロックゲージがある。
このブロックゲージは極めて高い寸法精度をもち、その測定面が他のブロックゲージの測定面に容易に密着(リンギング)する。そして、数個のブロックゲージを密着することで必要な寸法が得られる。その反面、このブロックゲージは、測定面が常に他の測定面と接触するような使い方をするので、傷や摩耗を生じやすく、材料の経年変化もあり、定期的な検査が必要である。
ブロックゲージの相対向する端面間の寸法の校正を高精度に行うために、光波干渉測定装置が用いられている(特許文献1を参照)。さらに、特許文献2〜3に記載された非密着光波干渉測定装置では、ブロックゲージの両端面間から光を照射し、それぞれの端面からの反射光による干渉縞を用いて寸法測定をすることで、ブロックゲージをベースプレートにリンギングさせる必要がない非密着測定を行うことができる。
Conventionally, an end measure is used as a reference for length. The edge scale is a standard that represents a specified dimension by the distance between the surfaces of both ends, and a typical example is a block gauge.
This block gauge has extremely high dimensional accuracy, and its measurement surface is easily adhered (ringing) to the measurement surface of another block gauge. And a required dimension is obtained by sticking several block gauges. On the other hand, since this block gauge is used in such a way that the measurement surface always comes into contact with other measurement surfaces, it is easy to cause scratches and wear, and there is a secular change of the material, and a periodic inspection is necessary.
In order to calibrate the dimension between the opposing end faces of the block gauge with high accuracy, a light wave interference measuring apparatus is used (see Patent Document 1). Furthermore, in the non-contact optical interference measuring apparatus described in Patent Documents 2 and 3, light is irradiated from between both end faces of the block gauge, and the dimensions are measured using interference fringes by reflected light from the respective end faces. It is possible to perform non-contact measurement without having to block the block gauge to the base plate.
上述したようにブロックゲージは物理的な接触やリンギング等を伴った使用方法が前提である。そのため、端面間の寸法を測定する場合、両端面のそれぞれの粗さ曲線の最外部(特に突出する部分は除く)を測定位置として寸法を測定する。しかし、光波干渉測定では、表面粗さの問題、材質の光学的性質による光の反射時の位相変化の問題、の2点の問題でこの位置が測定位置とはならない。 As described above, the block gauge is premised on a usage method involving physical contact, ringing, and the like. Therefore, when measuring the dimension between the end faces, the dimension is measured using the outermost part (particularly excluding the protruding part) of the respective roughness curves on both end faces as the measurement position. However, in the light wave interference measurement, this position does not become the measurement position due to the two problems of the problem of surface roughness and the problem of phase change upon reflection of light due to the optical properties of the material.
図6に示すようにブロックゲージの端面は微視的には凹凸のある状態となっている。接触子を端面に接触して寸法を測る場合、図6(A)のように接触子は凹凸の一番高い部分に触れることとなり、その部分を測定位置として寸法が測定される。しかしながら、光波干渉法で測定した場合、図6(B)のように、粗さ曲線の最上部からの反射光や、最下部からの反射光の重ね合わせた光で測定を行うため、反射面を特定できない。そのため、最上部と最下部の中間(粗さ曲線の算術平均粗さ)を測定位置とした寸法が測定される。よって、測定端面に粗さがある以上、表面最外部で測定することができず、機械的な接触による寸法よりも短く測定されてしまう。つまり、補正を行わないと、常に測りたい表面よりも潜り込んだ位置を測定するため、実際よりも短く測定されてしまう。また、表面粗さが大きいほど潜り込みの影響も大きくなる。この影響による位相変化を形状補正値と呼ぶ。 As shown in FIG. 6, the end surface of the block gauge is microscopically uneven. When the dimension is measured by bringing the contact element into contact with the end face, as shown in FIG. 6A, the contact element touches the highest uneven part, and the dimension is measured using that part as the measurement position. However, when the measurement is performed by the light wave interferometry, as shown in FIG. 6B, the measurement is performed using the reflected light from the uppermost part of the roughness curve or the reflected light from the lowermost part. Cannot be identified. Therefore, the dimension with the measurement position as the middle between the uppermost part and the lowermost part (arithmetic mean roughness of the roughness curve) is measured. Therefore, as long as the measurement end face has roughness, it cannot be measured at the outermost surface, and the measurement is shorter than the dimension due to mechanical contact. In other words, if correction is not performed, the position which is always submerged from the surface to be measured is measured, so that the measurement is shorter than the actual measurement. Also, the greater the surface roughness, the greater the influence of sinking. The phase change due to this influence is called a shape correction value.
また、測定表面が粗さのない理想面であったとしても、材質の光学的性質による光の位相変化の問題がある。垂直入射する光の反射時の位相変化は、複素屈折率の虚数部分(吸収係数)の小さい材質の場合は無視することができる。しかし、金属等のように吸収係数が大きい材質の場合、反射時の位相変化は無視することができない量となる。つまり、図6(C)に示すように反射時に光の位相の遅れが生じるため、見かけ上あたかも実際の表面よりも潜り込んだ中程の部分で測定を行った状態と同様な測定結果となる。このため、測定面が表面粗さのない理想面であったとしても、実際の寸法よりも短く測定されることになる。この影響による位相変化量を光学補正値という。
実際の測定では、形状補正値と光学補正値とを同時に考慮する必要があり、形状補正値と光学補正値との和を位相補正値と呼ぶ。この位相補正値を光波干渉測定による測定結果に加えることで前述の端面間における機械的寸法(両端面の粗さ曲線の最外部間の寸法)を求めることができる。
Even if the measurement surface is an ideal surface without roughness, there is a problem of phase change of light due to the optical properties of the material. The phase change during reflection of vertically incident light can be ignored in the case of a material having a small imaginary part (absorption coefficient) of the complex refractive index. However, in the case of a material having a large absorption coefficient such as metal, the phase change at the time of reflection is an amount that cannot be ignored. That is, as shown in FIG. 6C, a delay in the phase of the light occurs at the time of reflection, so that the measurement result is similar to the state in which the measurement is performed in the middle part that is submerged from the actual surface. For this reason, even if the measurement surface is an ideal surface with no surface roughness, the measurement is made shorter than the actual dimension. The amount of phase change due to this influence is called an optical correction value.
In actual measurement, it is necessary to consider the shape correction value and the optical correction value at the same time, and the sum of the shape correction value and the optical correction value is referred to as a phase correction value. By adding this phase correction value to the measurement result by the light wave interference measurement, the mechanical dimension between the end faces described above (the dimension between the outermost portions of the roughness curves on both end faces) can be obtained.
この位相補正値を求める方法として、従来より行われている補助ゲージ法について説明する。補助ゲージ法では、石英等を材質とするガラスが光学定数による位相変化がほとんどないことと、表面の粗さも無視できるくらい小さく加工可能であるという2つの特徴を利用して補正値をもとめるものである。まず、図7(A)に示すように、同一材質同士をリンギングさせて測定を行う。つまり、位相補正値を測定したい材質のブロックゲージ(GB)を、同じ材質のブロックゲージ(GB)またはベースプレート(BP)にリンギングしそれぞれの測定面での反射時の位相変化を相殺する状態で光波干渉測定を行う。この測定で得られる寸法LAは、ブロックゲージの寸法LGB、リンギング層の厚さdW、位相補正値Cとすると、
LA=LGB−C+dW+C=LGB+dW
で表される。
As a method for obtaining this phase correction value, a conventional auxiliary gauge method will be described. In the auxiliary gauge method, the correction value is obtained by utilizing two characteristics that glass made of quartz or the like has almost no phase change due to optical constants and that the surface roughness can be negligibly small. is there. First, as shown in FIG. 7A, measurement is performed by ringing the same material. In other words, the light wave in a state where the block gauge (GB) of the material whose phase correction value is to be measured is ringed to the block gauge (GB) or the base plate (BP) of the same material to cancel the phase change at the time of reflection on each measurement surface. Perform interference measurements. When the dimension L A obtained by this measurement is the dimension L GB of the block gauge, the thickness d W of the ringing layer, and the phase correction value C,
L A = L GB −C + d W + C = L GB + d W
It is represented by
次に図7(B)に示すように補正値を測定したい材質のブロックゲージ(GB)に石英等のガラスのブロックゲージ(GB)またはベースプレート(BP)をリンギングさせて測定を行う。石英等のガラスは表面粗さが非常に小さく仕上げられており、また吸収係数が小さく光学定数による位相変化も無視できるレベルであるため、ベースプレート面上ではほとんど位相変化しない。この測定で得られるLBは、ブロックゲージの位相補正値Cを用いて、
LB=LGB+dw−C
と表される。LA,LBの式から位相補正値Cは、
C=LB−LA
と求められる。
Next, as shown in FIG. 7B, measurement is performed by ringing a block gauge (GB) of glass such as quartz or a base plate (BP) into a block gauge (GB) of a material whose correction value is to be measured. Glass such as quartz is finished with a very small surface roughness, and has a small absorption coefficient and a phase change due to an optical constant that can be ignored. Therefore, there is almost no phase change on the base plate surface. L B obtained by this measurement, using a phase correction value C of the block gauge,
L B = L GB + d w −C
It is expressed. From the equations of L A and L B, the phase correction value C is
C = L B -L A
Is required.
しかしながら、前述の従来方法はブロックゲージの寸法を測定する装置以外に特別な装置が必要ないという利点がある反面、測定の際にリンギングを伴うという問題がある。リンギングは作業そのものに熟練を要する上、再現性良く行うことが非常に困難である。上記の従来方法では、対象とするブロックゲージと同材質のベースプレートにリンギングさせた場合のリンギング層の厚さと、石英ガラス等のベースプレートにリンギングさせた場合のリンギング層の厚さとが等しいことが前提である。しかし、同一材質同士の場合と異なる材質同士の場合とではリンギング力が異なる等の理由から再現性よくリンギングを行うことは非常に難しく、前提通りにはならない。つまり、前提からのずれがそのまま系統誤差として現れる。 However, the above-described conventional method has an advantage that a special device other than the device for measuring the size of the block gauge is not necessary, but has a problem that ringing is involved in the measurement. Ringing requires skill in the work itself and is very difficult to perform with good reproducibility. In the above conventional method, it is assumed that the thickness of the ringing layer when ringing on the base plate made of the same material as the target block gauge is equal to the thickness of the ringing layer when ringing on a base plate such as quartz glass. is there. However, it is very difficult to perform ringing with good reproducibility because the ringing force is different between the same material and different materials, and it is not as expected. That is, the deviation from the premise appears as a systematic error as it is.
また、同一材質同士の密着測定時には二者の表面粗さや光学特性が等しく、それぞれで発生する位相変化が完全に相殺されていることが前提である。しかし、現実には二者の状態が全く同一ということはないため、前提通りにはならないという問題がある。このときの前提からのずれもまた系統誤差となる。
他の従来方法としてブロックゲージをガラス等のベースプレート上に積み重ねて測定を行う方法があるが、この方法もリンギングを用いるため、上記同様の問題が発生する。
また、リンギングを用いない従来方法としては表面粗さ及び光学定数を直接測定するという方法もある。しかし、この方法は、前述の形状補正値を粗さ測定機で、光学補正値をエリプソメータにより複素屈折率を測定することで求めなければならず、それぞれを測定するための測定装置が別途必要になるという問題がある。
Also, it is assumed that the surface roughness and optical characteristics of the two materials are equal when measuring the close contact between the same materials, and the phase changes that occur in each of them are completely offset. However, in reality, there is a problem that the two states are not exactly the same, so they are not as expected. A deviation from the premise at this time also becomes a systematic error.
As another conventional method, there is a method of performing measurement by stacking block gauges on a base plate such as glass. However, since this method also uses ringing, the same problem as described above occurs.
Further, as a conventional method that does not use ringing, there is a method of directly measuring the surface roughness and the optical constant. However, in this method, the above-mentioned shape correction value must be obtained by measuring the complex refractive index with a roughness measuring machine and the optical correction value with an ellipsometer, and a separate measuring device is required for measuring each. There is a problem of becoming.
光波干渉測定により求められるブロックゲージ等の端度器の寸法値には位相補正値を加算し、正しい値に補正する必要がある。そのため、寸法測定の不確かさをより低減するためには位相補正値の不確かさも低減しなければならない。現在、位相補正値測定はリンギングを用いた光波干渉計で測定しているが上記の理由から分かるようにリンギング層のばらつきにより安定した位相補正値を得ることが困難であった。
本発明は上記課題に鑑みなされたものであり、その目的は、簡易かつ高精度に光波干渉測定における位相補正値を測定する方法を提供することにある。
It is necessary to add a phase correction value to the size value of the edge gauge such as a block gauge obtained by the light wave interference measurement and correct it to a correct value. Therefore, in order to further reduce the uncertainty of dimension measurement, the uncertainty of the phase correction value must also be reduced. At present, the phase correction value is measured by a light wave interferometer using ringing. However, as can be seen from the above reason, it is difficult to obtain a stable phase correction value due to variations in the ringing layer.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for measuring a phase correction value in light wave interference measurement simply and with high accuracy.
本発明の位相補正値測定方法は、光を互いに可干渉な2光束に分け、一方を参照光、他方を測定光とし、測定光を測定対象物に照射し、その反射光と参照光とによる干渉に基づいて前記測定物の相対向する端面間の寸法測定を行う光波干渉測定での測定光の反射時の位相変化分を求める位相補正値測定方法において、
位相変化分CXが未知の被測定物と位相変化分CSが既知の基準物とを用意する工程と、
寸法測定の対象となる測定対象物の相対向する両端面へそれぞれ測定光を照射し、前記測定対象物の一方の端面からの反射光と参照光との干渉と、前記測定対象物の他方の端面からの反射光と参照光との干渉と、に基づいて前記測定対象物の光学的寸法を測定する非密着光波干渉測定装置を用いて、前記被測定物の光学的寸法LIXと前記基準物の光学的寸法LISとの差である光学的寸法差ΔL I (ΔL I =LIX −LIS )を求める工程と、
寸法測定の対象となる測定対象物の端面に接触子を接触させ、該接触子の接触位置に基づいて前記測定対象物の相対向する端面間の機械的寸法を測定する接触式の測長装置を用い、前記被測定物の機械的寸法L X と前記基準物の機械的寸法L S との差である機械的寸法差ΔL(ΔL=L X −L S )を接触式比較測定によって求める工程と、
前記光学的寸法差ΔL I 、前記機械的寸法差ΔL、及び前記基準物の位相変化量CSから前記被測定物の位相変化分CXを次の式、
CX=CS +ΔL/2−ΔL I /2
によって求める工程と、を含むことを特徴とする。
ここで、光学的寸法差ΔL I (ΔL I =L IX −L IS )の記載について、括弧内の式は、括弧前の符号(ΔL I )の意味を定義するものである。従って、光学的寸法差ΔL I を求める工程は、括弧内の個々の値L IX 、L IS をそれぞれ測定し、その差をとって間接的に光学的寸法差ΔL I を算出する方法に限られるものではなく、光学的寸法差ΔL I のみを測定する方法でもよい。
In the phase correction value measuring method of the present invention, light is divided into two coherent light beams, one is used as reference light, the other is used as measurement light, the measurement light is irradiated onto the measurement object, and the reflected light and reference light are used. In the phase correction value measurement method for obtaining the phase change amount at the time of reflection of the measurement light in the light wave interference measurement for measuring the dimension between the opposite end faces of the measurement object based on the interference,
Preparing a measurement object whose phase change C X is unknown and a reference object whose phase change C S is known;
Irradiate measurement light to both opposite end surfaces of the measurement object to be dimensioned, interference between the reflected light from one end surface of the measurement object and the reference light, and the other of the measurement object Using a non-contact optical interference measuring apparatus that measures the optical dimension of the measurement object based on the interference between the reflected light from the end surface and the reference light, the optical dimension L IX of the object to be measured and the reference Determining an optical dimension difference ΔL I (ΔL I = L I X −L I S ) which is a difference from the optical dimension L IS of the object;
A contact-type length measuring device that contacts a contact surface with an end surface of a measurement object to be dimensioned and measures a mechanical dimension between opposing end surfaces of the measurement object based on a contact position of the contact device. And obtaining a mechanical dimension difference ΔL (ΔL = L X −L S ) , which is a difference between the mechanical dimension L X of the object to be measured and the mechanical dimension L S of the reference object, by contact-type comparative measurement When,
Said optical dimensional difference [Delta] L I, the mechanical dimensions difference [Delta] L, and the phase change amount C X the following equation of the object to be measured from the phase variation amount C S of the reference object,
C X = C S + ΔL / 2 -ΔL I / 2
And a step of obtaining by the following.
Here, in the description of the optical dimensional difference ΔL I (ΔL I = L IX −L IS ), the formula in parentheses defines the meaning of the sign (ΔL I ) before the parentheses . Therefore, the process for obtaining the optical size difference [Delta] L I, limited to the method of calculating the individual values L IX, the L IS were measured indirectly optically dimensional differences [Delta] L I taking the difference in parentheses not, it may be a method of measuring only the optical size difference [Delta] L I.
上記の位相補正値測定方法において、前記非密着光波干渉測定装置は、所定のビーム径及び波長を持つ光を照射する光照射手段と、前記光照射手段から照射された光を二光束に分割する光分割手段と、測定対象物の測長軸と一致する光軸を有する第1干渉手段及び第2干渉手段と、前記第1干渉手段及び第2干渉手段の干渉縞をそれぞれ観察する第1観察手段と第2観察手段と、を備え、
前記光分割手段により分割された二光束の一方の光束は、前記第1干渉手段に入射し、該光束の一部は第1参照光となり、残りは前記第1干渉手段により前記測定対象物の測長軸方向に反射され、
前記光分割手段により分割された二光束の他方の光束は、前記第2干渉手段に入射し、該光束の一部は第2参照光となり、残りは前記第2干渉手段により前記測定対象物の測長軸方向に反射され、
前記第1干渉手段から前記測定対象物の測長軸方向へ反射された光は、一部が前記測定対象物の一端において反射され、第1干渉手段へと戻り第1参照光と重ね合わされ第1測定干渉光となり、その残りは前記測定対象物の脇を通過し前記第2干渉手段へ入射し、第2参照光と重ね合わされ第2基準干渉光となり、
前記第2干渉手段から前記測定対象物の測長軸方向へ反射された光は、一部が前記測定対象物の他端面において反射され、第2干渉手段へと戻り第2参照光と重ね合わされ第2測定干渉光となり、その残りは前記測定対象物の脇を通過し前記第1干渉部へ入射し、第1参照光と重ね合わされ第1基準干渉光となり、
前記第1観察部により、前記第1干渉部で形成される第1基準干渉光と第1測定干渉光とをそれぞれ第1基準干渉縞及び第1測定干渉縞として観察し、
前記第2観察部により、前記第2干渉部で形成される第2基準干渉光と第2測定干渉光とをそれぞれ第2基準干渉縞及び第2測定干渉縞として観察し、
前記第1基準干渉縞と前記第1測定干渉縞との位相差、前記第2基準干渉縞と前記第2測定干渉縞との位相差、および前記測定対象物の予備値に基き、前記測定対象物の光学的寸法を測定する装置であって、該装置を用いた測定によって、前記被測定物と前記基準物との光学的寸法差を求めることが好適である。
In the above-described phase correction value measuring method, the non-contact light wave interference measuring apparatus divides the light irradiated from the light irradiating means having a predetermined beam diameter and wavelength, and the light irradiated from the light irradiating means into two light beams. A first observation for observing the light splitting means, the first interference means and the second interference means having an optical axis coinciding with the measurement axis of the measurement object, and the interference fringes of the first interference means and the second interference means, respectively. Means and second observation means,
One of the two light beams divided by the light splitting unit is incident on the first interference unit, a part of the light beam becomes the first reference light, and the rest of the beam is measured by the first interference unit. Reflected in the measuring axis direction,
The other light beam of the two light beams split by the light splitting unit is incident on the second interference unit, a part of the beam becomes second reference light, and the rest of the beam is measured by the second interference unit. Reflected in the measuring axis direction,
A part of the light reflected from the first interference means in the measuring axis direction of the measurement object is reflected at one end of the measurement object, returns to the first interference means, and overlaps with the first reference light. 1 measurement interference light, the remainder passes by the side of the measurement object, enters the second interference means, and is superimposed on the second reference light to become the second reference interference light,
A part of the light reflected from the second interference means in the measuring axis direction of the measurement object is reflected on the other end surface of the measurement object, returns to the second interference means, and is superimposed on the second reference light. It becomes the second measurement interference light, the remainder passes by the side of the measurement object, enters the first interference part, is superposed on the first reference light and becomes the first reference interference light,
The first observation unit observes the first reference interference light and the first measurement interference light formed by the first interference unit as a first reference interference fringe and a first measurement interference fringe, respectively.
The second observation unit observes the second reference interference light and the second measurement interference light formed by the second interference unit as a second reference interference pattern and a second measurement interference pattern, respectively.
The measurement object based on a phase difference between the first reference interference fringe and the first measurement interference fringe, a phase difference between the second reference interference fringe and the second measurement interference fringe, and a preliminary value of the measurement object It is an apparatus for measuring the optical dimension of an object, and it is preferable that an optical dimension difference between the object to be measured and the reference object is obtained by measurement using the apparatus.
また、上記の位相補正値測定方法において、前記接触式比較測定は、測定する端面に接触させる接触子と、該接触子の非接触側に設置された鏡面と、を備えた治具を使用し、測定対象物の相対向する端面に前記接触子をそれぞれ接触させ、前記鏡面を前記測定対象物の端面に平行になるよう設置し、
前記鏡面を取り付けた測定対象物の両端面へそれぞれ測定光を照射し、該測定対象物の一方の端面の鏡面からの反射光と該反射光に可干渉な参照光との干渉光と、前記測定対象物の他方の端面の鏡面からの反射光と該反射光に可干渉な参照光との干渉光と、に基づいて前記鏡面間の光学的寸法を測定し該鏡面間の光学的寸法から測定対象物の機械的寸法を求める測長装置を用い、前記被測定物と前記基準物の機械的寸法差を測定することが好適である。
上記の位相補正値測定方法において、前記基準物は光学的定数による位相変化を実質的に起こさない複素屈折率を持つ材質で形成され、該基準物の測定光が照射される面の表面粗さが測定に用いる光の波長より小さいことが好適である。
In the phase correction value measuring method, the contact-type comparative measurement uses a jig including a contactor that is in contact with an end face to be measured and a mirror surface that is installed on a non-contact side of the contactor. , The contactors are brought into contact with the opposite end surfaces of the measurement object, and the mirror surface is installed so as to be parallel to the end surface of the measurement object,
Irradiating measurement light to both end surfaces of the measurement object to which the mirror surface is attached, and interference light between reflected light from the mirror surface of one end surface of the measurement object and reference light that is coherent with the reflected light, and The optical dimension between the mirror surfaces is measured based on the reflected light from the mirror surface of the other end surface of the object to be measured and the interference light of the reference light that is coherent with the reflected light, and from the optical dimension between the mirror surfaces. It is preferable to measure a mechanical dimension difference between the object to be measured and the reference object by using a length measuring device for obtaining a mechanical dimension of the object to be measured.
In the phase correction value measuring method, the reference object is formed of a material having a complex refractive index that does not substantially cause a phase change due to an optical constant, and the surface roughness of the surface irradiated with the measurement light of the reference object Is preferably smaller than the wavelength of light used for measurement.
本発明の位相補正値測定方法によれば、非密着光波干渉測定による光学的な寸法差と、接触式比較測定による機械的な寸法差とから位相補正値を求めているため、リンギングという熟練を要する作業が不要であり、簡単、効率的かつ高精度に位相補正値を測定することが可能となった。その結果、位相補正値の精度が向上し、端度器等の校正の不確かさを低減することができる。 According to the phase correction value measuring method of the present invention, the phase correction value is obtained from the optical dimensional difference by the non-contact optical interference measurement and the mechanical dimensional difference by the contact-type comparative measurement. The necessary work is unnecessary, and the phase correction value can be measured easily, efficiently and with high accuracy. As a result, the accuracy of the phase correction value can be improved, and the uncertainty of calibration of the edge scale can be reduced.
以下に本発明の好適な実施形態について説明を行う。
本発明の一実施形態に係る位相補正値測定方法は、位相補正値が未知の端度器等の被測定物と位相補正値が既知の基準物とを用意する工程と、前記被測定物の光学的寸法と前記基準物の光学的寸法との光学的寸法差を非密着光波干渉測定により測定する工程と、前記被測定物と前記基準物との機械的寸法差と接触式比較測定によって測定する工程と、を含む。そして、測定した光学的寸法差と機械的寸法差とに基づいて被測定物の位相補正値が算出される。
本実施形態では光学的寸法差を測定するときの光波干渉測定装置は、測定する両端面側から光を照射して非密着で寸法測定を行うものを使用する(図3参照)。例えば特許文献2、3に記載された装置を用いることができる。
Hereinafter, preferred embodiments of the present invention will be described.
A phase correction value measurement method according to an embodiment of the present invention includes a step of preparing a measurement object such as a protractor whose phase correction value is unknown and a reference object whose phase correction value is known; A step of measuring an optical dimension difference between an optical dimension and an optical dimension of the reference object by non-contact optical interference measurement, and a mechanical dimension difference between the object to be measured and the reference object and a contact type comparative measurement. And a step of performing. Then, the phase correction value of the object to be measured is calculated based on the measured optical dimensional difference and mechanical dimensional difference.
In the present embodiment, a light wave interference measuring apparatus for measuring an optical dimensional difference is one that measures light in a non-contact manner by irradiating light from both end faces to be measured (see FIG. 3). For example, the apparatuses described in Patent Documents 2 and 3 can be used.
本実施形態では、被測定物と基準物として、位相補正値を測定したい材質のブロックゲージX(被測定物)と、それと同じ呼び寸法の基準ブロックゲージS(基準物)を用意する。これを図1に示すように、非密着光波干渉測定によって光学的な寸法測定を行う。このときのブロックゲージXの光波干渉測定結果をLIX、測定面の片側で発生する位相変化分をCXとすると、ブロックゲージXの端面間の機械的寸法LXは、
LX=LIX+2CX …(式1)
となる。ここで、非密着式の光波干渉測定では、測定光は測定対象物の両側の面で反射するため、片側の位相変化分の2倍が位相補正値となる。
In the present embodiment, as a measurement object and a reference object, a block gauge X (measurement object) of a material whose phase correction value is to be measured and a reference block gauge S (reference object) having the same nominal size are prepared. As shown in FIG. 1, optical dimension measurement is performed by non-contact optical interference measurement. If the optical interference measurement result of the block gauge X at this time is L IX and the phase change generated on one side of the measurement surface is C X , the mechanical dimension L X between the end surfaces of the block gauge X is
L X = L IX + 2C X (Formula 1)
It becomes. Here, in the non-contact type light wave interference measurement, since the measurement light is reflected on both surfaces of the measurement object, twice the phase change on one side becomes the phase correction value.
また、同様に基準ブロックゲージSは、光学的寸法をLIS、測定面片側で発生する位相変化分をCSとすると、端面間の機械的寸法LSは、
LS=LIS+2CS …(式2)
となる。
次に図2に示すように被測定ブロックゲージと基準ブロックゲージとを接触式の測長装置を用いて機械的寸法差を比較測定する。これにより測定される端面間の寸法の差ΔLは
ΔL=LX−LS …(式3)
となる。接触式の比較測定器では接触子をブロックゲージの端面に接触させて測定を行うため、測定される寸法は端面の粗さ曲線の最上部を測定位置としたものが得られる。また、機械寸法差を、基準物との比較による比較測定によって求めているため、誤差の少ない非常に高精度な値が得られる。
Similarly, the reference gauge block S is an optical dimension L IS, when the phase variation generated in the measurement surface side and C S, the mechanical dimensions L S between the end faces,
L S = L IS + 2C S (Formula 2)
It becomes.
Next, as shown in FIG. 2, the measured block gauge and the reference block gauge are compared and measured using a contact-type length measuring device. The dimension difference ΔL between the end faces measured in this way is ΔL = L X −L S (Equation 3)
It becomes. In the contact-type comparative measuring instrument, the contact is brought into contact with the end face of the block gauge and the measurement is performed. Therefore, the measured dimension is obtained with the uppermost portion of the roughness curve of the end face as the measurement position. In addition, since the machine dimensional difference is obtained by comparative measurement by comparison with a reference object, a highly accurate value with little error can be obtained.
そこで(式3)に(式1),(式2)を代入すると、
ΔL=LIX−LIS+2CX−2CS
これをCXについて解くと、
CX=CS+(LIS−LIX+ΔL)/2 …(式4)
となる。これにより、基準ブロックゲージSの位相変化分CSが既知であれば(式4)によりブロックゲージXの測定面片側で発生する位相変化分CXが求められ、これが位相補正値となる。つまり、被密着光波干渉測定器によって寸法を測定した場合には、その光学的寸法値に上記の位相変化分CXの2倍を加えることによって実際の寸法値を求めることができる。また、密着式の光波干渉測定によって測定した場合は、測定光が照射されるのはブロックゲージの一方の面だけであるので、上記の位相変化分CXを加えることで実際の寸法が得られる。
Therefore, if (Equation 1) and (Equation 2) are substituted into (Equation 3),
ΔL = L IX -L IS + 2C X -2C S
Solving this for CX ,
C X = C S + ( LIS− L IX + ΔL) / 2 (Formula 4)
It becomes. Thereby, if the phase change C S of the reference block gauge S is known, the phase change C X generated on one side of the measurement surface of the block gauge X is obtained by (Equation 4), and this is the phase correction value. That is, when the dimension is measured by the light wave interference measuring instrument, the actual dimension value can be obtained by adding twice the phase change CX to the optical dimension value. Further, when measured by contact-type light wave interference measurement, the measurement light is irradiated only on one surface of the block gauge, so that the actual dimensions can be obtained by adding the above-described phase change CX. .
このように位相補正値が既知の基準物を用意して、寸法差を基準物との比較測定によって求めているため、非常に高精度に位相補正値を求めることが可能であり、また、非密着の光波干渉測定によって光学的寸法を測定しているため、リンギングの必要がなく、容易に高精度な測定を行うことができる。つまり、本発明は、接触式比較測定と非接触式の光波干渉測定による両測定結果を用いることで、高精度な位相補正値測定を可能としたものである。 In this way, a reference object with a known phase correction value is prepared, and the dimensional difference is obtained by comparison measurement with the reference object. Therefore, it is possible to obtain the phase correction value with very high accuracy. Since the optical dimensions are measured by close-contact optical interference measurement, ringing is not necessary, and high-accuracy measurement can be easily performed. That is, the present invention enables highly accurate phase correction value measurement by using both measurement results of contact-type comparative measurement and non-contact-type light wave interference measurement.
また、上記光学的寸法差を測定する際には、被測定物と基準物とを別々に測定しても、被測定物と基準物を並列に並べて同時に測定を行ってもよい。
また、基準物として光学的定数による反射時の位相変化を起こさない複素屈折率をもつ材質を用いることが好適である。つまり、材質の複素屈折率の虚数部分(吸収係数)が実質的に0(そのときに要求される測定精度で無視し得る程度)であればよい。具体的には、どの程度の測定精度を要求するかで異なってくるが、複素屈折率の虚数部分が0.1以下、さらに好適には0.04以下であれば十分である。
Further, when measuring the optical dimensional difference, the measurement object and the reference object may be measured separately, or the measurement object and the reference object may be arranged in parallel and simultaneously measured.
Further, it is preferable to use a material having a complex refractive index that does not cause a phase change at the time of reflection due to an optical constant as a reference object. That is, it is only necessary that the imaginary part (absorption coefficient) of the complex refractive index of the material is substantially 0 (to the extent that the measurement accuracy required at that time can be ignored). Specifically, it depends on how much measurement accuracy is required, but it is sufficient if the imaginary part of the complex refractive index is 0.1 or less, more preferably 0.04 or less.
さらに、表面粗さとしては測定に用いる光の波長より小さくなるよう加工されたものを基準物として用いることが好適である。つまり、表面粗さも要求される測定精度に応じた基準以下であればよい。具体的には、要求される測定精度によって異なってくるが、粗さ曲線の最大山高さRpで、おおよそ10nm以下、さらに好適には一桁前半nm以下であれば、高精度な測定でも形状補正値を0とみなせる。
これらの条件を満たすものとして、例えば、合成石英、硼珪酸ガラス、等の光学ガラス素材等がある。これらの材質を基準物Sとするとその位相補正値CSは0とみなすことができる。
Furthermore, as the surface roughness, it is preferable to use the surface roughness processed so as to be smaller than the wavelength of light used for measurement. That is, the surface roughness may be equal to or less than the standard corresponding to the required measurement accuracy. Specifically, although it depends on the required measurement accuracy, if the maximum peak height Rp of the roughness curve is approximately 10 nm or less, and more preferably less than the first half of an order of magnitude, the shape correction can be performed even with high accuracy measurement. The value can be regarded as 0.
As a material satisfying these conditions, for example, there are optical glass materials such as synthetic quartz and borosilicate glass. When these materials as a reference object S is the phase correction value C S can be regarded as zero.
以上が本実施形態の位相補正値測定方法の概略である。次に個々の寸法差測定の工程について説明する。図2は接触式比較測定器の一実施形態例の概略構成図である。
図2の接触式比較測定器210は、変位計212、214が測定対象物の両測定面側で支持された構成となっている。つまり、被測定物(位相補正値を測定するブロックゲージ(GB))、及び基準物(基準ブロックゲージ(GB))は、測長軸を鉛直にして支持台218上に置かれる。そして、支持柱216によって支持された変位計212が測定対象物の上部測定面側に設置され、変位計214は支持台218の下に置かれ、測定対象物の下部測定面側に設置される。変位計214の接触子222は、支持台218面にある穴を通して、測定対象物の下部測定面にその先端を接触できるようになっている。また、変位計212の接触子220は測定対象物の上部測定面に接触できるようになっている。2つの変位計212、214からの変位量の情報は比較器224へと送られ、二つの測定対象物の機械的な寸法差を得ることができる。
The above is the outline of the phase correction value measurement method of the present embodiment. Next, individual dimensional difference measurement steps will be described. FIG. 2 is a schematic configuration diagram of an embodiment of a contact-type comparative measuring instrument.
2 has a configuration in which displacement gauges 212 and 214 are supported on both measurement surface sides of the measurement object. That is, the device under test (block gauge (GB) for measuring the phase correction value) and the reference object (reference block gauge (GB)) are placed on the
寸法差の測定は次のようにして行う。まず、基準GBを支持台218面にある穴の上に測長軸を鉛直方向にして設置する。次に変位計212、214の接触子220、222を基準GBの上下の両端面に所定の測定力で接触させ、このときのそれぞれの変位計の値を原点とする。次に位相補正値を測定するGBを支持台218面にある穴の上に、測長軸を鉛直方向にして設置する。そして、変位計212、214の接触子220、222を測定対象のGBの上下両端面に接触させる。変位計212、214の変位量は比較器224に送られ、先にセットした原点からの変位量が計測される。こうして求めた変位計212、214の変位量から、基準GBと測定対象のGBとの機械的寸法差が求められる。また、上記の接触子が測定物に与える測定力は測定物の変形が無視できるように十分小さくする必要がある。測定力の大きさは測定物の材質等を考慮して決めればよい。
The dimensional difference is measured as follows. First, placed by the measurement axis in the vertical direction on the hole in the reference GB support base 21 8 surface. Next, the
このように接触式比較測定器は、接触部の接触子が測定物の表面の直接接触し、かつ接触子の直径が測定物の表面粗さに比べ十分に大きいので、粗さ曲線の最上部を測定位置とする測定が簡単に実現できる。また、一般に比較測定器は測定レンジを狭い範囲に絞ることによって高精度の測定を行うことができる。そこで、測定の再現性だけに限定すれば、リンギングによる光波干渉測定よりも高い再現性が得られるため、容易に高精度な比較測定が可能である。
光波干渉測定装置を所有するような研究室、校正室には、事前に測定光の波長の2分の1以内の精度で予備測定を行うための装置として接触式の測定器が必要である。そのため、特別準備が必要な装置ではない。
図2では変位計を2つ用いる2点測定法による比較測定器を説明したが、変位計を一つしか持たない1点測定法による比較測長器を用いてもよい。
In this way, the contact-type comparative measuring device has a contact portion in direct contact with the surface of the object to be measured and the diameter of the contact is sufficiently larger than the surface roughness of the object to be measured. Measurement with the measurement position can be easily realized. In general, a comparative measuring instrument can perform highly accurate measurement by narrowing the measurement range to a narrow range. Therefore, if only the reproducibility of the measurement is limited, a higher reproducibility can be obtained than the light wave interference measurement by ringing, and therefore, a highly accurate comparative measurement can be easily performed.
In laboratories and calibration rooms that own optical wave interference measuring devices, a contact-type measuring device is required as a device for performing preliminary measurement with accuracy within a half of the wavelength of the measuring light in advance. Therefore, it is not a device that requires special preparation.
In FIG. 2, a comparative measuring instrument using a two-point measuring method using two displacement meters has been described, but a comparative measuring instrument using a one-point measuring method having only one displacement meter may be used.
次に非密着光波干渉測定装置の説明を行う。図3は光波干渉測定装置の一実施形態例の概略構成図である。図3の光波干渉測定装置310は光照射手段312と、照射された光を分割する第1ハーフミラー314(光分割手段)と、所定の距離だけ離間して配置された第2ハーフミラー316(第1干渉手段)及び第3ハーフミラー318(第2干渉手段)と、第2、3ハーフミラー316、318にそれぞれ対応した第1参照鏡320(第1干渉手段)、第2参照鏡322(第2干渉手段)と、第1スクリーン324(第1観察手段)、第2スクリーン326(第2観察手段)と、を備えている。第2ハーフミラー316と第3ハーフミラー318とは、それらを結ぶ測定光の光軸が測定対象物328の測長軸と一致するように配置される。また、第1スクリーン324、第2スクリーン326はそれぞれ第2,3ハーフミラー316、318の後段に設置されており、ここで干渉縞が形成される。光照射手段312は光源330、コリメータレンズ332、反射鏡334等を含み、所定のビーム径及び波長を持つレーザ光を照射する。レーザ光は被測定物328の端面で反射されるものと測定対象物の脇を通り抜けていくものが必要なため、レーザ光のビーム径はある程度の大きさを持つことが必要である。このため測定対象物の断面積より大きいビーム径であることが望ましい。
Next, the non-contact light wave interference measuring apparatus will be described. FIG. 3 is a schematic configuration diagram of an embodiment of the optical interference measurement apparatus. 3 includes a
また、第1参照鏡320と第2ハーフミラー316との組、第2参照鏡322と第3ハーフミラー318との組は測定光と参照光を干渉させる干渉手段として働く。そして、第1ハーフミラー314と第2ハーフミラー316と第3ハーフミラー318とによって、環状の干渉計が構成されている。
光照射手段312から照射されたレーザ光は第1ハーフミラー314により二光束に分割され、それぞれ第2ハーフミラー316、第3ハーフミラー318へと向かう。この第2ハーフミラー316に入射した光は測長軸方向へ反射する光と、第2ハーフミラー316を透過し第1参照鏡320に向かう光とに分割される。第1参照鏡320に向かった光はそこで反射され、第2ハーフミラー316へと戻り、この光が第1参照光となる。また、測長軸方向へ向かった光の一部は測定対象物328の図中左端面328aで反射し第2ハーフミラー316へ戻り、その残りは測定対象物328の脇を通り抜け第3ハーフミラー318へと向かう。
Further, the set of the
The laser light emitted from the light irradiation means 312 is divided into two light fluxes by the
同様に、第1ハーフミラー314で分割された二光束のうち第3ハーフミラー318に入射した光は、測長軸方向へ反射する光と、第3ハーフミラー318を透過し第2参照鏡322に向かう光とに分割される。その第2参照鏡322に向かった光はそこで反射され、第3ハーフミラー318へと戻り、第2参照光となる。また、測長軸方向へ向かった光の一部は測定対象物328の図中右端面328bで反射し第3ハーフミラー318へ戻り、その残りは測定対象物328の脇を通り抜け第2ハーフミラー316へ向かう。
以上のような光路を辿った光は、第2ハーフミラー316において、第1参照鏡320からくる第1参照光と、測定対象物328の脇を通過してきた光とが干渉して第1基準干渉光となり、また測定対象物328の左端面328aで反射された光と前記第1参照光とが干渉し第1測定干渉光となる。これらの干渉光は第1スクリーン324に向かい、そこで干渉縞として観察され、第1基準干渉縞と第1測定干渉縞の位相差が読み取られる。
Similarly, of the two light beams divided by the
In the
同様にして、第3ハーフミラー318では、測定対象物328の脇を通過してきた光と第2参照鏡322からの第2参照光とが干渉して第2基準干渉光となり、測定対象物328の右端面328bで反射された光と、第2参照鏡322からの第2参照光とが干渉して第2測定干渉光となる。また、これらの干渉光は、第2スクリーン326でそれぞれ第2基準干渉縞、第2測定干渉縞として観測され、基準干渉縞と測定干渉縞との位相差が読み取られる。
以上のようにして、第1スクリーン324と第2スクリーン36でそれぞれ観察される第1基準干渉縞と第1測定干渉縞との位相差、第2基準干渉縞と第2測定干渉縞との位相差と、測定対象物の予備値と、をもとにして、測定対象物の光学的寸法LBが測定される。
Similarly, in the third
As described above, the phase difference between the first reference interference fringe and the first measurement interference fringe observed on the
図5(A)は、干渉縞からの位相差の計算の説明図である。図のGBは測定対象物の端面を、図の円で囲んだ部分は測定光束をそれぞれ模式的に示したものである。測定対象物の両脇の点での基準干渉縞(図示せず)から求まる位相ΦA、ΦCの平均値と、測定対象物の端面上の点での測定干渉縞(図示せず)から求まる位相ΦBとの差を計算することで、基準干渉縞と測定干渉縞との位相差を求めることができる。 FIG. 5A is an explanatory diagram of the calculation of the phase difference from the interference fringes. GB in the figure schematically shows the end face of the measurement object, and the portion surrounded by a circle in the figure schematically shows the measurement light beam. From average values of phases Φ A and Φ C obtained from reference interference fringes (not shown) at both sides of the measurement object and measurement interference fringes (not shown) at points on the end face of the measurement object by calculating the difference between the obtained phase [Phi B, it is possible to obtain the phase difference between the reference interference fringe and the measured interference fringe.
上記で求めた干渉縞の位相差からの寸法の算出について、図1を参照して説明する。第1ハーフミラー314から第2ハーフミラー316へ、さらに被測定物328の図中左端面328aで反射し、再び第2ハーフミラー316へと戻る光路の光路長をL1とする。また、第1ハーフミラー314から第3ハーフミラー318に向かい、そこで反射され被測定物328の脇を通り抜け第2ハーフミラー316へ入射するまでの光路長をL2とする。同様に、光路長L3は第1ハーフミラー314、第3ハーフミラー318、被測定物42の右端面328b、第3ハーフミラー318へと進む光路長とする。光路長L4は、第1ハーフミラー314から第2ハーフミラー316へと向かい、そこで反射され被測定物328の脇を通過し第3ハーフミラー318へ入射するまでの光路長とする。
Calculation of the dimension from the phase difference of the interference fringes obtained above will be described with reference to FIG. From the
すると測定対象物の寸法LBは上記の光路長L1,L2,L3,L4を用いて次の式で表される。
LB=1/2{(L4−L3)+(L2−L1)} …(式5)
また、上記の光路長L1、L2、L3、L4を、測定に使用するレーザ光の波長λを用いて表すと以下のようになる。
Li=λ(Ni+εi) (i=1〜4) …(式6)
ここで、Niは光路長Liを波長λで割った時の商の整数部分、εiはその商の端数部分(位相)である。(式6)を(式5)に代入すると
LB=λ/2{(N4−N3)+(N2−N1)+(ε4−ε3)+(ε2−ε1)}
=λ/2{N+(ε4−ε3)+(ε2−ε1)} …(式7)
となる。ただし、N=(N4−N3)+(N2−N1)とした。
上式の(ε2−ε1)が第1スクリーン324で観測される第1基準干渉縞と第1測定干渉縞の位相差であり、また、(ε4−ε3)が第2スクリーン326で観測される第2基準干渉縞と第2測定干渉縞の位相差である。また、波長λは既知であり、測定対象物の予備値と波長λより算出されるNを用いて(式7)より測定対象物の寸法LBが求められる。
Then dimension L B of the measurement object by using the above-mentioned optical path length L 1, L 2, L 3 , L 4 is represented by the following formula.
L B = 1/2 {(L 4 −L 3 ) + (L 2 −L 1 )} (Formula 5)
The above optical path lengths L 1 , L 2 , L 3 , and L 4 are expressed as follows using the wavelength λ of the laser light used for measurement.
L i = λ (N i + ε i ) (i = 1 to 4) (Expression 6)
Here, N i is the integer part of the quotient when the optical path length L i is divided by the wavelength λ, and ε i is the fractional part (phase) of the quotient. Substituting (Equation 6) into (Equation 5), L B = λ / 2 {(N 4 −N 3 ) + (N 2 −N 1 ) + (ε 4 −ε 3 ) + (ε 2 −ε 1 ) }
= Λ / 2 {N + (ε 4 −ε 3 ) + (ε 2 −ε 1 )} (Expression 7)
It becomes. However, N = (N 4 −N 3 ) + (N 2 −N 1 ).
(Ε 2 −ε 1 ) in the above equation is the phase difference between the first reference interference fringe and the first measurement interference fringe observed on the
また、第1スクリーン326の後段には第一読取手段336を設けている。そして、第一読取手段336は、第一スクリーンで観察された第一基準干渉縞と第一測定干渉縞との位相差(ε2−ε1)を読取り、読取結果はコンピュータ340の測定データ記憶部344に記憶される。同様に第2スクリーン326の後段に第2読取手段338を設けられ、第2スクリーン326で観察された第2基準干渉縞と第2測定干渉縞との位相差を読取る。その読取結果は同様に測定データ記憶部344に記憶される。そして、コンピュータ340の演算手段342によって、上記位相差情報から測定対象物の光学的寸法を算出する。また、コンピュータ340は演算情報記憶部346を備え、ブロックゲージ等の測定対象物の予備値の情報や、位相差から寸法を算出するためのプログラム等が予め記憶されている。
A
上記のように構成された非密着光波測定装置を用い、位相補正値が未知の被測定物に対して上記の測定を行いその光学的寸法を測定する。また同様に位相補正値が既知の基準物に対しても同様の測定を行い光学的寸法を測定する。そして、それぞれの測定結果から、被測定物と基準物との光学的寸法差が求められる。
また、光学的寸法を測定する際には、被測定物の光学的寸法と基準物の光学的寸法を順番に別々に測定してもよいし、被測定物と基準物を並列に並べて同時に測定を行ってもよい。つまり、第2ハーフミラー316及び第3ハーフミラー318からの光が、被測定物の両端面、基準物の両端面のどちらにも照射されるように、被測定物と基準物を並列に並べて設置する。また、被測定物と基準物の間にも光が通過するように被測定物と基準物を離して配置する。図5(B)を参照して、並列に並べたときの位相差の計算を説明する。図中の二つの四角は被測定物(図のGB1)の端面及び基準物(GB2)の端面を、円は測定光束の部分を模式的に示している。干渉縞(図示せず)からの位相差の計算は、測定対象が一つの場合(図5(A)の場合)と同様に行えばよい。つまり、GB1の両脇の点での位相ΦA、ΦCの平均値とGB1の端面の点での位相ΦBとの差によって、GB1における基準干渉縞と測定干渉縞との位相差を求める。また、同様にしてGB2の両脇の点での位相ΦC、ΦEの平均値とGB2の端面での位相ΦDとの差によって、GB2における干渉縞の位相差を求める。これらの位相差からGB1、GB2のそれぞれの光学的寸法を求めることができ、それらからGB1とGB2との光学的寸法差が算出される。
Using the non-contact light wave measuring apparatus configured as described above, the above-described measurement is performed on an object whose phase correction value is unknown, and its optical dimension is measured. Similarly, the same measurement is performed on a reference object whose phase correction value is known, and the optical dimension is measured. And from each measurement result, the optical dimensional difference of a to-be-measured object and a reference | standard thing is calculated | required.
Also, when measuring the optical dimensions, the optical dimension of the object to be measured and the optical dimension of the reference object may be measured separately in order, or the object to be measured and the reference object are arranged in parallel and measured simultaneously. May be performed. That is, the object to be measured and the reference object are arranged in parallel so that the light from the
図4は、接触式比較測定の他の実施形態例である。図4には、測定する端面に接触させる接触子412、414と、該接触子412、414の非接触側に設置された鏡面416、418と、上記接触子412、414を固定する支持部420とを備えた治具410が示されている。この治具410を用い、測定対象物の相対向する端面に前記接触子412、414をそれぞれ所定の接触力で接触させて固定する。前記接触子412、414に設けられた鏡面416、418は、その反射面が測定対象物の端面に平行になるよう設置される。また鏡面を構成する材質は位相補正値が既知の材質であるか、または位相補正値がほとんど0の材質のものを用いる。
このような治具410を用い、図3で説明したような非密着光波干渉測定装置を利用して測定対象物の機械的寸法を測定することができる。
FIG. 4 shows another embodiment of the contact type comparative measurement. FIG. 4 shows
Using such a jig 410, the mechanical dimension of the measurement object can be measured using the non-contact optical interference measuring apparatus as described in FIG.
つまり、上記の治具410を位相補正値が未知の被測定物、位相補正値が既知の基準物にそれぞれ取り付ける。治具を取り付けた被測定物、基準物に対して非密着光波干渉装置によって鏡面間の寸法をそれぞれ測定する。つまり、接触子412、414の非接触側に取り付けた鏡面416、418がそれぞれ非密着光波測定装置によって照射される測定光が入射する測定面となる。位相補正値が既知の鏡面を用いているため、鏡面間の距離は正確に求めることができる。よって、鏡面間の寸法の測定結果を用い、接触子に挟まれた測定対象物の機械的寸法が測定される。こうして求めた被測定物の機械的寸法と基準物の機械的寸法との差分をとることによって、機械的寸法差を求めることができる。
That is, the jig 410 is attached to an object to be measured whose phase correction value is unknown and a reference object whose phase correction value is known. The dimension between the mirror surfaces is measured by the non-contact light wave interference device with respect to the object to be measured and the reference object to which the jig is attached. That is, the mirror surfaces 416 and 418 attached to the non-contact side of the
210 接触式比較測定器
310 非接触光波干渉測定装置
410 光波干渉測定用治具
210 Contact-type
Claims (4)
位相変化分CXが未知の被測定物と位相変化分CSが既知の基準物とを用意する工程と、
寸法測定の対象となる測定対象物の相対向する両端面へそれぞれ測定光を照射し、前記測定対象物の一方の端面からの反射光と参照光との干渉と、前記測定対象物の他方の端面からの反射光と参照光との干渉と、に基づいて前記測定対象物の光学的寸法を測定する非密着光波干渉測定装置を用いて、前記被測定物の光学的寸法LIXと前記基準物の光学的寸法LISとの差である光学的寸法差ΔL I (ΔL I =LIX −LIS )を求める工程と、
寸法測定の対象となる測定対象物の端面に接触子を接触させ、該接触子の接触位置に基づいて前記測定対象物の相対向する端面間の機械的寸法を測定する接触式の測長装置を用い、前記被測定物の機械的寸法L X と前記基準物の機械的寸法L S との差である機械的寸法差ΔL(ΔL=L X −L S )を接触式比較測定によって求める工程と、
前記光学的寸法差ΔL I 、前記機械的寸法差ΔL、及び前記基準物の位相変化量CSから前記被測定物の位相変化分CXを次の式、
CX=CS +ΔL/2−ΔL I /2
によって求める工程と、
を含むことを特徴とする位相補正値測定方法。 The light is divided into two coherent light beams, one is the reference light, the other is the measurement light, the measurement light is irradiated to the measurement object, and the measurement object is opposed to each other based on the interference between the reflected light and the reference light In the phase correction value measurement method for obtaining the phase change amount at the time of reflection of the measurement light in the light wave interference measurement for measuring the dimension between the end faces,
Preparing a measurement object whose phase change C X is unknown and a reference object whose phase change C S is known;
Irradiate measurement light to both opposite end surfaces of the measurement object to be dimensioned, interference between the reflected light from one end surface of the measurement object and the reference light, and the other of the measurement object Using a non-contact optical interference measuring apparatus that measures the optical dimension of the measurement object based on the interference between the reflected light from the end surface and the reference light, the optical dimension L IX of the object to be measured and the reference Determining an optical dimension difference ΔL I (ΔL I = L I X −L I S ) which is a difference from the optical dimension L IS of the object;
A contact-type length measuring device that contacts a contact surface with an end surface of a measurement object to be dimensioned and measures a mechanical dimension between opposing end surfaces of the measurement object based on a contact position of the contact device. And obtaining a mechanical dimension difference ΔL (ΔL = L X −L S ) , which is a difference between the mechanical dimension L X of the object to be measured and the mechanical dimension L S of the reference object, by contact-type comparative measurement When,
Said optical dimensional difference [Delta] L I, the mechanical dimensions difference [Delta] L, and the phase change amount C X the following equation of the object to be measured from the phase variation amount C S of the reference object,
C X = C S + ΔL / 2 -ΔL I / 2
The process sought by
A phase correction value measuring method comprising:
前記非密着光波干渉測定装置は、所定のビーム径及び波長を持つ光を照射する光照射手段と、前記光照射手段から照射された光を二光束に分割する光分割手段と、測定対象物の測長軸と一致する光軸を有する第1干渉手段及び第2干渉手段と、前記第1干渉手段及び第2干渉手段の干渉縞をそれぞれ観察する第1観察手段と第2観察手段と、を備え、
前記光分割手段により分割された二光束の一方の光束は、前記第1干渉手段に入射し、該光束の一部は第1参照光となり、残りは前記第1干渉手段により前記測定対象物の測長軸方向に反射され、
前記光分割手段により分割された二光束の他方の光束は、前記第2干渉手段に入射し、該光束の一部は第2参照光となり、残りは前記第2干渉手段により前記測定対象物の測長軸方向に反射され、
前記第1干渉手段から前記測定対象物の測長軸方向へ反射された光は、一部が前記測定対象物の一端において反射され、第1干渉手段へと戻り第1参照光と重ね合わされ第1測定干渉光となり、その残りは前記測定対象物の脇を通過し前記第2干渉手段へ入射し、第2参照光と重ね合わされ第2基準干渉光となり、
前記第2干渉手段から前記測定対象物の測長軸方向へ反射された光は、一部が前記測定対象物の他端面において反射され、第2干渉手段へと戻り第2参照光と重ね合わされ第2測定干渉光となり、その残りは前記測定対象物の脇を通過し前記第1干渉部へ入射し、第1参照光と重ね合わされ第1基準干渉光となり、
前記第1観察部により、前記第1干渉部で形成される第1基準干渉光と第1測定干渉光とをそれぞれ第1基準干渉縞及び第1測定干渉縞として観察し、
前記第2観察部により、前記第2干渉部で形成される第2基準干渉光と第2測定干渉光とをそれぞれ第2基準干渉縞及び第2測定干渉縞として観察し、
前記第1基準干渉縞と前記第1測定干渉縞との位相差、前記第2基準干渉縞と前記第2測定干渉縞との位相差、および前記測定対象物の予備値に基き、前記測定対象物の光学的寸法を測定する装置であって、該装置を用いた測定によって、前記被測定物と前記基準物との光学的寸法差を求めることを特徴とする位相補正値測定方法。 In the phase correction value measuring method according to claim 1,
The non-contact light wave interference measuring apparatus includes a light irradiating unit that irradiates light having a predetermined beam diameter and wavelength, a light dividing unit that divides light emitted from the light irradiating unit into two light beams, and a measurement object. First interference means and second interference means having optical axes that coincide with the measurement axis, and first observation means and second observation means for observing interference fringes of the first interference means and the second interference means, respectively. Prepared,
One of the two light beams divided by the light splitting unit is incident on the first interference unit, a part of the light beam becomes the first reference light, and the rest of the beam is measured by the first interference unit. Reflected in the measuring axis direction,
The other light beam of the two light beams split by the light splitting unit is incident on the second interference unit, a part of the beam becomes second reference light, and the rest of the beam is measured by the second interference unit. Reflected in the measuring axis direction,
A part of the light reflected from the first interference means in the measuring axis direction of the measurement object is reflected at one end of the measurement object, returns to the first interference means, and overlaps with the first reference light. 1 measurement interference light, the remainder passes by the side of the measurement object, enters the second interference means, and is superimposed on the second reference light to become the second reference interference light,
A part of the light reflected from the second interference means in the measuring axis direction of the measurement object is reflected on the other end surface of the measurement object, returns to the second interference means, and is superimposed on the second reference light. It becomes the second measurement interference light, the remainder passes by the side of the measurement object, enters the first interference part, is superposed on the first reference light and becomes the first reference interference light,
The first observation unit observes the first reference interference light and the first measurement interference light formed by the first interference unit as a first reference interference fringe and a first measurement interference fringe, respectively.
The second observation unit observes the second reference interference light and the second measurement interference light formed by the second interference unit as a second reference interference pattern and a second measurement interference pattern, respectively.
The measurement object based on a phase difference between the first reference interference fringe and the first measurement interference fringe, a phase difference between the second reference interference fringe and the second measurement interference fringe, and a preliminary value of the measurement object An apparatus for measuring an optical dimension of an object, wherein a difference in optical dimension between the object to be measured and the reference object is obtained by measurement using the apparatus.
前記接触式比較測定は、測定する端面に接触させる接触子と、該接触子の非接触側に設置された鏡面と、を備えた治具を使用し、測定対象物の相対向する端面に前記接触子をそれぞれ接触させ、前記鏡面を前記測定対象物の端面に平行になるよう設置し、
前記鏡面を取り付けた測定対象物の両端面へそれぞれ測定光を照射し、該測定対象物の一方の端面の鏡面からの反射光と該反射光に可干渉な参照光との干渉光と、前記測定対象物の他方の端面の鏡面からの反射光と該反射光に可干渉な参照光との干渉光と、に基づいて前記鏡面間の光学的寸法を測定し該鏡面間の光学的寸法から測定対象物の機械的寸法を求める測長装置を用い、前記被測定物と前記基準物の機械的寸法差を測定することを特徴とする位相補正値測定方法。 In the phase correction value measuring method according to claim 1 or 2,
The contact-type comparative measurement uses a jig provided with a contactor to be brought into contact with an end surface to be measured and a mirror surface placed on the non-contact side of the contactor, and the contact-type comparative measurement is performed on the opposite end surfaces of the measurement object. Contact each contact, set the mirror surface parallel to the end surface of the measurement object,
Irradiating measurement light to both end surfaces of the measurement object to which the mirror surface is attached, and interference light between reflected light from the mirror surface of one end surface of the measurement object and reference light that is coherent with the reflected light, and The optical dimension between the mirror surfaces is measured based on the reflected light from the mirror surface of the other end surface of the object to be measured and the interference light of the reference light that is coherent with the reflected light, and from the optical dimension between the mirror surfaces. A phase correction value measuring method, comprising: measuring a mechanical dimension difference between the object to be measured and the reference object using a length measuring device that obtains a mechanical dimension of the object to be measured.
前記基準物は光学的定数による位相変化を実質的に起こさない複素屈折率を持つ材質で形成され、該基準物の測定光が照射される面の表面粗さが測定に用いる光の波長より小さいことを特徴とする位相補正値測定方法。 In the phase correction value measuring method according to claims 1 to 3,
The reference object is formed of a material having a complex refractive index that does not substantially cause a phase change due to an optical constant, and the surface roughness of the surface irradiated with the measurement light of the reference object is smaller than the wavelength of light used for measurement. A method of measuring a phase correction value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004020349A JP4326356B2 (en) | 2004-01-28 | 2004-01-28 | Phase correction value measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004020349A JP4326356B2 (en) | 2004-01-28 | 2004-01-28 | Phase correction value measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005214740A JP2005214740A (en) | 2005-08-11 |
JP4326356B2 true JP4326356B2 (en) | 2009-09-02 |
Family
ID=34904293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004020349A Expired - Fee Related JP4326356B2 (en) | 2004-01-28 | 2004-01-28 | Phase correction value measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4326356B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4528028B2 (en) * | 2004-05-25 | 2010-08-18 | 株式会社ミツトヨ | Terminal |
JP4878904B2 (en) * | 2006-04-14 | 2012-02-15 | 株式会社ミツトヨ | Dimensional difference measuring method and apparatus |
JP4947301B2 (en) * | 2007-06-14 | 2012-06-06 | 独立行政法人産業技術総合研究所 | Dimension measuring apparatus and dimension measuring method |
JP2008309652A (en) * | 2007-06-14 | 2008-12-25 | National Institute Of Advanced Industrial & Technology | Dimension measuring device and dimension measuring method |
JP6101035B2 (en) * | 2012-10-11 | 2017-03-22 | 株式会社ミツトヨ | Method for measuring phase correction value, and method for measuring dimension between end faces of end measure |
JP7103086B2 (en) * | 2018-09-05 | 2022-07-20 | 株式会社島津製作所 | Material testing machine |
-
2004
- 2004-01-28 JP JP2004020349A patent/JP4326356B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005214740A (en) | 2005-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106767558A (en) | A kind of decoupled identification method of guide rail basal plane straightness error | |
JP2561861B2 (en) | Combined scale and interferometer | |
JP4326356B2 (en) | Phase correction value measurement method | |
Weingärtner et al. | System of four distance sensors for high-accuracy measurement of topography | |
JP2009014487A (en) | Method and device for measuring refractive index | |
Lipus et al. | Analysis of laser interferometer measurement uncertainty by simulating error sources | |
TWI383466B (en) | An imprinting platform alignment and leveling measurement system | |
Lassila et al. | Wave front and phase correction for double-ended gauge block interferometry | |
JP4203831B2 (en) | Precision measurement method for group refractive index of optical materials | |
Virdee | Non-contacting straightness measurement to nanometre accuracy | |
Sanjid et al. | A review of diameter measurement and a proposal for the improvement thereof | |
JPS60186707A (en) | Method of measuring surface profile | |
Leach | NanoSurf IV: traceable measurement of surface texture at the National Physical Laboratory, UK | |
JP2001165629A (en) | Shape measuring device and shape measuring method | |
JP2001227929A (en) | Angle measuring method and apparatus | |
El Melegy et al. | Recommendations for Acceptance Protocol for Flatness of Surface Plates | |
Weingaertner et al. | Simultaneous distance, slope, curvature, and shape measurement with a multipurpose interferometer | |
Elmelegy | Methods of Union Jack and XY-Grid in Surface Plate Measurements | |
JP6101035B2 (en) | Method for measuring phase correction value, and method for measuring dimension between end faces of end measure | |
Höink et al. | Application of diode lasers in interferometrical length measurements | |
JPH10260024A (en) | Aspherical shape measuring device and method | |
JPH11173825A (en) | Prism squareness-measuring method | |
Pekelsky et al. | Bootstrap calibration of an autocollimator, index table and sine bar ensemble for angle metrology | |
Kozhevatov et al. | A new in situ method for testing the optical thickness of removed transparent elements | |
JP5188140B2 (en) | Dimension measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090526 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090609 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4326356 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150619 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |