JP2000292091A - Ceramic tube for heat exchanger - Google Patents

Ceramic tube for heat exchanger

Info

Publication number
JP2000292091A
JP2000292091A JP11095527A JP9552799A JP2000292091A JP 2000292091 A JP2000292091 A JP 2000292091A JP 11095527 A JP11095527 A JP 11095527A JP 9552799 A JP9552799 A JP 9552799A JP 2000292091 A JP2000292091 A JP 2000292091A
Authority
JP
Japan
Prior art keywords
tube
ceramic
heat
ceramic tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11095527A
Other languages
Japanese (ja)
Other versions
JP3678937B2 (en
Inventor
Shinichi Yamaguchi
新一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP09552799A priority Critical patent/JP3678937B2/en
Publication of JP2000292091A publication Critical patent/JP2000292091A/en
Application granted granted Critical
Publication of JP3678937B2 publication Critical patent/JP3678937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Abstract

PROBLEM TO BE SOLVED: To improve heat resistance, corrosion resistance and heat impact resisting properties by forming a ceramic tube for a heat exchanger adapted to recover a heat from an exhaust gas of a melting furnace or the like of a porous ceramic material exhibiting specific values of thermal conductivity and porosity. SOLUTION: A ceramic tube 1 sealing one side surface of a cylinder is projected toward the interior of a gasifying melting furnace from a furnace wall 2, and a pipe 3 is disposed in the tube 1 to constitute the heat exchange. When a melting furnace is operated, the exterior of the tube 1 is exposed with a high temperature combustion gas, and hence when air is sent from the pipe 3, the air can be heated. In this case, the tube 1 is formed of porous ceramics having thermal conductivity of 10 W/m.K or above and porosity of 15% or below. The tube 1 is formed to have a dense SiO2 film on a surface including a crystal phase of SiC, Si3N4 having characteristics of heat resisting impact temperature of 350 deg.C or above by submerging it under water and a flexual strength of 30 MPa or above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼却炉或いは熱分
解炉の高温廃ガスからの熱を回収するのに適した熱交換
器用セラミックス管(伝熱管)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic tube (heat transfer tube) for a heat exchanger suitable for recovering heat from high-temperature waste gas from an incinerator or a pyrolysis furnace.

【0002】[0002]

【従来の技術】家庭、会社から捨てられたゴミは地方自
治体の焼却炉で燃やされ、その未燃分の焼却灰及び排煙
に含まれる飛灰(含有元素;Si、Al、Fe、Ca、
Mg、K、Mn、Cl、Na、S)には、重金属成分や
ダイオキシン、フラン等の有毒汚染物質が含まれてい
る。
2. Description of the Related Art Garbage discarded from homes and companies is burned in incinerators of local governments, and the incinerated ash and fly ash contained in the smoke (elements contained: Si, Al, Fe, Ca,
Mg, K, Mn, Cl, Na, and S) contain heavy metal components and toxic contaminants such as dioxin and furan.

【0003】これまでは、地方自治体の焼却炉で燃やさ
れた後の未燃分の焼却灰は、最終処分場にそのまま埋め
られていたが、立地条件も厳しくなり、場所の確保が難
しくなっており、加えて、ダイオキシンやフラン等の有
害汚染物質の無害化は法律や条例でかなり厳しく規制さ
れつつあるため、焼却灰、飛灰を回収しこれを再溶融す
ることにより有害汚染物質を無害化する溶融炉の必要性
は年々高まっている。
Until now, unburned incineration ash after being burned in local government incinerators has been buried as it is in the final disposal site. However, location conditions have become severe, making it difficult to secure a place. In addition, detoxification of harmful pollutants such as dioxin and furan is being regulated strictly by laws and regulations, so incineration ash and fly ash are collected and re-melted to detoxify harmful pollutants. The need for melting furnaces is growing year by year.

【0004】焼却炉で燃やされた後の未燃分の焼却灰
は、高温加熱処理でスラグ化すれば、焼却灰の1/2〜
1/4程度にその体積を小さくすることができ、ダイオ
キシン等の有害汚染物質を高熱により分解し無害化でき
る等の理由により、この溶融炉での高温加熱処理法が有
望視されているのである。
[0004] The incinerated ash after being burned in an incinerator, which is turned into slag by high-temperature heat treatment, can be reduced to 1/2 of the incinerated ash.
The high-temperature heat treatment method in this melting furnace is regarded as promising because its volume can be reduced to about 1/4 and harmful pollutants such as dioxin can be decomposed and detoxified by high heat. .

【0005】一方都市ゴミの焼却炉は、都市ゴミを焼却
して廃棄物の減容化をはかることを目的として設置され
てきたが、エネルギーの有効利用の観点から、焼却廃ガ
スのもつ熱エネルギーを最大限に回収するためには、熱
交換器により、高温廃ガスからその廃熱を回収利用する
事が重要である。
On the other hand, incinerators for municipal waste have been installed for the purpose of incinerating municipal waste to reduce the volume of waste. However, from the viewpoint of effective use of energy, the thermal energy of incinerated waste gas is reduced. In order to recover as much as possible, it is important to recover and utilize the waste heat from the high-temperature waste gas using a heat exchanger.

【0006】これまでの熱交換器は、温度500〜60
0℃で使用されていたが、例えば、近年商用化が進めら
れつつある熱分解ガス化溶融炉では、1200〜130
0℃の温度で運転され、廃ガス温度が高い領域でその熱
エネルギーを回収利用するため、1200〜1300℃
で熱交換を行いつつある。
Conventional heat exchangers have a temperature of 500-60.
Although it was used at 0 ° C., for example, in a pyrolysis gasification and melting furnace that is being commercialized in recent years,
It is operated at a temperature of 0 ° C, and its thermal energy is recovered and used in a region where the temperature of the waste gas is high.
Heat exchange is taking place.

【0007】熱分解ガス化溶融炉は、ガス化炉と溶融炉
とが一体化されており、まずガス化炉で500〜600
℃の低温で熱処理し可燃性のガスを発生させ溶融炉へ送
る。溶融炉では、可燃性ガスと一緒に送られてきた飛
灰、チャー、タールと一緒に1300℃程度の高温燃焼
を行い、飛灰のスラグ化を行うと同時に、ダイオキシン
等を完全分解するというものである。この後、高温燃焼
後の廃ガスは廃熱ボイラへと導かれるが、熱交換器は、
溶融炉出口から廃熱ボイラにいたるまでの間に設置され
る場合が多く、回収した熱は、空気予熱や発電用の蒸気
発生器等に有効利用される。
In the pyrolysis gasification and melting furnace, the gasification furnace and the melting furnace are integrated.
Heat-treated at low temperature of ℃ to generate flammable gas and send to melting furnace. In the melting furnace, fly ash, char, and tar sent together with combustible gas are burned at a high temperature of about 1300 ° C to convert fly ash into slag and completely decompose dioxin and the like. It is. After this, the waste gas after high temperature combustion is led to the waste heat boiler, but the heat exchanger is
It is often installed from the melting furnace outlet to the waste heat boiler, and the recovered heat is effectively used for air preheating, a steam generator for power generation, and the like.

【0008】この廃ガス中には、H2 O、CO2 、O2
の他、多量のダストと塩化水素(HCl)ガス等が含ま
れており、塩化水素濃度は1500〜2000ppmに
も至る場合がある。また、ダスト中に多く含まれている
Ca成分や、ガス中のHCl成分は腐食性が高いため、
優れた耐食性が要求される。
The waste gas contains H 2 O, CO 2 , O 2
In addition, a large amount of dust and hydrogen chloride (HCl) gas are contained, and the hydrogen chloride concentration may reach 1500 to 2000 ppm. In addition, the Ca component contained in the dust and the HCl component in the gas are highly corrosive,
Excellent corrosion resistance is required.

【0009】特公昭60−216192号公報では、普
通鋼管体の表面にステンレス鋼又はCr−Ni合金鋼の
被覆層を形成して、上記熱交換器用の伝熱管として使用
している。
In Japanese Patent Publication No. 60-216192, a coating layer of stainless steel or Cr-Ni alloy steel is formed on the surface of a normal steel pipe body, and is used as a heat transfer tube for the heat exchanger.

【0010】さらに、伝熱管内部には低温ガス等を流し
これを加熱して熱回収が行われるが、一般的に伝熱管内
外面には温度差ができる。また、加熱した伝熱管内部に
急激に低温ガスを投入するため、大きな熱衝撃もかか
る。なお通常は、伝熱管内部へ流すガスとして空気を使
う場合が最も多い。
[0010] Furthermore, a low-temperature gas or the like is passed through the inside of the heat transfer tube and heated to recover heat, but a temperature difference generally occurs between the inner and outer surfaces of the heat transfer tube. Further, since a low-temperature gas is rapidly injected into the heated heat transfer tube, a large thermal shock is applied. Normally, air is most often used as the gas flowing into the heat transfer tube.

【0011】[0011]

【発明が解決しようとする課題】ところで、熱分解ガス
化溶融炉では、ゴミ焼却により発生した灰を加熱処理す
る際、灰に含まれるCd、Pd、Zn等の金属元素類や
ダイオキシン、フラン等の有害汚染物質を分解するた
め、1200℃以上で加熱溶融処理を行い無害化する
が、この溶融炉で使用するセラミックス管(伝熱管)
は、焼却灰が溶けてできる溶融塩、溶融スラグの蒸気、
さらにHClガス等にさらされることになる。そのため
これら成分中のSi、Al、Fe、Ca、Na、Clは
セラミックス管を成す材料中に徐々に侵入・浸食し、次
第にセラミックス管をなす材料が変質して強度劣化を起
こすことから、クラックを生じたり、破損が生じたり、
あるいは所要の熱交換が行われなくなって、長期にわた
り使用できるものではなかった。
In the pyrolysis gasification and melting furnace, when ash generated by incineration of refuse is subjected to heat treatment, metal elements such as Cd, Pd and Zn contained in the ash, dioxin, furan and the like are included. In order to decompose harmful pollutants, heat melting treatment is performed at 1200 ° C or higher to render them harmless. Ceramic tubes (heat transfer tubes) used in this melting furnace
Is the molten salt formed by melting the incineration ash, the molten slag steam,
Further, it is exposed to HCl gas or the like. Therefore, Si, Al, Fe, Ca, Na, and Cl in these components gradually penetrate and erode into the material forming the ceramic tube, and the material forming the ceramic tube gradually deteriorates to cause deterioration in strength. Or damage,
Alternatively, the required heat exchange was not performed, and the product could not be used for a long time.

【0012】一般的に熱交換器のセラミックス管は、低
温用として高熱伝導性を有する銅、銅合金等が、また使
用温度が1000℃以下の領域ではハステロイ、インコ
ネル等の金属材料が、それぞれ使用されているが、12
00℃を越え、しかも耐食性が必要となる塩化水素濃度
が高い部分には適した材料がない。
[0012] Generally, ceramic tubes of a heat exchanger are made of copper or copper alloy having high thermal conductivity for low temperature use, and metal materials such as Hastelloy and Inconel are used in a region where the use temperature is 1000 ° C or less. It is 12
There is no suitable material in a portion where the temperature exceeds 00 ° C. and where the corrosion resistance is required and the concentration of hydrogen chloride is high.

【0013】特公昭60−216192号公報では、普
通鋼管体表面にステンレス鋼又はCr−Ni合金鋼の被
覆層を形成し高温腐食を改善したが、1200℃の温度
領域では使用できるものではなかった。
In Japanese Patent Publication No. 60-216192, a stainless steel or Cr-Ni alloy steel coating layer is formed on the surface of a normal steel pipe to improve high-temperature corrosion, but it cannot be used in a temperature range of 1200 ° C. .

【0014】従って、1200℃程度の温度環境で、し
かも腐食性の高いダストやHClガスが1500〜20
00ppm程度存在する使用環境中で、耐食性・耐熱性
に優れたセラミックス材料が種々考案されている。しか
しながら、殆どの材料は緻密質で有るが故に熱衝撃性に
乏しい。一方、耐熱衝撃性向上のためにはポーラス化が
有効であるが、熱伝導率が低下し耐食性も極端に悪化
し、セラミックス管内部の加熱空気が管外へリークして
しまう問題も発生する。この様に耐食性・耐熱性にすぐ
れ耐熱衝撃性を兼ね備えた材料がないため、本発明は、
これら必要特性を兼ね備え長寿命の熱交換器用セラミッ
クス管を提供することを目的とする。
Therefore, in a temperature environment of about 1200.degree.
Various ceramic materials having excellent corrosion resistance and heat resistance have been devised in a use environment in which about 00 ppm exists. However, most materials are poor in thermal shock resistance due to their dense nature. On the other hand, porous formation is effective for improving the thermal shock resistance, but there is a problem that the thermal conductivity is lowered, the corrosion resistance is extremely deteriorated, and the heated air inside the ceramic tube leaks out of the tube. Since there is no material having both excellent corrosion resistance and heat resistance as well as thermal shock resistance, the present invention
An object of the present invention is to provide a ceramic tube for a heat exchanger which has these necessary characteristics and has a long life.

【0015】[0015]

【課題を解決するための手段】上記に鑑みて本発明は、
種々検討の結果、多孔質セラミックスをベース材とし、
耐熱・耐食・耐熱衝撃性をともに向上させ、多孔質材の
欠点であったリークに対しては、表面にSiO2 膜を成
膜させ、連通気孔をこれで塞ぐことにより防止策を見出
し考案されたものである。
In view of the above, the present invention provides
As a result of various studies, using porous ceramics as the base material,
It improved heat resistance, corrosion resistance, and thermal shock resistance, and found a countermeasure against leakage, which was a disadvantage of porous materials, by forming a SiO 2 film on the surface and closing the continuous ventilation holes with this. It is a thing.

【0016】即ち、本発明は、熱伝導率10W/m・K
以上、気孔率が15%以下の多孔質セラミックスで熱交
換器用セラミックス管を構成したことを特徴とする。
That is, the present invention provides a heat conductivity of 10 W / m · K.
As described above, the ceramic tube for a heat exchanger is made of a porous ceramic having a porosity of 15% or less.

【0017】また、上記セラミックスは、曲げ強度が3
0MPa以上、水中投下法での耐熱衝撃温度350℃以
上を有するSiCまたはSi3 4 の結晶相を含む材料
で形成し、表面にSiO2 膜を生成したことを特徴とす
る。
The above ceramics have a bending strength of 3
It is made of a material containing a crystal phase of SiC or Si 3 N 4 having a thermal shock temperature of 350 ° C. or more by a water drop method at 0 MPa or more, and a SiO 2 film is formed on the surface.

【0018】[0018]

【作用】片側を封止したセラミックス管の場合、管内に
低温空気を循環させて加熱し、これを加熱空気として取
り出すが、本発明ではSiCまたはSi3 4 系多孔質
セラミックスの表面を酸化させ、SiO2 膜を多孔質セ
ラミックス管表面に生成させ実質的に二重構造とするこ
とで、管内空気がリークするのを防止している。
[Action] When the ceramic tube sealed on one side, heated by circulating cold air in the tube, but taken out as a heated air, to oxidize the surface of the SiC or Si 3 N 4 based porous ceramics in the present invention By forming an SiO 2 film on the surface of the porous ceramic tube to have a substantially double structure, air in the tube is prevented from leaking.

【0019】SiCまたはSi3 4 系材料は800〜
900℃温度で容易に酸化が始まりSiO2 膜(酸化
膜)を形成する。そして表面に形成したSiO2 膜は、
ポーラスセラミックスの表面近傍の気孔を埋めるのでリ
ーク防止に寄与する。つまり、管内に空気を流して温度
1200℃以上の雰囲気温度で使用する場合では、使用
中にSiCまたはSi3 4 系材料表面は苛酷な酸化を
起こし、管内にはかなりの量のSiO2 を形成する。こ
のSiO2 は反応により体積膨張を起こし、表面に存在
している気孔を閉塞させるためリークは起こりにくくな
る。具体的には、それぞれ、 SiCにおいては、 2SiC+3O2 →2SiO2
2CO Si3 4 においては、Si3 4 +3O2 →3SiO
2 +2N2 の反応式で表され、各々式でSiC及びSi3 4 とS
iO2 の体積比を計算すれば酸化後に体積膨張を起こす
ことが明白である。
The SiC or Si 3 N 4 based material is 800-
Oxidation starts easily at a temperature of 900 ° C. to form a SiO 2 film (oxide film). And the SiO 2 film formed on the surface is
Since the pores near the surface of the porous ceramic are filled, it contributes to preventing leakage. In other words, when air is flowed in the tube and used at an ambient temperature of 1200 ° C. or more, the surface of the SiC or Si 3 N 4 material undergoes severe oxidation during use, and a considerable amount of SiO 2 is contained in the tube. Form. The SiO 2 undergoes volume expansion due to the reaction, and closes pores existing on the surface, so that leakage hardly occurs. Specifically, in SiC, respectively, 2SiC + 3O 2 → 2SiO 2 +
In 2CO Si 3 N 4 , Si 3 N 4 + 3O 2 → 3SiO
2 + 2N 2 , where SiC, Si 3 N 4 and S
Calculating the volume ratio of iO 2 evidently causes volume expansion after oxidation.

【0020】実際の使用状況においては、セラミックス
管内部には空気を導入しており酸化雰囲気となっている
ため、通常は管内面にSiO2 膜が形成され充分な耐リ
ーク性が備わるが、炉内雰囲気ガスが酸素を含む酸化性
ガスであればセラミックス管外面にもSiO2 膜が生成
され、内面SiO2 膜と相まってさらにリークは起こり
にくくなる。また、このSiO2 膜はSiCまたはSi
3 4 の保護層となり、酸化雰囲気中で酸化が進行する
のを抑制する。
In actual use, since air is introduced into the inside of the ceramic tube and the atmosphere is an oxidizing atmosphere, an SiO 2 film is usually formed on the inner surface of the tube to provide sufficient leak resistance. If the internal atmosphere gas is an oxidizing gas containing oxygen, an SiO 2 film is also formed on the outer surface of the ceramic tube, and the leak is less likely to occur in combination with the inner surface SiO 2 film. This SiO 2 film is made of SiC or SiC.
3 becomes N 4 protective layer suppresses the oxidation proceeds in an oxidizing atmosphere.

【0021】SiO2 膜の結晶相としては、クォーツ、
トリジマイト、クリストバライトがあり、いずれも15
00℃以上の耐熱性があり保護膜として充分機能する。
中でもトリジマイトとクリストバライトは高耐熱性を有
しており、これら結晶相に留めるとさらに望ましい。気
孔率が15%以上では管内空気リークが大きくなるため
問題があり、また脱粒も大きく低強度でハンドリング性
が悪く、セラミックス管を本体にセットする際不具合が
発生するので、気孔率は15%以下が好ましい。
As the crystal phase of the SiO 2 film, quartz,
There are tridymite and cristobalite, both of which are 15
It has heat resistance of 00 ° C. or more and functions well as a protective film.
Above all, tridymite and cristobalite have high heat resistance, and it is more desirable to keep these crystal phases. If the porosity is 15% or more, there is a problem because the air leak in the pipe becomes large, and there is also a problem that the particle size is large, the strength is poor and the handling property is poor, and a problem occurs when the ceramic pipe is set in the main body. Is preferred.

【0022】また、平均細孔径は50μm程度以下が目
安となるが、より小さい方がSiO2 が形成し易く、よ
り緻密な膜形成が可能である。強度としては、片持ち支
持で固定される場合があるので、30MPa以上の強度
を有していることが重要である。
The average pore diameter is about 50 μm or less as a guide. However, the smaller the average pore diameter is, the easier SiO 2 can be formed, and a more dense film can be formed. As the strength, since it is sometimes fixed by cantilever support, it is important to have a strength of 30 MPa or more.

【0023】熱交換器用セラミックス管は、高い熱変換
効率が要求されるのため、これに用いる材料は熱伝導率
良好であることが必要で、10W/m・K以上、好まし
くは60W/m・K以上の熱伝導率を有した材料である
ことが要求される。60W/m・K以上を確保するため
にはSiC結晶相を有する材料でセラミックス管を形成
すれば良い。一方、耐熱衝撃性向上のためにはSi3
4 結晶相を有する材料を用いれば良いが、その場合、熱
伝導率が不足するので、SiC結晶相を有する材料と混
合すると良い。
Since the ceramic tube for a heat exchanger is required to have a high heat conversion efficiency, it is necessary that the material used for the tube has a good thermal conductivity, and is 10 W / m · K or more, preferably 60 W / m · K or more. It is required that the material has a thermal conductivity of K or more. In order to secure 60 W / m · K or more, the ceramic tube may be formed of a material having a SiC crystal phase. On the other hand, to improve thermal shock resistance, Si 3 N
A material having a four- crystal phase may be used, but in this case, thermal conductivity is insufficient. Therefore, it is preferable to mix the material with a material having a SiC crystal phase.

【0024】熱交換器用セラミックス管として使用する
場合、腐食成分が多く含まれる廃ガスに曝されるため、
十分な耐食性を備えている必要があり、特にCl、Ca
成分による腐食に対して注意がいるが、SiC結晶相を
主体とする材料でセラミックス管を形成すれば、Cl、
Ca成分の拡散を極力遅くすることができるので、耐食
性の観点からはSiC結晶相単身でセラミックス管を形
成した方が好ましい。Si3 4 結晶相と混合してセラ
ミックス管を形成する場合はSiC結晶相の混合比率を
極力上げたほうが望ましい。
When used as a ceramic tube for a heat exchanger, it is exposed to waste gas containing a large amount of corrosive components.
Must have sufficient corrosion resistance, especially Cl, Ca
Although attention is paid to corrosion due to components, if a ceramic tube is formed of a material mainly composed of a SiC crystal phase, Cl,
Since the diffusion of the Ca component can be made as slow as possible, from the viewpoint of corrosion resistance, it is preferable to form the ceramic tube with a single SiC crystal phase. When the ceramic tube is formed by mixing with the Si 3 N 4 crystal phase, it is desirable to increase the mixing ratio of the SiC crystal phase as much as possible.

【0025】[0025]

【発明の実施の形態】以下本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0026】図1に示す熱交換器は、円筒体の片面を封
止したセラミックス管1を、ガス化溶融炉の炉壁2から
内部に向かって突出するように配置し、このセラミック
ス管1の内側にパイプ3を配置したものである。そし
て、上記溶融炉の稼働時に、セラミックス管1の外部は
1200℃以上の燃焼ガスに曝され、この状態でパイプ
3より250℃程度の空気を送れば、上記セラミックス
管1の内部で550℃程度に加熱されて排出され、熱交
換器として作用する。
In the heat exchanger shown in FIG. 1, a ceramic tube 1 in which one surface of a cylindrical body is sealed is disposed so as to protrude from a furnace wall 2 of a gasification and melting furnace toward the inside. The pipe 3 is arranged inside. During operation of the melting furnace, the outside of the ceramic tube 1 is exposed to a combustion gas of 1200 ° C. or more, and in this state, if air of about 250 ° C. is sent from the pipe 3, about 550 ° C. inside the ceramic tube 1 It is heated and discharged and acts as a heat exchanger.

【0027】そして、上記セラミックス管1を、上述し
たような、熱伝導率10W/m・K以上、気孔率15%
以下、水中投下による耐熱衝撃温度350℃以上、曲げ
強度30MPa以上、SiC、Si3 4 の結晶相のう
ち少なくとも一相以上の結晶相を主成分としたセラミッ
クス材料で形成してある。そのため、耐熱衝撃性良好で
大きな熱衝撃がかかるガス化溶融炉で使用しても、セラ
ミックス管1がクラック等の問題を起こすことはない。
Then, the ceramic tube 1 is made to have a thermal conductivity of 10 W / m · K or more and a porosity of 15% as described above.
Hereinafter, the ceramic material is formed of a ceramic material mainly composed of at least one of SiC and Si 3 N 4 crystal phases, with a thermal shock temperature of 350 ° C. or higher, a bending strength of 30 MPa or higher by dropping in water. Therefore, even if the ceramics tube 1 is used in a gasification and melting furnace having good thermal shock resistance and large thermal shock, the ceramic tube 1 does not cause a problem such as crack.

【0028】また、セラミックス管1の表面には酸化膜
(SiO2 )が存在し、使用中にさらに緻密なSiO2
膜が形成されるため、リークもなく良好に熱交換を行う
ことができる。因みに、SiO2 膜は使用前に事前にコ
ーティングなどの方法により成膜しておいても良い。
Further, an oxide film (SiO 2 ) exists on the surface of the ceramic tube 1, and a denser SiO 2 film is used during use.
Since the film is formed, heat exchange can be favorably performed without leakage. Incidentally, the SiO 2 film may be formed in advance by a method such as coating before use.

【0029】なお、図1では、片面を封止したセラミッ
クス管1を示したが、両端を開放した筒状のセラミック
ス管を用いることもできる。
Although FIG. 1 shows the ceramic tube 1 having one side sealed, a cylindrical ceramic tube having both ends opened may be used.

【0030】また、セラミックス管1を製造する場合
は、上記の結晶相を有するセラミックス原料を用いて、
押出成形などの公知の方法にて所定形状に成形し、それ
ぞれ所定の条件で焼成することによって得ることができ
るし、加圧成形によっても製作可能である。いずれの場
合も、組成や焼成条件を調整することによって、120
0℃における苛酷な条件でも使用できるセラミックス管
が得られる。
When the ceramic tube 1 is manufactured, a ceramic raw material having the above-described crystal phase is used.
It can be obtained by molding into a predetermined shape by a known method such as extrusion molding and baking it under predetermined conditions, or by pressure molding. In any case, by adjusting the composition and the firing conditions, 120
A ceramic tube that can be used under severe conditions at 0 ° C. is obtained.

【0031】また、熱交換の効率を上げるため、セラミ
ックス管1の肉厚は極力薄い方が好ましいが、あまり薄
いと強度不足となる場合があり、また製造上の難易度も
大きくなるため、5mm以上の肉厚が最適であるが、肉
厚を厚くすると熱交換の効率が悪くなるので、15〜2
0mm以下に抑えるの良い。
In order to increase the efficiency of heat exchange, it is preferable that the thickness of the ceramic tube 1 be as thin as possible. However, if the thickness is too small, the strength may be insufficient. The above thickness is optimal, but if the thickness is increased, the efficiency of heat exchange is reduced.
It is better to keep it to 0 mm or less.

【0032】なお、上述した材料以外のものを組み合わ
せて使用することも可能で、例えば、セラミックス熱管
1の表面に、SiC、Si3 4 の一種以上からなる被
覆層を、10〜1000μmの厚みで形成するなどの方
法で、使用前に多重構造のセラミックス管1を形成し、
効果的な耐熱性・耐食性が得られる様にすることもでき
る。例えば、耐熱衝撃性良好なSi3 4 で形成したセ
ラミックス管1の表面に耐食性良好なSiCをコーティ
ングまたは溶射するなどして、多重構造のセラミックス
管1を形成することも勿論可能である。
It is also possible to use a combination of materials other than the above-mentioned materials. For example, a coating layer made of at least one of SiC and Si 3 N 4 is provided on the surface of the ceramic heat pipe 1 with a thickness of 10 to 1000 μm. Before use, a ceramic tube 1 having a multi-layered structure is formed,
Effective heat resistance and corrosion resistance can be obtained. For example, it is of course possible to form the ceramic tube 1 having a multi-layer structure by coating or spraying SiC having good corrosion resistance on the surface of the ceramic tube 1 formed of Si 3 N 4 having good thermal shock resistance.

【0033】また、上記被覆層を形成する場合、セラミ
ックス管1は多孔体であるため、表面の凹凸が激しく、
アンカー効果で被覆層の接合強度を高くする効果もあ
る。
When the above-mentioned coating layer is formed, since the ceramic tube 1 is a porous body, the surface of the ceramic tube 1 has severe irregularities.
The anchor effect also has the effect of increasing the bonding strength of the coating layer.

【0034】[0034]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0035】実施例1 図1に示すセラミックス管1を、Al2 3 、ムライ
ト、Si3 4 、SiCの各結晶相を主成分とするセラ
ミックスで形成した。セラミックス管1寸法は、外径8
0mm、内径72mm、全長1200mmとした。セラ
ミックス管内部には直径40mmのステンレス製パイプ
3をセラミックス管1と同軸上にセットし、300℃空
気をセラミックス管に導入できる構造とし、廃ガス処理
装置の熱回収部模擬装置に空気を加熱して熱交換できる
ように設置して、さらに耐熱試験を実施した。また、熱
交換試験も実施し、セラミックス管出口で500℃以上
の空気が得られた場合をOKと判断した。
Example 1 A ceramic tube 1 shown in FIG. 1 was formed of ceramics mainly composed of each crystal phase of Al 2 O 3 , mullite, Si 3 N 4 and SiC. The dimensions of the ceramic tube 1 is 8
0 mm, an inner diameter of 72 mm, and a total length of 1200 mm. A stainless steel pipe 3 having a diameter of 40 mm is set coaxially with the ceramic pipe 1 inside the ceramic pipe so that air at 300 ° C. can be introduced into the ceramic pipe, and the air is heated by the heat recovery unit simulating apparatus of the waste gas treatment apparatus. It was installed so that heat exchange was possible, and a heat resistance test was further performed. In addition, a heat exchange test was also performed, and a case where air at a temperature of 500 ° C. or more was obtained at the outlet of the ceramic tube was determined to be OK.

【0036】耐熱試験では、図1に示すように炉壁2よ
りセラミックス管1を水平にして取り付け、実際環境を
模擬して、ガス温度1200℃、酸素濃度5%、二酸化
炭素濃度95%の雰囲気ガス中に曝露し、セラミックス
管内部に250℃の空気を導入して一定の熱応力をかけ
試験し、セラミックス管1にクラックが発生したものを
不良(NG)とし、クラック発生のないものをOKとし
た。
In the heat resistance test, as shown in FIG. 1, the ceramic tube 1 was mounted horizontally from the furnace wall 2 to simulate the actual environment, and the atmosphere was a gas temperature of 1200 ° C., an oxygen concentration of 5%, and a carbon dioxide concentration of 95%. Exposure to a gas, air at 250 ° C. was introduced into the ceramic tube to apply a certain thermal stress, and a test was performed. If a crack occurred in the ceramic tube 1, it was determined to be defective (NG). And

【0037】またこれと同時に、各セラミックス管1と
同材質の3×4×45mmのテストピースを作製し、熱
衝撃試験機で耐熱衝撃性の評価を行った。耐熱衝撃性評
価はJISに習って水中投下法を用い、耐えうる温度差
を△T(℃)として表示した。
At the same time, a 3 × 4 × 45 mm test piece of the same material as each ceramic tube 1 was prepared, and the thermal shock resistance was evaluated using a thermal shock tester. The thermal shock resistance was evaluated by using an underwater drop method in accordance with JIS, and the temperature difference that can be endured was indicated as ΔT (° C.).

【0038】熱伝導率はφ10×2mmの試験片を用い
て、レーザーフラッシュ法で測定した。
The thermal conductivity was measured by a laser flash method using a test piece of φ10 × 2 mm.

【0039】この結果を表1に示すように、Al
2 3 、ムライト、ZrO2 は耐熱衝撃性が△T300
℃以下の為クラックが発生しNGとなった。また熱交換
試験においても、熱伝導率7W/m・K以下の為500
℃以上の空気が得られずNGであった。一方、△T35
0℃以上のSiC、Si3 4 材質を用いれば、耐熱衝
撃性に問題のないことが分かった。また、500℃以上
の加熱空気を得る為には、熱伝導率10W/m・K以上
が必要である。
The results are shown in Table 1.
2 O 3 , mullite and ZrO 2 have thermal shock resistance of ΔT300
Since the temperature was lower than ℃, cracks were generated, resulting in NG. Also, in the heat exchange test, since the thermal conductivity was 7 W / m · K or less, 500
Air over ℃ was not obtained and it was NG. On the other hand, $ T35
It has been found that there is no problem in thermal shock resistance when SiC or Si 3 N 4 material of 0 ° C. or higher is used. Further, in order to obtain heated air of 500 ° C. or more, a thermal conductivity of 10 W / m · K or more is required.

【0040】[0040]

【表1】 [Table 1]

【0041】実施例2 次に、実施例1の実験装置で、上記実施例1でAl3
3 、SiC、Si3 4 の3材料を選び、熱交換試験を
行った。
[0041] Example 2 Next, the experimental apparatus of Example 1, Al 3 O in Example 1
3 , a heat exchange test was conducted by selecting three materials, SiC and Si 3 N 4 .

【0042】試験では、雰囲気温度1200℃、酸素濃
度5%として実施し、セラミックス管1の出口で500
℃以上のエアー温度が得られるように設置し調整した。
この時、セラミックス管部のリーク量をチェックし、問
題あった場合を×、問題なしを○として表示した。ま
た、試験後セラミックス管より分析用試験片をサンプリ
ングしセラミックス管表面のSiO2 膜を目視及びXR
Dでチェックした。SiO2 膜生成が確認されたものを
○で、確認できなかったものを×で表示した。
The test was carried out at an atmosphere temperature of 1200 ° C. and an oxygen concentration of 5%.
It was installed and adjusted so that an air temperature of at least ℃ could be obtained.
At this time, the amount of leakage in the ceramic tube was checked, and if there was a problem, it was indicated by x, and no problem was indicated by ○. After the test, a test piece for analysis was sampled from the ceramic tube, and the SiO 2 film on the surface of the ceramic tube was visually observed and XR
Checked with D. When the formation of the SiO 2 film was confirmed, it was indicated by ○, and when it was not confirmed, it was indicated by x.

【0043】この結果を表2に示すように、気孔率15
%以下のSiC、Si3 4 結晶相を主成分としたセラ
ミックス管またはSiC+Si3 4 結晶相を有するセ
ラミックス管では緻密質SiO2 膜の生成が認められ、
リークの問題は起こらないことが分かった。また、Si
2 膜はトリジマイト、クリストバライト、クォーツを
含む結晶相となっていた。
The results are shown in Table 2, and the porosity is 15
% Or less, the formation of a dense SiO 2 film was observed in a ceramic tube having a SiC or Si 3 N 4 crystal phase as a main component or a ceramic tube having a SiC + Si 3 N 4 crystal phase.
It turns out that no leak problem occurs. In addition, Si
The O 2 film had a crystal phase containing tridymite, cristobalite, and quartz.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】以上のように本発明によれば、熱伝導率
10W/m・K以上、気孔率15%以下、曲げ強度30
MPa以上、耐熱衝撃性350℃以上のセラミックス多
孔体で熱交換器用伝熱管を形成したことによって、耐熱
性・耐熱衝撃性耐食性・伝熱性に優れることから長期間
良好に使用することができる。
As described above, according to the present invention, the thermal conductivity is 10 W / m · K or more, the porosity is 15% or less, and the bending strength is 30 or less.
By forming a heat exchanger tube for a heat exchanger with a ceramic porous body having a MPa or higher and a thermal shock resistance of 350 ° C. or higher, the heat transfer tube is excellent in heat resistance, thermal shock resistance, corrosion resistance, and heat transfer, so that it can be favorably used for a long time.

【0046】特に、ゴミ焼却炉・溶融炉や熱分解ガス化
溶融炉のセラミックス管として用いれば、焼却灰成分中
の腐食元素の浸食を防止し、強度劣化や特性変化が非常
に少なく、寿命を長くすることができる。
In particular, when used as a ceramic tube of a refuse incinerator / melting furnace or pyrolysis gasification / melting furnace, erosion of corrosive elements in incineration ash components is prevented, strength deterioration and characteristic change are extremely small, and the life is shortened. Can be longer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器用セラミックス管を示す断面
図である。
FIG. 1 is a sectional view showing a ceramic tube for a heat exchanger of the present invention.

【符号の説明】[Explanation of symbols]

1:セラミックス管 2:炉壁 3:パイプ 1: Ceramic tube 2: Furnace wall 3: Pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】セラミックスからなる管状体であって、熱
伝導率10W/m・K以上、気孔率15%以下の多孔質
セラミックスで形成したことを特徴とする熱交換器用セ
ラミックス管。
1. A ceramic tube for a heat exchanger, wherein the ceramic tube is made of a porous ceramic having a thermal conductivity of 10 W / m · K or more and a porosity of 15% or less.
【請求項2】上記セラミックスが、曲げ強度30MPa
以上、水中投下法での耐熱衝撃温度350℃以上である
ことを特徴とする請求項1記載の熱交換器用セラミック
ス管。
2. The ceramic according to claim 1, wherein said ceramic has a bending strength of 30 MPa.
The ceramic tube for a heat exchanger according to claim 1, wherein the thermal shock temperature in the underwater drop method is 350 ° C or more.
【請求項3】上記セラミックスが少なくともSiCまた
はSi3 4 結晶相のうち1相を含み、表面に緻密なS
iO2 膜を有することを特徴とする請求項1記載の熱交
換器用セラミックス管。
3. The ceramic according to claim 1, wherein said ceramic contains at least one phase of SiC or Si 3 N 4 crystal phase and has a dense S
heat exchanger ceramics tube according to claim 1, characterized in that it has an iO 2 film.
【請求項4】上記緻密なSiO2 膜が、トリジマイト、
クリストバライト、クォーツ結晶相のうち少なくとも1
相以上の結晶相を有することを特徴とする請求項3記載
の熱交換器用セラミックス管。
4. The method according to claim 1, wherein the dense SiO 2 film comprises tridymite,
At least one of cristobalite and quartz crystal phases
The ceramic tube for a heat exchanger according to claim 3, wherein the ceramic tube has a crystalline phase or more.
JP09552799A 1999-04-01 1999-04-01 Ceramic tube for heat exchanger Expired - Fee Related JP3678937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09552799A JP3678937B2 (en) 1999-04-01 1999-04-01 Ceramic tube for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09552799A JP3678937B2 (en) 1999-04-01 1999-04-01 Ceramic tube for heat exchanger

Publications (2)

Publication Number Publication Date
JP2000292091A true JP2000292091A (en) 2000-10-20
JP3678937B2 JP3678937B2 (en) 2005-08-03

Family

ID=14140038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09552799A Expired - Fee Related JP3678937B2 (en) 1999-04-01 1999-04-01 Ceramic tube for heat exchanger

Country Status (1)

Country Link
JP (1) JP3678937B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149621A (en) * 2016-02-25 2017-08-31 東京窯業株式会社 Honeycomb structure and method for producing honeycomb structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103510330A (en) * 2013-09-25 2014-01-15 江苏海大印染机械有限公司 Fabric heater
US10619845B2 (en) * 2016-08-18 2020-04-14 Clearsign Combustion Corporation Cooled ceramic electrode supports

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149621A (en) * 2016-02-25 2017-08-31 東京窯業株式会社 Honeycomb structure and method for producing honeycomb structure

Also Published As

Publication number Publication date
JP3678937B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP3773302B2 (en) Heat recovery system and power generation system
JP3678937B2 (en) Ceramic tube for heat exchanger
JPH09217163A (en) Glassy thermal spray material coated member having self-repairing operation and production thereof
JP4323638B2 (en) High temperature air heater
JPH11311498A (en) Heat transmitting tube for heat exchanger
JP2001048650A (en) Heat transfer tube for heat exchanger
JP2003287395A (en) Ceramic pipe for heat exchanger and method of manufacture
WO2001090645A1 (en) Wastes treating method and device
JP2005272927A (en) High temperature corrosion resistant material
JP2003185123A (en) High temperature dust collecting equipment
JP3004557B2 (en) Operating method of municipal solid waste incineration plant
JP3548446B2 (en) Heat exchanger tubes for heat exchangers
JPH11190593A (en) Furnace material for high-temperature furnace
Klenowicz et al. Waste incinerators: Corrosion problems and construction materials-A review
JP4285755B2 (en) Ferritic heat-resistant alloy for clinker adhesion prevention structure
JP3389424B2 (en) Heat and corrosion resistant protective tube
JPH1054530A (en) Path wall structure of heat exchanger and manufacture of path wall
JP4257858B2 (en) Austenitic heat-resistant alloy for clinker adhesion prevention structure
JP4016311B2 (en) Heat recovery method from hot gas
JPH07243635A (en) Method of incinerating waste
TW442633B (en) Method for disposing waste and apparatus thereof
JP3336213B2 (en) Heat and corrosion resistant protective tube
JP3000183U (en) Improvement of waste incinerator
JP2003161434A (en) Combustion furnace with a furnace wall lined with corrosion resistant heat resistant cast steel
JPH11294737A (en) Heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees