JP2000290735A - Reduction treatment in dry-type refining of raw copper - Google Patents

Reduction treatment in dry-type refining of raw copper

Info

Publication number
JP2000290735A
JP2000290735A JP11101175A JP10117599A JP2000290735A JP 2000290735 A JP2000290735 A JP 2000290735A JP 11101175 A JP11101175 A JP 11101175A JP 10117599 A JP10117599 A JP 10117599A JP 2000290735 A JP2000290735 A JP 2000290735A
Authority
JP
Japan
Prior art keywords
molten metal
reduction
temperature
temp
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11101175A
Other languages
Japanese (ja)
Other versions
JP4217849B2 (en
JP2000290735A5 (en
Inventor
Yuushiro Hirai
祐史郎 平井
Fumio Hashiuchi
文生 橋内
Toshihiro Kametani
敏博 亀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP10117599A priority Critical patent/JP4217849B2/en
Publication of JP2000290735A publication Critical patent/JP2000290735A/en
Publication of JP2000290735A5 publication Critical patent/JP2000290735A5/ja
Application granted granted Critical
Publication of JP4217849B2 publication Critical patent/JP4217849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely and stably raise molten metal temp. at the completion of reduction to not lower than a target lowest molten metal tapping temp. even in the case where the temp. just before starting the reduction is low, by measuring the molten metal temp. just before starting the reduction treatment and adjusting the flowing amount of hydrocarbon and oxygen-containing gas so that the lower the molten metal temp. is, the higher the ratio of the oxygen-containing gas is corresponding to the molten metal temp. SOLUTION: The reduction treatment reduces the oxygen in the molten metal by blowing a hydro-carbon base gas together with an oxygen-containing gas (air) into molten crude copper after oxidizing process. It is desirable that the blowing amount ratio is adjusted so that the molten metal temp. at the completion of the reduction becomes not lower than the target lowest molten metal tapping temp. The target molten metal tapping temp. is a temp. adding the dropping temp. estimated in the interval from a refining furnace to a casting machine to the optimum casting temp. when the molten metal after refining is cast into an anode with the casting machine, and ordinarily, this temp. is usually 1,160-1,180 deg.C and the target lowest molten metal tapping temp. is about 1,160 deg.C. It is unnecessary to heat the molten metal with oil-burner, etc., in the interval of the molten metal tapping after completing the reduction, and thus, the productivity is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は粗銅の乾式精製方
法に関するものであり、特に酸化工程後の還元処理工程
において、還元剤としての炭化水素系ガスを空気などの
酸素含有ガスとともに粗銅溶湯中に吹込んで還元する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dry-refining blister copper, and more particularly, to a reduction treatment step after an oxidation step, in which a hydrocarbon-based gas as a reducing agent is introduced into a blister copper melt together with an oxygen-containing gas such as air. It relates to a method of blowing and reducing.

【0002】[0002]

【従来の技術】一般に銅の製錬工程としては、種々の工
程が実施されているが、その代表的なプロセスとして
は、自溶炉において溶錬してマットをつくり、さらにそ
のマットを転炉で処理して銅含有量が98.5%程度の
粗銅を得、さらにその粗銅を精製して銅含有量99.3
%〜99.5%程度に上昇させてからアノードに鋳込
み、最終的に電解精製するプロセスがある。このような
プロセスのうち、転炉から得られた粗銅を精製する方法
としては、一般には転炉から得られた粗銅溶湯を例えば
円筒横型傾転方式の精製炉内に受入れ、その精製炉内に
おいて乾式精製を行なうことが多い。この場合の乾式精
製の具体的方法としては、粗銅溶湯中に空気を吹込んで
主としてSを酸化除去(脱硫)するための酸化工程と、
転炉から送られた粗銅中に存在していた酸素および酸化
工程において溶湯中に吸収された0.8〜1.0%の酸
素を除去(脱酸)するために還元剤を溶湯中に吹込むこ
とにより0.1〜0.2%まで低減させる還元工程とか
らなるのが通常であり、後者の還元工程における還元剤
としては、最近では石油系液化炭化水素ガス(LPG)
をクラッキング用の空気とともに吹込むことが多い。
2. Description of the Related Art Generally, various processes are carried out as a smelting process of copper. A typical process is smelting in a flash smelting furnace to form a mat, and further converting the mat into a converter. To obtain blister copper having a copper content of about 98.5%, and further purifying the blister copper to obtain a copper content of 99.3%.
% To about 99.5%, and then cast into the anode and finally electrolytically refined. Among such processes, as a method for purifying blister copper obtained from a converter, generally, a blister copper melt obtained from a converter is received, for example, in a cylindrical horizontal tilting type refining furnace, and in the refining furnace. Dry purification is often performed. As a specific method of the dry refining in this case, an oxidizing step for blowing air into the molten crude copper to mainly remove and oxidize S (desulfurize);
A reducing agent is blown into the molten metal to remove (deoxidize) oxygen present in the blister copper sent from the converter and 0.8 to 1.0% of oxygen absorbed in the molten metal in the oxidation step. And a reducing step for reducing the amount to 0.1 to 0.2% by adding a reducing agent in the latter reducing step. Recently, petroleum liquefied hydrocarbon gas (LPG) has been used as a reducing agent in the latter reducing step.
Is often blown with cracking air.

【0003】ところで上述のような精製炉での還元工程
終了後は、溶湯を精製炉から出湯させ、樋などを介して
鋳造機へ溶湯を導き、電解精製用のアノードに鋳込むの
が通常であり、したがって精製炉からの出湯温度は、鋳
造機における鋳造最適温度に精製炉〜鋳造機間での温度
降下量を見込んだ温度(以下これを“目標出湯温度”と
記す)に出来るだけ近付けるか、あるいは鋳造機におけ
る許容最低鋳造温度に精製炉〜鋳造機間での温度降下量
を見込んだ温度(以下これを“目標最低出湯温度”と記
す)以上とする必要がある。ここで、目標出湯温度は、
精製炉から鋳造機までの樋等の長さや構造、あるいは保
温の程度などによって異なるが、一般には1160℃〜
1180℃程度とされることが多く、したがって目標最
低出湯温度は1160℃程度とされるのが通常である。
After the above-described reduction step in the refining furnace, the molten metal is discharged from the refining furnace, guided to a casting machine through a gutter or the like, and cast into an anode for electrolytic refining. Therefore, should the tapping temperature from the refining furnace be as close as possible to the temperature that allows for the temperature drop between the refining furnace and the casting machine (hereinafter referred to as “target tapping temperature”) to the optimal casting temperature in the casting machine? Alternatively, the temperature must be equal to or higher than the allowable minimum casting temperature of the casting machine in view of the amount of temperature drop between the refining furnace and the casting machine (hereinafter referred to as "target minimum tapping temperature"). Here, the target tapping temperature is
Although it varies depending on the length and structure of the gutter from the refining furnace to the casting machine, the degree of heat retention, etc., it is generally 1160 ° C.
In many cases, the temperature is about 1180 ° C., and therefore, the target minimum tapping temperature is usually about 1160 ° C.

【0004】[0004]

【発明が解決しようとする課題】粗銅の精製炉における
還元開始直前の溶湯温度は、炉内の溶湯量や炉の構造、
あるいは転炉からの注湯温度や酸化工程前の保温条件、
酸化工程の処理条件などによって異なるが、一般には1
100〜1130℃程度であることが多い。一方還元工
程においては炭化水素系ガスおよび空気の吹込みに伴な
う発熱反応によって溶湯温度が上昇し、一般にその温度
上昇量は50℃程度とされている。したがって還元終了
時の溶湯温度は1160〜1180℃程度となるのが通
常であるが、実際には、還元開始直前の溶湯温度が11
00℃付近と低い場合には、工程条件のばらつきなどに
よって還元終了時の溶湯温度が目標最低出湯温度の11
60℃を下廻り、1150℃程度となってしまうことも
多い。
The temperature of the molten metal immediately before the start of the reduction in the blister copper refining furnace depends on the amount of the molten metal in the furnace, the structure of the furnace,
Alternatively, the temperature of pouring from the converter and the heat retention conditions before the oxidation process,
Although it depends on the treatment conditions of the oxidation step, etc., it is generally 1
It is often about 100 to 1130 ° C. On the other hand, in the reduction step, the temperature of the molten metal rises due to the exothermic reaction accompanying the blowing of the hydrocarbon gas and air, and the temperature rise is generally about 50 ° C. Therefore, the temperature of the molten metal at the end of the reduction is usually about 1160 to 1180 ° C., but actually, the temperature of the molten metal immediately before the start of the reduction is 11 ° C.
If the temperature is as low as around 00 ° C., the temperature of the molten metal at the end of the reduction may be lower than the target minimum tapping temperature of 11 due to variations in the process conditions.
In many cases, the temperature is lower than 60 ° C. and about 1150 ° C.

【0005】上述のように還元終了時の温度が目標最低
出湯温度よりも低くなった場合、その低温の溶湯をその
まま精製炉から鋳造機へ向けて出湯すれば、樋や鋳造機
において溶湯の粘度が上がったり部分的に凝固が開始さ
れたりして、樋や鋳造機において溶湯の詰まりが生じて
しまうことがある。そこで一般には還元終了時の温度を
測定し、その温度が目標最低出湯温度に達していない場
合は、還元終了後に重油バーナーを燃焼させて溶湯を加
熱し、目標最低出湯温度以上となるまで溶湯温度を上昇
させることが行なわれている。
As described above, when the temperature at the end of the reduction is lower than the target minimum tapping temperature, if the low-temperature molten metal is directly discharged from the refining furnace to the casting machine, the viscosity of the molten metal in the gutter or the casting machine is increased. In some cases, clogging of molten metal occurs in a gutter or a casting machine due to rising or partial solidification of the molten metal. Therefore, generally, the temperature at the end of the reduction is measured, and if the temperature does not reach the target minimum tapping temperature, the fuel oil is heated by burning the heavy oil burner after the reduction is completed, and the temperature of the molten metal is raised to the target minimum tapping temperature or more. Is being raised.

【0006】しかしながら、このように還元終了後に重
油バーナーにより溶湯を加熱する場合、その加熱に長時
間を要し、生産性を阻害する問題がある。例えば350
トンの溶湯を保有した円筒横型傾転方式の精製炉の場
合、重油バーナーによって溶湯温度を10℃上げるため
には、約1時間もの長時間の加熱を要し、したがってそ
の分生産性が阻害されてしまう。ちなみに、粗銅を35
0トン保有した精製炉における操業の1サイクルは、還
元終了後に重油バーナーによる加熱を行なわない場合、
一般に6時間(還元1.5時間+鋳造4.5時間)程度
であり、したがって溶湯温度を10℃上げるための1時
間の加熱は、生産性に重大な影響を与えることが明らか
である。またこのように還元終了後に重油バーナーによ
る長時間の加熱を行なうことは、エネルギーコストの上
昇も招く。さらに、前述のように還元終了後の重油バー
ナーによる加熱によって精製炉での1サイクルの時間が
延長されれば、上流の転炉などでの処理工程にも影響を
与え、生産計画に狂いを与えるばかりでなく、上流の工
程でも溶湯の保温が必要となったりして、一層エネルギ
ーコストの上昇を招いてしまうことがある。
[0006] However, when the molten metal is heated by the heavy oil burner after the completion of the reduction as described above, it takes a long time to heat the molten metal, and there is a problem that productivity is impaired. For example, 350
In the case of a cylindrical horizontal tilting type refining furnace that holds tons of molten metal, it takes about one hour to heat the molten metal to raise the temperature of the molten metal to 10 ° C. by the heavy oil burner, which hinders productivity. Would. By the way, 35 blister copper
One cycle of the operation in the refining furnace with 0 tons, if heating by the heavy oil burner is not performed after the reduction is completed,
Generally, it is about 6 hours (1.5 hours of reduction + 4.5 hours of casting), and it is apparent that heating for 1 hour to raise the temperature of the molten metal by 10 ° C. has a significant effect on productivity. Further, performing the heating for a long time by the heavy oil burner after the completion of the reduction in this manner also increases the energy cost. Furthermore, as described above, if the time of one cycle in the refining furnace is prolonged due to heating by the heavy oil burner after the completion of the reduction, the processing step in the upstream converter and the like is affected, and the production plan is disturbed. Not only that, it is necessary to keep the molten metal warm even in the upstream process, which may further increase the energy cost.

【0007】この発明は以上の事情を背景としてなされ
たもので、還元開始直前の溶湯温度が低い場合でも、還
元終了時の溶湯温度が確実かつ安定して目標最低出湯温
度以上に確保されるようになし、これによって還元終了
後に重油バーナー等による溶湯の加熱を行なうことを不
要となし、ひいては生産性の低下の防止、エネルギーコ
ストの上昇を防止することを目標とするものである。
[0007] The present invention has been made in view of the above circumstances, and even if the molten metal temperature immediately before the start of the reduction is low, the molten metal temperature at the end of the reduction is reliably and stably maintained at a target minimum molten metal discharge temperature. Therefore, it is not necessary to heat the molten metal by a heavy oil burner or the like after the completion of the reduction, and it is an object to prevent a decrease in productivity and an increase in energy cost.

【0008】[0008]

【課題を解決するための手段】本発明者等は、還元処理
のために粗銅溶湯中に吹込む炭化水素系ガスと空気など
の酸素含有ガスとの比率(流量比)が還元処理中におけ
る溶湯温度の上昇度合に影響を与えることに着目してさ
らに研究を重ねた結果、還元開始直前の溶湯温度を測定
するとともに、溶銅中に吹込む炭化水素系ガスと酸素含
有ガスとの流量比を、還元開始直前の溶湯温度に応じて
変化させることにより、還元終了時の溶湯温度を目標最
低出湯温度以上に安定して確保し得ることを見出し、こ
の発明をなすに至った。
SUMMARY OF THE INVENTION The present inventors have found that the ratio (flow rate ratio) of a hydrocarbon-based gas and an oxygen-containing gas such as air blown into a blister copper melt for a reduction process is reduced during the reduction process. As a result of further research focusing on affecting the degree of temperature rise, the molten metal temperature immediately before the start of reduction was measured, and the flow rate ratio between the hydrocarbon-based gas and oxygen-containing gas blown into the molten copper was measured. The present inventors have found that, by changing the temperature of the molten metal immediately before the start of the reduction, the temperature of the molten metal at the end of the reduction can be stably ensured to be equal to or higher than the target minimum temperature of the molten metal.

【0009】具体的には、請求項1の発明は、粗銅を乾
式精製するにあたって、酸化工程後の粗銅溶湯中に炭化
水素系ガスを酸素含有ガスとともに吹込んで溶湯中の酸
素を還元させる還元処理方法において、還元処理開始直
前の溶湯温度を測定し、その溶湯温度に応じて溶湯中に
吹込む炭化水素系ガスと酸素含有ガスとの流量比を、溶
湯温度が低いほど酸素含有ガスの割合が高くなるように
調整することを特徴とするものである。
Specifically, in the invention of claim 1, in the dry refining of blister copper, a reduction treatment for reducing oxygen in the molten copper by blowing a hydrocarbon-based gas together with an oxygen-containing gas into the molten copper after the oxidation step. In the method, the temperature of the molten metal immediately before the start of the reduction treatment is measured, and the flow rate ratio between the hydrocarbon-based gas and the oxygen-containing gas blown into the molten metal according to the molten metal temperature is determined. It is characterized in that it is adjusted to be higher.

【0010】また請求項2の発明は、請求項1に記載の
粗銅の乾式精製における還元処理方法において、還元終
了時の溶湯温度が目標最低出湯温度以上となるように炭
化水素系ガスと酸素含有ガスとの流量比を調整すること
を特徴とするものである。
According to a second aspect of the present invention, there is provided the method for reducing treatment in dry refining of blister copper according to the first aspect, wherein the hydrocarbon-based gas and the oxygen-containing gas are mixed so that the molten metal temperature at the end of the reduction is equal to or higher than a target minimum tapping temperature. It is characterized in that the flow ratio with the gas is adjusted.

【0011】さらに請求項3の発明は、請求項1に記載
の粗銅の乾式精製における還元処理方法において、還元
処理中途において前記流量比を変化させることを特徴と
するものである。
Further, according to a third aspect of the present invention, in the method for reducing a blister copper according to the first aspect of the present invention, the flow rate ratio is changed during the reducing process.

【0012】[0012]

【発明の実施の形態】先ずこの発明の還元処理方法を含
む精製炉での粗銅の精製プロセスの全体について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the entire process of purifying blister copper in a refining furnace including the reduction treatment method of the present invention will be described.

【0013】精製炉、例えば円筒横型傾転方式の精製炉
は、予め重油バーナーによって内部を予熱・保温してお
く。そして前工程の転炉から出湯された粗銅の溶湯をレ
ードル等を介して精製炉内に受入れる。この受入れ時に
おいても重油バーナーによって精製炉内を加熱してお
く。ここで、転炉の2炉分以上の粗銅溶湯を精製炉に順
次受入れても良いことはもちろんである。なお一般に
は、精製炉に対する転炉からの粗銅溶湯の受入れ期間、
あるいは受入れと受入れとの間の待機期間中も、精製炉
内の粗銅溶湯を重油バーナーによって加熱・保温する。
A refining furnace, for example, a refining furnace of a cylindrical horizontal tilting type, is preheated and kept warm by a heavy oil burner in advance. Then, the blister copper melt discharged from the converter in the preceding process is received into the refining furnace via a ladle or the like. Even at the time of receiving, the inside of the refining furnace is heated by the heavy oil burner. Here, it is needless to say that the blister copper melt for two or more converters may be sequentially received in the refining furnace. In addition, generally, the period of receiving the blister copper melt from the converter to the refining furnace,
Alternatively, even during a standby period between receptions, the blister copper melt in the refining furnace is heated and kept warm by the heavy oil burner.

【0014】上述のようにして転炉からの所定量の粗銅
溶湯を精製炉内に受入れた後溶湯中のSを溶湯中から酸
化除去させるための酸化工程を実施する。この酸化工程
は、一般には精製炉内の湯面下の羽口から空気等の気体
酸化剤を吹込んで行なうのが通常であるが、この発明で
は特に限定されるものではない。なお酸化工程に先立っ
ては、溶湯上に浮上している酸化鉄等の酸化物、すなわ
ちいわゆる“からみ”を掻き出す“からみ掻き”を行な
うのが通常である。また“からみ掻き”後の酸化工程中
も、一般には保温のために重油バーナーを燃焼させて、
溶湯を保温するのが通常である。
After the predetermined amount of the molten copper from the converter is received in the refining furnace as described above, an oxidation step for oxidizing and removing S in the molten metal from the molten metal is performed. This oxidation step is generally performed by blowing a gaseous oxidant such as air from a tuyere below the surface of the molten metal in the refining furnace, but is not particularly limited in the present invention. Prior to the oxidizing step, it is usual to perform a "scratching" to scrape an oxide such as iron oxide floating on the molten metal, that is, a so-called "tangling". In addition, during the oxidation process after "scratching", the fuel oil burner is generally burned to keep the temperature warm,
It is usual to keep the melt warm.

【0015】上述のようにして酸化工程を終了した後に
は、還元工程を実施する。この還元工程は、転炉から送
られた粗銅中に存在していた酸素と酸化工程で溶湯中に
吸収された酸素を除去(脱酸)するためのものであり、
精製炉内の溶湯中に炭化水素系ガスを酸素含有ガスとと
もに湯面下の羽口から吹込むことによって行なわれる。
ここで、炭化水素系ガスの代表的なものとしては、ブタ
ン(C4 10)を主成分とする石油系液化炭化水素ガス
(LPG)を気化させてなるものがあり、この発明の方
法でもLPGを用いることが一般的であるが、それに限
られるものではなく、天然ガス等を用いても良いことは
もちろんである。また酸素含有ガスとしては空気(エア
ー)が代表的であるが、その他酸素富化空気や酸素を多
量に含有する任意のガス(もちろん酸素以外の成分が銅
の溶湯に悪影響を与えないことが必要であるが)を用い
ても良い。
After the completion of the oxidation step as described above, a reduction step is performed. This reduction step is for removing (deoxidizing) oxygen present in the blister copper sent from the converter and oxygen absorbed in the molten metal in the oxidation step.
This is carried out by blowing hydrocarbon-based gas into the molten metal in the refining furnace together with the oxygen-containing gas from the tuyere below the surface of the molten metal.
Here, a typical example of the hydrocarbon-based gas is a gas obtained by vaporizing a petroleum-based liquefied hydrocarbon gas (LPG) containing butane (C 4 H 10 ) as a main component. It is general to use LPG, but it is not limited to LPG, and it goes without saying that natural gas or the like may be used. Air is a typical oxygen-containing gas, but other oxygen-enriched air or any gas containing a large amount of oxygen (of course, it is necessary that components other than oxygen do not adversely affect the molten copper). ) May be used.

【0016】この還元工程において、酸素含有ガス(以
下代表例として“空気”と記す)は、炭化水素系ガスを
部分的に燃焼させてCO,H2 ,C(m≦4;n≦
10)に分解させ、脱酸速度を速めるためのものであ
り、空気が溶湯中に吹込まれる際には、その吹込空気中
の酸素が次のように炭化水素系ガス(例えばC4 10
と反応する。
In the reduction step, an oxygen-containing gas (hereinafter, referred to as "air" as a representative example) partially burns a hydrocarbon-based gas to produce CO, H 2 , C m H n (m ≦ 4; n). ≤
10) to accelerate the deoxidation rate. When air is blown into the molten metal, oxygen in the blown air is converted into a hydrocarbon-based gas (for example, C 4 H 10 )
Reacts with.

【0017】C4 10+O2 →CO+H2 +C
(m≦4;n≦10)
C 4 H 10 + O 2 → CO + H 2 + C m H
n (m ≦ 4; n ≦ 10)

【0018】この反応によってCO,H2 ,C
(m≦4;n≦10)が溶湯中の酸素を還元除去するに
寄与する。そしてまた上記反応は部分燃焼反応であっ
て、酸素量が多くなるほど発熱量は大きくなり、還元処
理中における溶湯温度上昇量が大きくなる。そこでこの
発明では、酸化工程終了後の還元工程開始直前(炭化水
素系ガスおよび空気の吹込開始前)の溶湯温度を測定し
ておき、その溶湯温度に応じて炭化水素系ガスと空気と
の吹込流量比を調整する。具体的には、還元開始前の溶
湯温度が低い場合には空気の比率を高くして、還元処理
中の温度上昇量を大きくし、逆に還元開始前の溶湯温度
が高い場合には空気の比率を低くして、還元処理中の温
度上昇量を抑制し、これによって還元処理終了時におけ
る溶湯温度が目標出湯温度に近付くようにコントロール
する。あるいは還元処理終了時における溶湯温度が目標
最低出湯温度以上となるようにコントロールする。なお
この目標出湯温度とは、既に述べたように精製後の溶湯
を鋳造機においてアノードに鋳込む際の最適鋳造温度
に、精製炉から鋳造機までの間に見込まれる温度降下分
を加えた温度であって、通常は1160〜1180℃程
度であり、また目標最低出湯温度とは、前記鋳造機にお
ける許容最低鋳造温度に精製炉から鋳造機までの間に見
込まれる温度降下分を加えた温度、したがって一般には
1160℃程度である。
By this reaction, CO, H 2 , C m H
n (m ≦ 4; n ≦ 10) contributes to the reduction and removal of oxygen in the molten metal. The above reaction is a partial combustion reaction, and the calorific value increases as the amount of oxygen increases, and the amount of rise in the temperature of the molten metal during the reduction treatment increases. Thus, in the present invention, the temperature of the molten metal is measured immediately before the start of the reduction step (before the start of the injection of the hydrocarbon gas and the air) after the end of the oxidation step, and the injection of the hydrocarbon gas and the air is performed in accordance with the temperature of the molten metal. Adjust the flow ratio. Specifically, when the temperature of the molten metal before the start of reduction is low, the ratio of air is increased to increase the amount of temperature rise during the reduction process. Conversely, when the temperature of the molten metal before the start of reduction is high, By lowering the ratio, the amount of temperature rise during the reduction process is suppressed, and thereby, the molten metal temperature at the end of the reduction process is controlled so as to approach the target tapping temperature. Alternatively, control is performed so that the temperature of the molten metal at the end of the reduction process is equal to or higher than the target minimum tapping temperature. The target tapping temperature is, as described above, the temperature obtained by adding the temperature drop expected between the refining furnace and the casting machine to the optimal casting temperature when the molten metal after the casting is cast into the anode in the casting machine. It is usually about 1160 to 1180 ° C., and the target minimum tapping temperature is a temperature obtained by adding a temperature drop expected between a refining furnace and a casting machine to an allowable minimum casting temperature in the casting machine, Therefore, it is generally about 1160 ° C.

【0019】上述のように還元工程において還元開始前
の溶湯温度に応じて溶湯中に吹込む炭化水素系ガスと空
気との比率を調整することにより、還元終了時の溶湯温
度を所定の温度(目標出湯温度、もしくは目標最低出湯
温度以上)に確保することができるため、還元終了後に
改めて重油バーナーなどによって溶湯を加熱することは
不要となる。
As described above, by adjusting the ratio between the hydrocarbon-based gas and air blown into the molten metal in accordance with the temperature of the molten metal before the start of the reduction in the reduction step, the temperature of the molten metal at the end of the reduction can be adjusted to a predetermined temperature ( (The target hot water temperature or the target minimum hot water temperature or more), so that it is not necessary to heat the molten metal by a heavy oil burner or the like after the reduction is completed.

【0020】以上のところにおいて、還元開始前に溶湯
温度を測定するための具体的手段は任意であり、例えば
消耗型熱電対を用いて行なえば良い。また測定された還
元開始前の溶湯温度に応じての炭化水素系ガスと空気と
の流量比の調整は、溶湯温度測定結果に基き、作業者が
手動操作により調整しても、あるいは予め定めたテーブ
ルや関係式に基いて自動的に調整するようにしても良
い。
In the above, specific means for measuring the temperature of the molten metal before the start of the reduction is arbitrary, and may be performed using, for example, a consumable thermocouple. Adjustment of the flow rate ratio between the hydrocarbon-based gas and air in accordance with the measured molten metal temperature before the start of the reduction may be manually adjusted by an operator based on the molten metal temperature measurement result, or may be predetermined. The adjustment may be made automatically based on a table or a relational expression.

【0021】さらに、炭化水素系ガスと空気との吹込み
流量比は、還元工程の全期間中一定としておいても、あ
るいは還元工程の中途において変更しても良い。還元工
程中途において吹込み流量比を変更する場合は、一般に
は還元開始から中途までは溶湯中の酸素の還元を重視し
て炭化水素系ガス/空気の流量比を大きく(したがって
炭化水素系ガスの比率を大きく)し、還元期間の中途か
ら還元終了までは溶湯の温度上昇を重視して前記流量比
を小さく(したがって空気の比率を大きく)することが
好ましい。もちろん場合によっては還元工程中に3段階
以上に流量比を変更しても良い。
Further, the ratio of the flow rate of the hydrocarbon-based gas to the air may be constant during the entire reduction step or may be changed during the reduction step. When changing the blow flow rate ratio in the middle of the reduction step, generally, from the start of the reduction to the middle, the reduction of the oxygen in the molten metal is emphasized and the flow rate ratio of the hydrocarbon-based gas / air is increased (therefore, the hydrocarbon-based gas It is preferable that the flow rate ratio is reduced (the air ratio is increased) from the middle of the reduction period to the end of the reduction with emphasis on the temperature rise of the molten metal. Of course, in some cases, the flow ratio may be changed in three or more stages during the reduction step.

【0022】なお炭化水素系ガスは本来溶湯中の酸素の
還元のために吹込むのであるから、炭化水素系ガスとと
もに吹込む空気の量は、炭化水素系ガスが完全燃焼し
て、CO2 およびH2 Oのみとなってしまわないよう
に、炭化水素系ガスの理論空気燃焼量よりも少なければ
ならない。具体的には吹込み空気量は理論空気燃焼量
の.5〜30%程度の範囲内となるように定めることが
望ましく、したがって還元開始前の溶湯温度に応じて炭
化水素系ガスと空気との吹込み流量比を定めるにあたっ
ても、炭化水素系ガスの成分組成に応じてその理論空気
燃焼量の5〜30%の範囲内の空気吹込量が得られるよ
うに定めることが望ましい。
Since the hydrocarbon-based gas is originally blown to reduce oxygen in the molten metal, the amount of air blown together with the hydrocarbon-based gas depends on the complete combustion of the hydrocarbon-based gas and the CO 2 and CO 2. It must be lower than the theoretical air combustion amount of the hydrocarbon-based gas so that only H 2 O is not generated. Specifically, the blown air amount is the theoretical air combustion amount. It is desirable to set the ratio to be in the range of about 5 to 30%. Therefore, when determining the flow rate of the hydrocarbon-based gas and the air in accordance with the molten metal temperature before the start of the reduction, the components of the hydrocarbon-based gas It is desirable to determine the amount of air blown in the range of 5 to 30% of the theoretical amount of air combustion depending on the composition.

【0023】[0023]

【実施例】円筒横型傾転タイプの400トン精製炉を用
いて、次のようにしてCu純度約98.5%の粗銅35
0トンの精製を行なった。すなわち、予め重油バーナー
の燃焼により保温された精製炉に転炉からの1炉目の粗
銅溶湯180トンを受入れた後、転炉からの2炉目の粗
銅溶湯180トンを受入れた。なお粗銅量は後述するか
らみ掻きおよび還元により350トンとなる。ここで、
1炉目受入れ前の重油バーナーによる保温時の重油燃焼
量は150l/hr、1炉目の受入れ時における重油バ
ーナー加熱の重油燃焼量は200l/hr、その後の1
炉目〜2炉目間および2炉目受入れ時における重油バー
ナー加熱の重油燃焼量は300l/hrとした。前述の
ようにして転炉からの2炉目の粗銅溶湯を受入れた後、
からみ掻きを行なってから、酸化処理工程として湯面下
の羽口から空気を800Nm3/hrの流量で0.5〜
2.0時間吹込んだ。酸化工程終了後、還元工程とし
て、ブタンを主成分とする石油系液化炭化水素ガスを気
化させてなるガス(LPG)と空気を湯面下の羽口から
吹込んだ。ここで、酸化工程終了直後すなわち還元開始
前に、溶湯温度を消耗型熱電対により測定し、その溶湯
温度に応じて表1に示すようにLPG吹込流量と空気吹
込流量とを定めて、還元工程での吹込みを1.5時間行
なった。そして還元工程終了時の溶湯温度を消耗型熱電
対によって測定した。なお表1において、還元開始前溶
湯温度1125℃〜1115℃の各例では、中途でLP
G流量を変えて、LPG/空気の流量比を変更した。一
方還元開始前溶湯温度1110℃〜1100℃の各例で
は、LPG流量は一定とし、したがってLPG/空気の
流量比を一定とした。
EXAMPLE A blister copper material having a Cu purity of about 98.5% was prepared in the following manner using a 400-ton cylindrical horizontal tilting type refining furnace.
Purification of 0 tons was performed. That is, after receiving 180 tons of the blister copper melt from the first converter from the converter in the refining furnace which was previously kept warm by the combustion of the heavy oil burner, 180 tons of the second blister copper melt from the converter was received. The amount of blister becomes 350 tons by scraping and reduction described later. here,
The amount of fuel oil burned by the fuel oil burner before receiving the first furnace at the time of heat insulation was 150 l / hr, the amount of fuel oil burned by heating the fuel oil burner at the time of receiving the first furnace was 200 l / hr, and 1
The fuel oil burning amount of the heavy oil burner heating between the furnace and the second furnace and at the time of receiving the second furnace was 300 l / hr. After receiving the second blister copper melt from the converter as described above,
After the entanglement, air is supplied from the tuyere below the surface of the bath at a flow rate of 800 Nm 3 / hr for 0.5 to
I blew it for 2.0 hours. After the oxidation step, as a reduction step, a gas (LPG) obtained by vaporizing a petroleum-based liquefied hydrocarbon gas containing butane as a main component and air were blown from a tuyere below the surface of the molten metal. Immediately after the end of the oxidation step, that is, before the start of the reduction, the temperature of the molten metal is measured with a consumable thermocouple, and the LPG injection flow rate and the air injection flow rate are determined as shown in Table 1 according to the molten metal temperature. Was carried out for 1.5 hours. Then, the temperature of the molten metal at the end of the reduction step was measured by a consumable thermocouple. In Table 1, in each example of the molten metal temperature before the start of the reduction of 1125 ° C. to 1115 ° C., LP
The G flow rate was changed to change the LPG / air flow ratio. On the other hand, in each of the examples in which the temperature of the molten metal before the start of reduction was 1110 ° C. to 1100 ° C., the LPG flow rate was constant, and thus the LPG / air flow rate ratio was constant.

【0024】[0024]

【表1】 [Table 1]

【0025】以上のような精製炉での操業を、合計78
チャージ行ない、還元開始直前の溶湯温度と還元終了時
の溶湯温度との関係を調べたところ、図1に示す結果が
得られた。また還元工程中の溶湯温度変化量([還元終
了後の溶湯温度]−[還元終了時の溶湯温度])を、還
元開始前の溶湯温度に対応して図2に示す。
The operation in the above-described refining furnace is carried out for a total of 78
When the relationship between the molten metal temperature immediately before the start of the reduction and the molten metal temperature at the end of the reduction was examined, the result shown in FIG. 1 was obtained. FIG. 2 shows the amount of change in the temperature of the molten metal during the reduction step ([the temperature of the molten metal after the end of the reduction] − [the temperature of the molten metal at the end of the reduction]), corresponding to the temperature of the molten metal before the start of the reduction.

【0026】図1、図2から明らかなように、還元開始
直前の溶湯温度が低いほど、還元期間中における溶湯温
度の上昇量は大きくなり、還元開始前溶湯温度が110
0℃と低い場合でも、目標最低出湯温度(一般には11
60℃)以上を安定して確保できたことが明らかであ
る。またいずれのチャージの場合も、還元終了後、直ち
に出湯してアノード鋳造機へ導き、鋳造を行なったが、
出湯後の樋等における溶湯の詰まりは生じないことが確
認された。
As is clear from FIGS. 1 and 2, the lower the temperature of the molten metal immediately before the start of the reduction, the greater the amount of rise in the temperature of the molten metal during the reduction period.
Even when the temperature is as low as 0 ° C, the target minimum tapping temperature (generally
It is clear that the temperature of 60 ° C. or more was stably secured. In addition, in the case of any charge, after the reduction was completed, the molten metal was immediately poured out and led to the anode casting machine, where casting was performed.
It was confirmed that clogging of the molten metal in the gutter or the like after tapping did not occur.

【0027】なお参考のため、この発明の方法のような
還元開始前溶湯温度に応じた還元工程における炭化水素
系ガスと空気との流量比の調整を行なわない従来の一般
的な方法における還元開始前溶湯温度と還元終了時溶湯
温度との関係を図1中に2点鎖線で示す。この場合、還
元期間中における溶湯温度の上昇量は、還元開始前の溶
湯温度にかかわらず平均して50℃程度であり、そのた
め還元開始前溶湯温度が1100℃と低い場合には、還
元終了時の温度が平均で1150℃となり、諸条件のば
らつきなどによって1160℃を下廻ってしまうことが
あることが明らかである。
For reference, the reduction start in the conventional general method without adjusting the flow ratio of the hydrocarbon-based gas and air in the reduction step according to the molten metal temperature before the reduction is started as in the method of the present invention. The relationship between the temperature of the pre-molten metal and the temperature of the molten metal at the end of the reduction is shown by a two-dot chain line in FIG. In this case, the amount of increase in the temperature of the molten metal during the reduction period is about 50 ° C. on average irrespective of the temperature of the molten metal before the start of the reduction. Therefore, when the temperature of the molten metal before the start of the reduction is as low as 1100 ° C., Is 1150 ° C. on average, and it is clear that the temperature may be lower than 1160 ° C. due to variations in various conditions.

【0028】[0028]

【発明の効果】この発明の粗銅の乾式精製における還元
処理方法によれば、還元開始直前の溶湯温度を測定し
て、その溶湯温度に応じて溶湯中に吹込む炭化水素系ガ
スと空気等の酸素含有ガスとの流量比を、溶湯温度が低
いほど酸素含有ガスの割合が大きくなるように調整する
こととしたため、還元開始直前の溶湯温度が低いほど還
元処理中における溶湯温度の上昇量が大きくなり、その
ため初期の溶湯温度が低い場合でも還元終了時の温度と
して、後工程のアノード鋳造に必要な許容最低鋳造温度
にさらに精製炉から鋳造機までの温度降下分を見込んだ
目標最低出湯温度以上の温度を常に安定して確保するこ
とができ、そのためたとえ初期温度が低い場合でも、還
元終了後出湯までの間に重油バーナー等により溶湯を加
熱して溶湯温度を上昇させる必要がなくなり、その結果
生産性を従来よりも大幅に向上させることができるとと
もに、エネルギーコストの削減を図ることができ、さら
には上流の各工程に悪影響を及ぼすこともない等、量産
規模での実操業において優れた効果を奏することができ
る。
According to the reduction treatment method of the present invention for dry refining of crude copper, the temperature of the molten metal immediately before the start of the reduction is measured, and the hydrocarbon-based gas and air, etc., blown into the molten metal in accordance with the temperature of the molten metal are measured. Since the flow rate ratio with the oxygen-containing gas was adjusted so that the lower the temperature of the molten metal, the higher the ratio of the oxygen-containing gas, the lower the temperature of the molten metal immediately before the start of reduction, the greater the rise in the temperature of the molten metal during the reduction process. Therefore, even if the initial molten metal temperature is low, the temperature at the end of the reduction is not less than the target minimum tapping temperature that allows for the temperature drop from the refining furnace to the casting machine in addition to the allowable minimum casting temperature required for anode casting in the subsequent process. Therefore, even if the initial temperature is low, the molten metal is heated by a heavy oil burner, etc., between the end of the reduction and the tapping, so that the temperature of the molten metal can be raised even if the initial temperature is low. This eliminates the necessity to perform the process, and as a result, the productivity can be greatly improved as compared with the conventional case, the energy cost can be reduced, and further, there is no adverse effect on each upstream process. In the actual operation, excellent effects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例における還元開始直前の溶湯
温度と還元終了時の溶湯温度との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the temperature of a molten metal immediately before the start of reduction and the temperature of the molten metal at the end of reduction in an embodiment of the present invention.

【図2】この発明の実施例における還元処理期間中の溶
湯温度上昇量を、還元開始直前の溶湯温度に対応して示
すグラフである。
FIG. 2 is a graph showing an amount of rise in molten metal temperature during a reduction process according to an embodiment of the present invention, corresponding to a molten metal temperature immediately before the start of reduction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 亀谷 敏博 大分県北海部郡佐賀関町大字関3の3382番 地 日鉱金属株式会社佐賀関製錬所内 Fターム(参考) 4K001 AA09 BA23 DA10 GA19 HA11 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshihiro Kameya 3382 No.3, Seki, Saganoseki-cho, North Sea District County, Oita Prefecture F-term in the Saganoseki Smelter & Refinery, Nippon Mining & Metals Co., Ltd. 4K001 AA09 BA23 DA10 GA19 HA11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粗銅を乾式精製するにあたって、酸化工
程後の粗銅溶湯中に炭化水素系ガスを酸素含有ガスとと
もに吹込んで溶湯中の酸素を還元させる還元処理方法に
おいて、 還元処理開始直前の溶湯温度を測定し、その溶湯温度に
応じて溶湯中に吹込む炭化水素系ガスと酸素含有ガスと
の流量比を、溶湯温度が低いほど酸素含有ガスの割合が
高くなるように調整することを特徴とする、粗銅の乾式
精製における還元処理方法。
In a method of dry-refining blister copper, a hydrocarbon-based gas is blown together with an oxygen-containing gas into a molten copper after the oxidation step to reduce oxygen in the molten metal. And the flow rate ratio between the hydrocarbon-based gas and the oxygen-containing gas blown into the melt according to the temperature of the melt is adjusted so that the lower the temperature of the melt, the higher the proportion of the oxygen-containing gas. A reduction treatment in dry purification of blister copper.
【請求項2】 請求項1に記載の粗銅の乾式精製におけ
る還元処理方法において、 還元終了時の溶湯温度が目標最低出湯温度以上となるよ
うに炭化水素系ガスと酸素含有ガスとの流量比を調整す
る、粗銅の乾式精製における還元処理方法。
2. A reduction treatment method in dry refining of blister copper according to claim 1, wherein the flow rate ratio between the hydrocarbon-based gas and the oxygen-containing gas is adjusted so that the molten metal temperature at the end of the reduction is equal to or higher than a target minimum tapping temperature. The method of reduction treatment in the dry purification of blister copper to be adjusted.
【請求項3】 請求項1に記載の粗銅の乾式精製におけ
る還元処理方法において、 還元処理中途において前記流量比を変化させる、粗銅の
乾式精製における還元処理方法。
3. The reduction treatment method in dry refining of blister copper according to claim 1, wherein the flow rate ratio is changed during the reduction treatment.
JP10117599A 1999-04-08 1999-04-08 Reduction treatment method in dry purification of crude copper Expired - Lifetime JP4217849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10117599A JP4217849B2 (en) 1999-04-08 1999-04-08 Reduction treatment method in dry purification of crude copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10117599A JP4217849B2 (en) 1999-04-08 1999-04-08 Reduction treatment method in dry purification of crude copper

Publications (3)

Publication Number Publication Date
JP2000290735A true JP2000290735A (en) 2000-10-17
JP2000290735A5 JP2000290735A5 (en) 2006-05-18
JP4217849B2 JP4217849B2 (en) 2009-02-04

Family

ID=14293678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10117599A Expired - Lifetime JP4217849B2 (en) 1999-04-08 1999-04-08 Reduction treatment method in dry purification of crude copper

Country Status (1)

Country Link
JP (1) JP4217849B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615877B1 (en) * 2004-02-27 2006-08-25 닛코 킨조쿠 가부시키가이샤 Method for operating refining furnace
KR101620724B1 (en) 2014-10-20 2016-05-13 주식회사 포스코 Method for collecting hydrogen gas produced from hydrometallurgical process and method for collecting valuable metal from ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615877B1 (en) * 2004-02-27 2006-08-25 닛코 킨조쿠 가부시키가이샤 Method for operating refining furnace
CN1300351C (en) * 2004-02-27 2007-02-14 日矿金属株式会社 Operation method of finer
KR101620724B1 (en) 2014-10-20 2016-05-13 주식회사 포스코 Method for collecting hydrogen gas produced from hydrometallurgical process and method for collecting valuable metal from ore

Also Published As

Publication number Publication date
JP4217849B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP5413043B2 (en) Converter steelmaking method using a large amount of iron scrap
CN108950129A (en) A kind of production method controlling Medium Carbon Steel Containing Manganese continuous cast round billets Large Inclusions
CN110453032A (en) A method of utilizing the high ultralow manganese steel of manganese molten iron smelting
EP0134857A1 (en) Method for the fabrication of special steels in metallurgical vessels
SU1487819A3 (en) Method of converting copper matte
JP5549198B2 (en) Steel making method using steel scrap
JP2000290735A (en) Reduction treatment in dry-type refining of raw copper
KR850000927B1 (en) Method for preventing slopping during subsurface pneumatic refining steel
JP6969707B2 (en) Method of casting molten steel, method of manufacturing continuously cast slabs, and method of manufacturing steel materials for bearings.
JP4295134B2 (en) Refining furnace operation method
CN112481439A (en) Smelting process of converter low-phosphorus steel
CN102140567A (en) Argon-oxygen refining method for low-carbon ferrochromium alloy
JPH07316618A (en) Method for pre-refining smelting reduction molten iron
JPS6354045B2 (en)
JPS61235506A (en) Heating up method for molten steel in ladle
CN115612910B (en) Nitrogen-controlled stainless steel smelting ingot casting method for ultra-supercritical steam turbine rotor
JPH02179812A (en) Method for refining stainless steel
JP4759832B2 (en) Hot phosphorus dephosphorization method
JPS6027726B2 (en) Method for refining molten steel using a ladle
SU1544813A1 (en) Method of melting low- and medium-carbon steel in double-bath steel-melting unit
JP2553204B2 (en) Tuyere protection method for bottom-blown and top-blown converters
JP3902446B2 (en) Converter blowing method
SU985052A1 (en) Ferronickel production method
SU652222A1 (en) Method of treating rough ferronickel
SU1059005A1 (en) Method for smelting steel with scrap preheating in converter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term