JP4295134B2 - Refining furnace operation method - Google Patents

Refining furnace operation method Download PDF

Info

Publication number
JP4295134B2
JP4295134B2 JP2004052750A JP2004052750A JP4295134B2 JP 4295134 B2 JP4295134 B2 JP 4295134B2 JP 2004052750 A JP2004052750 A JP 2004052750A JP 2004052750 A JP2004052750 A JP 2004052750A JP 4295134 B2 JP4295134 B2 JP 4295134B2
Authority
JP
Japan
Prior art keywords
reduction
air
molten metal
refining furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004052750A
Other languages
Japanese (ja)
Other versions
JP2005240123A (en
Inventor
裕之 佐久間
文生 橋内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2004052750A priority Critical patent/JP4295134B2/en
Priority to KR1020040089278A priority patent/KR100615877B1/en
Priority to CNB2004101003075A priority patent/CN1300351C/en
Publication of JP2005240123A publication Critical patent/JP2005240123A/en
Application granted granted Critical
Publication of JP4295134B2 publication Critical patent/JP4295134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0052Reduction smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/006Pyrometallurgy working up of molten copper, e.g. refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0095Process control or regulation methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銅精鉱及び銅原料を自溶炉、転炉、及び精製炉を用いて製錬して、銅電解精製に適した精製粗銅を得る銅精錬の操業方法に関する。特に、精製炉での酸化工程後の還元処理工程において、還元剤としての炭化水素系ガスを、空気などの酸素含有ガスと共に粗銅溶湯中に吹込んで還元する方法に関するものである。   The present invention relates to a copper refining operation method for obtaining refined crude copper suitable for copper electrolytic refining by refining copper concentrate and a copper raw material using a flash smelting furnace, a converter, and a refining furnace. In particular, the present invention relates to a method of reducing a hydrocarbon gas as a reducing agent by blowing it into a molten copper together with an oxygen-containing gas such as air in a reduction treatment step after an oxidation step in a refining furnace.

一般に、銅の製錬工程としては種々の工程が実施されているが、その代表的なプロセスとしては自溶炉においてマットを作り、そのマットを転炉で処理して銅含有量98.5mass%程度の粗銅を得て、さらにその粗銅を精製して銅含有量を99.3 mass %〜99.5 mass %程度まで上昇させてからアノードを鋳造し、最終的に電解精製するプロセスがある。   In general, various processes are carried out as a copper smelting process, but a typical process is to make a mat in a flash smelting furnace and treat the mat in a converter to have a copper content of about 98.5 mass%. There is a process in which the crude copper is obtained, the crude copper is further refined to increase the copper content to about 99.3 mass% to 99.5 mass%, the anode is cast, and finally electrolytic purification is performed.

この場合、粗銅の乾式精製の具体的方法としては、粗銅溶湯中に空気を吹込んで主としてSを酸化除去するための酸化工程と、転炉からの粗銅中に溶解しており、酸化処理工程中にも溶解する0.6〜1.0 mass %の酸素を除去(脱酸)するために、還元剤を溶湯中に吹込むことにより酸素を0.01〜0.1 mass %まで低減させる還元工程とからなるのが通常である。後者の還元工程における還元剤としては、最近では石油系液化炭化水素ガス(LPG)をクラッキング用の空気と共に吹込むことが多い。   In this case, as a specific method for dry refining of crude copper, there are an oxidation step for mainly oxidizing and removing S by blowing air into the molten copper, and it is dissolved in the crude copper from the converter, during the oxidation treatment step In order to remove (deoxidize) 0.6 to 1.0 mass% of oxygen that is also dissolved, it usually consists of a reduction step in which oxygen is reduced to 0.01 to 0.1 mass% by blowing a reducing agent into the molten metal. is there. As a reducing agent in the latter reduction process, petroleum-based liquefied hydrocarbon gas (LPG) is recently often blown together with cracking air.

上述のような精製炉での還元工程終了後は、溶湯を精製炉から出湯させ、樋などを介して鋳造機へ溶湯を導き、電解精製用のアノードに鋳込むのが通常である。従って精製炉からの出湯温度は、鋳造最適温度に精製炉〜鋳造機間での温度降下を見込んだ温度(以下これを“目標出湯温度”と記す)にできるだけ近づけるか、あるいは鋳造機における許容最低鋳造温度に精製炉〜鋳造機間での温度降下量を見込んだ温度(これを“目標最低出湯温度”と記す)以上とする必要がある。   After the reduction process in the refining furnace as described above, the molten metal is usually discharged from the refining furnace, and the molten metal is led to a casting machine through a trough or the like and cast into an anode for electrolytic purification. Therefore, the tapping temperature from the refining furnace should be as close as possible to the temperature that allows for the temperature drop between the refining furnace and the casting machine (hereinafter referred to as the “target tapping temperature”) to the optimum casting temperature, or the minimum allowable temperature in the casting machine. It is necessary to set the casting temperature to be equal to or higher than the temperature expected from the amount of temperature drop between the refining furnace and the casting machine (this is described as “target minimum hot water temperature”).

目標出湯温度は、精製炉から鋳造機までの樋等の長さや構造、あるいは出湯の程度などによって異なるが、一般には1160〜1200℃程度とされることが多く、従って目標最低出湯温度は1160℃以上とされるのが通常である。   The target tapping temperature varies depending on the length and structure of the soot from the refining furnace to the casting machine, or the level of tapping, but is generally set to about 1160 to 1200 ° C. Therefore, the target minimum tapping temperature is 1160 ° C. The above is the usual case.

一方、精製炉における粗銅の還元開始直前の溶湯温度は、炉内の溶湯量や炉の構造、あるいは転炉からの注湯温度や酸化工程前の保温条件、酸化工程の処理条件などによって異なるが、一般には1100〜1130℃程度であることが多い。したがって、目標最低出湯温度を1160℃とした場合、還元工程では30〜60℃の昇温が必要であり、この必要昇温量は操業ごとに異なるのが通常である。   On the other hand, the molten metal temperature immediately before the start of reduction of the crude copper in the refining furnace varies depending on the amount of molten metal in the furnace, the structure of the furnace, the pouring temperature from the converter, the heat insulation conditions before the oxidation process, the treatment conditions of the oxidation process, etc. Generally, it is often about 1100 to 1130 ° C. Therefore, when the target minimum hot water temperature is set to 1160 ° C., a temperature increase of 30 to 60 ° C. is required in the reduction step, and this required temperature increase amount is usually different for each operation.

以上のように、精製炉における還元工程の目的は2つあり、1つは粗銅の脱酸であり、1つは後工程である鋳造工程の為の溶湯の加熱である。具体的には還元工程で、前者では溶湯中の酸素濃度を0.01〜0.1 mass %まで低減し、後者では、溶湯温度を1160℃以上に加熱することである。   As described above, there are two purposes for the reduction process in the refining furnace, one is deoxidation of crude copper, and one is heating the molten metal for the casting process, which is a subsequent process. Specifically, in the reduction process, in the former, the oxygen concentration in the molten metal is reduced to 0.01 to 0.1 mass%, and in the latter, the molten metal temperature is heated to 1160 ° C. or higher.

上記のような還元工程の目的を達成する手段としては、特開2000-290735号(出願人:日鉱金属株式会社、「粗銅の乾式精製における還元処理方法」)の開示(特許文献1)があり、還元開始前の溶湯温度を測定し、還元剤(炭酸水素系ガス)と空気等の酸素含有ガスとの流量比を、溶湯温度が低いほど酸素含有ガスの割合が大きくなるように調整し還元処理することにより、還元後に目標最低出湯温度にまで昇温させるという方法が開示されている。   As means for achieving the purpose of the reduction step as described above, there is a disclosure (Patent Document 1) of Japanese Patent Application Laid-Open No. 2000-290735 (Applicant: Nikko Metal Co., Ltd., “Reduction treatment method in dry refining of crude copper”). Measure the molten metal temperature before starting the reduction, and adjust the flow rate ratio between the reducing agent (hydrogen carbonate gas) and the oxygen-containing gas such as air so that the proportion of the oxygen-containing gas increases as the molten metal temperature decreases. A method of increasing the temperature to the target minimum hot water temperature after the reduction by processing is disclosed.

ここで還元工程時間の短縮を考えた場合、一般的には、還元剤(炭酸水素系ガス)及び空気等の酸素含有ガスの流量を増加させることが考えられる。しかし還元剤のみ流量を増加させると、還元工程時間は短縮されるが還元中の溶湯の昇温量が不十分になり、還元後の溶湯温度が目標温度に達しなくなり、重油バーナー等による還元後の溶湯加温を必要とする可能性が大きい。また、むやみに還元剤及び空気等の酸素含有ガスの流量を増加させると、排ガスダクトへの溶湯のスプラッシュが増大し、操業に支障を来たすことが予想される。また設備能力の限界で、還元剤又は空気等の酸素含有ガスの流量をさほど増強できないこともあり得る。   Here, when shortening the reduction process time is considered, it is generally considered that the flow rate of the oxygen-containing gas such as a reducing agent (hydrogen carbonate gas) and air is increased. However, if the flow rate of the reducing agent alone is increased, the reduction process time will be shortened, but the temperature rise of the molten metal during the reduction will be insufficient, the molten metal temperature after reduction will not reach the target temperature, and after reduction with a heavy oil burner etc. There is a high possibility that the molten metal needs to be heated. Further, if the flow rate of oxygen-containing gas such as reducing agent and air is increased unnecessarily, it is expected that the splash of molten metal into the exhaust gas duct will increase and hinder the operation. In addition, the flow rate of the oxygen-containing gas such as the reducing agent or air may not be increased so much due to the limit of the facility capacity.

一方、還元工程途中で空気比を変更させる粗銅の還元方法としては、特開2000-178665号(出願人:三井金属鉱業株式会社)(特許文献2)の開示があるが、これは転炉からの粗銅の硫黄濃度に応じて空気比を調整するものであり、還元工程途中に空気比を低下させるタイミングも、粗銅の硫黄濃度の減少度で決定するというものであって、本発明とは根本的に異なる。   On the other hand, as a method of reducing crude copper in which the air ratio is changed during the reduction process, there is a disclosure of Japanese Patent Application Laid-Open No. 2000-178665 (Applicant: Mitsui Kinzoku Mining Co., Ltd.) (Patent Document 2). The air ratio is adjusted according to the sulfur concentration of the crude copper, and the timing at which the air ratio is lowered during the reduction process is also determined by the degree of reduction in the sulfur concentration of the crude copper. Is different.

特開2000-290735号JP 2000-290735 A 特開2000-178665号JP 2000-178665 A

この発明は以上の事情を背景としてなされたもので、従来の還元剤及び空気等の酸素含有ガス吹込み量をさほど増加することなく還元工程の時間短縮を可能にし、また還元終了時の溶湯温度が確実かつ安定して目標最低出湯温度以上に確保されるようになし、エネルギーコストの上昇を防止することを目的とするものである。   The present invention has been made against the background described above, and enables reduction of the time of the reduction process without significantly increasing the amount of blowing of oxygen-containing gas such as conventional reducing agents and air, and the molten metal temperature at the end of reduction. The purpose of this is to ensure that the temperature is reliably and stably kept above the target minimum hot water temperature and to prevent an increase in energy costs.

本発明者らは、還元処理のために粗銅溶湯中に吹込む炭酸水素系ガス及び空気などの酸素含有ガスの流量と、還元工程での除去対象である酸素及び硫黄の挙動との関係を鋭意検討した結果、還元初期に大幅に空気などの酸素含有ガス(以下代表例として「空気」と記す)流量を増加することにより、酸素及び硫黄の除去反応が促進されることに着目し、特に還元初期30分間が両者の除去速度が最も高く、またこの除去反応は溶湯の攪拌力に深く関係することを見出した。   The present inventors have earnestly investigated the relationship between the flow rate of an oxygen-containing gas such as hydrogen carbonate gas and air blown into the crude copper melt for reduction treatment and the behavior of oxygen and sulfur to be removed in the reduction process. As a result of investigation, focusing on the fact that the oxygen and sulfur removal reaction is promoted by increasing the flow rate of oxygen-containing gas such as air (hereinafter referred to as “air” as a representative example) at the beginning of the reduction. It was found that the removal rate of both was the highest in the initial 30 minutes, and that this removal reaction was closely related to the stirring power of the molten metal.


本発明は、上記課題を解決するものであって、
(1) 銅の精製炉において、還元工程の初期段階(全還元時間の1/2未満)に、還元ガスに対して空気比0.07〜0.15で空気を吹き込み、溶湯を強制攪拌し、還元ガスと酸素の反応を促進させ、
その後、初期に比べて空気比を0.03〜0.04下げて操業し、精製炉の操業時間を短縮すること
を特徴とする精製炉の操業方法。 である。
:
The present invention solves the above problems,
(1) In a copper refining furnace, air is blown at an air ratio of 0.07 to 0.15 to the reducing gas at the initial stage of the reduction process (less than half of the total reduction time), the molten metal is forcibly stirred, and the reducing gas Promote the reaction of oxygen,
Thereafter, the refining furnace operating method is characterized by operating by reducing the air ratio by 0.03 to 0.04 compared to the initial stage to shorten the refining furnace operating time. It is.

(2)銅の精製炉において、還元工程の初期段階(全還元時間の1/2未満)に、還元ガスに対して空気比0.07〜0.15で空気を吹き込み、溶湯を強制攪拌し、還元ガスと酸素の反応を促進させ、その後、初期に比べて空気比を0.03〜0.04下げて操業し、精製炉の操業時間を短縮する精製炉の操業方法。
である。
(2) In a copper refining furnace, air is blown at an air ratio of 0.07 to 0.15 with respect to the reducing gas at the initial stage of the reduction process (less than half the total reduction time), the molten metal is forcibly stirred, A refining furnace operation method that promotes the oxygen reaction and then operates the air ratio by 0.03-0.04 lower than the initial stage to shorten the refining furnace operating time.
It is.

本発明によれば、
(1)還元処理時間を10〜20%(平均操業時間が110分の場合、10〜20分)短縮することが可能である。
(2)また、還元時の炭化水素ガス(本発明ではLPG)の原単位を3.4kg/tから3.2kg/tに削減することが可能である。
According to the present invention,
(1) The reduction treatment time can be shortened by 10 to 20% (10 to 20 minutes when the average operation time is 110 minutes).
(2) In addition, the basic unit of hydrocarbon gas (LPG in the present invention) during reduction can be reduced from 3.4 kg / t to 3.2 kg / t.

(3)また還元工程終了後の溶湯温度は、安定して目標最低出湯温度(1160℃)以上に保つことができ、還元工程後の重油バーナー等による溶湯加温の必要もなく、エネルギーコスト増加の防止効果がある。 (3) The molten metal temperature after the reduction process can be stably maintained at the target minimum hot water temperature (1160 ° C) or higher and there is no need to heat the molten metal with a heavy oil burner after the reduction process. There is a prevention effect.

まずこの発明の還元処理を含む精製炉における粗銅の精製プロセスについて説明する。   First, the purification process of crude copper in the refining furnace including the reduction treatment of the present invention will be described.

精製炉、例えば円筒横型傾転方式の精製炉は、前工程の転炉から出湯された粗銅をレードル等を用いて、精製炉内に受入れる。転炉の2炉分以上の粗銅溶湯を、精製炉に順次受入れても良いことはもちろんである。
上記のようにして転炉からの所定量の粗銅溶湯を精製炉内に受入れた後、溶湯中のSを酸化除去させるための酸化工程を実施する。この酸化工程は、一般には精製炉内の溶湯下の羽口から空気などの気体酸化剤を吹込んで行うのが通常であるが、この発明では特に限定されるものではない。なお酸化工程に先立っては、溶湯上に浮上している酸化鉄などの酸化物を掻き出す処理(カラミ掻き)を行うのが通常である。
In a refining furnace, for example, a cylindrical horizontal tilting type refining furnace, crude copper discharged from a converter in a previous process is received in a refining furnace using a ladle or the like. Of course, the molten copper for two or more converters may be sequentially received in the refining furnace.
After the predetermined amount of the molten copper from the converter is received in the refining furnace as described above, an oxidation step for oxidizing and removing S in the molten metal is performed. This oxidation step is usually performed by blowing a gas oxidant such as air from a tuyere below the molten metal in the refining furnace, but is not particularly limited in the present invention. Prior to the oxidation step, it is usual to perform a process (calami scraping) for scraping off oxides such as iron oxide floating on the molten metal.

上記のようにして酸化工程を終了した後に、還元工程を実施する。この還元工程は、転炉から送られた粗銅中に存在しており、さらに酸化処理で溶解した酸素を除去(脱酸)するためのものである。しかし脱酸と同時に、攪拌によって巻き込まれた空気中の酸素、または溶湯中に溶解していた酸素との酸化反応によってSも除去される。   After the oxidation step is completed as described above, the reduction step is performed. This reduction step exists in the crude copper sent from the converter, and is for removing (deoxidizing) oxygen dissolved by the oxidation treatment. However, simultaneously with deoxidation, S is also removed by an oxidation reaction with oxygen in the air entrained by stirring or with oxygen dissolved in the molten metal.

この還元工程は、精製炉内に還元剤(炭化水素系ガス)を空気と共に湯面下の羽口から吹込むことによって行われる。還元剤の代表的なものとしては、ブタン(C4H10)を主成分とする石油系液化炭化水素(LPG)を気化させてなるものがあり、本発明の方法でもLPGを用いることが一般的であるが、それに限られるものではなく、天然ガス等を用いても良いことはもちろんである。また酸素含有ガスとしては空気が代表的であるが、その他酸素富化空気や酸素を多量に含有する任意のガス(もちろん酸素以外の成分が銅の溶湯に影響を与えないことが必要であるが)を用いても良い。 This reduction step is performed by blowing a reducing agent (hydrocarbon-based gas) into the refining furnace together with air from the tuyere below the hot water surface. As a typical reducing agent, there is one obtained by vaporizing petroleum liquefied hydrocarbon (LPG) containing butane (C 4 H 10 ) as a main component, and LPG is generally used in the method of the present invention. However, the present invention is not limited to this, and natural gas or the like may be used. The oxygen-containing gas is typically air, but other oxygen-enriched air or any gas containing a large amount of oxygen (of course, it is necessary that components other than oxygen do not affect the molten copper. ) May be used.

この還元工程において空気は、炭化水素系ガスを部分的に燃焼させてCO、H2、CmHn(m≦4;n≦10)に分解させ、脱酸速度を速めるためのものであり、空気が溶湯中に吹込まれる際には、その吹込み空気中の酸素が次のように炭化水素系ガス(例えばC4H10)と反応する。 In this reduction process, the air is used to increase the deoxidation rate by partially burning hydrocarbon gas and decomposing it into CO, H 2 and C m H n (m ≦ 4; n ≦ 10). When air is blown into the molten metal, oxygen in the blown air reacts with a hydrocarbon gas (for example, C 4 H 10 ) as follows.

C4H10+O2→CO+H2+CmHn(m≦4;n≦10)
この反応によってCO、H2、CmHn(m≦4;n≦10)が溶湯中の酸素を還元除去するのに寄与する。なお上記反応は部分燃焼反応であって、吹込み酸素量が多くなるほど発熱量は大きくなり、還元処理中における溶湯温度上昇量が大きくなる。
C 4 H 10 + O 2 → CO + H 2 + C m H n (m ≦ 4; n ≦ 10)
By this reaction, CO, H 2 and C m H n (m ≦ 4; n ≦ 10) contribute to reducing and removing oxygen in the molten metal. Note that the above reaction is a partial combustion reaction, and as the amount of blown oxygen increases, the calorific value increases, and the amount of rise in molten metal temperature during the reduction treatment increases.

そこでこの発明では、特開2000-290735号と同じように、酸化工程終了後の還元工程開始直前(炭化水素系ガス及び空気の吹き込み開始前)の溶湯温度を測定しておき、その溶湯温度に応じて炭化水素系ガスと空気との吹込み流量比を調整する。具体的には、還元開始前の溶湯温度が低い場合には空気の比率を高くして、還元処理中の温度上昇量を大きくし、逆に還元開始前の溶湯温度が高い場合には空気の比率を低くして、還元処理中の温度上昇量を抑制し、これによって還元処理終了時における溶湯温度が目標出湯温度に近づくようにコントロールする。   Therefore, in the present invention, as in JP-A-2000-290735, the melt temperature immediately before the start of the reduction process after the end of the oxidation process (before the start of the blowing of hydrocarbon gas and air) is measured, Accordingly, the flow rate ratio of the hydrocarbon gas and air is adjusted. Specifically, when the melt temperature before the start of reduction is low, the ratio of air is increased to increase the amount of temperature increase during the reduction process. Conversely, when the melt temperature before the start of reduction is high, The ratio is lowered to suppress the amount of temperature increase during the reduction process, thereby controlling the molten metal temperature at the end of the reduction process to approach the target hot water temperature.

即ち本発明では、還元工程の初期段階(全還元時間の1/2未満)に、還元ガスに対して空気比0.07〜0.15で空気を吹き込み、溶湯を強制撹拌する。
さらに具体的には、本発明では、図1に示すように還元初期30分間以内のみ、従来の1.5〜2.0倍の空気(還元ガスに対して、空気比0.07〜0.15に相当する)を吹込むことにより、還元初期での溶湯攪拌能力を高め、脱酸及び脱硫反応を促進させる。これは、還元初期30分以内が最もO、Sの除去速度が大きいことに着目したものである。
ここで言う空気比の定義は以下の式の通りである。
空気比=実際に使用した空気量/還元剤の完全燃焼に必要な理論空気量
例えばLPGガスの場合、LPG1Kgの完全燃焼には空気約12Nm3が必要であり、LPG1kgに対して実際に吹込んだ空気量が6Nm3の場合は、空気比は0.5となる。
また還元初期に溶湯温度を上昇させるという目的もあり、これは還元初期での溶湯温度上昇量の増加が溶湯の粘度を低下させ、反応速度の向上に効果があることに着目したものである。
That is, in the present invention, in the initial stage of the reduction process (less than half of the total reduction time), air is blown into the reducing gas at an air ratio of 0.07 to 0.15 to forcibly agitate the molten metal.
More specifically, in the present invention, as shown in FIG. 1, only 1.5 to 2.0 times the conventional air (corresponding to an air ratio of 0.07 to 0.15 with respect to the reducing gas) is blown in within 30 minutes of the initial reduction. As a result, the molten metal stirring ability at the initial stage of reduction is increased, and the deoxidation and desulfurization reactions are promoted. This is because the O and S removal rates are greatest within the first 30 minutes of reduction.
The definition of the air ratio here is as follows.
Air ratio = the amount of air actually used / theoretical amount of air required for complete combustion of the reducing agent For example, in the case of LPG gas, about 12 Nm 3 of air is required for complete combustion of LPG1Kg, and it is actually injected into 1 kg of LPG. If the air volume is 6Nm 3 , the air ratio is 0.5.
Another object is to raise the molten metal temperature at the beginning of the reduction. This is because the increase in the molten metal temperature at the early stage of reduction reduces the viscosity of the molten metal and is effective in improving the reaction rate.

なお、還元開始後30分から還元終了までの間は空気比を0.03〜0.15とし、羽口から吹込む還元剤と空気流量の操業条件について、本発明と従来とで異なっていない。
この結果本発明では、還元処理初期30分間以内での溶湯攪拌能力と湯温上昇量が増加したため、脱酸反応が促進され、1回の操業の還元時間を従来の110分から、90〜100分へと短縮することができ、あわせて還元剤(例えばLPG)原単位を3.4kg/tから3.2kg/tに削減することができた。
It should be noted that the air ratio is 0.03 to 0.15 from 30 minutes after the start of reduction to the end of reduction, and the operating conditions of the reducing agent blown from the tuyere and the air flow rate are not different between the present invention and the prior art.
As a result, in the present invention, since the molten metal stirring ability and the hot water temperature increase amount within the initial 30 minutes of the reduction treatment increased, the deoxidation reaction was promoted, and the reduction time of one operation was reduced from the conventional 110 minutes to 90 to 100 minutes. At the same time, the basic unit of reducing agent (eg LPG) was reduced from 3.4 kg / t to 3.2 kg / t.

上述のように還元開始初期30分間以内にエア量を大幅に増加させても、還元終了時の溶湯温度を所定の温度(目標出湯温度、もしくは目標最低出湯温度以上)に確保することが可能であり、還元終了後に改めて重油バーナーなどによって溶湯を加熱することは不要であることに変わりはない。   As described above, even if the amount of air is greatly increased within the first 30 minutes of reduction start, the molten metal temperature at the end of reduction can be secured at a predetermined temperature (the target hot water temperature or the target minimum hot water temperature or higher). There is no change that it is unnecessary to heat the molten metal again with a heavy oil burner after the reduction is completed.

以上のところにおいて、還元開始時前に溶湯温度を測定するための具体的手段は任意であり、例えば消耗型熱電対を用いて行えば良い。また測定された還元開始前の溶湯温度に応じた炭化水素系ガスと空気との流量比の調整は、作業者が手動操作により調整しても、あるいは予め定めたテーブルや関係式に基づいて自動的に調整するようにしても良い。   In the above, the specific means for measuring the molten metal temperature before the start of reduction is arbitrary, and may be performed using, for example, a consumable thermocouple. Also, the adjustment of the flow rate ratio between hydrocarbon gas and air in accordance with the measured melt temperature before the start of reduction can be adjusted manually by the operator or automatically based on predetermined tables and relational expressions. It is also possible to make adjustments.

なお炭化水素系ガスは、本来溶湯中の酸素を還元するために吹込むのであるから、炭化水素系ガスと共に吹込む空気の量は、炭化水素系ガスが完全燃焼して、CO2及びH2Oのみとならないように、炭化水素系ガスの理論空気燃焼量よりも少なくなければならない。具体的には吹込み空気量は、理論空気燃焼量の3〜30%(空気比0.03〜0.30)の範囲内となるように定めることが望ましく、従って還元開始前の溶湯温度に応じて炭化水素系ガスと空気との吹込み流量比を定めるにあたっても、炭化水素系ガスの成分組成に応じて空気比0.03〜0.30の範囲内の空気吹込み量が得られるように定めることが望ましい。
(精製炉内の酸素とイオウの濃度変化確認試験)
Since the hydrocarbon gas is originally injected to reduce oxygen in the molten metal, the amount of air to be injected together with the hydrocarbon gas is such that the hydrocarbon gas completely burns, and CO 2 and H 2 In order not to become only O, it must be less than the theoretical air combustion amount of hydrocarbon gas. Specifically, it is desirable to determine the amount of blown air to be within a range of 3 to 30% of the theoretical air combustion amount (air ratio 0.03 to 0.30), and therefore hydrocarbons depending on the melt temperature before the start of reduction. In determining the flow rate ratio of the system gas and air, it is desirable to determine the air injection rate within the range of 0.03 to 0.30 in accordance with the component composition of the hydrocarbon-based gas.
(Confirmation test for oxygen and sulfur concentration changes in the refining furnace)

円筒横型傾転タイプの400トン精製炉を用いて、次のようにしてCu純度98.5mass%の粗銅410トンの精製を行った。すなわち、予め重油バーナーの燃焼により保温された精製炉に転炉からの1炉目の粗銅溶湯205トンを受入れた後、転炉からの2炉目の粗銅205トンを受入れた。なお粗銅はカラミ掻きにより400トンとなる。また精製炉内は、粗銅を受入れている間も重油バーナーで保温する。   Using a cylindrical horizontal tilting type 400 ton refining furnace, 410 tons of crude copper having a Cu purity of 98.5 mass% was purified as follows. That is, after receiving 205 tons of the first molten copper from the converter in the refining furnace kept warm by the combustion of the heavy oil burner in advance, 205 tons of the second furnace from the converter was received. Crude copper will be 400 tons by scraping. The refinery furnace is kept warm with a heavy oil burner while receiving crude copper.

このようにして転炉からの2炉目の粗銅溶湯を受入れた後、カラミかきを行ってから酸化処理工程として、湯面下の羽口より空気を500Nm3/hの流量でスタートより2.0時間吹込んだ。酸化工程終了後還元工程として、ブタンを主成分とする石油系液化炭化水素を気化させてなるガス(LPG)と空気を湯面下の羽口から吹込んだ。 After accepting the second round of molten copper from the converter in this way, scrubbing and then oxidizing the air from the tuyere below the surface at a flow rate of 500 Nm 3 / h for 2.0 hours from the start Infused. After the oxidation process, as a reduction process, gas (LPG) vaporized from petroleum liquefied hydrocarbons containing butane as the main component and air were blown from the tuyere below the hot water surface.

ここで、還元処理時の粗銅溶湯中のO、S濃度変化を調査するために、還元処理中の溶湯をサンプリングし、O、S濃度の経時変化を測定した。図2に、400トンの粗銅をLPG流量800kg/h、空気流量1200Nm3/hで還元処理した場合の溶湯中のO濃度、S濃度の変化の一例を示す。 Here, in order to investigate changes in O and S concentrations in the molten copper during the reduction treatment, the melts during the reduction treatment were sampled, and changes over time in the O and S concentrations were measured. FIG. 2 shows an example of changes in O concentration and S concentration in the molten metal when 400 tons of crude copper is reduced at an LPG flow rate of 800 kg / h and an air flow rate of 1200 Nm 3 / h.

図2よりO、S共に、初期の30分間(図中の灰色着色部分)に最も顕著に濃度降下が起きている。なお、このようなサンプリング調査を数回にわたって行ったが、得られたO、S濃度の変化は、図2とほぼ同様のものであった。   As can be seen from FIG. 2, both O and S have the most significant density drop in the initial 30 minutes (the gray colored portion in the figure). Such sampling survey was conducted several times. The obtained changes in O and S concentrations were almost the same as those in FIG.

精製炉内での粗銅溶湯の還元反応は、気液反応であり反応速度は速く、一般的には物質移動律速であると言われている。そこでこの結果より、O、Sの除去速度が特に大きい、還元処理の初期30分以内で溶湯の攪拌能力を増加させることにより、還元反応が促進されると推測される。   The reduction reaction of the molten copper in the refining furnace is a gas-liquid reaction, the reaction rate is fast, and it is generally said that it is mass transfer-controlled. Therefore, from this result, it is presumed that the reduction reaction is promoted by increasing the stirring ability of the molten metal within the first 30 minutes of the reduction treatment, in which the removal rate of O and S is particularly high.

還元処理における空気流量増加(溶湯の攪拌能力増加)の効果を確かめるために、従来の還元条件(表2に後述)よりも空気流量を増加させて還元処理を行い、還元時間及びLPG原単位に及ぼす影響を調査した。なお、空気流量を増加させる時間帯を、本発明の還元開始〜30分間、比較例1として還元開始〜45分間、比較例2として還元開始〜終了までと変化させて、その影響を調査した。   In order to confirm the effect of increased air flow rate (increase in stirring capacity of molten metal) in the reduction process, the reduction process was performed by increasing the air flow rate compared to the conventional reduction conditions (described later in Table 2) to reduce the reduction time and LPG intensity. The effect was investigated. In addition, the time slot | zone which increases an air flow rate was changed from the reduction | restoration start-30 minutes of this invention to the reduction | restoration start-45 minutes as the comparative example 1, and the reduction | restoration start-end as the comparative example 2, and the influence was investigated.

Figure 0004295134
Figure 0004295134

表1より、比較例1、2では還元時間は110分以上、LPG原単位は3.11kg/t以上となったが、還元開始から30分間のみ空気流量を増加させた本発明の例では、還元時間が90分と最も短く、またLPG原単位も2.99kg/tと、最も少なくなった。
なお実施例1の本発明に示した条件に於いても、還元処理により、0濃度は0.6〜1.0 mass %から0.1 mass %以下へ、S濃度は60〜80ppmから30ppm以下へと低下した。
From Table 1, in Comparative Examples 1 and 2, the reduction time was 110 minutes or more, and the LPG basic unit was 3.11 kg / t or more, but in the example of the present invention in which the air flow rate was increased only for 30 minutes from the start of reduction, The time was the shortest at 90 minutes, and the LPG basic unit was the lowest at 2.99 kg / t.
Even in the conditions shown in the present invention of Example 1, the 0 concentration decreased from 0.6 to 1.0 mass% to 0.1 mass% or less and the S concentration decreased from 60 to 80 ppm to 30 ppm or less by the reduction treatment.

実施例1の効果を実操業で確認するために、以下のような精製炉での操業を3ヶ月間行い、還元時間とLPG原単位の実績を従来の実績と比較した。
すなわち還元処理開始前に、溶湯温度を消耗型熱電対により測定し、その溶湯温度に応じて表2に示すように、本発明のLPG吹込み流量と空気流量とを定めて、還元処理を行った。
還元処理における従来の空気比が0.03〜0.15であったものを、本発明では還元処理初期30分以内の空気比を従来よりも0.03〜0.04大きくした。
なお表2において、還元開始前溶湯温度1115℃から1130℃以上の各例では、中途でLPG流量を変えて、LPG/空気の流量比を変更した。
なお、この試験結果を表3に示した。
In order to confirm the effect of Example 1 in actual operation, the operation in the following refining furnace was performed for 3 months, and the results of reduction time and LPG basic unit were compared with the conventional results.
That is, before starting the reduction treatment, the molten metal temperature is measured by a consumable thermocouple, and the LPG blowing flow rate and the air flow rate of the present invention are determined according to the molten metal temperature as shown in Table 2, and the reduction treatment is performed. It was.
In the present invention, the conventional air ratio in the reduction treatment is 0.03 to 0.15, and in the present invention, the air ratio within the initial 30 minutes of the reduction treatment is increased by 0.03 to 0.04.
In Table 2, in each case where the melt temperature before the reduction start was 1115 ° C. to 1130 ° C. or higher, the LPG flow rate was changed midway, and the LPG / air flow rate ratio was changed.
The test results are shown in Table 3.

Figure 0004295134
Figure 0004295134

Figure 0004295134
Figure 0004295134

表3によると、還元前溶湯温度が1110℃から1130℃以上の各例について、本発明のLPG、空気流量条件では、従来と比較してすべての温度域で還元時間の短縮効果が見られた。
また平均還元時間は従来の114分から97分へと約15%短縮することができ、LPG原単位を従来の3.36kg/tから、3.23kg/tへと削減することができた。
なお還元処理により、0濃度は0.6〜1.0 mass %から0.1 mass %以下へ、S濃度は60〜80ppmから30ppm以下へと低下し、精製粗銅の品質は従来と変わらないものであった。
According to Table 3, for each case where the molten metal temperature before reduction is from 1110 ° C to 1130 ° C or higher, the LPG of the present invention and the air flow rate condition showed a reduction time reduction effect in all temperature ranges compared to the conventional case. .
The average reduction time was reduced by approximately 15% from the conventional 114 minutes to 97 minutes, and the LPG basic unit could be reduced from the conventional 3.36 kg / t to 3.23 kg / t.
By the reduction treatment, the 0 concentration decreased from 0.6 to 1.0 mass% to 0.1 mass% or less, and the S concentration decreased from 60 to 80 ppm to 30 ppm or less, and the quality of the purified crude copper was the same as before.

本発明の簡単な実施の一態様を示す。1 shows one embodiment of a simple embodiment of the present invention. 精製炉の還元処理における、粗銅溶湯中のO、S濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of O and S density | concentration in the crude copper molten metal in the reduction process of a refinement | purification furnace.

Claims (1)

銅の精製炉において、還元工程の初期段階(全還元時間の1/2未満)に、還元ガスに対して空気比0.07〜0.15で空気を吹き込み、溶湯を強制攪拌し、還元ガスと酸素の反応を促進させ、
その後、初期に比べて空気比を0.03〜0.04下げて操業し、精製炉の操業時間を短縮すること
を特徴とする精製炉の操業方法。
In a copper refining furnace, air is blown at an air ratio of 0.07 to 0.15 with respect to the reducing gas at the initial stage of the reduction process (less than half of the total reduction time), the molten metal is forcibly stirred, and the reaction between the reducing gas and oxygen Promote
Thereafter, the refining furnace operating method is characterized by operating by reducing the air ratio by 0.03 to 0.04 compared to the initial stage to shorten the refining furnace operating time.
JP2004052750A 2004-02-27 2004-02-27 Refining furnace operation method Expired - Lifetime JP4295134B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004052750A JP4295134B2 (en) 2004-02-27 2004-02-27 Refining furnace operation method
KR1020040089278A KR100615877B1 (en) 2004-02-27 2004-11-04 Method for operating refining furnace
CNB2004101003075A CN1300351C (en) 2004-02-27 2004-12-09 Operation method of finer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052750A JP4295134B2 (en) 2004-02-27 2004-02-27 Refining furnace operation method

Publications (2)

Publication Number Publication Date
JP2005240123A JP2005240123A (en) 2005-09-08
JP4295134B2 true JP4295134B2 (en) 2009-07-15

Family

ID=35010658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052750A Expired - Lifetime JP4295134B2 (en) 2004-02-27 2004-02-27 Refining furnace operation method

Country Status (3)

Country Link
JP (1) JP4295134B2 (en)
KR (1) KR100615877B1 (en)
CN (1) CN1300351C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103643053A (en) * 2013-12-15 2014-03-19 白银有色集团股份有限公司 Gas permeable brick hot replacement method for rotary anode furnace
CN114671438B (en) * 2022-03-31 2023-05-09 新疆西部合盛硅业有限公司 Weight and temperature interlocking automatic control oxygen blowing refining method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619177A (en) * 1969-05-05 1971-11-09 Kennecott Copper Corp Process for deoxidizing copper with natural gas-air mixture
JPH0776738A (en) * 1993-09-08 1995-03-20 Mitsubishi Materials Corp Method for smelting copper
JP4217849B2 (en) * 1999-04-08 2009-02-04 日鉱金属株式会社 Reduction treatment method in dry purification of crude copper

Also Published As

Publication number Publication date
CN1300351C (en) 2007-02-14
KR20050087717A (en) 2005-08-31
JP2005240123A (en) 2005-09-08
KR100615877B1 (en) 2006-08-25
CN1661121A (en) 2005-08-31

Similar Documents

Publication Publication Date Title
KR20210143319A (en) Ultra-low carbon ultra-low flow steel smelting process
JP5413043B2 (en) Converter steelmaking method using a large amount of iron scrap
JP2010265485A (en) Method for operating arc-furnace
JP5909957B2 (en) Steel making method using steel scrap
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP4295134B2 (en) Refining furnace operation method
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP5549198B2 (en) Steel making method using steel scrap
JP2006009146A (en) Method for refining molten iron
JP5200324B2 (en) Desulfurization method for molten steel
JP4483713B2 (en) Melting method of ultra low sulfur high clean steel
KR850000927B1 (en) Method for preventing slopping during subsurface pneumatic refining steel
TWI755930B (en) Casting method of molten steel, manufacturing method of continuous casting slab, and manufacturing method of bearing steel
KR101709137B1 (en) The converter operation method
JP4844552B2 (en) Melting method of low carbon high manganese steel
JP2007277647A (en) Method for refining extra-low sulfur high cleanliness steel
JP4217849B2 (en) Reduction treatment method in dry purification of crude copper
JP5423554B2 (en) Hot metal pretreatment method
JP5685979B2 (en) Method for refining molten steel
JP7384294B2 (en) Molten iron refining method
JP7167706B2 (en) Hot metal desulfurization method
JP6947024B2 (en) Hot metal desulfurization method
JP4313239B2 (en) Refining furnace operation method
JPH07138633A (en) Production of extra-low carbon steel by vacuum degassing
CN117396614A (en) Dephosphorization method of molten iron

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4295134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term