JP2000283895A - Method for predicting durable years of light-weight aerated concrete - Google Patents

Method for predicting durable years of light-weight aerated concrete

Info

Publication number
JP2000283895A
JP2000283895A JP11088356A JP8835699A JP2000283895A JP 2000283895 A JP2000283895 A JP 2000283895A JP 11088356 A JP11088356 A JP 11088356A JP 8835699 A JP8835699 A JP 8835699A JP 2000283895 A JP2000283895 A JP 2000283895A
Authority
JP
Japan
Prior art keywords
carbonation
years
degree
alc
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11088356A
Other languages
Japanese (ja)
Other versions
JP3478160B2 (en
Inventor
Fumiaki Matsushita
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP08835699A priority Critical patent/JP3478160B2/en
Publication of JP2000283895A publication Critical patent/JP2000283895A/en
Application granted granted Critical
Publication of JP3478160B2 publication Critical patent/JP3478160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve a method for predicting the durable years of ALC(light aerated concrete) by an extremely simple, rapid method by making clear the relationship between the progress and deterioration of the carbonation of ALC. SOLUTION: In light aerated concrete that has not been repaired for X years after construction, total oxidation calcium content (wt.%) and carbon dioxide gas content (wt.%) equivalent to the decrease in weight at 600-900 deg.C are measured to predict that the light aerated concrete where the degree of carbonation obtained from an expression of (carbon dioxide gas content)×56/44}/(total oxidation calcium content)×100 is Y(%) has 50X/Y durable years and 50X/Y-X remaining life. Also, the light aerated concrete that has passed for X2 years after construction where the degree of carbonation is Y2(%) and the degree of carbonation after X1 years have passed after the most recent repair and the construction is Y1(%) has durable years of (X2-X1)/(Y2-Y1)}×(50-Y2)+Y2 (years) and a remaining life of (X2-X1)/(Y2-Y1)}×(50-Y2) years.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の壁や屋
根、床などに使用されるALC(軽量気泡コンクリー
ト)の耐用年数の予測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the useful life of ALC (lightweight cellular concrete) used for walls, roofs, floors, etc. of buildings.

【0002】[0002]

【従来の技術】補強用鉄筋を内蔵して、板状に形成した
ALCからなるALCパネルは、建築物の壁や屋根、床
などに使用される。ALCパネルの耐久性は、実際の使
用段階において最も重要な問題であり、耐用年数を予測
する方法が望まれている。
2. Description of the Related Art ALC panels made of ALC formed in a plate shape with a reinforcing reinforcing bar built therein are used for walls, roofs, floors and the like of buildings. The durability of the ALC panel is the most important problem in an actual use stage, and a method for predicting the service life is desired.

【0003】該ALCパネルは、珪石等の珪酸質原料
と、セメントや生石灰等の石灰質原料とを主原料とし、
これらの微粉末に水とアルミニウム粉末等の添加物を加
えて、スラリー状とした後、補強用鉄筋を配置した型枠
内に流し込み、アルミニウム粉末の反応により発泡さ
せ、石灰質原料の反応により半硬化させて、所定寸法に
形成した後、オートクレーブによる高温高圧水蒸気養生
を行って製造される。該ALCパネルは、絶乾かさ比重
0.5程度の軽量で、耐火性、断熱性、施工性に優れて
いるため、建築材料として広く使用されている。
[0003] The ALC panel mainly comprises a siliceous raw material such as silica stone and a calcareous raw material such as cement and quicklime.
After adding additives such as water and aluminum powder to these fine powders to form a slurry, the mixture is poured into a mold in which reinforcing steel bars are arranged, foamed by the reaction of the aluminum powder, and semi-cured by the reaction of the calcareous raw material. Then, after being formed to a predetermined size, it is manufactured by performing high-temperature and high-pressure steam curing using an autoclave. The ALC panel is widely used as a building material because it is lightweight, having a specific gravity of about 0.5, and has excellent fire resistance, heat insulation, and workability.

【0004】ALCパネルを使用する立場から判断する
際、ALCにひび割れが発生したり、パネル強度が低下
した場合に、ALCの耐久性は劣化したと認識される。
これは、特に、製造時からの年数が分からないALCに
対しては、有効な判断手段となる。ALCの耐久性が劣
化する要因、言い換えるとひび割れの発生やパネル強度
低下の要因は、外的な要因と内的な要因に大別される。
[0004] When judging from the standpoint of using an ALC panel, it is recognized that the durability of the ALC has deteriorated if the ALC is cracked or the panel strength is reduced.
This is an effective determination means especially for ALC in which the number of years since manufacture is unknown. Factors that degrade the durability of ALC, in other words, factors that cause cracks and decrease panel strength, are roughly classified into external factors and internal factors.

【0005】外的な要因とは、地震や躯体の変形、風圧
などである。これらは、建物の設計や不可避な自然現象
が原因であり、ALC自身の問題である場合は少ない。
一方、内的な要因としては、凍害、塩害、炭酸化、乾燥
収縮等が考えられる。
The external factors are an earthquake, deformation of a frame, wind pressure and the like. These are caused by the design of the building and unavoidable natural phenomena, and are rarely problems of the ALC itself.
On the other hand, frost damage, salt damage, carbonation, drying shrinkage and the like are considered as internal factors.

【0006】内的な要因の中で凍害は、寒冷地特有のも
のであり、仕上げやシーリング、窓周りなどの施工方法
によって回避できることから、ALC自身の問題ではな
い場合が多い。
[0006] Among the internal factors, frost damage is peculiar to a cold region and can be avoided by a construction method such as finishing, sealing, and window surroundings. Therefore, it is often not a problem of ALC itself.

【0007】また、ALCパネルの内部補強用鉄筋には
予め防錆処理(鉄筋防錆)が施されており、塩水による
ALCの耐久性の劣化は、この鉄筋防錆が不十分である
場合に問題となる。従って、塩害は、正常に製造された
ALCパネルにおいて、ALCの耐久性を議論する場合
の要因としては適切でない。
Further, the reinforcing steel for internal reinforcement of the ALC panel is preliminarily subjected to a rust preventive treatment (reinforcing steel rust), and the deterioration of the durability of the ALC due to the salt water is caused when the reinforcing rust of the reinforcing steel is insufficient. It becomes a problem. Therefore, salt damage is not a suitable factor in discussing the durability of ALC in normally manufactured ALC panels.

【0008】炭酸化とは、ALCの主要鉱物であるトバ
モライトが、炭酸ガスと水分が存在する環境下で、シリ
カゲルと炭酸カルシウムに分解する反応であり、仕上げ
等の施工が適切に施された場合にも、徐々に進行するこ
とが知られている。また、炭酸化することによりALC
は収縮し(炭酸化収縮)、さらに炭酸化したALCは乾
燥収縮率が大きくなり、乾燥収縮と湿潤膨張の繰り返し
によるひび割れの発生やパネル強度の低下につながるこ
とが懸念される。そこで、ALC自身の問題となる劣化
要因としては、炭酸化とそれに伴う長さ変化(炭酸化収
縮と乾燥収縮)に注目することが必要である。
[0008] Carbonation is a reaction in which tobermorite, a main mineral of ALC, is decomposed into silica gel and calcium carbonate in an environment where carbon dioxide gas and moisture are present. It is also known that it progresses gradually. In addition, ALC can be obtained by carbonation.
Shrinks (carbonation shrinkage), and the carbonated ALC has a large dry shrinkage, which may cause cracking and decrease in panel strength due to repeated drying shrinkage and wet expansion. Therefore, it is necessary to pay attention to carbonation and the accompanying change in length (carbonation shrinkage and drying shrinkage) as deterioration factors that cause problems for ALC itself.

【0009】しかし、これまでALCの炭酸化と劣化の
関係についてはほとんど分かっていない。従って、AL
Cの耐久性に基づいて、耐用年数を予測する方法は確立
されておらず、建築物の設計者や使用者は、どの程度の
経過年数で建て替え、リフォーム、補修などを行えば良
いのかが正確には分からなかった。
However, little is known about the relationship between ALC carbonation and degradation. Therefore, AL
There is no established method for predicting the service life based on the durability of C, and building designers and users need to know exactly how many years must elapse before rebuilding, remodeling and repairing. Did not understand.

【0010】[0010]

【発明が解決しようとする課題】このような従来の事情
に鑑み、本発明者らは、ALCの炭酸化の進行と劣化の
関係を明らかにし、非常に簡便で迅速な方法により、A
LCの耐用年数を予測する方法を提供することを目的と
する。
In view of such a conventional situation, the present inventors have clarified the relationship between the progress of carbonation of ALC and the deterioration thereof, and have developed an ALC by a very simple and rapid method.
It is an object of the present invention to provide a method for predicting the service life of an LC.

【0011】[0011]

【課題を解決するための手段】本発明の軽量気泡コンク
リートの耐用年数予測方法では、建築後、補修されずに
X年経過した軽量気泡コンクリートにおいて、全酸化カ
ルシウム含有量(重量%)、および600〜900℃に
おける重量減少量に相当する炭酸ガス含有量(重量%)
を測定し、{(炭酸ガス含有量)×56/44}/(全
酸化カルシウム含有量)×100なる式で得られる炭酸
化度が、Y(%)である軽量気泡コンクリートは、50
X/Y(年)の耐用年数を有し、50X/Y−X(年)
の余命であると予測する。
According to the method for estimating the useful life of lightweight cellular concrete according to the present invention, the total calcium oxide content (% by weight) and 600% in lightweight cellular concrete which has passed X years without repair after construction. Carbon dioxide content equivalent to the weight loss at ~ 900 ° C (% by weight)
The lightweight aerated concrete having a carbonation degree of Y (%) obtained by a formula of {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 100 is 50%
Has a service life of X / Y (years) and 50X / Y-X (years)
Life expectancy.

【0012】また、建築後、X2 年経過した軽量気泡コ
ンクリートにおいて、炭酸化度がY2 (%)であり、最
新の補修より後で、建築後X1 年経過した時の炭酸化度
がY1 (%)である軽量気泡コンクリートは、{(X2
−X1 )/(Y2 −Y1 )}×(50−Y2 )+X
2 (年)の耐用年数を有し、{(X2 −X1 )/(Y2
−Y1 )}×(50−Y2 )(年)の余命であると予測
する。炭酸化度の測定は、前述と同様に行う。
[0012] In addition, the degree of carbonation is Y 2 (%) in lightweight cellular concrete that has passed X 2 years after construction, and the carbonation degree X 1 year after construction has passed since the latest repair. The lightweight cellular concrete that is Y 1 (%) is represented by {(X 2
−X 1 ) / (Y 2 −Y 1 )} × (50−Y 2 ) + X
2 (years) and {(X 2 −X 1 ) / (Y 2
−Y 1 )} × (50−Y 2 ) (years). The measurement of the degree of carbonation is performed in the same manner as described above.

【0013】以上の式において、負の年数の余命が算出
された場合は、既に耐用年数をすぎたものと判断され
る。
In the above equation, when the life expectancy of the negative years is calculated, it is determined that the useful life has already passed.

【0014】[0014]

【発明の実施の形態】本発明者らは、ALCの炭酸化と
耐久性の劣化との関係を調べるため、実際の建物からA
LCパネルを取り外し、様々な調査分析を行った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors investigated the relationship between the carbonation of ALC and the deterioration of durability by using ALC from an actual building.
The LC panel was removed and various research analyzes were performed.

【0015】建物履歴として、建築年、部位、方角、建
築時の仕上げ、仕上げ補修とその内容を調べた。
As the building history, the construction year, site, direction, finish at the time of construction, finish repair and its contents were examined.

【0016】外観調査として、各ALCパネルの表裏面
におけるひび割れの有無を目視により確認した。ここ
で、地震や躯体の変形によると思われる大きなひび割れ
は対象とせず、網目状のひび割れだけを対象とした。
As an external inspection, the presence or absence of cracks on the front and back surfaces of each ALC panel was visually checked. Here, large cracks, which are thought to be caused by earthquakes or deformation of the skeleton, were not targeted, but only mesh cracks.

【0017】炭酸化度は、パネルの厚さ方向に5層に均
等に分割し、屋外側表面層について、全酸化カルシウム
(CaO)含有量(重量%)を、化学分析法(ICP−
AES)で測定し、炭酸ガス(CO2 )含有量(重量
%)を、熱分析法、具体的には熱重量−示差熱分析装置
(TG−DTA)による600〜900℃の減少重量か
ら算出し、下式(数1)から求めた。
The degree of carbonation was divided equally into five layers in the thickness direction of the panel, and the total calcium oxide (CaO) content (% by weight) of the outdoor side surface layer was measured by a chemical analysis method (ICP-
AES), and the carbon dioxide (CO 2 ) content (% by weight) is calculated from the weight loss at 600 to 900 ° C. by a thermal analysis method, specifically, a thermogravimetric-differential thermal analyzer (TG-DTA). Then, it was obtained from the following equation (Equation 1).

【0018】[0018]

【数1】炭酸化度(%)={(炭酸ガス含有量)×56
/44}/(全酸化カルシウム含有量)×100
## EQU1 ## Degree of carbonation (%) = {(carbon dioxide content) × 56
/ 44} / (total calcium oxide content) × 100

【0019】実際の診断のための測定では、ALCパネ
ルの屋外側表面部分からサンプリングするので、本実施
例では、前記のように5層に分割したうち、屋外側表面
層のサンプルから得られた炭酸化度について測定した。
In the actual measurement for diagnosis, sampling is performed from the outdoor surface portion of the ALC panel. Therefore, in this embodiment, the sample is obtained from the sample of the outdoor surface layer among the five layers as described above. The degree of carbonation was measured.

【0020】図1に、ALCパネル経過年数と、屋外側
表面部分の炭酸化度の関係を、ひび割れの有無の分類と
共に示す。経過年数につれて、炭酸化度が50%までは
直線的に増加し、その後炭酸化度の増加は緩やかにな
り、炭酸化度60%で飽和して、それ以上には増加して
いない。ひび割れの有無の観点からは、炭酸化度50〜
60%のサンプルのすべてにひび割れが発生しており、
炭酸化度0〜50%のサンプルにはひび割れが発生して
いなかった。
FIG. 1 shows the relationship between the age of the ALC panel and the degree of carbonation of the surface portion on the outdoor side, together with the classification of the presence or absence of cracks. Over the years, the degree of carbonation increases linearly up to 50%, then increases gradually, saturates at 60% and does not increase any more. From the viewpoint of the presence or absence of cracks, the degree of carbonation is 50 to
All 60% of samples have cracks,
Cracks did not occur in the samples having a degree of carbonation of 0 to 50%.

【0021】すなわち、炭酸化度が50%以上であるA
LCパネルではすべてひび割れが発生しており、劣化し
ていると判断される。また、劣化する時点までは、経過
年数にほぼ比例して炭酸化度が増加することが分かっ
た。
That is, A having a degree of carbonation of 50% or more
All the LC panels have cracks and are judged to be deteriorated. In addition, it was found that the degree of carbonation increased almost in proportion to the number of years elapsed before the deterioration.

【0022】様々な条件において、炭酸化度が50%ま
では、炭酸化度が経過年数にほぼ比例して増加するかど
うかを確認するため、ALCを促進炭酸化試験に供し、
経過時間に対する炭酸化度の変化を調べた。
Under various conditions, up to 50% carbonation, the ALC was subjected to an accelerated carbonation test to determine whether the degree of carbonation increased in proportion to the age.
The change in the degree of carbonation over time was investigated.

【0023】図2に、3種類の条件で、具体的には温度
20℃、相対湿度90%、炭酸ガス3体積%の条件、温
度20℃、相対湿度70%、炭酸ガス3体積%の条件、
および温度20℃、相対湿度70%、炭酸ガス1体積%
の条件で、促進炭酸化させたALCの経過日数に対する
炭酸化度の変化を示す。図2から、どの条件において
も、炭酸化度50%までは直線的に増加し、それ以降、
炭酸化度の増加は緩やかとなり、炭酸化度は60%で飽
和して、60%以上には増加しなかった。
FIG. 2 shows three kinds of conditions, specifically, a condition of a temperature of 20 ° C., a relative humidity of 90% and a carbon dioxide gas of 3% by volume, and a condition of a temperature of 20 ° C., a relative humidity of 70% and a carbon dioxide gas of 3% by volume. ,
And temperature 20 ° C, relative humidity 70%, carbon dioxide gas 1% by volume
The change of the degree of carbonation with respect to the number of elapsed days of the accelerated carbonation of ALC under the conditions described above is shown. From FIG. 2, it can be seen that under all conditions, the degree of carbonation increases linearly up to 50%, and thereafter,
The degree of carbonation increased gradually, and the degree of carbonation was saturated at 60% and did not increase to 60% or more.

【0024】この結果から、ある一定条件において使用
されるALCの炭酸化度の増加分は、経過時間に比例す
ると考えられる。つまり、図3に示すように、建築後に
補修を施されていないALCの炭酸化度は、経過年数に
比例し、炭酸化度が50%に達するまで該比例関係が一
様であり、炭酸化度が50%に達すると、耐用年数を超
過したと考えられる。
From this result, it is considered that the increase in the degree of carbonation of ALC used under certain conditions is proportional to the elapsed time. That is, as shown in FIG. 3, the degree of carbonation of ALC that has not been repaired after construction is proportional to the number of years elapsed, and the proportional relationship is uniform until the degree of carbonation reaches 50%. When the degree reaches 50%, it is considered that the service life has been exceeded.

【0025】従って、補修を行わなかった軽量気泡コン
クリートにおいて、本発明の耐用年数予測方法は、次の
ようになる。
Therefore, in the lightweight cellular concrete which has not been repaired, the service life predicting method of the present invention is as follows.

【0026】建築後、補修されずにX年経過した軽量気
泡コンクリートにおいて、全酸化カルシウム含有量(重
量%)、および600〜900℃における重量減少量に
相当する炭酸ガス含有量(重量%)を測定し、{(炭酸
ガス含有量)×56/44}/(全酸化カルシウム含有
量)×100なる式で得られる炭酸化度が、Y(%)で
ある軽量気泡コンクリートは、50X/Y(年)の耐用
年数を有し、50X/Y−X(年)の余命であると予測
する。
In the lightweight cellular concrete which has been repaired for X years after construction, the total calcium oxide content (% by weight) and the carbon dioxide content (% by weight) corresponding to the weight loss at 600 to 900 ° C. The lightweight cellular concrete whose measured degree of carbonation is Y (%) obtained by the formula of {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 100 is 50X / Y ( Year) and a life expectancy of 50X / YX (year).

【0027】さらに、図4に示すように、建築後に補修
を施されたALCの炭酸化度は、補修を施されるまでの
経過年数に比例し、補修を施された後の経過年数に比例
した炭酸化度が加わると考えられる。従って、最新の補
修以降の比例関係により、炭酸化度が50%に達する
と、耐用年数を超過したと考えられる。
Further, as shown in FIG. 4, the degree of carbonation of ALC repaired after construction is proportional to the number of years elapsed before the repair is performed, and proportional to the number of years elapsed after the repair is performed. It is considered that the added degree of carbonation is added. Therefore, it is considered that the service life was exceeded when the degree of carbonation reached 50% due to the proportional relationship after the latest repair.

【0028】従って、補修を行った軽量気泡コンクリー
トにおいて、本発明の耐用年数予測方法は、次のように
なる。
Therefore, in the repaired lightweight cellular concrete, the service life prediction method of the present invention is as follows.

【0029】建築後、X2 年経過した軽量気泡コンクリ
ートにおいて、炭酸化度がY2 (%)であり、最新の補
修より後で、建築後X1 年経過した時の炭酸化度がY1
(%)である軽量気泡コンクリートは、{(X2
1 )/(Y2 −Y1 )}×(50−Y2 )+X
2 (年)の耐用年数を有し、{(X2 −X1 )/(Y2
−Y1 )}×(50−Y2 )(年)の余命であると予測
する。炭酸化度の測定は、前述と同様に行う。
[0029] After construction, in the lightweight cellular concrete that has elapsed X 2 years, carbonation level is a Y 2 (%), later than the latest of repair, carbonation of the time that has elapsed building after X 1 year Y 1
(%) Of lightweight cellular concrete is Δ (X 2
X 1 ) / (Y 2 −Y 1 )} × (50−Y 2 ) + X
2 (years) and {(X 2 −X 1 ) / (Y 2
−Y 1 )} × (50−Y 2 ) (years). The measurement of the degree of carbonation is performed in the same manner as described above.

【0030】本発明の耐用年数の予測方法の利点は、少
量のサンプリングにより、迅速、簡便に耐用年数の予測
が正確にできることにある。
An advantage of the method for estimating the useful life of the present invention is that the useful life can be accurately and quickly and simply predicted by a small amount of sampling.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明の方
法によれば、少量のサンプリングにより、迅速、簡便に
耐用年数の予測が正確にできる。
As described in detail above, according to the method of the present invention, the useful life can be accurately predicted quickly and simply with a small amount of sampling.

【0032】補修を行っていなければ、1回の測定で耐
用年数が正確に予測でき、経過年数を引いた余命によ
り、建築物の保守計画を効果的にかつ合理的に立案でき
るという特徴を有する。
If the repair is not performed, the useful life can be accurately predicted by one measurement, and the maintenance plan of the building can be effectively and rationally planned based on the remaining life obtained by subtracting the elapsed years. .

【0033】補修を行っていても、補修内容の検討など
を必要とせずに、一定期間を跨いで2回の測定を実施す
れば耐用年数が正確に予測できるという顕著な効果を有
する。
Even if the repair is performed, there is a remarkable effect that the service life can be accurately predicted if the measurement is performed twice over a certain period without needing to study the repair contents.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ALCパネル経過年数と、屋外側表面部分の
ALCの炭酸化度と、ひび割れの有無との関係を示す相
関図である。
FIG. 1 is a correlation diagram showing the relationship between the age of an ALC panel, the degree of carbonation of ALC on an outdoor surface portion, and the presence or absence of cracks.

【図2】 促進炭酸化されたALCの経過日数に対する
炭酸化度の変化を示すグラフである。
FIG. 2 is a graph showing changes in the degree of carbonation with respect to the number of elapsed days of accelerated carbonated ALC.

【図3】 建築後に補修を行わなかったALCの経過年
数に対する炭酸化度の変化の模式図である。
FIG. 3 is a schematic diagram of a change in the degree of carbonation with respect to the age of an ALC that has not been repaired after construction.

【図4】 建築後に補修を行ったALCの経過年数に対
する炭酸化度の変化の模式図である。
FIG. 4 is a schematic diagram showing a change in the degree of carbonation of an ALC repaired after its construction with respect to the number of years passed.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 建築後、補修されずにX年経過した軽量
気泡コンクリートにおいて、全酸化カルシウム含有量
(重量%)、および600〜900℃における重量減少
量に相当する炭酸ガス含有量(重量%)を測定し、
{(炭酸ガス含有量)×56/44}/(全酸化カルシ
ウム含有量)×100なる式で得られる炭酸化度がY
(%)である軽量気泡コンクリートは、50X/Y
(年)の耐用年数を有すると予測する耐用年数予測方
法。
1. A lightweight cellular concrete which has been repaired for X years and has not been repaired since its construction, the total calcium oxide content (% by weight) and the carbon dioxide content (% by weight) corresponding to the weight loss at 600 to 900 ° C. )
The degree of carbonation obtained by the formula of {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 100 is Y
(%) Is 50X / Y
A service life prediction method that is expected to have a service life of (years).
【請求項2】 建築後、補修されずにX年経過した軽量
気泡コンクリートにおいて、全酸化カルシウム含有量
(重量%)、および600〜900℃における重量減少
量に相当する炭酸ガス含有量(重量%)を測定し、
{(炭酸ガス含有量)×56/44}/(全酸化カルシ
ウム含有量)×100なる式で得られる炭酸化度がY
(%)である軽量気泡コンクリートは、50X/Y−X
(年)の余命であると予測する耐用年数予測方法。
2. In a lightweight cellular concrete which has passed X years without repair after construction, the total calcium oxide content (% by weight) and the carbon dioxide content (% by weight) corresponding to the weight loss at 600 to 900 ° C. )
The degree of carbonation obtained by the formula of {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 100 is Y
(%) Is 50X / YX
A service life prediction method that predicts the life expectancy of (years).
【請求項3】 建築後、X2 年経過した軽量気泡コンク
リートにおいて、全酸化カルシウム含有量(重量%)、
および600〜900℃における重量減少量に相当する
炭酸ガス含有量(重量%)を測定し、{(炭酸ガス含有
量)×56/44}/(全酸化カルシウム含有量)×1
00なる式で得られる炭酸化度がY2(%)であり、最
新の補修より後で、建築後X1 年経過した時の炭酸化度
がY1(%)である軽量気泡コンクリートは、{(X2
−X1 )/(Y2 −Y1 )}×(50−Y2 )+X
2 (年)の耐用年数を有すると予測する耐用年数予測方
法。
3. A lightweight cellular concrete X 2 years after construction, the total calcium oxide content (% by weight),
And the carbon dioxide content (% by weight) corresponding to the weight loss at 600 to 900 ° C. was measured, and {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 1
The lightweight aerated concrete having a carbonation degree of Y 2 (%) obtained by the formula of 00 and a carbonation degree of Y 1 (%) after elapse of X 1 year after construction after the latest repair is as follows. {(X 2
−X 1 ) / (Y 2 −Y 1 )} × (50−Y 2 ) + X
A service life prediction method that is expected to have a service life of 2 (years).
【請求項4】 建築後、X2 年経過した軽量気泡コンク
リートにおいて、全酸化カルシウム含有量(重量%)、
および600〜900℃における重量減少量に相当する
炭酸ガス含有量(重量%)を測定し、{(炭酸ガス含有
量)×56/44}/(全酸化カルシウム含有量)×1
00なる式で得られる炭酸化度がY2(%)であり、最
新の補修より後で、建築後X1 年経過した時の炭酸化度
がY1(%)である軽量気泡コンクリートは、{(X2
−X1 )/(Y2 −Y1 )}×(50−Y2 )(年)の
余命であると予測する耐用年数予測方法。
4. In a lightweight cellular concrete X 2 years after construction, total calcium oxide content (% by weight),
And the carbon dioxide content (% by weight) corresponding to the weight loss at 600 to 900 ° C. was measured, and {(carbon dioxide content) × 56/44} / (total calcium oxide content) × 1
The lightweight aerated concrete having a degree of carbonation of Y 2 (%) obtained by the formula of 00 and a degree of carbonation of Y 1 (%) after elapse of X 1 year after construction after the latest repair is as follows. {(X 2
−X 1 ) / (Y 2 −Y 1 )} × (50−Y 2 ) (year).
JP08835699A 1999-03-30 1999-03-30 A method for predicting the useful life of lightweight cellular concrete Expired - Lifetime JP3478160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08835699A JP3478160B2 (en) 1999-03-30 1999-03-30 A method for predicting the useful life of lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08835699A JP3478160B2 (en) 1999-03-30 1999-03-30 A method for predicting the useful life of lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JP2000283895A true JP2000283895A (en) 2000-10-13
JP3478160B2 JP3478160B2 (en) 2003-12-15

Family

ID=13940546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08835699A Expired - Lifetime JP3478160B2 (en) 1999-03-30 1999-03-30 A method for predicting the useful life of lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP3478160B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207003A (en) * 2001-01-10 2002-07-26 Kansai Paint Co Ltd Method for estimating deterioration of exterior material of building
JP2003035657A (en) * 2001-07-25 2003-02-07 Sumitomo Kinzoku Kozan Siporex Kk System for diagnosing degradation of lightweight cellular concrete panel
JP2005017215A (en) * 2003-06-27 2005-01-20 Ohbayashi Corp Device and method for diagnosing crack of concrete, computer program, and computer-readable recording medium
CN101377464B (en) * 2008-09-19 2010-06-02 孙炳全 Method for non-destroyed real time continuously testing for concrete carbonization depth
JP2011133359A (en) * 2009-12-24 2011-07-07 Sumitomo Metal Mining Siporex Kk Deterioration diagnosis method of autoclaved lightweight concrete horizontal member
JP2014190903A (en) * 2013-03-28 2014-10-06 Clion Co Ltd Calculation method of carbonation degree of light-weight air bubble concrete panel
JP2016139429A (en) * 2016-03-24 2016-08-04 日本建築検査協会株式会社 Concrete building useful life calculation method, concrete building useful life calculation program, and concrete building useful life calculation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552840A (en) * 1991-08-27 1993-03-02 Misawa Homes Co Ltd Method for measuring carbonating degree of concrete building material
JPH05310480A (en) * 1992-05-12 1993-11-22 Asahi Chem Ind Co Ltd Lightweight cellular concrete excellent in performance of carbonatization resistance
JPH1021211A (en) * 1996-06-28 1998-01-23 Taisei Corp Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure
JP2000180437A (en) * 1998-12-14 2000-06-30 Sumitomo Metal Mining Co Ltd Method for diagnosing endurance of aerated lightweight concrete
JP2000193658A (en) * 1998-10-22 2000-07-14 Sumitomo Metal Mining Co Ltd Quantitative determination and evaluation method of deterioration of water vapor cure light-weight bubble concrete

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552840A (en) * 1991-08-27 1993-03-02 Misawa Homes Co Ltd Method for measuring carbonating degree of concrete building material
JPH05310480A (en) * 1992-05-12 1993-11-22 Asahi Chem Ind Co Ltd Lightweight cellular concrete excellent in performance of carbonatization resistance
JPH1021211A (en) * 1996-06-28 1998-01-23 Taisei Corp Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure
JP2000193658A (en) * 1998-10-22 2000-07-14 Sumitomo Metal Mining Co Ltd Quantitative determination and evaluation method of deterioration of water vapor cure light-weight bubble concrete
JP2000180437A (en) * 1998-12-14 2000-06-30 Sumitomo Metal Mining Co Ltd Method for diagnosing endurance of aerated lightweight concrete

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002207003A (en) * 2001-01-10 2002-07-26 Kansai Paint Co Ltd Method for estimating deterioration of exterior material of building
JP2003035657A (en) * 2001-07-25 2003-02-07 Sumitomo Kinzoku Kozan Siporex Kk System for diagnosing degradation of lightweight cellular concrete panel
JP2005017215A (en) * 2003-06-27 2005-01-20 Ohbayashi Corp Device and method for diagnosing crack of concrete, computer program, and computer-readable recording medium
CN101377464B (en) * 2008-09-19 2010-06-02 孙炳全 Method for non-destroyed real time continuously testing for concrete carbonization depth
JP2011133359A (en) * 2009-12-24 2011-07-07 Sumitomo Metal Mining Siporex Kk Deterioration diagnosis method of autoclaved lightweight concrete horizontal member
JP2014190903A (en) * 2013-03-28 2014-10-06 Clion Co Ltd Calculation method of carbonation degree of light-weight air bubble concrete panel
JP2016139429A (en) * 2016-03-24 2016-08-04 日本建築検査協会株式会社 Concrete building useful life calculation method, concrete building useful life calculation program, and concrete building useful life calculation device

Also Published As

Publication number Publication date
JP3478160B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
Pham et al. Durability characteristics of lightweight rubberized concrete
Pedreño-Rojas et al. Eco-efficient acoustic and thermal conditioning using false ceiling plates made from plaster and wood waste
Cusson et al. Benefits of internal curing on service life and life-cycle cost of high-performance concrete bridge decks–A case study
Nematzadeh et al. Optimizing compressive behavior of concrete containing fine recycled refractory brick aggregate together with calcium aluminate cement and polyvinyl alcohol fibers exposed to acidic environment
Kwon et al. Prediction of durability for RC columns with crack and joint under carbonation based on probabilistic approach
Uranjek et al. Influence of freeze–thaw cycles on mechanical properties of historical brick masonry
Lahdensivu Durability properties and actual deterioration of Finnish concrete facades and balconies
Vračević et al. Evaluation of brick resistance to freeze/thaw cycles according to indirect procedures
Köliö et al. Evaluation of a carbonation model for existing concrete facades and balconies by consecutive field measurements
Malheiro et al. Effect of carbonation on the chloride diffusion of mortar specimens exposed to cyclic wetting and drying
Tsukagoshi et al. Protective performance of polyurethane waterproofing membrane against carbonation in cracked areas of mortar substrate
do Rosário Veiga et al. Mortars
Venkatesh et al. Condition assessment of existing concrete building using non-destructive testing methods for effective repair and restoration-a case study
Zheng et al. Experimental investigation on seismic behaviours of reinforced concrete columns under simulated acid rain environment
JP3451616B2 (en) Durability diagnostic method for lightweight cellular concrete
JP2000283895A (en) Method for predicting durable years of light-weight aerated concrete
JP5333775B2 (en) Degradation diagnosis method for lightweight cellular concrete horizontal members
Moghtadernejad Design, inspection, maintenance, life cycle performance and integrity of building facades
AL-Ameeri et al. Influence of carbonation on the resistance of concrete structures to chloride penetration and corrosion
Bochen et al. Service life assessment of renders on the basis of changes of physical and mechanical properties during simulated weathering
Slaton et al. Reinforced Concrete
Kashwani et al. Safety review of the quality ready-mix concrete (RMC) and workmanship in the construction industry
Alhassan The effects of materials and micro-climate variations on predictions of carbonation rate in reinforced concrete in the inland environment
Kabashi et al. Corrosion in Concrete Under Sulphate and Chloride Attacks
Hyung-Min et al. Carbonation-Induced Corrosion Initiation Probability of Rebars in Concrete With/Without Finishing Materials

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

EXPY Cancellation because of completion of term