JP3451616B2 - Durability diagnostic method for lightweight cellular concrete - Google Patents

Durability diagnostic method for lightweight cellular concrete

Info

Publication number
JP3451616B2
JP3451616B2 JP35470198A JP35470198A JP3451616B2 JP 3451616 B2 JP3451616 B2 JP 3451616B2 JP 35470198 A JP35470198 A JP 35470198A JP 35470198 A JP35470198 A JP 35470198A JP 3451616 B2 JP3451616 B2 JP 3451616B2
Authority
JP
Japan
Prior art keywords
alc
durability
carbonation
panel
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35470198A
Other languages
Japanese (ja)
Other versions
JP2000180437A (en
Inventor
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP35470198A priority Critical patent/JP3451616B2/en
Publication of JP2000180437A publication Critical patent/JP2000180437A/en
Application granted granted Critical
Publication of JP3451616B2 publication Critical patent/JP3451616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の壁や屋
根、床などに使用される軽量気泡コンクリート(AL
C)の診断方法に関し、特に、実際の使用段階において
最も重要な問題である耐久性の診断方法に関する。
TECHNICAL FIELD The present invention relates to a lightweight aerated concrete (AL) used for walls, roofs, floors, etc. of buildings.
The present invention relates to the diagnostic method C), and particularly to the durability diagnostic method, which is the most important problem in the actual use stage.

【0002】[0002]

【従来の技術】補強用鉄筋を内蔵して、板状に形成した
ALCからなるALCパネルは、建築物の壁や屋根、床
などに使用される。
2. Description of the Related Art ALC panels made of plate-shaped ALC having reinforcing bars built-in are used for walls, roofs and floors of buildings.

【0003】該ALCパネルは、珪石等の珪酸質原料
と、セメントや生石灰等の石灰質原料とを主原料とし、
これらの微粉末に水とアルミニウム粉末等の添加物を加
えて、スラリー状とした後、補強用鉄筋を配置した型枠
内に流し込み、アルミニウム粉末の反応により発泡さ
せ、石灰質原料の反応により半硬化させて、所定寸法に
形成した後、オートクレーブによる高温高圧水蒸気養生
を行って製造される。該ALCパネルは、絶乾かさ比重
0.5程度の軽量で、耐火性、断熱性、施工性に優れて
いるため、建築材料として広く使用されている。
The ALC panel is mainly composed of siliceous materials such as silica stone and calcareous materials such as cement and quicklime.
Water and aluminum powder and other additives are added to these fine powders to form a slurry, which is then poured into a formwork in which reinforcing bars are placed, foamed by the reaction of the aluminum powder, and semi-cured by the reaction of the calcareous raw material. Then, after being formed into a predetermined size, it is manufactured by performing high temperature high pressure steam curing by an autoclave. Since the ALC panel is lightweight with an absolute dry bulk density of about 0.5 and is excellent in fire resistance, heat insulation and workability, it is widely used as a building material.

【0004】ALCパネルを使用する立場から判断する
際、ALCにひび割れが発生したり、パネル強度が低下
した場合に、ALCの耐久性は劣化したと認識される。
これは、特に、製造時からの年数が分からないALCに
対しては、有効な判断手段となる。ALCの耐久性が劣
化する要因、言い換えるとひび割れの発生やパネル強度
低下の要因は、外的な要因と内的な要因に大別される。
When judging from the standpoint of using the ALC panel, it is recognized that the durability of the ALC is deteriorated when the ALC is cracked or the panel strength is lowered.
This is an effective judgment means especially for ALC whose years from the time of manufacture are unknown. The factors that deteriorate the durability of the ALC, in other words, the factors that cause cracking and decrease the panel strength are roughly classified into external factors and internal factors.

【0005】外的な要因とは、地震や躯体の変形、風圧
などである。これらは、建物の設計や不可避な自然現象
が原因であり、ALC自身の問題である場合は少ない。
一方、内的な要因としては、凍害、塩害、炭酸化、乾燥
収縮等が考えられる。
External factors include an earthquake, deformation of a skeleton, wind pressure, and the like. These are caused by the design of the building and inevitable natural phenomena, and are rarely problems of ALC itself.
On the other hand, internal factors include frost damage, salt damage, carbonation, drying shrinkage and the like.

【0006】内的な要因の中で凍害は、寒冷地特有のも
のであり、仕上げやシーリング、窓周りなどの施工方法
によって回避できることから、ALC自身の問題ではな
い場合が多い。
Of the internal factors, frost damage is peculiar to cold regions and can be avoided by a construction method such as finishing, sealing, and window surroundings, so it is often not a problem of ALC itself.

【0007】また、ALCパネルの内部補強用鉄筋には
予め防錆処理(鉄筋防錆)が施されており、塩水による
ALCの耐久性の劣化は、この鉄筋防錆が不十分である
場合に問題となる。従って、塩害は、正常に製造された
ALCパネルにおいて、ALCの耐久性を議論する場合
の要因としては適切でない。
In addition, the reinforcing bars for internal reinforcement of the ALC panel have been previously subjected to anticorrosion treatment (corrosion prevention), and the deterioration of the durability of the ALC due to salt water is caused when the anticorrosion is insufficient. It becomes a problem. Therefore, salt damage is not appropriate as a factor when discussing the durability of ALC in a normally manufactured ALC panel.

【0008】炭酸化とは、ALCの主要鉱物であるトバ
モライトが、炭酸ガスと水分が存在する環境下で、シリ
カゲルと炭酸カルシウムに分解する反応であり、仕上げ
等の施工が適切に施された場合にも、徐々に進行するこ
とが知られている。また、炭酸化することによりALC
は収縮し(炭酸化収縮)、さらに炭酸化したALCは乾
燥収縮率が大きくなり、乾燥収縮と湿潤膨張の繰り返し
によるひび割れの発生やパネル強度の低下につながるこ
とが懸念される。そこで、ALC自身の問題となる劣化
要因としては、炭酸化とそれに伴う長さ変化(炭酸化収
縮と乾燥収縮)に注目することが必要である。
Carbonation is a reaction in which tobermorite, which is the main mineral of ALC, is decomposed into silica gel and calcium carbonate in an environment where carbon dioxide gas and water are present. However, it is known that it will progress gradually. In addition, by carbonating ALC
Is contracted (carbonation contraction), and further the carbonized ALC has a large dry contraction rate, which may cause cracking due to repeated dry contraction and wet expansion and a decrease in panel strength. Therefore, it is necessary to pay attention to carbonation and its accompanying change in length (carbonation contraction and drying contraction) as a deterioration factor which is a problem of ALC itself.

【0009】しかし、これまでALCの炭酸化と劣化の
関係についてはほとんど分かっていない。従って、AL
Cの耐久性を診断するためには、ひび割れの発生やパネ
ル強度の低下を調べるために、ALCパネルの仕上げを
取り除いたり、ALCパネルを取り外して強度試験を行
う等、実際の建築物では実用的でない方法しか無かっ
た。
However, until now, little has been known about the relationship between carbonation and deterioration of ALC. Therefore, AL
In order to diagnose the durability of C, in order to investigate the occurrence of cracks and the decrease in panel strength, the ALC panel is removed from the finish, the ALC panel is removed and a strength test is carried out. There was no other way.

【0010】[0010]

【発明が解決しようとする課題】このような従来の事情
に鑑み、本発明ではALCの炭酸化と耐久性の劣化との
関係を明らかにし、非常に簡便で迅速な方法により、A
LCの耐久性を診断する方法を提供することを目的とす
る。
In view of such conventional circumstances, in the present invention, the relationship between carbonation of ALC and deterioration of durability was clarified, and a very simple and quick method was adopted.
It is an object to provide a method for diagnosing the durability of LC.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明のALCの耐久性診断方法では、該ALCの
炭酸化度を測定し、この炭酸化度が50%以上であるA
LCは、耐久性が劣化したと診断する。
In order to achieve the above object, in the method for diagnosing durability of ALC of the present invention, the carbonation degree of the ALC is measured, and the carbonation degree is 50% or more.
LC diagnoses that durability has deteriorated.

【0012】ここで、炭酸化度は次の手順により得る。
すなわち、当該ALCの全カルシウム分を定量するため
に、全酸化カルシウム含有量(重量%)を測定する化学
分析を行う。該化学分析は、例えば、ICP−AES
(誘導結合プラズマ原子分光分析)を行う。
Here, the degree of carbonation is obtained by the following procedure.
That is, in order to quantify the total calcium content of the ALC, a chemical analysis for measuring the total calcium oxide content (% by weight) is performed. The chemical analysis is, for example, ICP-AES.
(Inductively coupled plasma atomic spectroscopy) is performed.

【0013】また、当該ALCの炭酸カルシウム分を定
量するために、炭酸ガス含有量(重量%)を測定する熱
分析を行う。該熱分析は、例えば、DTA−TG(示差
熱分析における重量分析)により測定される600℃〜
800℃の範囲内に加熱されているときの減少重量か
ら、炭酸ガス含有量(重量%)を算出する。
Further, in order to quantify the calcium carbonate content of the ALC, thermal analysis for measuring the carbon dioxide content (% by weight) is performed. The thermal analysis is, for example, 600 ° C. measured by DTA-TG (gravimetric analysis in differential thermal analysis).
The carbon dioxide content (% by weight) is calculated from the weight loss when heated within the range of 800 ° C.

【0014】そして、炭酸化度(%)は、(炭酸ガス含
有量×56/44)/(全酸化カルシウム含有量)×1
00なる式で得る。
The degree of carbonation (%) is (carbon dioxide content x 56/44) / (total calcium oxide content) x 1
It is obtained by the formula 00.

【0015】[0015]

【発明の実施の形態】本発明者らは、ALCの炭酸化と
耐久性の劣化との関係を調べるため、実際の建物からA
LCパネルを取り外し、様々な調査分析を行った。
BEST MODE FOR CARRYING OUT THE INVENTION In order to investigate the relationship between carbonation of ALC and deterioration of durability, the inventors of the present invention used an A
The LC panel was removed and various research analyzes were performed.

【0016】建物履歴として、建築年、部位、方角、建
築時の仕上げ、仕上げ補修とその内容を調べた。
As building history, the year of construction, part, direction, finishing at the time of construction, finishing repair and their contents were examined.

【0017】外観調査として、各ALCパネルの表裏面
におけるひび割れの有無を目視により確認した。ここ
で、地震や躯体の変形によると思われる大きなひび割れ
は対象とせず、網目状のひび割れだけを対象とした。
As a visual inspection, the presence or absence of cracks on the front and back surfaces of each ALC panel was visually confirmed. Here, we did not target large cracks that might be caused by an earthquake or deformation of the skeleton, but only meshed cracks.

【0018】パネル曲げ強度は、JIS規格に準じ、4
等分点2点載荷により試験した。
The panel bending strength is 4 according to JIS standard.
The test was carried out by loading two equal points.

【0019】ブロック圧縮強度は、JIS規格に準じ、
ひび割れのないところから90〜100mm角のブロッ
クを切り出して測定した。
The block compressive strength conforms to the JIS standard,
A 90 to 100 mm square block was cut out from a place without cracks and measured.

【0020】乾燥収縮率は、40mm×40mm×16
0mmの大きさのサンプルを切り出し、飽水状態から、
RH45%において長さ変化が無くなるまでの長さ変化
率として測定した。
The dry shrinkage is 40 mm × 40 mm × 16
Cut out a sample with a size of 0 mm,
It was measured as a rate of length change until the length change disappeared at RH of 45%.

【0021】たわみ率は、JIS規格に準じ、2線荷重
試験装置により試験した。
The deflection rate was tested by a two-wire load tester according to JIS standard.

【0022】炭酸化度は、パネルの厚さ方向に5層に均
等に分割し、屋外側表面層について、全酸化カルシウム
(CaO)含有量(重量%)を、ICP−AESで測定
し、炭酸ガス(CO2 )含有量(重量%)を、DTA−
TGによる600〜800℃の減少重量から算出し、下
式(数1)から求めた。
The degree of carbonation was equally divided into 5 layers in the thickness direction of the panel, and the total calcium oxide (CaO) content (% by weight) of the surface layer on the outdoor side was measured by ICP-AES. The gas (CO 2 ) content (% by weight) was changed to DTA-
It was calculated from the weight loss from 600 to 800 ° C. due to TG, and calculated from the following formula (Equation 1).

【0023】[0023]

【数1】炭酸化度(%)=(炭酸ガス含有量×56/4
4)/(全酸化カルシウム含有量)×100
## EQU1 ## Carbonation degree (%) = (carbon dioxide content × 56/4
4) / (total calcium oxide content) × 100

【0024】実際の診断のための測定では、ALCパネ
ルの屋外側表面部分からサンプリングするので、本実施
例では、前記のように5層に分割したうち、屋外側表面
層のサンプルから得られた炭酸化度について測定した。
In the actual measurement for diagnosis, sampling is carried out from the surface portion on the outdoor side of the ALC panel. Therefore, in this example, the sample was obtained from the sample of the surface layer on the outdoor side among the five layers as described above. The degree of carbonation was measured.

【0025】各調査データを、炭酸化度との関係に着目
して図1〜5にプロットした。
Each survey data was plotted in FIGS. 1 to 5 focusing on the relationship with the carbonation degree.

【0026】図1に、ALCパネルの経過年数と、屋外
側表面部分のALCの炭酸化度との関係を、ひび割れの
有無の分類と共に示す。
FIG. 1 shows the relationship between the age of the ALC panel and the carbonation degree of ALC on the surface portion on the outdoor side, together with the classification of presence or absence of cracks.

【0027】使用年数が経過するに従って、炭酸化度は
直線的に増加し、20年以上では、炭酸化度が50〜6
0%であった。炭酸化度は60%で飽和し、それ以上に
は増加しなかった。ひび割れの有無の観点では、炭酸化
度が50〜60%のサンプルにはすべてひび割れが発生
しており、炭酸化度が0〜50%のサンプルにはひび割
れが発生していなかった。
The degree of carbonation increases linearly as the number of years of use elapses.
It was 0%. The degree of carbonation was saturated at 60% and did not increase further. From the viewpoint of the presence or absence of cracks, all the samples with a carbonation degree of 50 to 60% were cracked, and the samples with a carbonation degree of 0 to 50% were not cracked.

【0028】図2に、屋外側表面部分のALCの炭酸化
度と、ALCパネルのブロック圧縮強度との関係を示
す。
FIG. 2 shows the relationship between the carbonation degree of ALC on the surface portion on the outdoor side and the block compressive strength of the ALC panel.

【0029】炭酸化度が約30%までのALCでは、製
造直後と同等のブロック圧縮強度を保持しているが、炭
酸化度が50〜60%に増加すると、ブロック圧縮強度
が低下しており、いくつかのサンプルでブロック圧縮強
度のJIS規格値「3N/mm2 以上」を満足していな
い。図1の結果と合わせて考えると、ブロック圧縮強度
の低下は、ひび割れの発生が原因であり、炭酸化が進ん
でもひび割れが発生しなければ、言い換えると、ひび割
れが発生する程度まで炭酸化が進まなければ、ブロック
圧縮強度は低下しないと考えられる。
ALC having a carbonation degree of up to about 30% retains the same block compressive strength as immediately after production, but when the carbonation degree increases to 50 to 60%, the block compressive strength decreases. However, some samples do not satisfy the JIS standard value “3 N / mm 2 or more” of block compressive strength. Considering together with the result of FIG. 1, the decrease in the block compressive strength is caused by the occurrence of cracks. If the cracks do not occur even if the carbonation progresses, in other words, the carbonation progresses to the extent that the cracks occur. If not, it is considered that the block compression strength does not decrease.

【0030】図3に、屋外側表面部分のALCの炭酸化
度と、ALCパネルの乾燥収縮率との関係を示す。
FIG. 3 shows the relationship between the carbonation degree of ALC on the surface portion on the outdoor side and the dry shrinkage rate of the ALC panel.

【0031】乾燥収縮率(飽水状態から、RH45%ま
での乾燥による収縮率)は製造直後では約0.03%で
あるが、炭酸化度が50〜60%と増加するにつれて、
乾燥収縮率が製造直後に対して約2倍の0.06〜0.
07%となり、JIS規格値「0.06%以下」を満足
しなくなる。
The dry shrinkage (shrinkage due to drying from the saturated state to RH of 45%) is about 0.03% immediately after production, but as the carbonation degree increases to 50-60%,
The dry shrinkage is about twice as much as that immediately after the production, from 0.06 to 0.
It becomes 07%, and it does not satisfy the JIS standard value "0.06% or less".

【0032】図4に、屋外側表面部分のALCの炭酸化
度と、ALCパネルのパネル曲げ強度との関係を示す。
FIG. 4 shows the relationship between the carbonation degree of ALC on the surface portion on the outdoor side and the panel bending strength of the ALC panel.

【0033】ここで、設計強度が各サンプルごとに異な
るため、パネル曲げ強度を「曲げひび割れモーメント/
設計荷重」として標準化した。図4から、炭酸化度が大
きくなっても、「曲げひび割れモーメント/設計荷重」
は1以上であることが分かる。設計荷重は使用条件に関
して所定の安全率を乗じて設定されているため、パネル
曲げ強度は十分である。一般に、パネル曲げ強度は、主
に補強用鉄筋によって保たれているため、ひび割れが発
生しても低下しないと考えられる。
Since the design strength is different for each sample, the panel bending strength is defined as "bending crack moment /
Standardized as "design load". From Fig. 4, even if the carbonation degree becomes large, "bending crack moment / design load"
It can be seen that is 1 or more. Since the design load is set by multiplying a predetermined safety factor in terms of use conditions, the panel bending strength is sufficient. In general, the panel bending strength is mainly maintained by the reinforcing steel bars, so it is considered that the panel bending strength does not decrease even if cracks occur.

【0034】図5に、屋外側表面部分のALCの炭酸化
度と、ALCパネルのたわみ率との関係を示す。
FIG. 5 shows the relationship between the degree of carbonation of ALC on the surface portion on the outdoor side and the deflection rate of the ALC panel.

【0035】たわみ率のJIS規格値は、「屋根板で
0.004(1/250)以下、外壁では0.005
(1/200)以下」である。図5から、炭酸化度が約
30%まで増加しても、たわみ率がJIS規格値を満足
しているが、炭酸化度が50〜60%に増加すると、た
わみ率がJIS規格値を外れる。炭酸化度が50〜60
%のサンプルではひび割れが発生していたため、たわみ
率が大きくなったと考えられる。
The JIS standard value of the deflection rate is "0.004 (1/250) or less for the roof plate and 0.005 for the outer wall.
(1/200) or less ”. From FIG. 5, the deflection rate satisfies the JIS standard value even when the carbonation degree increases to about 30%, but when the carbonation degree increases to 50 to 60%, the deflection rate deviates from the JIS standard value. . Carbonation degree is 50-60
%, The cracks occurred, so it is considered that the deflection rate increased.

【0036】以上の結果から、屋外側表面部分のALC
の炭酸化度が50%以上であるALCパネルでは、全て
ひび割れが発生しており、ブロック圧縮強度は低下し、
乾燥収縮率とたわみ率はJIS規格値から外れる。つま
り、屋外側表面部分のALCの炭酸化度が50%以上で
あるALCパネルは、耐久性が劣化したと判断する本発
明のALCの耐久性診断方法が有効であることを意味し
ている。
From the above results, the ALC of the surface portion on the outdoor side
All of the ALC panels having a carbonation degree of 50% or more had cracks, and the block compressive strength decreased,
The dry shrinkage ratio and the flexural ratio deviate from the JIS standard values. That is, it means that the ALC durability diagnosis method of the present invention, which determines that the durability of the ALC panel whose outdoor side surface portion has a carbonation degree of 50% or more, is deteriorated is effective.

【0037】本発明のALCの耐久性診断方法の利点
は、仕上げ層を取り除いてALCパネルのひび割れを目
視確認する必要や、ALCパネルを取り外して曲げ強度
を測定する必要がなく、少量のALCのサンプリングに
より、迅速かつ簡便に耐久性の診断ができることであ
る。
The advantage of the method for diagnosing durability of ALC of the present invention is that it is not necessary to remove the finishing layer to visually check for cracks in the ALC panel, and to remove the ALC panel to measure the bending strength. Sampling enables quick and easy diagnosis of durability.

【0038】(実施例)実ALC建築物16軒のALC
表面部分から、1g程度のALCをサンプリングし、前
述の方法で炭酸化度を測定した。全てのALC建築物
は、表面処理(仕上げ)が施されていなかったため、目
視により網目状ひび割れの発生の有無を調査した。結果
を、表1に示す。表1において、撥水性ALCとは、A
LCの原料の混合時に、適量のポリジメチルシロキサン
を混合したALCパネルで、吸水率が低い性質を持つ。
(Example) ALC of 16 real ALC buildings
About 1 g of ALC was sampled from the surface portion, and the carbonation degree was measured by the method described above. Since all ALC buildings were not surface-treated (finished), the presence or absence of mesh cracks was visually examined. The results are shown in Table 1. In Table 1, water repellent ALC means A
An ALC panel in which an appropriate amount of polydimethylsiloxane is mixed when LC raw materials are mixed, and has a property of low water absorption.

【0039】[0039]

【表1】 [Table 1]

【0040】表1から、パネル種類に関わらず、炭酸化
度が50%以上のALCパネル9、10、15、16で
は、ひび割れが発生していたことから分かるように、わ
ずかな量のALCをサンプリングして、炭酸化度を測定
することにより、当該ALCの耐久性を診断する本発明
の方法が有効であり、極めて顕著な効果を有する。
It can be seen from Table 1 that, regardless of the type of panel, in ALC panels 9, 10, 15 and 16 having a carbonation degree of 50% or more, a slight amount of ALC was obtained, as can be seen from the fact that cracking occurred. The method of the present invention for diagnosing the durability of the ALC by sampling and measuring the carbonation degree is effective and has a very remarkable effect.

【0041】[0041]

【発明の効果】以上、詳細に説明したように、本発明の
方法によれば、仕上げ層を取り除いてALCパネルのひ
び割れを目視確認する必要や、ALCパネルを取り外し
て曲げ強度を測定する必要がなく、少量のALCをサン
プリングすることにより、迅速かつ簡便に耐久性の診断
ができるという極めて顕著な効果を有する。
As described above in detail, according to the method of the present invention, it is necessary to remove the finishing layer to visually check for cracks in the ALC panel, or to remove the ALC panel and measure the bending strength. However, by sampling a small amount of ALC, the durability can be diagnosed quickly and easily, which is a very remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ALCパネル経過年数と、屋外側表面部分の
ALCの炭酸化度の関係を示す相関図である。
FIG. 1 is a correlation diagram showing the relationship between the number of years of ALC panel elapsed and the carbonation degree of ALC on the surface portion on the outdoor side.

【図2】 屋外側表面部分のALCの炭酸化度と、AL
Cパネルのブロック圧縮強度との関係を示す相関図であ
る。
[Fig. 2] Carbonation degree of ALC on the outdoor surface and AL
It is a correlation diagram which shows the relationship with the block compression strength of C panel.

【図3】 屋外側表面部分のALCの炭酸化度と、AL
Cパネルの乾燥収縮率との関係を示す相関図である。
[Fig. 3] Carbonation degree of ALC on the outdoor surface and AL
It is a correlation diagram which shows the relationship with the dry shrinkage rate of C panel.

【図4】 屋外側表面部分のALCの炭酸化度と、AL
Cパネルのパネル曲げ強度との関係を示す相関図であ
る。
[Fig. 4] Carbonation degree of ALC on the outdoor surface and AL
It is a correlation diagram which shows the relationship with the panel bending strength of C panel.

【図5】 屋外側表面部分のALCの炭酸化度と、AL
Cパネルのたわみ率との結果を示す相関図である。
FIG. 5: Carbonation degree of ALC on the outdoor surface and AL
It is a correlation diagram which shows the result with the deflection rate of C panel.

フロントページの続き (56)参考文献 特開 平5−52840(JP,A) 特開 平3−100460(JP,A) 特開 昭57−77962(JP,A) 特開 平7−20097(JP,A) 特開 平11−352123(JP,A) 特開 平10−267920(JP,A) 特開 平6−331532(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 33/38 Continuation of front page (56) Reference JP-A-5-52840 (JP, A) JP-A-3-100460 (JP, A) JP-A-57-77962 (JP, A) JP-A-7-20097 (JP , A) JP 11-352123 (JP, A) JP 10-267920 (JP, A) JP 6-331532 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) G01N 33/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軽量気泡コンクリートの全酸化カルシウ
ム含有量(重量%)および炭酸ガス含有量(重量%)を
測定し、(炭酸ガス含有量×56/44)/(全酸化カ
ルシウム含有量)×100なる式で得られる炭酸化度
(%)が50%以上である軽量気泡コンクリートは、耐
久性が劣化したと診断する軽量気泡コンクリートの耐久
性診断方法。
1. The total calcium oxide content (wt%) and carbon dioxide gas content (wt%) of the lightweight cellular concrete are measured, and (carbon dioxide gas content × 56/44) / (total calcium oxide content) × A lightweight cellular concrete durability diagnosis method for diagnosing that the lightweight cellular concrete having a carbonation degree (%) of 50 or more obtained by the formula 100 is deteriorated in durability.
【請求項2】 ICP−AES(誘導結合プラズマ原子
分光分析)により、全酸化カルシウム含有量(重量%)
を測定し、DTA−TG(示差熱分析における重量分
析)により測定される600℃〜800℃の範囲内に加
熱されているときの減少重量から、炭酸ガス含有量(重
量%)を測定する請求項1に記載の軽量気泡コンクリー
トの耐久性診断方法。
2. The total calcium oxide content (% by weight) by ICP-AES (inductively coupled plasma atomic spectroscopy).
Is measured, and the carbon dioxide content (% by weight) is measured from the weight loss when heated within the range of 600 ° C. to 800 ° C. measured by DTA-TG (weight analysis in differential thermal analysis). Item 1. A method for diagnosing the durability of lightweight cellular concrete according to Item 1.
JP35470198A 1998-12-14 1998-12-14 Durability diagnostic method for lightweight cellular concrete Expired - Lifetime JP3451616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35470198A JP3451616B2 (en) 1998-12-14 1998-12-14 Durability diagnostic method for lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35470198A JP3451616B2 (en) 1998-12-14 1998-12-14 Durability diagnostic method for lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JP2000180437A JP2000180437A (en) 2000-06-30
JP3451616B2 true JP3451616B2 (en) 2003-09-29

Family

ID=18439332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35470198A Expired - Lifetime JP3451616B2 (en) 1998-12-14 1998-12-14 Durability diagnostic method for lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP3451616B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032318A (en) * 2008-07-28 2010-02-12 Clion Co Ltd Deterioration diagnosis method of autoclaved lightweight concrete panel
CN102980880A (en) * 2012-12-06 2013-03-20 武汉钢铁(集团)公司 Method for quickly determining calcium fluoride and calcium oxide contents in desulfurizer for steel making
CN107870167A (en) * 2016-09-27 2018-04-03 上海宝钢工业技术服务有限公司 The assay method of beryllium and its compound concentration in workplace air
CN108872200A (en) * 2017-05-08 2018-11-23 上海梅山钢铁股份有限公司 A kind of detection method of coke surface absorption sulfur content

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3478160B2 (en) * 1999-03-30 2003-12-15 住友金属鉱山株式会社 A method for predicting the useful life of lightweight cellular concrete
JP3519383B2 (en) * 2001-07-25 2004-04-12 住友金属鉱山シポレックス株式会社 Deterioration diagnosis system for lightweight cellular concrete panels
KR100473645B1 (en) * 2002-04-11 2005-03-08 한국수력원자력 주식회사 Method for measuring lanthanides content dissolved in uranium oxide
JP4895830B2 (en) * 2007-01-17 2012-03-14 住友金属鉱山シポレックス株式会社 Degradation diagnosis method for lightweight cellular concrete horizontal members
JP5333775B2 (en) * 2009-12-24 2013-11-06 住友金属鉱山シポレックス株式会社 Degradation diagnosis method for lightweight cellular concrete horizontal members
JP2014190903A (en) * 2013-03-28 2014-10-06 Clion Co Ltd Calculation method of carbonation degree of light-weight air bubble concrete panel
CN111579422A (en) * 2020-06-17 2020-08-25 福建中烟工业有限责任公司 Method for determining calcium carbonate in reconstituted tobacco

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032318A (en) * 2008-07-28 2010-02-12 Clion Co Ltd Deterioration diagnosis method of autoclaved lightweight concrete panel
CN102980880A (en) * 2012-12-06 2013-03-20 武汉钢铁(集团)公司 Method for quickly determining calcium fluoride and calcium oxide contents in desulfurizer for steel making
CN102980880B (en) * 2012-12-06 2015-11-04 武汉钢铁(集团)公司 The rapid assay methods of calcium fluoride and calcium oxide content in steel-making desulfurizing agent
CN107870167A (en) * 2016-09-27 2018-04-03 上海宝钢工业技术服务有限公司 The assay method of beryllium and its compound concentration in workplace air
CN108872200A (en) * 2017-05-08 2018-11-23 上海梅山钢铁股份有限公司 A kind of detection method of coke surface absorption sulfur content

Also Published As

Publication number Publication date
JP2000180437A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
Bamforth et al. International Review of Chloride Ingress Into Structural Concrete: A Trl Report (Trl 359)
Jerga Physico-mechanical properties of carbonated concrete
JP3451616B2 (en) Durability diagnostic method for lightweight cellular concrete
Rendell et al. Deteriorated concrete: Inspection and physicochemical analysis
Tang et al. Influence of axial loading and carbonation age on the carbonation resistance of recycled aggregate concrete
Scrivener et al. Mechanisms of chemical degradation of cement-based systems
Naderi et al. Cylindrical Chamber: A new in situ method for measuring permeability of concrete with and without admixtures
Baronio et al. Experimental approach to a procedure for the investigation of historic mortars
JP5333775B2 (en) Degradation diagnosis method for lightweight cellular concrete horizontal members
JP3478160B2 (en) A method for predicting the useful life of lightweight cellular concrete
Nijland et al. Microscopic examination of deteriorated concrete
JP3519383B2 (en) Deterioration diagnosis system for lightweight cellular concrete panels
Delgado et al. Diagnostic of concrete samples of pile caps affected by internal swelling reactions
Takahashi et al. Evaluation of factors contributing to deterioration of track-slab in cold areas
JP4895830B2 (en) Degradation diagnosis method for lightweight cellular concrete horizontal members
Lee et al. A study of sandwich wall panel.
Pulkit et al. Effect of various interface bond tests and their failure behavior on substrate and overlay concrete-A Review
Subedi Assessment of changes in crack density parameter and dynamic shear modulus of sustainable concrete mixtures with silica fume and fly ash replacement after exposure to moderate temperatures.
Greepala et al. Structural integrity and insulation property of ferrocement exposed to fire
Smits et al. Research concerning the durability assessment of lime masonry mortars
Kanda et al. Quantitative evaluation of crack resistance mechanism of blast furnace slag blended cement concrete via restrained shrinkage stress analysis
Sorvacheva et al. Development and standardization of methods of internal corrosion identification in ferroconcrete transport structures
Araya et al. Field investigation of slab deterioration due to carbonation in a concrete building
RU2027187C1 (en) Method of determining concrete thermofrost resistance
JP2003177083A (en) Method for estimating degree of deterioration of alc panel

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

EXPY Cancellation because of completion of term