JP2011133359A - Deterioration diagnosis method of autoclaved lightweight concrete horizontal member - Google Patents

Deterioration diagnosis method of autoclaved lightweight concrete horizontal member Download PDF

Info

Publication number
JP2011133359A
JP2011133359A JP2009293190A JP2009293190A JP2011133359A JP 2011133359 A JP2011133359 A JP 2011133359A JP 2009293190 A JP2009293190 A JP 2009293190A JP 2009293190 A JP2009293190 A JP 2009293190A JP 2011133359 A JP2011133359 A JP 2011133359A
Authority
JP
Japan
Prior art keywords
carbonation
deflection
degree
load
horizontal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009293190A
Other languages
Japanese (ja)
Other versions
JP5333775B2 (en
Inventor
Fumiaki Matsushita
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Siporex KK
Original Assignee
Sumitomo Metal Mining Siporex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Siporex KK filed Critical Sumitomo Metal Mining Siporex KK
Priority to JP2009293190A priority Critical patent/JP5333775B2/en
Publication of JP2011133359A publication Critical patent/JP2011133359A/en
Application granted granted Critical
Publication of JP5333775B2 publication Critical patent/JP5333775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To conveniently, quickly and properly diagnose a deterioration level of an autoclaved lightweight concrete (ALC) horizontal member without removing the member and implementing a test. <P>SOLUTION: In the ALC horizontal member, a reaction calcium content (mass%) is measured by a chemical analysis, and a carbon dioxide gas content (mass%) is measured by a thermal analysis. The carbonation degree (%) obtained by a formula (the carbon dioxide gas content (mass%)-1)/(reaction calcium content (mass%)×44/56-1)×100 is calculated based on measurement results. The deterioration level is diagnosed based on the carbonation degree (%) in response to cases whether the horizontal member is a floor material or a roof material and whether there is a persistent load. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、建築物の屋根または床の水平部材として使用される軽量気泡コンクリート(ALC)パネルについて、実際の使用段階において最も重要な問題である耐久性が維持されていることを確認するために行われる、ALC水平部材の劣化診断方法に関する。   The present invention is to confirm that the durability, which is the most important problem in actual use, is maintained for lightweight cellular concrete (ALC) panels used as horizontal members of the roof or floor of a building. The present invention relates to a deterioration diagnosis method for an ALC horizontal member.

ALCは、珪石などの珪酸質原料と、セメントや生石灰などの石灰質原料とを主原料とし、これらの微粉末に水とアルミニウム粉末などの添加物を加えてスラリー状とした後、アルミニウム粉末の反応により発泡し、石灰質原料の反応により半硬化させ、所定寸法に成形した後、オートクレーブによる高温高圧水蒸気養生を行って製造されている。かかるALCは、絶乾かさ比重0.5程度と、軽量で、耐火性、断熱性、施工性に優れているため、建築材料として広く使用されている。   ALC is mainly composed of siliceous raw materials such as silica and calcareous raw materials such as cement and quick lime. After adding water and aluminum powder and other additives to these fine powders to form a slurry, the reaction of the aluminum powder Is produced by carrying out high-temperature and high-pressure steam curing with an autoclave after forming into a predetermined size by foaming, semi-curing by reaction of calcareous raw material. Such ALC is widely used as a building material because it is light in weight and has an absolute dryness specific gravity of about 0.5 and is excellent in fire resistance, heat insulation, and workability.

このようなALCを用いたALCパネルは、壁材のほか、水平部材として利用することもできるが、ALCは普通コンクリートと比べると強度が低いため、ALCパネルは、水平部材としては、載荷荷重の小さい屋根、もしくはスパンの短い床などに限定して用いられている。   An ALC panel using such an ALC can be used as a horizontal member in addition to a wall material. However, since the ALC has a lower strength than ordinary concrete, the ALC panel has a load load as a horizontal member. Used only for small roofs or floors with short spans.

ALCは、永年継続的に使用することにより、劣化が見られる。ALCパネルを用いた建築物の屋根や床は、重量物や人が乗るため、その安全性が確保されなければならない。したがって、ALCパネルを水平部材として用いる場合には、これらの劣化を的確に判断し、それに応じて適切な対応策を採ることが求められる。   ALC is deteriorated by continuous use for many years. Building roofs and floors that use ALC panels must be safe because heavy objects and people are on them. Therefore, when an ALC panel is used as a horizontal member, it is required to accurately determine such deterioration and take appropriate countermeasures accordingly.

しかしながら、これらの水平部材は、仕上げなどによって隠れていることが多く、その劣化を目視によって確認することは困難である。また、建築物からALCパネルを取り外して強度試験を行うことは、多くのコストと手間が必要とされる。このため、水平部材としてのALCパネルの劣化レベルを簡便に診断できる方法が求められている。   However, these horizontal members are often hidden by finishing or the like, and it is difficult to visually confirm the deterioration. In addition, removing the ALC panel from the building and performing the strength test requires a lot of costs and labor. For this reason, there is a need for a method that can easily diagnose the deterioration level of the ALC panel as a horizontal member.

ALC水平部材が劣化するということは、ひび割れが発生したり、パネル強度が低下したり、たわみが増大することであり、これらの中でも最も重要で、ALCパネル構造設計指針においても設計上の規定値として定められているのが「たわみ」である。これらの劣化現象の要因は、外的な要因と内的な要因とに大別される。外的な要因とは、地震や、躯体の変形、風圧または荷重による疲労、火災などである。一方、内的な要因とは、炭酸化、乾燥収縮および湿潤膨張の繰返し、凍害、塩害による鉄筋さびなどが挙げられる。したがって、これらの要因による劣化を総合的に診断することが必要とされているといえる。   The deterioration of the ALC horizontal member means that cracks occur, the panel strength decreases, and the deflection increases, which is the most important of these. Design specifications in the ALC panel structure design guidelines are also the most important. “Deflection” is defined as. The factors of these deterioration phenomena are roughly classified into external factors and internal factors. External factors include earthquakes, frame deformation, fatigue due to wind pressure or load, and fire. On the other hand, the internal factors include rebar rust due to carbonation, repeated drying shrinkage and wet expansion, frost damage, salt damage, and the like. Therefore, it can be said that it is necessary to comprehensively diagnose deterioration due to these factors.

劣化の要因のうち、炭酸化とは、ALCを構成する主要物質であるトバモライトが、炭酸ガスと水分が存在する環境下において、非晶質珪酸塩(シリカゲル)と炭酸カルシウムに分解する反応をいう。かかる炭酸化は、仕上げなどの施工が適切に施されている場合でも、徐々に進行することが知られている。炭酸化により、ALCは収縮し(炭酸化収縮)、さらに炭酸化したALCは、乾燥収縮率が大きくなり、乾燥収縮と湿潤膨潤の繰り返しにより、ひび割れの発生、パネル強度の低下、および、たわみの増大につながることになる。   Among the causes of deterioration, carbonation is a reaction in which tobermorite, which is a main substance constituting ALC, decomposes into amorphous silicate (silica gel) and calcium carbonate in an environment where carbon dioxide gas and moisture exist. . It is known that such carbonation proceeds gradually even when finishing and other construction are appropriately performed. Carbonation causes ALC to shrink (carbonation shrinkage), and carbonized ALC has a higher drying shrinkage rate. Repeated drying shrinkage and wet swelling cause cracks, reduced panel strength, and deflection. Will lead to an increase.

本発明者は、かかる炭酸化度に着目し、ALCの炭酸化と耐久性との関係を検討し、ALCの炭酸化度を指標とするALCパネルの耐久性の診断方法を開示している。   The inventor pays attention to such a carbonation degree, examines the relationship between ALC carbonation and durability, and discloses a method for diagnosing the durability of an ALC panel using the degree of carbonation of ALC as an index.

たとえば、特許文献1では、ALCの全酸化カルシウム含有量(質量%)および炭酸ガス含有量(質量%)を測定し、(炭酸ガス含有量×56/44)/(全酸化カルシウム含有量)×100の式で得られる炭酸化度(%)が50%以上であるALCパネルは、耐久性が劣化したと診断する耐久性診断方法を開示している。   For example, in Patent Document 1, the total calcium oxide content (mass%) and carbon dioxide gas content (mass%) of ALC are measured, and (carbon dioxide gas content × 56/44) / (total calcium oxide content) × The ALC panel having a carbonation degree (%) obtained by the formula of 100 of 50% or more discloses a durability diagnostic method for diagnosing that the durability has deteriorated.

また、たとえば、特許文献2では、熱分析法で炭酸カルシウム分を定量測定して得られる炭酸カルシウムの酸化カルシウム換算量C(質量%)と、全カルシウム分を化学分析で定量測定して得られる全カルシウムの酸化カルシウム換算量Cmax(質量%)と、全硫黄分を定量測定して得られる硫酸カルシウムの酸化カルシウム換算量Cs(質量%)と、被検試料と同一の製造方法で製造した未炭酸化試料について、熱分析法で炭酸カルシウム分を定量測定して得られる炭酸カルシウムの酸化カルシウム換算量C0(質量%)とを得て、(C−C0)/(Cmax−Cs−C0)×100の式の炭酸化度Dc2(%)により、前記被検試料の劣化度を定量評価する劣化度定量評価方法を開示している。   Further, for example, in Patent Document 2, the calcium carbonate equivalent amount C (mass%) of calcium carbonate obtained by quantitatively measuring the calcium carbonate content by thermal analysis and the total calcium content are quantitatively measured by chemical analysis. Calcium oxide equivalent amount Cmax (mass%) of total calcium, calcium sulfate equivalent amount Cs (mass%) of calcium sulfate obtained by quantitatively measuring the total sulfur content, and unproduced by the same production method as the test sample With respect to the carbonated sample, a calcium oxide equivalent amount C0 (mass%) of calcium carbonate obtained by quantitatively measuring the calcium carbonate content by a thermal analysis method was obtained, and (C−C0) / (Cmax−Cs−C0) × A degradation degree quantitative evaluation method is disclosed in which the degradation degree of the test sample is quantitatively evaluated based on the carbonation degree Dc2 (%) of the equation of 100.

ただし、これらの劣化診断方法は、いずれもALC壁材の劣化診断に適用されるものであり、要求性能の異なるALC水平部材の劣化診断に適用することはできない。   However, any of these deterioration diagnosis methods is applied to the deterioration diagnosis of the ALC wall material, and cannot be applied to the deterioration diagnosis of the ALC horizontal member having different required performance.

また、かかる炭酸化の進行過程は、ALC製品が置かれた環境などにより、それぞれの製品によって大きく異なってくるものであり、かかる影響を考慮して劣化を判断することが必要となる場面もあり得る。   In addition, the process of carbonation varies greatly depending on the environment in which the ALC product is placed, etc., and there are situations where it is necessary to judge the degradation considering such effects. obtain.

特開2000−180437号公報JP 2000-180437 A 特開2000−193658号公報JP 2000-193658 A

独立行政法人建築研究所監修、「ALCパネル構造設計指針・同解説」、ALC協会、平成16年Supervised by the Institute for Architectural Institutions, “ALC Panel Structural Design Guidelines and Explanation”, ALC Association, 2004

本発明の目的は、ALC水平部材の劣化レベルの診断を、簡便、迅速、かつ適確に行える方法を提供することにある。   An object of the present invention is to provide a method that can easily, quickly, and accurately diagnose the deterioration level of an ALC horizontal member.

本発明の軽量気泡コンクリート(ALC)水平部材の劣化診断方法は、診断対象となるALC水平部材について、化学分析により反応カルシウム含有量(質量%)と、熱分析により炭酸ガス含有量(質量%)をそれぞれ測定し、該測定結果に基づき、(炭酸ガス含有量(質量%)−1)/(反応カルシウム含有量(質量%)×44/56−1)×100の式で得られる炭酸化度(%)を算出し、該水平部材が床材であるか屋根材であるか、持続的な荷重があるかないかで、それぞれ場合分けした上で、前記炭酸化度(%)に基づいて劣化レベルを診断する。   The method for diagnosing deterioration of a lightweight aerated concrete (ALC) horizontal member according to the present invention is a reaction calcium content (mass%) by chemical analysis and a carbon dioxide gas content (mass%) by thermal analysis for the ALC horizontal member to be diagnosed. , And based on the measurement result, the carbonation degree obtained by the formula of (carbon dioxide content (mass%)-1) / (reacted calcium content (mass%) × 44 / 56-1) × 100 (%) Is calculated, and the horizontal member is a flooring material or a roofing material, and whether there is a continuous load or not. Diagnose the level.

具体的には、診断対象となるALC水平部材のサンプルについて、前記化学分析により、全カルシウム含有量(質量%)および三酸化硫黄含有量(質量%)を測定して、全カルシウム含有量(質量%)−三酸化硫黄含有量(質量%)×56/80の式で得られる反応カルシウム含有量(質量%)を算出すると共に、該サンプルの熱分析により、600℃〜850℃における質量減少量である炭酸ガス含有量(質量%)を測定して、上記式により炭酸化度(%)を算出する。   Specifically, the total calcium content (mass%) and the sulfur trioxide content (mass%) were measured by the chemical analysis for the sample of the ALC horizontal member to be diagnosed, and the total calcium content (mass%) %)-Sulfur trioxide content (mass%) × reaction calcium content (mass%) obtained by the formula of 56/80 and calculating the amount of mass decrease at 600 ° C. to 850 ° C. by thermal analysis of the sample. The carbon dioxide content (% by mass) is measured, and the carbonation degree (%) is calculated by the above formula.

これを可能とするため、本発明では、予め、複数の軽量気泡コンクリート水平部材について、化学分析により反応カルシウム含有量(質量%)と、熱分析により炭酸ガス含有量(質量%)を測定し、該測定結果に基づき、(炭酸ガス含有量(質量%)−1)/(反応カルシウム含有量(質量%)×44/56−1)×100の式で得られる炭酸化度(%)を算出すると共に、該複数の軽量気泡コンクリート水平部材のそれぞれの設計荷重たわみと長期荷重時たわみのデータを求め、該設計荷重たわみ、または長期荷重時たわみの数値が、床材または屋根材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の軽量気泡コンクリート水平部材の炭酸化度(%)を求めておく。   In order to enable this, in the present invention, for a plurality of lightweight aerated concrete horizontal members, the reaction calcium content (mass%) by chemical analysis and the carbon dioxide gas content (mass%) by thermal analysis are measured in advance. Based on the measurement results, the degree of carbonation (%) obtained by the formula of (carbon dioxide content (mass%)-1) / (reacted calcium content (mass%) × 44 / 56-1) × 100 is calculated. In addition, the design load deflection and the long-term deflection data of each of the plurality of lightweight cellular concrete horizontal members are obtained, and the numerical value of the design load deflection or the long-term deflection is the initial deflection limit of the flooring material or the roofing material. Alternatively, the degree of carbonation (%) of the lightweight cellular concrete horizontal member when it falls under the deflection limit during long-term loading is obtained.

そして、前述のようにして得られた、診断対象の軽量気泡コンクリート水平部材についての炭酸化度(%)を、該診断対象の軽量気泡コンクリート水平部材が、(1)床材で持続的な荷重がある場合には、前記予め得られた長期荷重時たわみの数値が、床材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の炭酸化度と比較することにより、(2)床材で持続的な荷重がない場合には、前記予め得られた設計荷重たわみの数値が、床材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の炭酸化度と比較することにより、(3)屋根材で持続的な荷重がある場合には、前記予め得られた長期荷重時たわみの数値が、屋根材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の炭酸化度と比較することにより、(4)屋根材で持続的な荷重がない場合には、前記予め得られた設計荷重たわみの数値が、屋根材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の炭酸化度と比較することにより、劣化レベルを判定する。   Then, the degree of carbonation (%) of the light-weight aerated concrete horizontal member to be diagnosed obtained as described above is calculated based on (1) the continuous load on the floor material. (2) Floor material by comparing with the degree of carbonation when the previously obtained value of deflection under long-term load corresponds to the initial deflection limit of the floor material or the deflection limit under long-term load. In the case where there is no continuous load, the numerical value of the design load deflection obtained in advance is compared with the degree of carbonation when the initial deflection limit of the flooring material or the deflection limit at the time of long-term load is satisfied. 3) When there is a continuous load on the roofing material, the previously obtained numerical value of deflection under long-term load is compared with the degree of carbonation when the initial deflection limit of the roofing material or the deflection limit under long-term load is met. To do (4) When there is no continuous load on the roofing material, the carbonation degree when the numerical value of the design load deflection obtained in advance corresponds to the initial deflection limit of the roofing material or the deflection limit under long-term loading. The deterioration level is determined by comparing with.

好ましくは、前記診断対象の軽量気泡コンクリート水平部材の炭酸化度(%)が、前記設計荷重たわみ、または長期荷重時たわみの数値が床材または屋根材の初期たわみ限度に該当する場合の炭酸化度以下となる場合を「健全」と、該数値が床材または屋根材の初期たわみ限度に該当する場合の炭酸化度を超えて、床材または屋根材の長期荷重時たわみ限度に該当する場合の炭酸化度以下となる場合を「要注意:補修必要」と、該数値が床材または屋根材の長期荷重時たわみ限度に該当する場合の炭酸化度を超える場合を「劣化:補強もしくは交換必要」と判定する。   Preferably, when the degree of carbonation (%) of the lightweight cellular concrete horizontal member to be diagnosed corresponds to the initial deflection limit of the flooring material or roofing material, the value of the design load deflection or the deflection under a long-term load corresponds to the initial deflection limit. When the value is below “degree” and “sound”, the numerical value exceeds the carbonation degree when it falls under the initial deflection limit of the flooring or roofing material, and falls under the long-term deflection limit of the flooring or roofing material If the value is below the carbonation degree of the product, “Caution: Repair is required” and the value exceeds the carbonation degree when the value falls under the deflection limit under long-term load of flooring or roofing material. It is determined that it is necessary.

より具体的には、図1に示す、初期たわみ(設計荷重たわみ=弾性たわみ)のたわみ曲線、特に、該曲線と床材または屋根材の初期たわみ限度(L/400またはL250)との交点および長期荷重時たわみ限度(L/250またはL/156)との交点と、ALC水平部材の炭酸化度との相関関係、もしくは、長期荷重時たわみ(弾性たわみ+クリープたわみ)のたわみ曲線、特に,該曲線と上記の交点と、ALC水平部材の炭酸化度との相関関係に基づいて、前記診断対象の軽量気泡コンクリート水平部材が、(1)床材で持続的な荷重がある場合には、前記得られた炭酸化度が、27%以下の場合に「健全」と、27%を超え39%以下の場合に「要注意:補修必要」と、39%を超える場合に「劣化:補強もしくは交換必要」と診断し、(2)床材で持続的な荷重がない場合には、前記得られた炭酸化度が、35%以下の場合に「健全」と、35%を超え48%以下の場合に「要注意:補修必要」と、48%を超える場合に「劣化・補強もしくは交換必要」と診断し、(3)屋根材で持続的な荷重がある場合には、前記得られた炭酸化度が、38%以下の場合に「健全」と、38%を超え50%以下の場合に「要注意:補修必要」と、50%を超える場合に「劣化・補強もしくは交換必要」と診断し、(4)屋根材で持続的な荷重がない場合には、前記得られた炭酸化度(%)が、48%以下の場合に「健全」と、48%を超え60%以下の場合に「要注意:補修必要」と、60%を超える場合に「劣化・補強もしくは交換必要」と診断する。   More specifically, the deflection curve of the initial deflection (design load deflection = elastic deflection) shown in FIG. 1, in particular, the intersection of the curve with the initial deflection limit (L / 400 or L250) of the flooring or roofing material and Correlation between the intersection with the long-term deflection limit (L / 250 or L / 156) and the degree of carbonation of the ALC horizontal member, or the deflection curve of long-term deflection (elastic deflection + creep deflection), Based on the correlation between the curve and the above intersection and the carbonation degree of the ALC horizontal member, the lightweight cellular concrete horizontal member to be diagnosed is (1) when there is a continuous load on the flooring, When the obtained carbonation degree is 27% or less, “sound”, when it exceeds 27% and 39% or less, “caution: need repair”, and when it exceeds 39%, “deterioration: reinforcement or Diagnose as `` replacement required '' , (2) When there is no continuous load on the flooring material, “healthy” when the obtained carbonation degree is 35% or less, and “cautions” when it is over 35% and 48% or less. : If repair is necessary ”, if it exceeds 48%, it is diagnosed that“ deterioration / reinforcement or replacement is necessary ”. (3) If there is a continuous load on the roofing material, the obtained carbonation degree is 38 Diagnose as “healthy” when the percentage is below 50%, “attention required: repair required” when above 50% and below 38%, and “deterioration / reinforcement or replacement required” above 50%, (4) When there is no continuous load on the roofing material, the above obtained degree of carbonation (%) is “sound” when it is 48% or less, and when it is over 48% and 60% or less, “cautions: If it exceeds 60%, it is diagnosed as “deterioration / reinforcement or replacement required”.

ただし、歩行用屋根および多雪区域の屋根については、床材の診断基準が適用される。   However, the diagnostic criteria for flooring will be applied to walking roofs and roofs in snowy areas.

本発明の診断方法により、取り外して試験することが困難であり、かつ、表面から判断しにくい、軽量気泡コンクリート水平部材の劣化レベルの診断を、簡便、迅速かつ適確に行うことが可能となる。   The diagnosis method of the present invention makes it possible to easily, quickly and accurately diagnose the deterioration level of lightweight cellular concrete horizontal members that are difficult to remove and test and difficult to judge from the surface. .

図1は、ALCパネルについて、その炭酸化度(%)と、弾性たわみ、および弾性たわみ+クリープたわみとの関係を示したものである。FIG. 1 shows the relationship between the degree of carbonation (%), elastic deflection, and elastic deflection + creep deflection for an ALC panel.

本発明の軽量気泡コンクリート(ALC)水平部材の劣化診断方法は、以下の[1]〜[5]により構成される。   The method for diagnosing deterioration of a lightweight cellular concrete (ALC) horizontal member of the present invention includes the following [1] to [5].

[1]ALC水平部材のコア抜きサンプリングを行うことにより、サンプルを得る。   [1] A sample is obtained by performing cored sampling of the ALC horizontal member.

コア抜きは、公知のコアドリルなどを用いて行うことができる。この際、可能であれば、ALC水平部材の厚さ方向に対して、なるべく厚くサンプルを採取し、これを厚さ方向に層別した上で、それぞれの部位に対して、以下に示す分析を行うことが好ましい。後述する化学分析および熱分析の試料はこれらのサンプルの一部を用いることになるため、ALCパネルの厚さ方向の平均的な特性値を得るためである。層の数はALC水平部材の厚さにより任意であるが、水平部材として用いられるALCパネル(標準的な厚さは100〜150mm)の場合、好ましくは3〜5層程度とすると、炭酸化度を含む特性について当該パネルの平均値が的確に得られる。   Core removal can be performed using a known core drill or the like. At this time, if possible, a sample is taken as thick as possible in the thickness direction of the ALC horizontal member, and after stratified in the thickness direction, the following analysis is performed for each part. Preferably it is done. This is to obtain an average characteristic value in the thickness direction of the ALC panel because a part of these samples are used for the chemical analysis and thermal analysis samples described later. The number of layers is arbitrary depending on the thickness of the ALC horizontal member, but in the case of an ALC panel used as a horizontal member (standard thickness is 100 to 150 mm), preferably about 3 to 5 layers, the degree of carbonation The average value of the panel can be accurately obtained for the characteristics including.

[2]サンプルの化学分析により、全カルシウム含有量(質量%)および三酸化硫黄含有量(質量%)を測定して、全カルシウム含有量(質量%)−三酸化硫黄含有量(質量%)×56/80の式で得られる反応カルシウム含有量(質量%)を算出すると共に、該サンプルの熱分析による600℃〜850℃における質量減少量である炭酸ガス含有量(質量%)を測定して、(炭酸ガス含有量(質量%)−1)/(反応カルシウム含有量(質量%)×44/56−1)×100の式で得られる炭酸化度(%)を算出する。   [2] The total calcium content (mass%)-sulfur trioxide content (mass%) was measured by chemical analysis of the sample to measure the total calcium content (mass%) and sulfur trioxide content (mass%). While calculating the reaction calcium content (mass%) obtained by the formula of x56 / 80, the carbon dioxide content (mass%) which is the mass reduction | decrease in 600 to 850 degreeC by the thermal analysis of this sample was measured. Then, the degree of carbonation (%) obtained by the formula of (carbon dioxide content (mass%)-1) / (reacted calcium content (mass%) × 44 / 56-1) × 100 is calculated.

化学分析は、カルシウムおよび三酸化硫黄を定量測定できる方法であれば、公知の方法を採用できる。カルシウムや三酸化硫黄を正確に定量測定できるものには、たとえば蛍光X線分析法やICP法がある。   The chemical analysis can employ a known method as long as it can quantitatively measure calcium and sulfur trioxide. Examples of those capable of accurately quantitatively measuring calcium and sulfur trioxide include a fluorescent X-ray analysis method and an ICP method.

反応カルシウム含有量とは、サンプル中の全カルシウム含有量から、トバモライトの生成および反応に寄与しない硫酸カルシウムとして存在するカルシウムの含有量を除いたものである。   The reactive calcium content is the total calcium content in the sample minus the calcium content present as calcium sulfate that does not contribute to the production and reaction of tobermorite.

熱分析は、炭酸カルシウムの分解に伴う質量減少量がわかる熱重量分析測定装置を用いるが、特に、炭酸カルシウムの分解を明確にするために、熱重量−示差熱分析装置(TG−DTA)を用いて測定することが好ましい。   The thermal analysis uses a thermogravimetric analysis measuring device that shows the mass loss due to the decomposition of calcium carbonate. In particular, in order to clarify the decomposition of calcium carbonate, a thermogravimetric-differential thermal analyzer (TG-DTA) is used. It is preferable to use and measure.

炭酸カルシウムには、結晶構造の異なるものが存在するが、いずれも600℃〜850℃において酸化カルシウムと炭酸ガスに分解するため、熱分析法により炭酸ガス含有量(質量%)を正確に定量測定することは可能である。   Some calcium carbonates have different crystal structures, but they all decompose into calcium oxide and carbon dioxide at 600 ° C to 850 ° C, so the carbon dioxide content (% by mass) is accurately measured quantitatively by thermal analysis. It is possible to do.

炭酸化度(%)の算出式(炭酸ガス含有量(質量%)−1)/(反応カルシウム含有量(質量%)×44/56−1)×100における「1」は、未炭酸化試料における炭酸ガス含有量(質量%)の代表値であり、前記特許文献2の炭酸化度(%)の算出式(C−C0)/(Cmax−Cs−C0)×100における「C0」に相当する。水平部材の劣化診断では、すでに劣化したALCパネルを対象とするため、当該パネルの未炭酸化時の炭酸ガス含有量(質量%)を知ることはできない。ここで、前記特許文献1の炭酸化度(%)の算出式(炭酸ガス含有量(質量%)×56/44)/(全酸化カルシウム含有量(質量%))×100のように、未炭酸化時の炭酸ガス含有量(質量%)を無視した計算式とすることも考えられるが、この場合、未炭酸化時の炭酸ガス含有量(質量%)を計算した場合と無視した場合では、その誤差は炭酸化度(%)にして2〜5%程度であり、劣化診断の評価結果に影響が生じうる。   “1” in the calculation formula of carbonation degree (%) (carbon dioxide content (mass%)-1) / (reacted calcium content (mass%) × 44 / 56-1) × 100 is uncarbonated sample Is a representative value of the carbon dioxide content (% by mass) in FIG. 1, and corresponds to “C0” in the calculation formula (C−C0) / (Cmax−Cs−C0) × 100 of the carbonation degree (%) of Patent Document 2 To do. In the deterioration diagnosis of the horizontal member, since the ALC panel that has already deteriorated is targeted, the carbon dioxide content (% by mass) when the panel is not carbonated cannot be known. Here, the calculation formula for the degree of carbonation (%) in Patent Document 1 (carbon dioxide content (mass%) × 56/44) / (total calcium oxide content (mass%)) × 100 It can be considered that the carbon dioxide content (mass%) at the time of carbonation is ignored, but in this case, the carbon dioxide content (mass%) at the time of non-carbonation is calculated and ignored. The error is about 2 to 5% in terms of carbonation degree (%), which may affect the evaluation result of the deterioration diagnosis.

本発明者は、未炭酸化時の炭酸ガス含有量(質量%)を、数多くの種類のパネルからサンプリングして評価した結果、ほぼすべての場合において0.8質量%〜1.2質量%であることを見出した。そこで、未炭酸化時の炭酸ガス含有量を一定値1.0質量%として計算すると、炭酸化度(%)の誤差は1%未満となり、劣化診断の評価結果への影響はほとんどないに等しい。これらの検討をした結果、本発明の軽量気泡コンクリート水平部材の劣化診断方法における炭酸化度(%)の算出式は、(炭酸ガス含有量(質量%)−1)/(反応カルシウム含有量(質量%)×44/56−1)×100なる式とした。   The present inventor has sampled and evaluated the carbon dioxide content (mass%) at the time of non-carbonation from many types of panels, and as a result, in almost all cases, 0.8 mass% to 1.2 mass%. I found out. Therefore, if the carbon dioxide gas content at the time of non-carbonation is calculated as a constant value of 1.0% by mass, the error in the degree of carbonation (%) is less than 1%, and there is almost no influence on the evaluation result of the deterioration diagnosis. . As a result of these studies, the calculation formula for the degree of carbonation (%) in the method for diagnosing deterioration of the lightweight cellular concrete horizontal member of the present invention is (carbon dioxide content (mass%)-1) / (reacted calcium content ( Mass%) × 44 / 56-1) × 100.

[3]劣化診断の対象となる各ALC水平部材に対して、持続的な荷重があるかないかを確認する。   [3] It is confirmed whether or not there is a continuous load for each ALC horizontal member subject to deterioration diagnosis.

持続的な荷重とは、たとえば居室においてピアノやタンスなどの重量物が一箇所に長期間にわたって置かれていることによる持続的な荷重を意味し、人間や軽車両の通行などの一時的な荷重の繰返しが長期にわたることによる非持続的な荷重は除かれる。   Sustained load means a sustained load caused by a heavy object such as a piano or chiffon being placed in one place for a long period of time in a living room, for example, temporary loads such as traffic of humans and light vehicles. Non-sustained loads due to long-term repetition of the are eliminated.

すなわち、床材および屋根材について、それぞれ持続的な荷重がある場合とない場合とに分けて、後述する判定基準が設定される。その理由は、持続的な荷重を無視した条件で判定をすると、ALCパネルの設計荷重以内の荷重で継続使用しているにも関わらず、たわみ限度を超えてしまう可能性があり、逆に、持続的な荷重がない状況でしか使用されていない場合に、持続的な荷重ありの条件での判定を行うと、供用限界に達していないにもかかわらず、劣化に対する処置を要求してしまう可能性があり、経済的に問題が生じうるためである。   That is, for the flooring material and the roofing material, determination criteria to be described later are set depending on whether there is a continuous load or not. The reason for this is that if the judgment is made under the condition that the continuous load is ignored, the deflection limit may be exceeded even though it is continuously used with the load within the design load of the ALC panel. When it is used only in a situation where there is no sustained load, if the judgment is made under a condition with a sustained load, it may require treatment for deterioration even though the service limit has not been reached. This is because there is a possibility of economic problems.

[4]劣化診断の対象となる各ALC水平部材が、床材であるか屋根材であるか、および、持続的な荷重があるかないかの場合分けに応じて、炭酸化度(%)に基づいて、ALC水平部材の劣化レベルを診断する。   [4] Depending on whether each ALC horizontal member subject to deterioration diagnosis is flooring or roofing and whether there is a continuous load, the carbonation degree (%) Based on this, the deterioration level of the ALC horizontal member is diagnosed.

劣化レベルの評価指標としては、実際にALC水平部材を損傷しないように取り外し、4等分点2線載荷によって設計荷重×(1±0.02)の荷重をかけた際の初期(設計荷重)たわみ(弾性たわみ)と、さらにこの荷重を1年間以上継続したときに生じる長期荷重時たわみ(弾性たわみ+クリープたわみ)を用いることができる。   Degradation level evaluation index is the initial (design load) when removing the ALC horizontal member without actually damaging it and applying a load of (1 ± 0.02) design load by quadrant 2-line loading It is possible to use a deflection (elastic deflection) and a deflection under a long-term load (elastic deflection + creep deflection) generated when the load is continued for one year or more.

ALC構造設計基準(非特許文献1参照)において、スパンLにおいて設計荷重をかけた時の限界たわみは、床でL/400、屋根でL/250と規定されている。また、建設省告示第1459号(平成12年5月31日)には、建築物のはり、または床版のたわみ最大値に対して、構造の形式に応じて長期間の荷重により変形が増大することの調整係数(変形増大係数という)が規定されている。これによれば、ALC床材を含むALCパネルを用いた構造の変形増大係数は1.6である。これは、長期荷重後に、床材のたわみがL/250以下(長期荷重時たわみ限度)に納まるよう、初期たわみ限度が、クリープたわみを考慮して、L/400と予め高い性能に設定されていることを意味する(L/400×1.6=L/250)。   In the ALC structural design standard (see Non-Patent Document 1), the limit deflection when a design load is applied in the span L is defined as L / 400 for the floor and L / 250 for the roof. In addition, according to Ministry of Construction Notification No. 1459 (May 31, 2000), deformation increases due to a long-term load depending on the type of structure against the maximum deflection of building beams or floor slabs. An adjustment coefficient (referred to as a deformation increase coefficient) is defined. According to this, the deformation increase coefficient of the structure using the ALC panel including the ALC flooring is 1.6. This is because the initial deflection limit is set in advance to a high performance of L / 400 in consideration of the creep deflection so that the deflection of the flooring material is kept below L / 250 (long-term deflection limit) after a long-term load. (L / 400 × 1.6 = L / 250).

屋根材の変形増大係数は特に規定されていないが、床材の考え方を同様に当てはめると、長期荷重時たわみ限度は、L/250×1.6=L/156と規定できる。ただし、歩行用屋根および多雪区域の屋根に用いられている屋根材については、床材の規定値に従うこととされている。   The deformation increase coefficient of the roofing material is not particularly defined, but if the concept of flooring is applied in the same manner, the deflection limit at the time of long-term load can be defined as L / 250 × 1.6 = L / 156. However, for roofing materials used for walking roofs and roofs in heavy snow areas, it is supposed to comply with the prescribed values for flooring.

以上のことから、変形増大係数を考慮したALC床材および屋根材のたわみ限度は、初期と長期荷重時に分けられ、
・床:初期L/400、長期荷重時L/250、
・屋根:初期L/250、長期荷重時L/156、
と規定できる。
From the above, the deflection limit of ALC flooring and roofing considering the deformation increase factor is divided into initial and long-term load,
・ Floor: Initial L / 400, long-term load L / 250,
-Roof: Initial L / 250, long-term load L / 156,
Can be defined.

このたわみ限度は、実際の水平部材が有するべき性能の限界と考えられるため、この数値を劣化診断の基準とすることが妥当である。すなわち、以下のように、基本的には、診断対象であるALCパネルの設計荷重たわみ(弾性たわみ)が、
・初期たわみ限度以内の場合:健全、
・初期たわみ限度を超え、長期荷重時たわみ限度以内の場合:要注意、すなわち補修必要、
・長期荷重時たわみ限度を超えている場合:劣化、すなわち補強もしくは交換必要、
と判定基準を設定する。
Since this deflection limit is considered to be a limit of the performance that an actual horizontal member should have, it is appropriate to use this value as a criterion for deterioration diagnosis. That is, as described below, basically, the design load deflection (elastic deflection) of the ALC panel to be diagnosed is
・ If within initial deflection limit: Healthy,
・ If the initial deflection limit is exceeded and within the deflection limit under long-term load: Caution is required, that is, repair is required.
・ If the deflection limit is exceeded during long-term load: Deterioration, ie, reinforcement or replacement is required.
And set the criteria.

具体的には、床材の場合、健全とされるたわみ率は1/400以下、要注意:補修必要とされるたわみ率は1/400を超えて1/250以下、劣化:補強もしくは交換必要とされるたわみ率は、1/250超ということになる。一方、屋根材の場合は、それぞれ1/250以下、1/250を超えて1/156以下、1/156超となる。   Specifically, in the case of flooring, the deflection rate considered healthy is 1/400 or less, caution: The deflection rate required for repair exceeds 1/400 and is 1/250 or less. Deterioration: Reinforcement or replacement required The deflection rate assumed is more than 1/250. On the other hand, in the case of a roof material, it becomes 1/250 or less and exceeds 1/250, respectively, and becomes 1/156 or less, and exceeds 1/156.

ただし、上述の通り、床材および屋根材のそれぞれについて、持続的な荷重がある場合とない場合に場合分けをして考える必要がある。すなわち、設計荷重たわみを用いる判定基準は、持続的な荷重がない場合に適用される。   However, as described above, for each of the flooring material and the roofing material, it is necessary to consider each case when there is a continuous load and when there is no continuous load. That is, the criterion using the design load deflection is applied when there is no continuous load.

一方、持続的な荷重を考慮するためには、クリープたわみを考慮する必要があるため、持続的な荷重が掛かっていた診断対象であるALCパネルについては、長期荷重時たわみ(弾性たわみ+クリープたわみ)について、上記と同様の判定基準が適用される。   On the other hand, since it is necessary to consider the creep deflection in order to consider the sustained load, the ALC panel that is the subject of the diagnosis that has been subjected to the sustained load has a long-term deflection (elastic deflection + creep deflection). ), The same criteria as described above are applied.

種々の炭酸化度(%)が測定された複数の床材および屋根材のそれぞれについて、持続的な荷重がある場合とない場合に場合分けし、上記の判定基準と、測定された炭酸化度(%)との関係を検討したところ、両者には、一定の相関関係があり、対象となるALC水平部材のたわみ限度に基づく劣化レベルを、測定された炭酸化度に基づいて、次のように評価しうるとの知見が得られたのである。   For each of a plurality of flooring materials and roofing materials in which various degrees of carbonation (%) are measured, the cases are classified into cases where there is a continuous load and cases where there is no continuous load. As a result, the level of deterioration based on the deflection limit of the target ALC horizontal member was determined based on the measured degree of carbonation as follows: Thus, the knowledge that it can be evaluated is obtained.

すなわち、床材で持続的な荷重がある場合、前記炭酸化度が27%以下の場合、上記判定基準による劣化レベルが「健全」に相当し、前記炭酸化度が27%を超え39%以下の場合に、劣化レベルが「要注意:補修必要」に相当し、前記炭酸化度が39%を超える場合に、劣化レベルが「劣化:補強もしくは交換必要」に相当する。   That is, when there is a continuous load on the flooring material, when the carbonation degree is 27% or less, the deterioration level according to the above criteria corresponds to “sound”, and the carbonation degree exceeds 27% and is 39% or less. In this case, the deterioration level corresponds to “Caution required: repair required”, and when the carbonation degree exceeds 39%, the deterioration level corresponds to “deterioration: reinforcement or replacement required”.

床材で持続的な荷重がない場合、前記炭酸化度が35%以下の場合が同じく「健全」に、前記炭酸化度が35%を超え48%以下の場合が「要注意:補修必要」に、前記炭酸化度が48%を超える場合が「劣化:補強もしくは交換必要」に、それぞれ相当する。   When there is no continuous load on the flooring, the case where the carbonation degree is 35% or less is also “sound”, and the case where the carbonation degree is more than 35% and 48% or less is “Caution: Repair required”. In addition, the case where the carbonation degree exceeds 48% corresponds to “deterioration: reinforcement or replacement required”, respectively.

屋根材で持続的な荷重がある場合、前記炭酸化度が38%以下の場合が同じく「健全」に、前記炭酸化度が38%を超え50%以下の場合が「要注意:補修必要」に、前記炭酸化度が50%を超える場合が、「劣化:補強もしくは交換必要」に、それぞれ相当する。   When there is a continuous load on the roofing material, the case where the carbonation degree is 38% or less is also “sound”, and the case where the carbonation degree is more than 38% and 50% or less is “Caution: Needs repair.” In addition, the case where the carbonation degree exceeds 50% corresponds to “deterioration: reinforcement or replacement required”, respectively.

屋根材で持続的な荷重がない場合、前記炭酸化度が48%以下の場合が同じく「健全」に、前記炭酸化度が48%を超え60%以下の場合が「要注意:補修必要」に、前記炭酸化度が60%を超える場合が「劣化:補強もしくは交換必要」に、それぞれ相当する。   When there is no continuous load on the roofing material, the case where the carbonation degree is 48% or less is also “sound”, and the case where the carbonation degree is more than 48% and less than 60% is “Caution: Repair is required”. In addition, the case where the carbonation degree exceeds 60% corresponds to “deterioration: reinforcement or replacement required”, respectively.

実際の運用においては、診断対象となるALC水平部材から得たサンプルを測定して得た炭酸化度(%)を診断基準として、持続的な荷重がある場合とない場合との場合分けをして、上記の判定基準に沿った劣化レベルが判断されることになる。よって、ALCパネルを取り外すことなく、ALC水平部材の劣化度について詳細な診断が可能となる。   In actual operation, the degree of carbonation (%) obtained by measuring the sample obtained from the ALC horizontal member to be diagnosed is used as a diagnostic criterion, and the case with or without a sustained load is divided into cases. Thus, the deterioration level in accordance with the above determination criterion is determined. Therefore, it is possible to make a detailed diagnosis about the degree of deterioration of the ALC horizontal member without removing the ALC panel.

ただし、上述のように、歩行用屋根および多雪区域の屋根に用いられている屋根材については、床材の診断基準が適用されることになる。   However, as described above, the diagnostic criteria for flooring is applied to roofing materials used for walking roofs and roofs in snowy areas.

本発明の劣化診断方法は、以下に示される実施例に限定されることはない。   The deterioration diagnosis method of the present invention is not limited to the examples shown below.

使用履歴が長期間にわたって明らかな、本発明者らの自社の工場および社宅の建物で床材や屋根材として実際に使用されていた、複数のALCパネルについて、それぞれ使用年数、使用部位、仕上げ、持続的な荷重の状況を調べた。持続的な荷重のあったものは、評価前の段階ですでに過剰なたわみが発生している可能性があるためにサンプルから除外し、持続的な荷重のなかったALCパネルを損傷しないように建物から丁寧に取り外した。   With regard to multiple ALC panels that were actually used as flooring and roofing materials in our own factories and company housing buildings, where the usage history is clear over a long period of time, each used years, parts used, finishing, The state of sustained load was investigated. Excessive load may have been removed from the sample due to the possibility of excessive deflection already in the pre-evaluation stage, so as not to damage the ALC panel that did not have sustained load. Carefully removed from the building.

取り外したALCパネルの寸法(厚さ、幅、長さ)を調べると共に、該ALCパネルの短辺小口面を部分的に切り欠き、内部の補強鉄筋の直径および本数を調べ、該ALCパネルの設計荷重を割り出した。   Examine the dimensions (thickness, width, length) of the removed ALC panel, cut out the short edge of the ALC panel partially, check the diameter and number of reinforcing bars inside, and design the ALC panel The load was determined.

該ALCパネルのそれぞれについて、4等分点2線載荷によって、設計荷重×1倍の荷重を掛け、その前後におけるたわみの変化(弾性たわみ)を測定することにより、設計荷重たわみのデータを得た。なお、たわみは、載荷時のスパンの中央部において測定した。   For each of the ALC panels, the design load deflection data was obtained by applying a load of 1 times the design load by quadrant 2-line loading and measuring the deflection change (elastic deflection) before and after the load. . The deflection was measured at the center of the span when loaded.

その後、該ALCパネルのそれぞれについて、上記荷重を約1年間にわたって掛けたところ、300日経過後にたわみの増大がほぼ終了したため、1年間継続後の時点のたわみを測定し、長期荷重前後のたわみの変化(弾性たわみ+クリープたわみ)を測定することにより、長期荷重時たわみのデータを得た。   After that, when the load was applied for about one year for each of the ALC panels, the increase in deflection was almost completed after 300 days had elapsed, and the deflection at the time point after continuing for one year was measured. By measuring the change (elastic deflection + creep deflection), deflection data under long-term loading was obtained.

一方、前記設計荷重の割出しと共に、取り外したALCパネルのそれぞれについて、厚さ方向に均等に5分割し、その片面側から、コアドリルを用いて、厚さ方向貫通によるコア抜きサンプリングを行い、各層の領域ごとの5つのサンプルをそれぞれのALCパネルについて取得し、取得した各サンプルについてその炭酸化度(%)を調べ、各サンプルの炭酸化度(%)の平均値を該ALCパネルの炭酸化度(%)とした。   On the other hand, along with the indexing of the design load, each of the removed ALC panels is equally divided into five in the thickness direction, and core sampling is performed from one side of the ALC panel by penetrating in the thickness direction using a core drill. 5 samples for each area were obtained for each ALC panel, the degree of carbonation (%) was examined for each sample obtained, and the average value of the degree of carbonation (%) of each sample was calculated. Degree (%).

なお、サンプルの化学分析として、蛍光X線分析装置(スペクトリス株式会社製、PANalytical、Venus200)を用いて、サンプルの全カルシウム(Ca)含有量(質量%)および三酸化硫黄(SO3)含有量(質量%)を測定した。測定結果から、全カルシウム含有量(質量%)−三酸化硫黄含有量(質量%)×56/80の式で得られる反応カルシウム含有量(質量%)を算出した。 In addition, as a chemical analysis of the sample, the total calcium (Ca) content (mass%) and the sulfur trioxide (SO 3 ) content of the sample using a fluorescent X-ray analyzer (Spectris Co., Ltd., PANalytical, Venus 200). (Mass%) was measured. From the measurement results, the reaction calcium content (mass%) obtained by the formula of total calcium content (mass%) − sulfur trioxide content (mass%) × 56/80 was calculated.

また、サンプルの熱分析として、熱重量−示差熱分析装置(TG−DTA、マックサイエンス株式会社製、TG−DTA2010SA)を用いて、各サンプルの600℃〜850℃における質量減少量である炭酸ガス含有量(質量%)を測定した。   Moreover, as a thermal analysis of a sample, carbon dioxide gas which is a mass reduction amount of each sample at 600 ° C. to 850 ° C. using a thermogravimetric-differential thermal analyzer (TG-DTA, manufactured by Mac Science Co., Ltd., TG-DTA2010SA). Content (mass%) was measured.

化学分析および熱分析の測定結果より、(炭酸ガス含有量(質量%)−1)/(反応カルシウム含有量(質量%)×44/56−1)×100の式で得られる炭酸化度(%)を、それぞれのALCパネルについて算出した。   From the measurement results of chemical analysis and thermal analysis, the degree of carbonation obtained by the formula of (carbon dioxide content (mass%)-1) / (reacted calcium content (mass%) × 44 / 56-1) × 100 ( %) Was calculated for each ALC panel.

なお、同一の製造方法で作製された新品のALCパネルについても、熱分析を同様に行い、未炭酸化試料における炭酸ガス含有量(質量%)を測定したところ、0.9質量%であった。これにより、上記式により未炭酸化時の炭酸ガス含有量の評価結果への影響を除去しうることが確認された。   In addition, about the new ALC panel produced with the same manufacturing method, the thermal analysis was performed similarly and the carbon dioxide content (mass%) in an uncarbonated sample was measured, and it was 0.9 mass%. . Thereby, it was confirmed that the influence on the evaluation result of the carbon dioxide content at the time of non-carbonation can be removed by the above formula.

各ALCパネルについて、その炭酸化度(%)と、弾性たわみ、および弾性たわみ+クリープたわみとの関係を図1に示す。図1には、床材および屋根材のそれぞれのたわみ限度(床:初期L/400、長期荷重時L/250、屋根:初期L/250、長期荷重時L/156)を示してある。なお、床材と屋根材でグラフのプロットに特別の差異が認められなかったことから、両部材のデータを同じプロットで示している。炭酸化度に応じたそれぞれのデータのプロットから、長期荷重時たわみ(弾性たわみ+クリープたわみ)のデータ曲線と初期たわみ(弾性たわみ)のデータ曲線とを得た。   FIG. 1 shows the relationship between the degree of carbonation (%), elastic deflection, and elastic deflection + creep deflection for each ALC panel. FIG. 1 shows the respective deflection limits (floor: initial L / 400, long-term load L / 250, roof: initial L / 250, long-term load L / 156) of the flooring material and the roofing material. In addition, since the special difference was not recognized by the plot of the graph by the flooring material and the roofing material, the data of both members are shown with the same plot. From a plot of each data according to the degree of carbonation, a data curve of deflection under long-term load (elastic deflection + creep deflection) and a data curve of initial deflection (elastic deflection) were obtained.

かかる図1に基づいて、床材および屋根材のそれぞれについて、持続的な荷重がある場合となかった場合との2つの場合について、次の通り、評価基準を求めた。   Based on FIG. 1, for each of the flooring material and the roofing material, the evaluation criteria were obtained as follows for two cases, when there was a continuous load and when there was no continuous load.

弾性たわみ+クリープたわみのデータ曲線と、床材の初期たわみ限度(L/400)の交点、床材の長期荷重時たわみ限度(L/250)の交点における炭酸化度(%)を、持続的な荷重ありの場合の床材についての診断基準とし、炭酸化度が27%以下の場合を、劣化レベルが「健全」、炭酸化度が27%を超え39%以下の場合を、劣化レベルが「要注意:補修必要」、炭酸化度が39%を超える場合を、劣化レベルが「劣化:補強もしくは交換必要」とそれぞれ設定した。   The degree of carbonation (%) at the intersection of the elastic deflection + creep deflection data curve and the initial deflection limit (L / 400) of the flooring material, and the long-term deflection limit (L / 250) of the flooring material is sustained. As a diagnostic standard for flooring under heavy load, when the carbonation degree is 27% or less, the deterioration level is “sound”, and when the carbonation degree is over 27% and 39% or less, the deterioration level is When “Caution required: repair required” and the carbonation degree exceeded 39%, the deterioration level was set as “Deterioration: Reinforcement or replacement required”, respectively.

同様に、弾性たわみのデータ曲線と、床材のたわみ限度(初期L/400、長期荷重時L/250)の交点における炭酸化度(%)を、持続的な荷重なしの場合の床材についての診断基準とし、炭酸化度が35%以下の場合を、劣化レベルが「健全」、炭酸化度が35%を超え48%以下の場合を、劣化レベルが「要注意:補修必要」、炭酸化度が48%を超える場合を、劣化レベルが「劣化:補強もしくは交換必要」とそれぞれ設定した。   Similarly, the degree of carbonation (%) at the intersection of the elastic deflection data curve and the deflection limit of the flooring (initial L / 400, long-term load L / 250) is shown for the flooring when there is no continuous load. When the carbonation degree is 35% or less, the deterioration level is “sound”, and when the carbonation degree is over 35% and 48% or less, the deterioration level is “Caution: Needs repair.” When the degree of conversion exceeded 48%, the degradation level was set as “degradation: reinforcement or replacement required”, respectively.

屋根材についても、弾性たわみ+クリープたわみのデータ曲線と、屋根材のたわみ限度(初期L/250、長期荷重時L/156)の交点における炭酸化度(%)を、持続的な荷重ありの場合の屋根材についての診断基準とし、炭酸化度が38%以下の場合を、劣化レベルが「健全」、炭酸化度が38%を超え50%以下の場合を、劣化レベルが「要注意:補修必要」、炭酸化度が50%を超える場合を、劣化レベルが「劣化:補強もしくは交換必要」とそれぞれ設定した。   For roofing materials, the degree of carbonation (%) at the intersection of the elastic deflection + creep deflection data curve and the roofing material deflection limit (initial L / 250, long-term load L / 156) When the carbonation degree is 38% or less, the deterioration level is “sound”, and when the carbonation degree is over 38% and 50% or less, the deterioration level is “Caution: When the degree of carbonation exceeds 50%, the deterioration level was set as “Deterioration: Reinforcement or replacement required”.

また、弾性たわみのデータ曲線と、屋根材のたわみ限度(初期L/250、長期荷重時L/156)の交点における炭酸化度(%)を、持続的な荷重なしの場合の屋根材のついての診断基準とし、炭酸化度が48%以下の場合を、劣化レベルが「健全」、炭酸化度が48%を超え60%以下の場合を、劣化レベルが「要注意:補修必要」、炭酸化度(%)が60%を超える場合を、劣化レベルが「劣化:補強もしくは交換必要」とそれぞれ設定した。   In addition, the degree of carbonation (%) at the intersection of the elastic deflection data curve and the deflection limit of the roofing material (initial L / 250, L / 156 during long-term loading) When the carbonation degree is 48% or less, the deterioration level is “sound”, and when the carbonation degree is over 48% and 60% or less, the deterioration level is “Caution: Needs repair” When the degree of conversion (%) exceeded 60%, the deterioration level was set as “deterioration: reinforcement or replacement required”, respectively.

このように、本発明の上記の診断基準に基づいて、実際の経年劣化したALCパネルによる床材や屋根材についての劣化診断を、ALCパネルを取り外したり、長期間のパネル載荷試験を行ったりすることなく、微小なコア抜きサンプルの採取と炭酸化度の測定のみによって、簡便、迅速かつ適確に実施できることが確認された。   As described above, based on the above diagnostic criteria of the present invention, the deterioration diagnosis for flooring and roofing materials using the ALC panel that has actually deteriorated over time is performed, the ALC panel is removed, or a long-term panel loading test is performed. It was confirmed that it can be carried out simply, quickly and accurately only by taking a small core-free sample and measuring the degree of carbonation.

Claims (4)

予め、複数の軽量気泡コンクリート水平部材について、化学分析により反応カルシウム含有量(質量%)と、熱分析により炭酸ガス含有量(質量%)を測定し、該測定結果に基づき、(炭酸ガス含有量(質量%)−1)/(反応カルシウム含有量(質量%)×44/56−1)×100の式で得られる炭酸化度(%)を算出すると共に、該複数の軽量気泡コンクリート水平部材のそれぞれの設計荷重たわみと長期荷重時たわみのデータを求め、該設計荷重たわみ、または長期荷重時たわみの数値が、床材または屋根材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の軽量気泡コンクリート水平部材の炭酸化度(%)を求めておき、
診断対象の軽量気泡コンクリート水平部材についての炭酸化度(%)を、前記化学分析および熱分析の測定結果に基づき得て、
該得られた炭酸化度を、該診断対象の軽量気泡コンクリート水平部材が、(1)床材で持続的な荷重がある場合には、前記予め得られた長期荷重時たわみの数値が、床材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の炭酸化度と比較することにより、(2)床材で持続的な荷重がない場合には、前記予め得られた設計荷重たわみの数値が、床材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の炭酸化度と比較することにより、(3)屋根材で持続的な荷重がある場合には、前記予め得られた長期荷重時たわみの数値が、屋根材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の炭酸化度と比較することにより、(4)屋根材で持続的な荷重がない場合には、前記予め得られた設計荷重たわみの数値が、屋根材の初期たわみ限度もしくは長期荷重時たわみ限度に該当する場合の炭酸化度と比較することにより、劣化レベルを判定する、軽量気泡コンクリート水平部材の劣化診断方法。
For a plurality of lightweight aerated concrete horizontal members, the reaction calcium content (mass%) by chemical analysis and the carbon dioxide gas content (mass%) by thermal analysis are measured in advance. (Carbon mass) -1) / (reaction calcium content (mass%) × 44 / 56-1) × 100 The carbonation degree (%) obtained by the formula is calculated, and the plurality of lightweight cellular concrete horizontal members When the design load deflection and long-term deflection data are obtained, and the design load deflection or long-term deflection value corresponds to the initial deflection limit or the long-term deflection limit of the flooring or roofing material. Obtain the degree of carbonation (%) of the lightweight cellular concrete horizontal member,
Obtain the degree of carbonation (%) of the lightweight cellular concrete horizontal member to be diagnosed based on the measurement results of the chemical analysis and thermal analysis,
When the light-weight cellular concrete horizontal member to be diagnosed is (1) the floor material has a continuous load, the numerical value of the deflection at the time of long-term load obtained in advance is By comparing with the degree of carbonation in the case where the initial deflection limit of the material or the deflection limit at the time of long-term load is met, (2) When there is no continuous load on the flooring material, By comparing the degree of carbonation when the numerical value corresponds to the initial deflection limit of the flooring or the deflection limit at the time of long-term loading, (3) when there is a continuous load on the roofing material, the above-mentioned was obtained in advance. By comparing with the degree of carbonation when the value of deflection under long-term load corresponds to the initial deflection limit of roofing material or the deflection limit under long-term loading, (4) When there is no continuous load in the roofing material, The pre-obtained design load Numbers are, by comparing the carbonation of the case corresponding to the limit deflection during initial deflection limit or long loads roofing, determines deterioration level, the deterioration diagnosis method of a lightweight cellular concrete horizontal member.
前記診断対象の軽量気泡コンクリート水平部材の炭酸化度(%)が、前記設計荷重たわみ、または長期荷重時たわみの数値が床材または屋根材の初期たわみ限度に該当する場合の炭酸化度以下となる場合を「健全」と、該数値が床材または屋根材の初期たわみ限度に該当する場合の炭酸化度を超えて、床材または屋根材の長期荷重時たわみ限度に該当する場合の炭酸化度以下となる場合を「要注意:補修必要」と、該数値が床材または屋根材の長期荷重時たわみ限度に該当する場合の炭酸化度を超える場合を「劣化:補強もしくは交換必要」と判定する、請求項1に記載の軽量気泡コンクリート水平部材の劣化診断方法。   The degree of carbonation (%) of the lightweight cellular concrete horizontal member to be diagnosed is equal to or less than the degree of carbonation when the numerical value of the deflection under the design load or the long-term load corresponds to the initial deflection limit of the flooring material or the roofing material. "Sound", the carbonation when the numerical value exceeds the carbonation degree when it falls under the initial deflection limit of the flooring or roofing material and falls under the long-term deflection limit of the flooring or roofing material If the value falls below the degree, “Caution: Repair is required” and if the numerical value exceeds the carbonation degree when it falls under the deflection limit under long-term load of flooring or roofing, “Deterioration: Reinforcement or replacement required” The method for diagnosing deterioration of a lightweight lightweight concrete horizontal member according to claim 1, wherein the determination is performed. 前記診断対象の軽量気泡コンクリート水平部材が、(1)床材で持続的な荷重がある場合には、前記得られた炭酸化度が、27%以下の場合に「健全」と、27%を超え39%以下の場合に「要注意:補修必要」と、39%を超える場合に「劣化:補強もしくは交換必要」と診断し、(2)床材で持続的な荷重がない場合には、前記得られた炭酸化度が、35%以下の場合に「健全」と、35%を超え48%以下の場合に「要注意:補修必要」と、48%を超える場合に「劣化・補強もしくは交換必要」と診断し、(3)屋根材で持続的な荷重がある場合には、前記得られた炭酸化度が、38%以下の場合に「健全」と、38%を超え50%以下の場合に「要注意:補修必要」と、50%を超える場合に「劣化・補強もしくは交換必要」と診断し、(4)屋根材で持続的な荷重がない場合には、前記得られた炭酸化度(%)が、48%以下の場合に「健全」と、48%を超え60%以下の場合に「要注意:補修必要」と、60%を超える場合に「劣化・補強もしくは交換必要」と診断する、請求項1または2に記載の軽量気泡コンクリート水平部材の劣化診断方法。   If the lightweight cellular concrete horizontal member to be diagnosed is (1) when the floor material has a continuous load, when the obtained carbonation degree is 27% or less, “healthy” and 27% If it exceeds 39%, it is diagnosed as “Caution: Repair required”, and if it exceeds 39%, it is diagnosed as “Deterioration: Reinforcement or replacement required.” (2) If there is no continuous load on the flooring, When the obtained carbonation degree is 35% or less, it is “sound”, when it exceeds 35% and is 48% or less, “attention required: repair is necessary”, and when it exceeds 48%, “deterioration / reinforcement or (3) When there is a continuous load on the roofing material, when the obtained carbonation degree is 38% or less, it is “sound” and exceeds 38% and 50% or less If it exceeds 50%, “Decrease / reinforcement or replacement” is required. (4) When there is no continuous load on the roofing material, the obtained carbonation degree (%) is “sound” when it is 48% or less, and when it is over 48% and 60% or less. 3. A method for diagnosing deterioration of a lightweight cellular concrete horizontal member according to claim 1 or 2, wherein if it exceeds 60%, it is diagnosed that "deterioration / reinforcement or replacement is required". 前記診断対象の軽量基本コンクリート水平部材が、歩行用屋根または多雪区域の屋根の屋根材として用いられている場合には、前記床材の診断基準を適用する、請求項1〜3のいずれかに記載の軽量気泡コンクリート水平部材の劣化診断方法。   When the light-weight basic concrete horizontal member to be diagnosed is used as a roofing material for a walking roof or a roof in a snowy area, the diagnostic criteria for the flooring is applied. Deterioration diagnosis method for lightweight cellular concrete horizontal member as described in 1.
JP2009293190A 2009-12-24 2009-12-24 Degradation diagnosis method for lightweight cellular concrete horizontal members Active JP5333775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293190A JP5333775B2 (en) 2009-12-24 2009-12-24 Degradation diagnosis method for lightweight cellular concrete horizontal members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293190A JP5333775B2 (en) 2009-12-24 2009-12-24 Degradation diagnosis method for lightweight cellular concrete horizontal members

Publications (2)

Publication Number Publication Date
JP2011133359A true JP2011133359A (en) 2011-07-07
JP5333775B2 JP5333775B2 (en) 2013-11-06

Family

ID=44346249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293190A Active JP5333775B2 (en) 2009-12-24 2009-12-24 Degradation diagnosis method for lightweight cellular concrete horizontal members

Country Status (1)

Country Link
JP (1) JP5333775B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155434A (en) * 2014-08-21 2014-11-19 广西大学 Method and test device for analyzing carbonation rule of concrete under continuous humidity environment
CN104181288A (en) * 2014-08-21 2014-12-03 广西大学 Method for analyzing concrete carbonation law under continuous humidity environment condition
JP2015034735A (en) * 2013-08-08 2015-02-19 大和ハウス工業株式会社 Method for determining roof deterioration
JP2015081809A (en) * 2013-10-22 2015-04-27 日本電信電話株式会社 Analyzing method
CN104689731A (en) * 2015-02-06 2015-06-10 广西大学 Preparation method and device for artificial underground water solution containing corrosive carbon dioxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260642A (en) * 1995-03-20 1996-10-08 Asahi Chem Ind Co Ltd Mounting structure for building member and execution method thereof
JPH10331272A (en) * 1997-06-03 1998-12-15 Kajima Corp Construction method of building frame constituted of reinforced concrete column, core wall, uppermost wall beam, and slab
JP2000180437A (en) * 1998-12-14 2000-06-30 Sumitomo Metal Mining Co Ltd Method for diagnosing endurance of aerated lightweight concrete
JP2000193658A (en) * 1998-10-22 2000-07-14 Sumitomo Metal Mining Co Ltd Quantitative determination and evaluation method of deterioration of water vapor cure light-weight bubble concrete
JP2000283895A (en) * 1999-03-30 2000-10-13 Sumitomo Metal Mining Co Ltd Method for predicting durable years of light-weight aerated concrete
JP2003035657A (en) * 2001-07-25 2003-02-07 Sumitomo Kinzoku Kozan Siporex Kk System for diagnosing degradation of lightweight cellular concrete panel
JP2008106570A (en) * 2006-10-27 2008-05-08 Sumitomo Kinzoku Kozan Siporex Kk Reinforcing method of degraded autoclaved lightweight concrete panel horizontal member and autoclaved lightweight concrete panel horizontal member reinforced by the same
JP2008175647A (en) * 2007-01-17 2008-07-31 Sumitomo Kinzoku Kozan Siporex Kk Method of diagnosing deterioration in lightweight cellular concrete horizontal member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260642A (en) * 1995-03-20 1996-10-08 Asahi Chem Ind Co Ltd Mounting structure for building member and execution method thereof
JPH10331272A (en) * 1997-06-03 1998-12-15 Kajima Corp Construction method of building frame constituted of reinforced concrete column, core wall, uppermost wall beam, and slab
JP2000193658A (en) * 1998-10-22 2000-07-14 Sumitomo Metal Mining Co Ltd Quantitative determination and evaluation method of deterioration of water vapor cure light-weight bubble concrete
JP2000180437A (en) * 1998-12-14 2000-06-30 Sumitomo Metal Mining Co Ltd Method for diagnosing endurance of aerated lightweight concrete
JP2000283895A (en) * 1999-03-30 2000-10-13 Sumitomo Metal Mining Co Ltd Method for predicting durable years of light-weight aerated concrete
JP2003035657A (en) * 2001-07-25 2003-02-07 Sumitomo Kinzoku Kozan Siporex Kk System for diagnosing degradation of lightweight cellular concrete panel
JP2008106570A (en) * 2006-10-27 2008-05-08 Sumitomo Kinzoku Kozan Siporex Kk Reinforcing method of degraded autoclaved lightweight concrete panel horizontal member and autoclaved lightweight concrete panel horizontal member reinforced by the same
JP2008175647A (en) * 2007-01-17 2008-07-31 Sumitomo Kinzoku Kozan Siporex Kk Method of diagnosing deterioration in lightweight cellular concrete horizontal member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034735A (en) * 2013-08-08 2015-02-19 大和ハウス工業株式会社 Method for determining roof deterioration
JP2015081809A (en) * 2013-10-22 2015-04-27 日本電信電話株式会社 Analyzing method
CN104155434A (en) * 2014-08-21 2014-11-19 广西大学 Method and test device for analyzing carbonation rule of concrete under continuous humidity environment
CN104181288A (en) * 2014-08-21 2014-12-03 广西大学 Method for analyzing concrete carbonation law under continuous humidity environment condition
CN104155434B (en) * 2014-08-21 2015-11-04 广西大学 The analytical approach of On Pattern of Concrete Carbonization and test unit under continuous humidity atmosphere
CN104689731A (en) * 2015-02-06 2015-06-10 广西大学 Preparation method and device for artificial underground water solution containing corrosive carbon dioxide

Also Published As

Publication number Publication date
JP5333775B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
Morinaga Remaining life of reinforced concrete structures after corrosion cracking
Apostolopoulos et al. Consequences of steel corrosion on the ductility properties of reinforcement bar
JP5333775B2 (en) Degradation diagnosis method for lightweight cellular concrete horizontal members
Uranjek et al. Influence of freeze–thaw cycles on mechanical properties of historical brick masonry
Lahdensivu Durability properties and actual deterioration of Finnish concrete facades and balconies
Sjostrom Durability of Building Materials & Components 7 vol. 2
Venkatesh et al. Condition assessment of existing concrete building using non-destructive testing methods for effective repair and restoration-a case study
JP3451616B2 (en) Durability diagnostic method for lightweight cellular concrete
Mistri et al. Condition assessment of fire affected reinforced concrete shear wall building–A case study
JP3478160B2 (en) A method for predicting the useful life of lightweight cellular concrete
RU2709470C1 (en) Method for determining durability of brick masonry
JP4895830B2 (en) Degradation diagnosis method for lightweight cellular concrete horizontal members
Nordström Steel fibre corrosion in cracks: durability of sprayed concrete
JP2013231598A (en) Quantitative evaluation method of crack reduction effect by shrinkage-reducing material, and selection method of shrinkage-reducing material
Singh Structural repair and rehabilitation of 3 no.(G+ 8) multi-storeyed residential buildings, at ONGC colony at Chandkheda, Ahmedabad, Gujrat
JP4108568B2 (en) Method of estimating the rusting time of reinforcing steel in reinforced concrete, method of estimating corrosion rate of reinforcing steel, method of estimating the amount of corrosion of reinforcing steel, and method of diagnosing durability of reinforced concrete
De Rose et al. Towards a limit states approach to insulating solid masonry walls in a cold climate
Puri et al. Flexural behaviour of bamboo-reinforced wall panels with varying fly ash content
JP3519383B2 (en) Deterioration diagnosis system for lightweight cellular concrete panels
de Medeiros et al. Inspection and rehabilitation of the marquee of the Ibirapuera Park in Brazil
Oroza et al. Diagnostic of damage in a building of the early twentieth century in Havana. Case study
JP2008106570A (en) Reinforcing method of degraded autoclaved lightweight concrete panel horizontal member and autoclaved lightweight concrete panel horizontal member reinforced by the same
Bortz et al. Review of durability testing in the United States and Europe
Hyung-Min et al. Carbonation-Induced Corrosion Initiation Probability of Rebars in Concrete With/Without Finishing Materials
Uddin et al. Condition Assessment and Evaluation of Concrete Structures by Advanced Non-destructive Methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5333775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250