JP2000282170A - Grain coarsening resistant case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof - Google Patents

Grain coarsening resistant case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof

Info

Publication number
JP2000282170A
JP2000282170A JP2000071191A JP2000071191A JP2000282170A JP 2000282170 A JP2000282170 A JP 2000282170A JP 2000071191 A JP2000071191 A JP 2000071191A JP 2000071191 A JP2000071191 A JP 2000071191A JP 2000282170 A JP2000282170 A JP 2000282170A
Authority
JP
Japan
Prior art keywords
less
steel
toughness
impurities
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000071191A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kamata
芳彦 鎌田
Yasuo Kurokawa
八寿男 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000071191A priority Critical patent/JP2000282170A/en
Publication of JP2000282170A publication Critical patent/JP2000282170A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce high strength and high toughness surface hardened parts in which abnormal grain growth at the time of surface hardening treatment is prevented, and heat treating distortion is small, to provide a case hardening steel to form into the stock thereof, and to provide a method for producing the surface hardened parts. SOLUTION: This case hardening steel is a steel having a compsn. contg., by mass, 0.10 to 0.30% C, 0.01 to 0.50% Si, 0.62 to 2.00% Mn, <=2.0% Cr, 0.020 to 0.080% Nb, <=0.100% Ti, <=0.100% Al, 0.0010 to 0.0100% B, and the balance Fe with impurities, in which the contents of P, S and N in the impurities are controlled to <=0.025%, <=0.040% and <=0.0100%, and also, 8[%N]-2[%Ti]-[% Nb]<=0 and 3.4[%N]-[%Ti]<=0 are satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、肌焼鋼および表面
硬化部品と、その表面硬化部品の製造方法に関し、より
詳しくは、耐粗粒化肌焼鋼および強度と靱性に優れた表
面硬化部品並びにその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a case hardened steel and a case hardened part, and a method for producing the case hardened part, and more particularly, to a coarse grained case hardened steel and a case hardened part excellent in strength and toughness. And its manufacturing method.

【0002】[0002]

【従来の技術】従来、自動車用や産業機械用などの各種
機械構造部品、特に歯車を代表とする表面硬化部品は、
肌焼鋼を素材としてこれを熱間鍛造や冷間鍛造、更には
機械加工により所望の形状に成形加工した後、耐摩耗性
および疲労強度を向上させる目的で部品表面に浸炭処理
や浸炭窒化処理などの表面硬化処理を施してから使用に
供されている。
2. Description of the Related Art Conventionally, various mechanical structural parts such as those for automobiles and industrial machines, especially surface hardened parts represented by gears,
Using case hardened steel as a material, it is formed into a desired shape by hot forging, cold forging, or machining, and then carburizing or carbonitriding the surface of the part to improve wear resistance and fatigue strength. It is used after being subjected to a surface hardening treatment.

【0003】表面硬化部品の素材となる機械構造用肌焼
鋼としては、従来、JIS規格鋼(機械構造用マンガン
鋼(SMn鋼)およびマンガンクロム鋼(SMnC鋼)
(いずれもJIS G 4106)、クロムモリブデン鋼(SCM
鋼)(JIS G 4105)、クロム鋼(SCr鋼)(JIS G 41
04)、ニッケルクロムモリブデン鋼(SNCM鋼)(JI
S G 4103)、ニッケルクロム鋼(SNC鋼)(JIS G 41
02)など)が用いられてきた。しかしこうしたJIS規
格鋼では、合金成分を多量に含み、また通常の表面
硬化処理において長時間を要する、ためにコスト面で問
題があった。すなわち、近年の経済事情の下、産業界か
らは各種表面硬化部品の素材コストの低減に対する要請
があるが、この要請に充分応えられるものではなかっ
た。
Conventionally, JIS standard steels (manganese steel for machine structure (SMn steel) and manganese chrome steel (SMnC steel)) have been used as case hardening steel for machine structure used as the material for surface hardened parts.
(Both JIS G 4106), chrome molybdenum steel (SCM
Steel) (JIS G 4105), chrome steel (SCr steel) (JIS G 41
04), Nickel chrome molybdenum steel (SNCM steel) (JI
SG 4103), Nickel chrome steel (SNC steel) (JIS G 41
02) etc.) have been used. However, such JIS standard steels have a problem in terms of cost because they contain a large amount of alloy components and require a long time for ordinary surface hardening treatment. That is, under recent economic circumstances, there has been a request from the industry for a reduction in the material cost of various surface-hardened components, but this request has not been sufficiently met.

【0004】そのため、素材鋼に添加する各種合金成分
を削減する検討がなされ、この合金成分削減による焼入
れ性の低下を補うために、少量のBを添加するボロン鋼
が注目されてきた。しかし、従来型の、単に合金成分量
を減じたボロン鋼では、浸炭処理や浸炭窒化処理などの
表面硬化処理時に930℃程度まで加熱された場合に異
常粒成長が生じ、焼入れ時の歪み発生や材料強度の低下
が生ずるという問題がある。
[0004] For this reason, studies have been made to reduce various alloying components to be added to the base steel. In order to compensate for the decrease in hardenability due to the reduction in the alloying components, boron steel to which a small amount of B is added has attracted attention. However, in conventional boron steel, which has simply reduced the amount of alloy components, abnormal grain growth occurs when heated to about 930 ° C. during surface hardening treatment such as carburizing treatment or carbonitriding treatment, and distortion occurs during quenching and There is a problem that the material strength is reduced.

【0005】上記の産業界からの要請に対して、一方で
は、高温で表面硬化処理を行い処理時間の短縮を図る浸
炭用鋼材の製造方法が特開平4−176816号公報に
提案されている。しかしこの公報で開示された方法は、
単に、高温浸炭時の結晶粒の粗大化を防止し、これによ
り熱処理歪の発生や強度低下の防止を図ろうとするもの
である。そのため、自動車や産業機械の使用環境が過酷
となった現状においては、必ずしも使用に耐えれるだけ
の充分な強度−靱性バランスを備えたものが得られると
いうわけではない。
In response to the above demands from the industry, Japanese Patent Application Laid-Open No. 4-176816 proposes a method for producing a carburizing steel material in which surface hardening is performed at a high temperature to shorten the processing time. However, the method disclosed in this publication,
The purpose is simply to prevent the crystal grains from becoming coarse during high-temperature carburizing, thereby preventing the occurrence of heat treatment distortion and the reduction in strength. For this reason, in the current situation where the use environment of automobiles and industrial machines is severe, it is not always possible to obtain a product having a sufficient strength-toughness balance to withstand use.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、充分
な強度−靱性バランスを有して、過酷な環境下での使用
に充分耐え得る低コスト型の表面硬化部品およびその素
材となる耐粗粒化肌焼鋼と、その表面硬化部品の製造方
法を提供すること、なかでも、表面硬化処理時の異常粒
成長がなく熱処理歪みの少ない高強度・高靱性の表面硬
化部品とその素材となる耐粗粒化肌焼ボロン鋼およびそ
の表面硬化部品の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low-cost type surface-hardened component which has a sufficient strength-toughness balance and which can sufficiently withstand use in a harsh environment, and a material which is resistant to the hardening. To provide a method for producing coarse-grained case hardened steel and its surface-hardened parts, especially, high-strength and high-toughness surface-hardened parts with no abnormal grain growth during surface hardening treatment and little heat treatment distortion, and their materials. Another object of the present invention is to provide a method for producing a coarse-grained case hardened boron steel and a surface-hardened component thereof.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の課題
を解決するため表面硬化部品の素材となる鋼材の化学組
成並びに表面硬化部品の組織および熱処理方法について
調査・研究を行った。その結果、次の重要な事項が判明
した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted investigations and studies on the chemical composition of the steel material used as the material of the surface-hardened part, the structure of the surface-hardened part, and the heat treatment method. As a result, the following important matters became clear.

【0008】従来、低合金鋼における異常粒成長の発生
を防止する手段として少量のNbを添加すれば良いこと
が知られている。これはNbの添加で析出した微細なN
bCのピン止め効果を利用することで、浸炭処理や浸炭
窒化処理などの表面硬化処理における加熱時のオーステ
ナイト粒の異常成長を防止するものである。一方、ボロ
ン鋼の場合、添加したB(ボロン)が鋼中のNと極めて
結びつきやすくBNとして析出するので、焼入れ性に有
効な固溶B量が減少する。このためTiを添加してTi
Nとし、鋼中のNをTiにより固定してBと結合するN
量を減少させることにより固溶B量を確保する方法が一
般に行われている。しかし、異常粒成長の防止と固溶B
の確保を同時に達成するために、NbとTiを複合添加
した鋼では溶製時にニオブチタン炭窒化物〔NbTi
(CN)〕が粗大に析出し、この炭窒化物はその後の分
塊、圧延および鍛造の加熱時や熱処理時に容易には溶解
しないことが本発明者の検討によって明らかになった。
従って、異常粒成長の防止に有効なピン止め作用をする
微細なNbCおよびTiCの析出量が減少し、表面硬化
処理時に粗粒が発生することが考えられる。
Heretofore, it has been known that a small amount of Nb may be added as a means for preventing the occurrence of abnormal grain growth in low alloy steel. This is due to the fine N deposited by the addition of Nb.
By utilizing the pinning effect of bC, abnormal growth of austenite grains during heating in surface hardening treatment such as carburizing treatment or carbonitriding treatment is prevented. On the other hand, in the case of boron steel, the added B (boron) is very easily linked to N in the steel and precipitates as BN, so that the amount of solute B effective for hardenability decreases. Therefore, Ti is added and Ti
N, which fixes N in steel with Ti and combines with B
A method of securing the amount of solid solution B by reducing the amount is generally performed. However, prevention of abnormal grain growth and solid solution B
In order to simultaneously achieve the securing of Nb and Ti, it is necessary to use niobium titanium carbonitride [NbTi
The present inventors have found that (CN)] is coarsely precipitated, and that the carbonitride does not readily dissolve during heating or heat treatment during subsequent lumping, rolling and forging.
Therefore, it is conceivable that the precipitation amount of fine NbC and TiC which act as a pinning function effective for preventing abnormal grain growth is reduced, and coarse grains are generated during the surface hardening treatment.

【0009】そこで本発明者らは更に詳細な研究を続
け、その結果、次の新規知見を得るに至った。
Therefore, the present inventors have continued further detailed research, and as a result, have obtained the following new findings.

【0010】NbとTiを複合添加した鋼において凝
固時に析出する粗大な合金炭窒化物はNbC、TiC、
NbN、TiN、Nb(CN)およびTi(CN)とい
った単独合金による炭化物、窒化物や炭窒化物ではな
く、NbとTiの複合炭窒化物〔NbTi(CN)〕で
ある。
[0010] The coarse alloy carbonitride precipitated during solidification in steel to which Nb and Ti are added in combination is NbC, TiC,
It is not a carbide, nitride or carbonitride of a single alloy such as NbN, TiN, Nb (CN) and Ti (CN), but a composite carbonitride of Nb and Ti [NbTi (CN)].

【0011】複合炭窒化物〔NbTi(CN)〕の固
溶と加熱温度(T)の関係については以下のとおりであ
る。
The relationship between the solid solution of the composite carbonitride [NbTi (CN)] and the heating temperature (T) is as follows.

【0012】(イ)T<1150℃の場合:上記の複合
炭窒化物は鋼中で安定に存在する。
(A) When T <1150 ° C .: The above composite carbonitride exists stably in steel.

【0013】(ロ)1150℃≦T≦1350℃の場
合:上記の複合炭窒化物中のNbだけが固溶し、Tiが
濃化する。
(B) When 1150 ° C. ≦ T ≦ 1350 ° C .: Only Nb in the above composite carbonitride forms a solid solution, and Ti is concentrated.

【0014】(ハ)1350℃<Tの場合:、上記の複
合炭窒化物は完全に固溶する(Tiも固溶する)。
(C) When 1350 ° C. <T: The above composite carbonitride completely dissolves (Ti also dissolves).

【0015】下記fn1とfn2の値が共に0以下の
場合に、焼入れ性向上に有効な固溶B量が確保できる。
When the following values of fn1 and fn2 are both 0 or less, an amount of solid solution B effective for improving hardenability can be secured.

【0016】 fn1=8[%N]−2[%Ti]−[%Nb] fn2=3.4[%N]−[%Ti] 但し、[%N]はN成分の質量%を意味し、[%Ti]
および[%Nb]についても同様である。
Fn1 = 8 [% N] -2 [% Ti] − [% Nb] fn2 = 3.4 [% N] − [% Ti] where [% N] means mass% of N component. , [% Ti]
And [% Nb].

【0017】上記のfn1≦0およびfn2≦0
で、且つ、表面硬化処理の前に素材鋼および/または表
面硬化部品が1150℃以上の温度域に加熱された場合
に、微細に析出したNbCとTiCのピン止め作用で表
面硬化処理時の異常粒成長を防止できる。
The above fn1 ≦ 0 and fn2 ≦ 0
And when the material steel and / or the surface-hardened parts are heated to a temperature range of 1150 ° C. or more before the surface hardening, abnormalities at the time of the surface hardening due to the pinning action of finely precipitated NbC and TiC. Grain growth can be prevented.

【0018】表面硬化処理後、Hv300以上の芯部
硬度と20J/cm2 以上の衝撃値を有すれば、その表
面硬化部品は自動車や産業機械が使用される過酷な環境
においても充分な耐久性を示す。
After the surface hardening treatment, if the core has a hardness of Hv 300 or more and an impact value of 20 J / cm 2 or more, the surface hardened part has sufficient durability even in harsh environments where automobiles and industrial machines are used. Is shown.

【0019】上記知見に基づく本発明は、下記(1)に
示す化学組成を有する耐粗粒化肌焼鋼、(2)に示す強
度と靱性に優れた表面硬化部品および(3)、(4)に
示す強度と靱性に優れた表面硬化部品の製造方法を要旨
とする。 (1)質量%で、C:0.10〜0.30%、Si:
0.01〜0.50%、Mn:0.62〜2.00%、
Cr:2.0%以下、Nb:0.020〜0.080
%、Ti:0.100%以下、Al:0.100%以
下、B:0.0010〜0.0100%を含有し、残部
はFeおよび不純物からなり、不純物中のPは0.02
5%以下、Sは0.040%以下およびNは0.010
0%以下で、且つ、前記のfn1およびfn2の値が共
に0以下であることを特徴とする耐粗粒化肌焼鋼。 (2)素材が、質量%で、C:0.10〜0.30%、
Si:0.01〜0.50%、Mn:0.62〜2.0
0%、Cr:2.0%以下、Nb:0.020〜0.0
80%、Ti:0.100%以下、Al:0.100%
以下、B:0.0010〜0.0100%を含有し、残
部はFeおよび不純物からなり、不純物中のPは0.0
25%以下、Sは0.040%以下およびNは0.01
00%以下で、且つ、前記のfn1およびfn2の値が
共に0以下の耐粗粒化肌焼鋼であって、表面硬化処理後
にHv300以上の芯部硬度と20J/cm2 以上の衝
撃値を有することを特徴とする強度と靱性に優れた表面
硬化部品。
The present invention based on the above findings provides a coarse-grained case hardening steel having the chemical composition shown in (1) below, a surface-hardened part excellent in strength and toughness shown in (2), and (3), (4) The method of manufacturing a surface-hardened part having excellent strength and toughness described in (1). (1) In mass%, C: 0.10 to 0.30%, Si:
0.01-0.50%, Mn: 0.62-2.00%,
Cr: 2.0% or less, Nb: 0.020 to 0.080
%, Ti: 0.100% or less, Al: 0.100% or less, B: 0.0010 to 0.0100%, and the balance consists of Fe and impurities, and P in the impurities is 0.02%.
5% or less, S is 0.040% or less and N is 0.010%
A coarse-grain-hardened case hardening steel characterized by being 0% or less, and both the values of fn1 and fn2 being 0 or less. (2) Material is in mass%, C: 0.10 to 0.30%,
Si: 0.01 to 0.50%, Mn: 0.62 to 2.0
0%, Cr: 2.0% or less, Nb: 0.020 to 0.0
80%, Ti: 0.100% or less, Al: 0.100%
Hereinafter, B: 0.0010 to 0.0100% is contained, and the balance is composed of Fe and impurities.
25% or less, S is 0.040% or less and N is 0.01
100% or less, and, a said fn1 and fn2耐粗granulation hardened steel value are both zero following, after the surface hardening treatment Hv300 or more core hardness and 20 J / cm 2 or more impact value Surface-hardened parts with excellent strength and toughness characterized by having

【0020】(3)質量%で、C:0.10〜0.30
%、Si:0.01〜0.50%、Mn:0.62〜
2.00%、Cr:2.0%以下、Nb:0.020〜
0.080%、Ti:0.100%以下、Al:0.1
00%以下、B:0.0010〜0.0100%を含有
し、残部はFeおよび不純物からなり、不純物中のPは
0.025%以下、Sは0.040%以下およびNは
0.0100%以下で、且つ、前記のfn1およびfn
2の値が共に0以下である耐粗粒化肌焼鋼を、表面硬化
処理に先立って1150℃以上に加熱してから熱間鍛造
することを特徴とする強度と靱性に優れた表面硬化部品
の製造方法。
(3) In mass%, C: 0.10 to 0.30
%, Si: 0.01 to 0.50%, Mn: 0.62 to
2.00%, Cr: 2.0% or less, Nb: 0.020 to
0.080%, Ti: 0.100% or less, Al: 0.1
00% or less, B: 0.0010 to 0.0100%, the balance consists of Fe and impurities, P in the impurities is 0.025% or less, S is 0.040% or less, and N is 0.0100%. % Or less, and the aforementioned fn1 and fn
2. A surface-hardened part excellent in strength and toughness, characterized in that a coarse-grained case hardening steel having both values of 0 or less is heated to 1150 ° C. or more prior to surface hardening and then hot forged. Manufacturing method.

【0021】(4)質量%で、C:0.10〜0.30
%、Si:0.01〜0.50%、Mn:0.62〜
2.00%、Cr:2.0%以下、Nb:0.020〜
0.080%、Ti:0.100%以下、Al:0.1
00%以下、B:0.0010〜0.0100%を含有
し、残部はFeおよび不純物からなり、不純物中のPは
0.025%以下、Sは0.040%以下およびNは
0.0100%以下で、且つ、前記のfn1およびfn
2の値が共に0以下である耐粗粒化肌焼鋼を、分塊、圧
延および熱処理の少なくとも1つの工程を1150℃以
上に加熱して行い、その後鍛造し表面硬化処理すること
を特徴とする強度と靱性に優れた表面硬化部品の製造方
法。
(4) In mass%, C: 0.10 to 0.30
%, Si: 0.01 to 0.50%, Mn: 0.62 to
2.00%, Cr: 2.0% or less, Nb: 0.020 to
0.080%, Ti: 0.100% or less, Al: 0.1
00% or less, B: 0.0010 to 0.0100%, the balance consists of Fe and impurities, P in the impurities is 0.025% or less, S is 0.040% or less, and N is 0.0100%. % Or less, and the aforementioned fn1 and fn
The method is characterized in that a coarse-grained case hardening steel having a value of 2 or less is 0 or less, and at least one of the steps of lumping, rolling and heat treatment is heated to 1150 ° C. or more, and then forged and surface hardened. Method for manufacturing surface-hardened parts with excellent strength and toughness.

【0022】なお、表面硬化処理後の芯部とは表面硬化
されていない部分のことをいう。
The core after the surface hardening treatment means a part that is not surface hardened.

【0023】[0023]

【発明の実施の形態】以下、本発明についてその作用効
果と共に詳しく説明する。なお「%」は「質量%」を意
味する。 (A)素材鋼の化学組成 C:Cは鋼の静的強度を確保するために添加するが、そ
の含有量が0.10%未満では添加効果に乏しく、一
方、0.30%を超えて含有すると鋼の靱性が低下する
ことになるので、その含有量を0.10〜0.30%と
した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail together with its operation and effect. “%” Means “% by mass”. (A) Chemical composition of base steel C: C is added to secure the static strength of the steel, but if its content is less than 0.10%, the effect of addition is poor, while on the other hand, it exceeds 0.30%. If contained, the toughness of the steel will decrease, so the content was made 0.10 to 0.30%.

【0024】Si:Siは鋼の焼入れ性の向上、静的強
度の向上および高温での表面酸化の防止に有効な元素で
ある。しかし、その含有量が0.01%未満では所望の
静的強度が確保できないことに加えて高温での表面の耐
酸化性が劣化し、0.50%を超えると靱性の劣化を招
くこととなるので、その含有量を0.01〜0.50%
とした。
Si: Si is an element effective for improving the hardenability of steel, improving the static strength, and preventing surface oxidation at high temperatures. However, if the content is less than 0.01%, the desired static strength cannot be ensured, and in addition, the oxidation resistance of the surface at high temperatures deteriorates, and if it exceeds 0.50%, the toughness deteriorates. Therefore, the content is 0.01 to 0.50%
And

【0025】Mn:Mnは鋼の焼入れ性向上および熱間
延性向上の作用を有する。しかし、その含有量が0.6
2%未満では充分な焼入れ性が得られず、2.00%を
超えて含有させると偏析を起こし、却って熱間延性が低
下するようになる。従って、Mnの含有量を0.62〜
2.00%とした。
Mn: Mn has the effect of improving the hardenability and hot ductility of steel. However, its content is 0.6
If the content is less than 2%, sufficient hardenability cannot be obtained, and if the content exceeds 2.00%, segregation occurs, and on the contrary, the hot ductility decreases. Therefore, the content of Mn is 0.62 to
2.00%.

【0026】Cr:Crは添加しなくても良い。添加す
れば鋼の焼入れ性が向上すると共に、浸炭処理などの表
面硬化処理時にCと結合して複合炭化物を形成するので
耐摩耗性が向上する効果がある。この効果を確実に得る
には、Crは0.05%以上の含有量とすることが好ま
しい。しかし、その含有量が2.00%を超えると靱性
が劣化する。従って、Cr含有量の上限を2.00%と
した。
Cr: Cr may not be added. If added, the hardenability of the steel is improved, and at the time of surface hardening treatment such as carburizing treatment, it combines with C to form a composite carbide, so that there is an effect that wear resistance is improved. To ensure this effect, the content of Cr is preferably set to 0.05% or more. However, if the content exceeds 2.00%, the toughness deteriorates. Therefore, the upper limit of the Cr content is set to 2.00%.

【0027】Nb:Nbは鋼の結晶粒を微細にして靱性
を向上すると共に表面硬化処理のための加熱時の異常粒
成長の防止に有効な元素である。しかし、その含有量が
0.020%未満では添加効果に乏しく、一方、0.0
80%を超えて含有させても結晶粒微細化の効果が飽和
して経済性を損なうばかりであるし、変形抵抗が上昇し
て冷間鍛造性や熱間鍛造性が劣化するようにもなる。従
って、Nbの含有量を0.020〜0.080%とし
た。
Nb: Nb is an element effective for improving the toughness by making the crystal grains of steel finer and for preventing abnormal grain growth during heating for surface hardening treatment. However, if the content is less than 0.020%, the effect of addition is poor.
Even if the content exceeds 80%, the effect of crystal grain refinement is saturated and only the economic efficiency is impaired, and the deformation resistance increases, and the cold forgeability and the hot forgeability deteriorate. . Therefore, the content of Nb is set to 0.020 to 0.080%.

【0028】Ti:Tiは本質的には添加しなくても良
い。しかし鋼中のN含有量を完全に0とすることは不可
能であるため、前記fn2≦0の条件から本発明にあっ
ては何がしかの量を含有させざるを得ない。Tiは添加
すれば結晶粒を微細化すると共に表面硬化処理のための
加熱時の異常粒成長を防止する作用がある。更に、Ti
はNと反応してTiNを形成し、鋼中の固溶Nを低減し
てBNの生成を抑えることにより、焼入れ性の向上に有
効な固溶B量を確保する効果も有する。こうした効果を
確実に得るには、Tiは0.005%以上の含有量とす
ることが好ましい。しかし、その含有量が1.00%を
超えると結晶粒微細化の効果が飽和して経済性を損なう
ばかりか、靱性が劣化するようになる。従って、Ti含
有量の上限を1.00%とした。
Ti: Ti may not be essentially added. However, since it is impossible to completely reduce the N content in steel to 0, some amount must be contained in the present invention based on the condition of fn2 ≦ 0. If Ti is added, it has the effect of making crystal grains finer and preventing abnormal grain growth during heating for surface hardening treatment. Furthermore, Ti
Reacts with N to form TiN, suppresses the formation of BN by reducing solid solution N in steel, and has an effect of securing an effective amount of solid solution B for improving hardenability. In order to surely obtain such an effect, the content of Ti is preferably set to 0.005% or more. However, if the content exceeds 1.00%, the effect of crystal grain refinement is saturated and not only impairs economic efficiency but also deteriorates toughness. Therefore, the upper limit of the Ti content is set to 1.00%.

【0029】Al:Alは添加しなくても良い。添加す
れば鋼の脱酸の安定化および均質化を図る作用がある。
この効果を確実に得るには、Alは0.005%以上の
含有量とすることが望ましい。しかし、その含有量が
0.100%を超えると前記効果が飽和することに加え
て靱性が劣化するようになるので、Alの含有量を0.
100%以下とした。
Al: Al may not be added. If added, it has the effect of stabilizing and homogenizing steel deoxidation.
To ensure this effect, the content of Al is desirably 0.005% or more. However, if the content exceeds 0.100%, the effect is saturated and the toughness is deteriorated.
100% or less.

【0030】B:Bは鋼の焼入れ性を向上するのに有効
な元素である。しかし、その含有量が0.0010%未
満では所望の効果が得られず、0.0100%を超えて
含有させるとその効果が飽和してコストの上昇を招くば
かりか、却って焼入れ性の低下をきたす場合もあるの
で、Bの含有量を0.0010〜0.0100%とし
た。
B: B is an element effective for improving the hardenability of steel. However, if the content is less than 0.0010%, the desired effect cannot be obtained. If the content exceeds 0.0100%, the effect is saturated and not only the cost is increased, but also the hardenability decreases. In some cases, the content of B was set to 0.0010 to 0.0100% because of the possibility of the occurrence.

【0031】不純物元素P、SおよびNはその含有量を
次のとおり制限する。
The contents of the impurity elements P, S and N are limited as follows.

【0032】P:Pは鋼の靱性を劣化させると共に、冷
間および熱間鍛造性を低下させ、特にその含有量が0.
025%を超えると靱性および冷間・熱間鍛造性の劣化
が著しくなる。従って、不純物元素としてのPの含有量
の上限を0.025%とした。
P: P degrades the toughness of the steel and lowers the cold and hot forgeability.
If it exceeds 025%, the toughness and the cold / hot forgeability deteriorate significantly. Therefore, the upper limit of the content of P as an impurity element is set to 0.025%.

【0033】S:Sは表面硬化層の靱性を劣化させるば
かりか、冷間および熱間鍛造性を低下させ、特にその含
有量が0.040%を超えると靱性劣化、冷間および熱
間鍛造性の低下が著しくなる。従って、不純物元素とし
てのSの含有量の上限を0.040%とした。
S: S not only deteriorates the toughness of the surface hardened layer, but also lowers the cold and hot forgeability. Particularly, when the content exceeds 0.040%, the toughness deteriorates, and the cold and hot forging occurs. The property is significantly reduced. Therefore, the upper limit of the content of S as an impurity element is set to 0.040%.

【0034】N:NはBと反応してBNを形成し焼入れ
性の向上に有効な固溶B量を減らすので、固有B量の確
保のためにNの含有量は可及的に少なくする必要があ
る。しかし製鋼時にN含有量を0とすることは現実には
不可能である。そのため固溶NをTi添加によって、主
としてTiNの形で固定してしまうことが重要である。
この場合、固溶N量と添加Ti量とのバランスは、コス
ト面および前記したTiの作用面の両方から勘案する必
要がある。Nの含有量が0.0100%を超えると、N
に対応する量のTiの添加により靱性が低下する。従っ
て、不純物元素としてのNの含有量の上限を0.010
0%とした。
N: Since N reacts with B to form BN and reduces the amount of solid solution B effective for improving hardenability, the content of N is reduced as much as possible in order to secure the intrinsic B amount. There is a need. However, it is actually impossible to reduce the N content to 0 during steelmaking. Therefore, it is important to fix solid solution N mainly in the form of TiN by adding Ti.
In this case, it is necessary to consider the balance between the amount of solid solution N and the amount of added Ti from both the cost aspect and the above-described Ti action aspect. If the content of N exceeds 0.0100%, N
The toughness is reduced by the addition of Ti in an amount corresponding to. Therefore, the upper limit of the content of N as an impurity element is set to 0.010.
0%.

【0035】fn1≦0、且つ、fn2≦0:前記した
fn1とfn2の値が共に0以下の場合に、焼入れ性向
上に有効な固溶B量が確保でき、更に、上記の条件が満
たされ、且つ、表面硬化処理の前に素材鋼および/また
は表面硬化部品が1150℃以上の温度域に加熱された
場合に、微細に析出したNbCとTiCのピン止め作用
で表面硬化処理時の異常粒成長が防止できるので、本発
明においては上記制限を設ける。
Fn1.ltoreq.0 and fn2.ltoreq.0: When the values of fn1 and fn2 are both 0 or less, an effective amount of solid solution B for improving hardenability can be secured, and the above condition is satisfied. In addition, when the material steel and / or the surface-hardened part is heated to a temperature range of 1150 ° C. or more before the surface hardening, abnormal grains during the surface hardening due to the pinning action of finely precipitated NbC and TiC. Since the growth can be prevented, the above limitation is set in the present invention.

【0036】上記の化学組成を有する素材鋼は、例えば
熱間で分塊されて鋼片となり、次いで熱間で圧延された
後、熱間あるいは冷間で鍛造され、必要に応じて焼準や
機械加工を施されて所定の表面硬化部品の形状に加工さ
れる。そして最終的に表面硬化処理を施されることとな
る。 (B)熱間鍛造、分塊、圧延および熱処理 既に述べた特開平4−176816号公報にはNb、T
iおよびVのうちの1種以上を添加した肌焼鋼を用い
て、高温浸炭時の結晶粒の粗大化を防止する製造方法が
開示されている。この公報に記載の肌焼鋼におけるもの
を始めとして、一般に、微細な合金炭窒化物を析出させ
れば、そのピン止め効果により表面硬化処理時の結晶粒
成長を抑制することは可能である。浸炭や浸炭窒化など
の所謂表面硬化処理の加熱時に、微細な合金炭窒化物を
析出させておくためには、溶製後の凝固時に析出した粗
大な合金炭窒化物を、表面硬化処理の前段階で充分に鋼
中に固溶させ、微細な合金炭窒化物析出の素地を作って
おく必要がある。このためには、表面硬化処理の前の工
程で、一旦高温に加熱しておけば良い。従来、結晶粒成
長を抑制するためのこの高温加熱温度は、各合金炭窒化
物の溶解度積から求めた固溶温度から1200℃に設定
されていた。
The raw steel having the above-mentioned chemical composition is, for example, hot-bulked to form a steel slab, then hot-rolled, and then hot- or cold-forged. It is machined and processed into a predetermined surface-hardened component shape. Then, a surface hardening treatment is finally performed. (B) Hot forging, lumping, rolling, and heat treatment Nb, T
A production method is disclosed that uses case hardening steel to which one or more of i and V are added to prevent coarsening of crystal grains during high-temperature carburization. In general, if a fine alloy carbonitride is precipitated, such as the case hardened steel described in this publication, it is possible to suppress the crystal grain growth during the surface hardening treatment by its pinning effect. In order to precipitate fine alloy carbonitrides during heating in so-called surface hardening treatment such as carburizing or carbonitriding, coarse alloy carbonitrides precipitated during solidification after melting must be removed before surface hardening treatment. It is necessary to sufficiently dissolve the steel in the steel at the stage, and to prepare a base material of fine alloy carbonitride precipitation. For this purpose, it is sufficient to temporarily heat to a high temperature in a step before the surface hardening treatment. Conventionally, the high-temperature heating temperature for suppressing crystal grain growth has been set to 1200 ° C. from the solid solution temperature determined from the solubility product of each alloy carbonitride.

【0037】しかし既に述べたように、NbとTiを
複合添加した鋼において凝固時に析出する粗大な合金炭
窒化物は、NbとTiの複合炭窒化物〔NbTi(C
N)〕である。複合炭窒化物〔NbTi(CN)〕の
固溶と加熱温度(T)の関係については以下のとおりで
ある。
However, as described above, the coarse alloy carbonitride precipitated during solidification in steel to which Nb and Ti are added in combination is a composite carbonitride of Nb and Ti [NbTi (C
N)]. The relationship between the solid solution of the composite carbonitride [NbTi (CN)] and the heating temperature (T) is as follows.

【0038】(イ)T<1150℃の場合:上記の複合
炭窒化物は鋼中で安定に存在する。
(A) When T <1150 ° C .: The above-mentioned composite carbonitride exists stably in steel.

【0039】(ロ)1150℃≦T≦1350℃の場
合:上記の複合炭窒化物中のNbだけが固溶し、Tiが
濃化する。
(B) When 1150 ° C. ≦ T ≦ 1350 ° C .: Only Nb in the above composite carbonitride forms a solid solution, and Ti is concentrated.

【0040】(ハ)1350℃<Tの場合:、上記の複
合炭窒化物は完全に固溶する(Tiも固溶する)。
(C) When 1350 ° C. <T: The above composite carbonitride completely dissolves (Ti also dissolves).

【0041】従って、本発明においては、(a)焼入れ
性向上の点から固溶B量を確保するため主としてTiに
よりNを固定し、(b)微細に析出したNbCとTiC
のピン止め効果により異常粒成長の発生を防止するた
め、表面硬化処理の前の工程で一旦1150℃以上に加
熱する。そこで、表面硬化部品への加工工程に熱間鍛造
が含まれる場合には、少なくともこの熱間鍛造における
加熱温度を1150℃以上としてNbを固溶させれば良
いことになる(請求項3の発明)。
Therefore, in the present invention, (a) N is mainly fixed by Ti in order to secure the amount of solid solution B from the viewpoint of improving hardenability, and (b) finely precipitated NbC and TiC
In order to prevent the occurrence of abnormal grain growth due to the pinning effect of the above, the material is once heated to 1150 ° C. or more in a step before the surface hardening treatment. Therefore, when hot forging is included in the process of forming a surface-hardened part, it is sufficient that at least the heating temperature in this hot forging is set to 1150 ° C. or more to form a solid solution of Nb. ).

【0042】あるいは既に述べた表面硬化処理の前工程
のうち、熱間鍛造以外で「加熱」処理を伴うものは分
塊、圧延および所謂「熱処理」であるため、これら分
塊、圧延および熱処理の少なくとも1つの工程において
加熱温度を1150℃以上とすれば良いことになる(請
求項4の発明)。
Alternatively, among the pre-processes of the surface hardening treatment described above, those involving "heating" treatment other than hot forging are lumping, rolling and so-called "heat treatment". In at least one step, the heating temperature may be set to 1150 ° C. or higher (the invention of claim 4).

【0043】ここで、上記した請求項3の発明および同
4の発明における加熱温度の上限は、加熱時の表面酸化
を低減すると共に固溶Bを確保するために1350℃と
するのが良い。
Here, the upper limit of the heating temperature in the third and fourth aspects of the present invention is preferably set to 1350 ° C. in order to reduce surface oxidation during heating and to secure solid solution B.

【0044】なお、浸炭や浸炭窒化などの所謂表面硬化
処理の加熱時に、微細な合金炭窒化物を析出させておく
ためには、上記の加熱後の冷却速度は0.2℃/s以上
とすることが望ましい。 (C)表面硬化処理 表面硬化処理は、所定の表面硬化部品の表面を硬化さ
せ、製品として必要な耐摩耗性や疲労強度を確保するの
に必要不可欠の処理である。しかし、この処理方法は特
に規定されるものではなく、通常の方法で行えば良い。 (D)表面硬化処理後の表面硬化部品の芯部硬度と靱性 表面硬化部品が、自動車や産業機械が使用される過酷な
環境においても充分な耐久性を発揮するためには、表面
硬化処理後、Hv300以上の芯部硬度と20J/cm
2 以上の衝撃値を有することが必要である。これらの一
方および/または両方から外れる場合は表面硬化部品の
実環境での耐久性は極めて劣化したものとなってしま
う。従って、表面硬化部品の芯部硬度はHv300以
上、且つ、衝撃値は20J/cm2 以上とした。 (E)焼戻し 低温で焼戻しを行うと表面硬度の大きな低下を伴うこと
なく靱性を改善できるので、本発明の表面硬化部品は、
表面硬化処理の後必要に応じて焼戻しを実施したもので
あっても良い。焼戻しする場合は、表面硬度を確保する
ためにその温度を150〜200℃とするのが望まし
い。
In order to precipitate fine alloy carbonitrides during heating in so-called surface hardening treatment such as carburizing or carbonitriding, the cooling rate after the above-mentioned heating is 0.2 ° C./s or more. It is desirable to do. (C) Surface Hardening Treatment The surface hardening treatment is an indispensable treatment for hardening the surface of a predetermined surface hardened component and securing the required wear resistance and fatigue strength as a product. However, this processing method is not particularly defined, and may be performed by a normal method. (D) Core hardness and toughness of surface-hardened parts after surface-hardening treatment In order for the surface-hardened parts to exhibit sufficient durability even in the harsh environment in which automobiles and industrial machines are used, it is necessary to use the surface-hardened parts after surface hardening. , Hv300 or higher core hardness and 20 J / cm
It is necessary to have an impact value of 2 or more. If it is out of one and / or both, the durability of the surface-hardened component in a real environment is extremely deteriorated. Therefore, the core hardness of the surface-hardened component was set to Hv300 or more, and the impact value was set to 20 J / cm 2 or more. (E) Tempering Tempering at a low temperature can improve toughness without a significant decrease in surface hardness.
After the surface hardening treatment, tempering may be performed if necessary. In the case of tempering, the temperature is preferably set to 150 to 200 ° C. in order to secure the surface hardness.

【0045】[0045]

【実施例】(実施例1)表1、2に示す化学組成の鋼を
通常の方法によって150kg真空炉を用いて溶製し
た。表1、2において、鋼A、C〜EおよびGは本発明
鋼、鋼I〜Xは成分のいずれかが本発明で規定する含有
量の範囲から外れた比較鋼である。また比較鋼におい
て、鋼V、WおよびXはそれぞれJISのSMn420
鋼、SCr420鋼およびSCM420鋼に相当するも
のである。
EXAMPLES (Example 1) Steels having the chemical compositions shown in Tables 1 and 2 were melted by a usual method using a 150 kg vacuum furnace. In Tables 1 and 2, steels A, CE to G are steels of the present invention, and steels I to X are comparative steels in which one of the components is out of the range of the content specified in the present invention. Further, in the comparative steels, steels V, W and X are respectively JIS SMn420.
It corresponds to steel, SCr420 steel and SCM420 steel.

【0046】次いで、これらの鋼を1140℃に加熱し
た後に通常の方法によって鋼片となし、更に1100℃
に加熱して、1100〜1000℃の温度で30mm直
径の丸棒に熱間鍛造した。こうして得られた熱間鍛造後
の一部の丸棒から8mm直径×12mm長さの粗粒化測
定試験片を切り出し、この試験片を用いて下記の4条件
の加工熱処理試験を行い、異常粒成長の発生率を光学顕
微鏡観察によって調査した。
Next, these steels were heated to 1140 ° C., and then made into billets by a usual method.
, And hot forged into a round bar having a diameter of 30 mm at a temperature of 1100 to 1000 ° C. From the thus obtained round bar after hot forging, a coarse-grained measurement test piece having a diameter of 8 mm and a length of 12 mm was cut out and subjected to a thermomechanical heat treatment test under the following four conditions using the test piece. The incidence of growth was investigated by light microscopy.

【0047】(条件1)真空中で、試験片を1100
℃、1175℃および1250℃の温度でそれぞれ15
分間加熱した後、圧縮加工により30%の変形量を与え
て常温まで1.0℃/sの冷却速度で冷却した。この
後、930℃×6hr(炭素ポテンシャル:0.8%)
の浸炭処理を行った後油焼入れした。
(Condition 1) A test piece was placed in a vacuum at 1100
15 ° C., 1175 ° C. and 1250 ° C. respectively.
After heating for 30 minutes, a deformation amount of 30% was given by compression processing, and cooling was performed at a cooling rate of 1.0 ° C./s to room temperature. Thereafter, 930 ° C. × 6 hr (carbon potential: 0.8%)
And then oil quenched.

【0048】(条件2)真空中で、試験片を1100℃
で15分間加熱し、続いて圧縮加工により30%の変形
量を与え、一旦常温まで2.0℃/sの冷却速度で冷却
した。この後、更に、1100℃、1175℃および1
250℃の温度で15分間加熱した後、常温まで1.0
℃/sの冷却速度で冷却した。次いで、930℃×6h
r(炭素ポテンシャル:0.8%)の浸炭処理を行った
後油焼入れした。
(Condition 2) A test piece was heated to 1100 ° C. in a vacuum.
For 15 minutes, followed by compression to give a deformation of 30%, and once cooled to room temperature at a cooling rate of 2.0 ° C./s. This is followed by 1100 ° C., 1175 ° C. and 1
After heating at a temperature of 250 ° C. for 15 minutes,
Cooling was performed at a cooling rate of ° C / s. Then, 930 ° C x 6h
After performing carburizing treatment of r (carbon potential: 0.8%), oil quenching was performed.

【0049】(条件3)大気中で、試験片に常温で圧縮
加工により30%の変形量を与えた。次いで、真空中
で、1100℃、1175℃および1250℃の温度で
それぞれ15分間加熱した後、常温まで1.0℃/sの
冷却速度で冷却した。この後、930℃×6hr(炭素
ポテンシャル:0.8%)の浸炭処理を行った後油焼入
れした。
(Condition 3) In the atmosphere, a test piece was given a deformation of 30% by compression at normal temperature. Next, after heating in vacuum at 1100 ° C., 1175 ° C., and 1250 ° C. for 15 minutes each, it was cooled to room temperature at a cooling rate of 1.0 ° C./s. Thereafter, carburizing treatment was performed at 930 ° C. × 6 hr (carbon potential: 0.8%), followed by oil quenching.

【0050】(条件4)真空中で、試験片を1100
℃、1175℃および1250℃の温度でそれぞれ15
分間加熱した後、一旦常温まで1.0℃/sの冷却速度
で冷却した。次いで、真空中で1100℃で15分間加
熱し、更に、圧縮加工により30%の変形量を与え、常
温まで2.0℃/sの冷却速度で冷却した。この後、9
30℃×6hr(炭素ポテンシャル:0.8%)の浸炭
処理を行った後油焼入れした。
(Condition 4) A test piece was placed in a vacuum at 1100
15 ° C., 1175 ° C. and 1250 ° C. respectively.
After heating for one minute, it was once cooled to room temperature at a cooling rate of 1.0 ° C./s. Next, the mixture was heated at 1100 ° C. for 15 minutes in a vacuum, further subjected to compression processing to give a deformation amount of 30%, and cooled to room temperature at a cooling rate of 2.0 ° C./s. After this, 9
After carburizing at 30 ° C. × 6 hr (carbon potential: 0.8%), oil quenching was performed.

【0051】異常粒成長の発生率調査結果を表3に示
す。なお、異常粒成長の発生率は100倍の倍率で10
視野検鏡した場合の面積割合で表示した。
Table 3 shows the results of the investigation on the incidence of abnormal grain growth. The occurrence rate of abnormal grain growth was 10 times at 100 times magnification.
It was indicated by the area ratio when the visual field was examined.

【0052】表3から本発明鋼である鋼A、C〜Eおよ
びGと比較鋼のうち鋼RとTが本発明で規定した条件で
加熱処理した場合に異常粒成長しないことが明らかであ
る。
From Table 3, it is clear that the steels A, CE and G of the present invention and the steels R and T among the comparative steels do not undergo abnormal grain growth when subjected to heat treatment under the conditions specified in the present invention. .

【0053】(実施例2)前記の実施例1で作製した鋼
A、C〜E、GおよびI〜Xの鋼片を1190℃に加熱
してから、1190〜1000℃の温度で30mm直径
の丸棒に熱間鍛造した。こうして得られた熱間鍛造後の
丸棒の中心部からJIS3号シャルピー衝撃試験片を切
り出し、表面硬化処理として930℃×6hr(炭素ポ
テンシャル:0.8%)の浸炭処理を行った後油焼入れ
し、更に、160℃で焼戻しを行った。次いで、衝撃試
験と共に試験片中心部すなわち芯部の硬度測定を行っ
た。
(Example 2) The steel slabs of the steels A, CE, G and IX prepared in the above-mentioned Example 1 were heated to 1190 ° C and then heated to a temperature of 1190 to 1000 ° C and a diameter of 30 mm. Hot forging into round bars. A JIS No. 3 Charpy impact test specimen was cut out from the center of the hot-forged round bar obtained in this manner, and carburized at 930 ° C. × 6 hr (carbon potential: 0.8%) as a surface hardening treatment, followed by oil quenching. Then, tempering was performed at 160 ° C. Next, the hardness of the center of the test piece, that is, the core was measured together with the impact test.

【0054】試験結果を表4に示す。表4から本発明鋼
である鋼A、C〜EおよびGはHv300以上の芯部硬
度と20J/cm2 以上の衝撃値を有し、これらの鋼を
素材とする表面硬化部品は自動車や産業機械が使用され
る過酷な環境においても充分な耐久性を発揮できること
が分かる。一方、比較鋼は少なくとも芯部硬さと衝撃値
のいずれかが低く、表面硬化部品の実環境での耐久性は
極めて劣化したものとなってしまう。
Table 4 shows the test results. From Table 4, steels A, C to E, and G, which are the steels of the present invention, have a core hardness of Hv 300 or more and an impact value of 20 J / cm 2 or more. It can be seen that sufficient durability can be exhibited even in a harsh environment where the machine is used. On the other hand, in the comparative steel, at least one of the core hardness and the impact value is low, and the durability of the surface-hardened component in a real environment is extremely deteriorated.

【0055】(実施例3)前記の実施例1で作製した鋼
A、C〜E、G、RおよびTの鋼片を1180℃で真空
中の熱処理を行い、一旦常温まで0.25℃/sの冷却
速度で冷却した。その後、1100℃に加熱してから、
1100〜1000℃の温度で30mm直径の丸棒に熱
間鍛造し、更に、こうして得られた熱間鍛造後の丸棒の
中心部からJIS3号シャルピー衝撃試験片を切り出
し、表面硬化処理として930℃×6hr(炭素ポテン
シャル:0.8%)の浸炭処理を行った後油焼入れし、
更に、170℃で焼戻しを行った。次いで、衝撃試験と
共に試験片中心部硬度すなわち芯部硬度の測定を行っ
た。
(Example 3) The steel slabs of the steels A, CE, G, R and T produced in the above-mentioned Example 1 were subjected to a heat treatment in vacuum at 1180 ° C, and once to room temperature at 0.25 ° C / s cooling rate. After heating to 1100 ° C,
Hot forging into a 30 mm diameter round bar at a temperature of 1100 to 1000 ° C. Further, a JIS No. 3 Charpy impact test specimen was cut out from the center of the thus obtained hot forged round bar, and 930 ° C. as a surface hardening treatment. × 6 hours (carbon potential: 0.8%) after carburizing, followed by oil quenching,
Further, tempering was performed at 170 ° C. Next, the center hardness of the test piece, that is, the core hardness was measured together with the impact test.

【0056】試験結果を表5に示す。表5から本発明鋼
である鋼A、C〜EおよびGはHv300以上の芯部硬
度と20J/cm2 以上の衝撃値を有し、これらの鋼を
素材とする表面硬化部品は自動車や産業機械が使用され
る過酷な環境においても充分な耐久性を発揮できること
が分かる。一方、前記実施例1において本発明で規定し
た条件で加熱処理した場合に異常粒成長しなかった比較
鋼のRとTは芯部硬さと衝撃値のいずれかが低く、表面
硬化部品の実環境での耐久性は極めて劣化したものとな
ってしまう。
Table 5 shows the test results. From Table 5, steels A, CE, and G, which are the steels of the present invention, have a core hardness of Hv 300 or more and an impact value of 20 J / cm 2 or more. It can be seen that sufficient durability can be exhibited even in a harsh environment where the machine is used. On the other hand, R and T of the comparative steel, which did not undergo abnormal grain growth when subjected to the heat treatment under the conditions specified in the present invention in Example 1 above, had lower core hardness and / or impact value, and showed the actual environment of the surface-hardened part. Endurance is extremely deteriorated.

【0057】[0057]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【発明の効果】以上説明したように、本発明による低コ
スト型の表面硬化部品は強度と靱性に優れ、異常粒成長
も生じないので、自動車用や産業機械用などの各種機械
構造部品、特に歯車を代表とする表面硬化部品として利
用することができる。この表面硬化部品は、本発明の耐
粗粒化肌焼鋼を素材とし、これに本発明方法を適用する
ことによって、比較的容易に製造することができる。
As described above, the low-cost surface-hardened parts according to the present invention are excellent in strength and toughness, and do not cause abnormal grain growth, so that various mechanical structural parts such as those for automobiles and industrial machines, in particular, It can be used as a surface hardened part represented by a gear. This surface hardened part can be manufactured relatively easily by using the coarse-grained case hardening steel of the present invention as a raw material and applying the method of the present invention thereto.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.10〜0.30%、S
i:0.01〜0.50%、Mn:0.62〜2.00
%、Cr:2.0%以下、Nb:0.020〜0.08
0%、Ti:0.100%以下、Al:0.100%以
下、B:0.0010〜0.0100%を含有し、残部
はFeおよび不純物からなり、不純物中のPは0.02
5%以下、Sは0.040%以下およびNは0.010
0%以下で、且つ、下記fn1およびfn2の値が共に
0以下であることを特徴とする耐粗粒化肌焼鋼。 fn1=8[%N]−2[%Ti]−[%Nb] fn2=3.4[%N]−[%Ti] 但し、[%X]は元素Xの質量%である。
C. 0.10 to 0.30% by mass%, S:
i: 0.01 to 0.50%, Mn: 0.62 to 2.00
%, Cr: 2.0% or less, Nb: 0.020 to 0.08
0%, Ti: 0.100% or less, Al: 0.100% or less, B: 0.0010 to 0.0100%, with the balance being Fe and impurities, with P in the impurities being 0.02%.
5% or less, S is 0.040% or less and N is 0.010%
A coarse-grain-hardened case hardening steel characterized by being not more than 0% and having the following values of fn1 and fn2 both being 0 or less. fn1 = 8 [% N] -2 [% Ti]-[% Nb] fn2 = 3.4 [% N]-[% Ti] where [% X] is the mass% of the element X.
【請求項2】素材が、質量%で、C:0.10〜0.3
0%、Si:0.01〜0.50%、Mn:0.62〜
2.00%、Cr:2.0%以下、Nb:0.020〜
0.080%、Ti:0.100%以下、Al:0.1
00%以下、B:0.0010〜0.0100%を含有
し、残部はFeおよび不純物からなり、不純物中のPは
0.025%以下、Sは0.040%以下およびNは
0.0100%以下で、且つ、下記fn1およびfn2
の値が共に0以下の耐粗粒化肌焼鋼であって、表面硬化
処理後にHv300以上の芯部硬度と20J/cm2
上の衝撃値を有することを特徴とする強度と靱性に優れ
た表面硬化部品。 fn1=8[%N]−2[%Ti]−[%Nb] fn2=3.4[%N]−[%Ti] 但し、[%X]は元素Xの質量%である。
2. A method according to claim 1, wherein the raw material is C: 0.10 to 0.3 in mass%.
0%, Si: 0.01 to 0.50%, Mn: 0.62 to
2.00%, Cr: 2.0% or less, Nb: 0.020 to
0.080%, Ti: 0.100% or less, Al: 0.1
00% or less, B: 0.0010 to 0.0100%, the balance consists of Fe and impurities, P in the impurities is 0.025% or less, S is 0.040% or less, and N is 0.0100%. % Or less and the following fn1 and fn2
Is a coarse-grained case hardening steel having a value of 0 or less, and having a core hardness of Hv 300 or more and an impact value of 20 J / cm 2 or more after surface hardening treatment, and having excellent strength and toughness. Surface hardened parts. fn1 = 8 [% N] -2 [% Ti]-[% Nb] fn2 = 3.4 [% N]-[% Ti] where [% X] is the mass% of the element X.
【請求項3】質量%で、C:0.10〜0.30%、S
i:0.01〜0.50%、Mn:0.62〜2.00
%、Cr:2.0%以下、Nb:0.020〜0.08
0%、Ti:0.100%以下、Al:0.100%以
下、B:0.0010〜0.0100%を含有し、残部
はFeおよび不純物からなり、不純物中のPは0.02
5%以下、Sは0.040%以下およびNは0.010
0%以下で、且つ、下記fn1およびfn2の値が共に
0以下である耐粗粒化肌焼鋼を、表面硬化処理に先立っ
て1150℃以上に加熱してから熱間鍛造することを特
徴とする強度と靱性に優れた表面硬化部品の製造方法。 fn1=8[%N]−2[%Ti]−[%Nb] fn2=3.4[%N]−[%Ti] 但し、[%X]は元素Xの質量%である。
3. C .: 0.10 to 0.30% by mass%, S:
i: 0.01 to 0.50%, Mn: 0.62 to 2.00
%, Cr: 2.0% or less, Nb: 0.020 to 0.08
0%, Ti: 0.100% or less, Al: 0.100% or less, B: 0.0010 to 0.0100%, with the balance being Fe and impurities, with P in the impurities being 0.02%.
5% or less, S is 0.040% or less and N is 0.010%
Coarse-grained case hardening steel having a value of 0% or less and the following fn1 and fn2 both being 0 or less is heated to 1150 ° C. or more prior to the surface hardening treatment and then hot forged. Method for manufacturing surface-hardened parts with excellent strength and toughness. fn1 = 8 [% N] -2 [% Ti]-[% Nb] fn2 = 3.4 [% N]-[% Ti] where [% X] is the mass% of the element X.
【請求項4】質量%で、C:0.10〜0.30%、S
i:0.01〜0.50%、Mn:0.62〜2.00
%、Cr:2.0%以下、Nb:0.020〜0.08
0%、Ti:0.100%以下、Al:0.100%以
下、B:0.0010〜0.0100%を含有し、残部
はFeおよび不純物からなり、不純物中のPは0.02
5%以下、Sは0.040%以下およびNは0.010
0%以下で、且つ、下記fn1およびfn2の値が共に
0以下である耐粗粒化肌焼鋼を、分塊、圧延および熱処
理の少なくとも1つの工程を1150℃以上に加熱して
行い、その後鍛造し表面硬化処理することを特徴とする
強度と靱性に優れた表面硬化部品の製造方法。 fn1=8[%N]−2[%Ti]−[%Nb] fn2=3.4[%N]−[%Ti] 但し、[%X]は元素Xの質量%である。
4. In mass%, C: 0.10 to 0.30%, S
i: 0.01 to 0.50%, Mn: 0.62 to 2.00
%, Cr: 2.0% or less, Nb: 0.020 to 0.08
0%, Ti: 0.100% or less, Al: 0.100% or less, B: 0.0010 to 0.0100%, with the balance being Fe and impurities, with P in the impurities being 0.02%.
5% or less, S is 0.040% or less and N is 0.010%
0% or less, and the following fn1 and fn2 values are both 0 or less, the coarse-grained case hardening steel is subjected to at least one step of lumping, rolling and heat treatment is heated to 1150 ° C. or more, and then A method for producing a surface-hardened part having excellent strength and toughness, characterized by forging and surface hardening. fn1 = 8 [% N] -2 [% Ti]-[% Nb] fn2 = 3.4 [% N]-[% Ti] where [% X] is the mass% of the element X.
JP2000071191A 2000-01-01 2000-03-14 Grain coarsening resistant case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof Pending JP2000282170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000071191A JP2000282170A (en) 2000-01-01 2000-03-14 Grain coarsening resistant case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000071191A JP2000282170A (en) 2000-01-01 2000-03-14 Grain coarsening resistant case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07101242A Division JP3075139B2 (en) 1995-04-25 1995-04-25 Coarse-grained case hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2000282170A true JP2000282170A (en) 2000-10-10

Family

ID=18589812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000071191A Pending JP2000282170A (en) 2000-01-01 2000-03-14 Grain coarsening resistant case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof

Country Status (1)

Country Link
JP (1) JP2000282170A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096539A (en) * 2001-07-17 2003-04-03 Daido Steel Co Ltd Case hardening steel, and carburized part using the same
US7622009B2 (en) 2001-03-21 2009-11-24 Honda Giken Kogyo Kabushiki Kaisha Steel material
US7655100B2 (en) 2001-03-21 2010-02-02 Honda Giken Kogyo Kabushiki Kaisha Method for preparation of steel material
JP2012112024A (en) * 2010-11-26 2012-06-14 Kobe Steel Ltd Case hardening steel with little heat-treatment strain

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622009B2 (en) 2001-03-21 2009-11-24 Honda Giken Kogyo Kabushiki Kaisha Steel material
US7655100B2 (en) 2001-03-21 2010-02-02 Honda Giken Kogyo Kabushiki Kaisha Method for preparation of steel material
JP2003096539A (en) * 2001-07-17 2003-04-03 Daido Steel Co Ltd Case hardening steel, and carburized part using the same
JP2012112024A (en) * 2010-11-26 2012-06-14 Kobe Steel Ltd Case hardening steel with little heat-treatment strain

Similar Documents

Publication Publication Date Title
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP2006307271A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same
WO2016158343A1 (en) Steel wire for use in bolts that has excellent cold headability and resistance to delayed fracture after quenching and tempering, and bolt
JP2006307272A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability, and method for producing the same
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP2004183064A (en) Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP3677972B2 (en) Method for producing steel material for cold forging containing boron
JP2009228051A (en) Method for producing non-heattreated steel material
JP4488228B2 (en) Induction hardening steel
JP2000282170A (en) Grain coarsening resistant case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof
JP3075139B2 (en) Coarse-grained case hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
JP3724142B2 (en) Method for producing coarse grain-resistant case-hardened steel
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP2006161142A (en) Case-hardening rolled bar steel having excellent high temperature carburizing property
JPH08260039A (en) Production of carburized and case hardened steel
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JP3855418B2 (en) Method of manufacturing nitrocarburizing steel material and nitrocarburized component using the steel material
WO2023248556A1 (en) Steel for high-frequency hardening
JP3760535B2 (en) Roughened grain-hardened case-hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
JP2001011571A (en) Steel for machine structure excellent in machinability, cold forgeability and hardenability
JP3769918B2 (en) Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof
JP3879251B2 (en) Manufacturing method of surface hardened parts with excellent strength and toughness
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering