JP2000279790A - Operation stopping method of supercritical water reaction device - Google Patents

Operation stopping method of supercritical water reaction device

Info

Publication number
JP2000279790A
JP2000279790A JP11090632A JP9063299A JP2000279790A JP 2000279790 A JP2000279790 A JP 2000279790A JP 11090632 A JP11090632 A JP 11090632A JP 9063299 A JP9063299 A JP 9063299A JP 2000279790 A JP2000279790 A JP 2000279790A
Authority
JP
Japan
Prior art keywords
reactor
supercritical water
pipe
liquid
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11090632A
Other languages
Japanese (ja)
Other versions
JP2000279790A5 (en
JP3836270B2 (en
Inventor
Shinichirou Kawasaki
慎一朗 川崎
Taro Oe
太郎 大江
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP09063299A priority Critical patent/JP3836270B2/en
Publication of JP2000279790A publication Critical patent/JP2000279790A/en
Publication of JP2000279790A5 publication Critical patent/JP2000279790A5/ja
Application granted granted Critical
Publication of JP3836270B2 publication Critical patent/JP3836270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a countermeasure to prevent the generation of corrosion on the inside surface of a pressure vessel of a pressure balance type reactor. SOLUTION: The operation of the super critical water reaction device 10 is stopped so as to prevent the generation of corrosion on the inside wall of the pressure vessel. At the time of stopping the operation of the supercritical water reaction device 10, stop valves provided in a pipe 22 for a liquid to be treated, an alkali feeding pipe 31 and an assistant fuel pipe 30 are closed while continuing the operation of an air compressor 28 to supply air from a two fluid nozzle 34 into a reaction cartridge of the reactor 12 and from an air feed nozzle to a circular part 46 and a stop valve provided in a treated liquid pipe 14 is left as it is opened. At a point of time that the temp. of the reactor 12 is decreased to equal to or below the critical temp., preferably <=300 deg.C, the stop valve provided in the air feed pipe 26 is closed to stop the supply of air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、相互に連通する圧
力容器と反応カートリッジとからなる圧力バランス型反
応器を反応器として備えた超臨界水反応装置の運転停止
方法に関し、更に詳細には、圧力バランス型反応器の圧
力容器を腐食させないようにして、超臨界水反応装置の
運転を停止する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stopping the operation of a supercritical water reactor equipped with a pressure balanced reactor comprising a pressure vessel and a reaction cartridge communicating with each other as a reactor. The present invention relates to a method for stopping the operation of a supercritical water reactor without corroding a pressure vessel of a pressure balanced reactor.

【0002】[0002]

【従来の技術】環境問題に対する認識の高まりと共に、
有機物の酸化、分解能力の高い超臨界水反応を利用し
て、環境汚染物質を分解、無害化する試みが注目されて
いる。すなわち、超臨界水の高い反応性を利用した超臨
界水反応により、従来技術では分解することが難しかっ
た有害な難分解性の有機物、例えば、PCB(ポリ塩素
化ビフェニル)、ダイオキシン、有機塩素系溶剤等を分
解して、二酸化炭素、窒素、水、無機塩などの無害な生
成物に転化する試みである。
2. Description of the Related Art With increasing awareness of environmental issues,
Attention has been paid to attempts to decompose and detoxify environmental pollutants by utilizing supercritical water reaction, which has high ability to oxidize and decompose organic substances. That is, harmful and hardly decomposable organic substances, such as PCB (polychlorinated biphenyl), dioxin, and organic chlorinated compounds, which were difficult to decompose in the related art by supercritical water reaction utilizing high reactivity of supercritical water. It is an attempt to decompose a solvent or the like and convert it into harmless products such as carbon dioxide, nitrogen, water, and inorganic salts.

【0003】超臨界水反応装置とは、超臨界水の高い反
応性を利用して有機物を分解する装置であって、例え
ば、難分解性の有害な有機物を分解して無害な二酸化炭
素と水に転化したり、難分解性の高分子化合物を分解し
て有用な低分子化合物に転化したりするために、現在、
その実用化が盛んに研究されている。超臨界水とは、超
臨界状態にある水、即ち、水の臨界点を越えた状態にあ
る水を言い、詳しくは、374.1℃以上の温度で、か
つ22.04MPa以上の圧力下にある状態の水を言
う。超臨界水は、有機物を溶解する溶解能が高く、有機
化合物に多い非極性物質をも完全に溶解することができ
る一方、逆に、金属、塩等の無機物に対する溶解能は著
しく低い。また、超臨界水は、酸素や窒素などの気体と
任意の割合で混合して単一相を構成することができる。
[0003] A supercritical water reactor is a device that decomposes organic substances by using high reactivity of supercritical water. For example, harmful organic substances that are hardly decomposable are decomposed and harmless carbon dioxide and water are decomposed. In order to convert the hard-to-decompose high-molecular compounds into useful low-molecular compounds,
Its practical application is being actively studied. Supercritical water refers to water that is in a supercritical state, that is, water that is in a state beyond the critical point of water, and specifically, at a temperature of 374.1 ° C. or more and a pressure of 22.04 MPa or more. A state of water. Supercritical water has a high ability to dissolve organic substances and can completely dissolve non-polar substances, which are abundant in organic compounds, but has a very low ability to dissolve inorganic substances such as metals and salts. The supercritical water can be mixed with a gas such as oxygen or nitrogen at an arbitrary ratio to form a single phase.

【0004】ここで、図1及び図2を参照して、超臨界
水反応装置の基本的な構成を説明する。図1は超臨界水
反応装置の基本的構成を示すフローシートである。図2
は圧力バランス型反応器の構成を示す断面図である。超
臨界水反応装置10は、有機物を含む被処理液を超臨界
水の存在下で超臨界水反応により処理する装置であっ
て、図1に示すように、超臨界水反応を行う反応器とし
て、縦型の耐圧密閉型反応器12を備え、反応器12か
ら処理液を流出させる処理液管14に、順次、処理液を
冷却する冷却器16、反応器12内の圧力を制御する圧
力制御弁18、及び、処理液をガスと液体とに気液分離
する気液分離器20を備えている。尚、縦型反応容器
は、通常、固形物の含有率が低い被処理液を処理する際
に適しており、固形物の含有率が高い被処理液を処理す
る際には、パイプ状のチューブラー反応器を使用するこ
ともある。
Here, a basic configuration of a supercritical water reactor will be described with reference to FIGS. 1 and 2. FIG. 1 is a flow sheet showing a basic configuration of the supercritical water reactor. FIG.
FIG. 2 is a cross-sectional view illustrating a configuration of a pressure balanced reactor. The supercritical water reactor 10 is a device for treating a liquid to be treated containing an organic substance by a supercritical water reaction in the presence of supercritical water, and as shown in FIG. A vertical pressure-resistant closed type reactor 12, a processing solution pipe 14 through which a processing solution flows out of the reactor 12, a cooling device 16 for sequentially cooling the processing solution, and a pressure control for controlling the pressure in the reactor 12. The apparatus includes a valve 18 and a gas-liquid separator 20 that separates the processing liquid into gas and liquid. The vertical reaction vessel is usually suitable for treating a liquid to be treated having a low solid content, and a pipe-shaped tube is preferably used for treating a liquid to be treated having a high solid content. Sometimes a reactor is used.

【0005】超臨界水反応装置10は、超臨界水反応に
供する反応物を反応器12に供給する供給系統として、
被処理液管22を介して反応器12に有機物を含む被処
理液を送入する被処理液ポンプ24と、空気送入管26
を介して反応器12に酸化剤として空気を送入する空気
圧縮機28とを備えている。更に、超臨界水反応装置1
0は、必要に応じて、反応器12での超臨界水反応を維
持するのに必要な熱エネルギー源として補助燃料を反応
器12に送入する補助燃料管30、及び反応器12で超
臨界水反応により処理液中の有機物から発生した塩素等
を中和するアルカリ剤を反応器12に送入するアルカリ
剤送入管31を被処理液管22に合流させている。な
お、被処理液中の水分で超臨界水状態を維持できない場
合は、被処理液管22に補給水管(図示せず)を接続
し、補給水を補給することもある。
[0005] The supercritical water reactor 10 has a supply system for supplying a reactant to be used for the supercritical water reaction to the reactor 12.
A liquid pump 24 for feeding a liquid to be treated containing an organic substance into the reactor 12 through the liquid pipe 22 for treatment, and an air inlet pipe 26
And an air compressor 28 for feeding air as an oxidant to the reactor 12 through the air compressor. Further, the supercritical water reactor 1
0 is an auxiliary fuel pipe 30 that feeds an auxiliary fuel into the reactor 12 as a heat energy source necessary for maintaining a supercritical water reaction in the reactor 12, and a supercritical An alkali agent feed pipe 31 for feeding an alkali agent for neutralizing chlorine and the like generated from organic matter in the processing liquid by the water reaction into the reactor 12 is joined to the liquid pipe 22 to be processed. When the supercritical water state cannot be maintained due to the moisture in the liquid to be treated, a supplementary water pipe (not shown) may be connected to the liquid to be treated pipe 22 to supply supplementary water.

【0006】被処理液管22と空気送入管26とは、二
流体ノズル34を介して反応器12に接続されている。
また、超臨界水反応装置10は、装置を緊急停止する際
に反応器12を緊急遮断するために、反応器12周りの
配管に、例えば被処理液管22、空気送入管26、処理
液管14等に、それぞれ、緊急遮断弁(図示せず)を備
えている。
The liquid pipe 22 to be treated and the air inlet pipe 26 are connected to the reactor 12 via a two-fluid nozzle 34.
Further, the supercritical water reactor 10 includes, for example, a liquid pipe 22 to be treated, an air inlet pipe 26, An emergency shutoff valve (not shown) is provided in each of the pipes 14 and the like.

【0007】なお、被処理液と処理液とを熱交換させて
処理液を冷却するとともに被処理液を昇温して熱回収を
図る熱交換器(図示せず)を冷却器16の上流の処理液
管14に、又は被処理液を予熱する予熱器を反応器12
の上流の被処理液管22に設けることもある。更には、
反応器12の下部に亜臨界水領域を設け、反応器12内
で生じた無機塩類を亜臨界水領域に沈降させ、除去する
機構を設けることもある。
A heat exchanger (not shown) for exchanging heat between the liquid to be processed and the processing liquid to cool the processing liquid and raise the temperature of the liquid to be processed to recover heat is provided upstream of the cooler 16. A preheater for preheating the liquid to be treated is provided in the reactor 12
May be provided in the liquid pipe 22 to be processed, which is located upstream of the pipe. Furthermore,
A subcritical water region may be provided in the lower part of the reactor 12, and a mechanism may be provided to settle and remove inorganic salts generated in the reactor 12 in the subcritical water region.

【0008】ところで、超臨界水中で塩素等のハロゲン
を含む有機物、例えばPCB類を処理すると、PCBに
含まれている塩素原子から塩酸等が生じ、処理液が極め
て高い腐食性を有するという問題があった。そこで、反
応器12として、次に説明する圧力バランス型反応器が
使用されている。
By the way, when an organic substance containing halogen such as chlorine is treated in supercritical water, for example, PCBs, hydrochloric acid is generated from chlorine atoms contained in the PCB, and the treatment liquid has an extremely high corrosive property. there were. Therefore, a pressure balanced reactor described below is used as the reactor 12.

【0009】圧力バランス型反応器12は、図2に示す
ように、外筒として設けられた圧力容器40と、圧力容
器40内に内筒として設けられた反応カートリッジ42
との2重筒体として形成され、反応カートリッジ42の
内部43は、超臨界水反応の反応域として構成されてい
る。また、圧力容器40と反応カートリッジ42との間
に、連通孔44を介して反応カートリッジ42の内部と
連通する環状部46が形成されており、環状部46と反
応カートリッジ42内とは、圧力がバランスしている。
換言すれば、反応カートリッジ42は、反応器12の内
圧力を受けないようにして反応域を区画する耐腐食性の
隔壁として機能している。圧力容器40は、反応器12
の内圧力に対抗するために、厚肉の高強度鋼製耐圧円筒
型容器として形成され、一方、反応カートリッジ42
は、耐腐食性の高い薄肉の有蓋円筒体として形成され、
下端を圧力容器40の底部に密着固定させている。な
お、反応カートリッジ42にも底部を設け、圧力容器4
0の底部に反応カートリッジ42の底部を近接して設け
てもよい。
As shown in FIG. 2, the pressure balanced reactor 12 includes a pressure vessel 40 provided as an outer cylinder and a reaction cartridge 42 provided as an inner cylinder in the pressure vessel 40.
The inside 43 of the reaction cartridge 42 is configured as a reaction zone for the supercritical water reaction. Further, between the pressure vessel 40 and the reaction cartridge 42, an annular portion 46 communicating with the inside of the reaction cartridge 42 through a communication hole 44 is formed, and a pressure is applied between the annular portion 46 and the inside of the reaction cartridge 42. Balanced.
In other words, the reaction cartridge 42 functions as a corrosion-resistant partition that partitions the reaction zone by not receiving the internal pressure of the reactor 12. The pressure vessel 40 includes the reactor 12
In order to oppose the internal pressure of the reaction cartridge 42, it is formed as a thick-walled high-strength steel pressure-resistant cylindrical container.
Is formed as a thin-walled cylindrical body with high corrosion resistance,
The lower end is tightly fixed to the bottom of the pressure vessel 40. The reaction cartridge 42 is also provided with a bottom, and the pressure vessel 4
The bottom of the reaction cartridge 42 may be provided close to the bottom of the zero.

【0010】反応器12は、圧力容器40と反応カート
リッジ42とを貫通させて反応カートリッジ42の内部
に突出させた二流体ノズル34と、反応カートリッジ4
2の内部から反応カートリッジ42及び圧力容器40を
貫通する処理液導管48と、環状部46に空気を送入す
る空気送入ノズル50とを備えている。環状部46と反
応カートリッジ42内とを連通させる連通孔44は、本
例では、二流体ノズル34の周りに形成されている。二
流体ノズル34は、内管52及び外管54が、それぞ
れ、被処理液管22及び空気送入管26に接続され、空
気によって被処理液をアトマジングして噴霧状で反応カ
ートリッジ42内に導入している。処理液導管48は処
理液管14に接続されている。また、空気送入ノズル5
0は空気送入管26から分岐した空気送入枝管56(図
1参照)に接続され、空気を環状部46に導入し、次い
で連通孔44を介して反応カートリッジ42内部に流入
させ、酸化剤の一部とする。
The reactor 12 includes a two-fluid nozzle 34 penetrating the pressure vessel 40 and the reaction cartridge 42 and projecting into the reaction cartridge 42,
The processing liquid conduit 48 penetrates the reaction cartridge 42 and the pressure vessel 40 from the inside of the container 2, and an air supply nozzle 50 for supplying air to the annular portion 46. The communication hole 44 for communicating the annular portion 46 with the inside of the reaction cartridge 42 is formed around the two-fluid nozzle 34 in this example. In the two-fluid nozzle 34, the inner pipe 52 and the outer pipe 54 are connected to the liquid pipe 22 and the air inlet pipe 26, respectively, and the liquid to be processed is atomized by air and introduced into the reaction cartridge 42 in the form of a spray. are doing. The processing liquid conduit 48 is connected to the processing liquid pipe 14. In addition, the air inlet nozzle 5
Numeral 0 is connected to an air inlet branch pipe 56 (see FIG. 1) branched from the air inlet pipe 26 to introduce air into the annular portion 46 and then flow into the reaction cartridge 42 through the communication hole 44 to oxidize the air. Part of the drug.

【0011】圧力バランス型反応器12では、二流体ノ
ズル34を経て反応カートリッジ42に流入した空気と
同じ圧力の空気が環状部46に導入されているので、反
応カートリッジ42の内外では圧力差が殆ど生じない。
また、環状部46に空気を導入するのは、空気が非腐食
性流体であるからである。尚、本例では、圧力バランス
型反応器12に被処理液及び空気を流入させるために、
二流体ノズルを使用しているが、二流体ノズルに代え
て、それぞれ、圧力容器40及び反応カートリッジ42
を貫通する別個の流入ノズルを設けてもよい。
In the pressure balanced type reactor 12, air having the same pressure as the air flowing into the reaction cartridge 42 via the two-fluid nozzle 34 is introduced into the annular portion 46, so that the pressure difference between the inside and outside of the reaction cartridge 42 is almost zero. Does not occur.
The air is introduced into the annular portion 46 because the air is a non-corrosive fluid. In addition, in this example, in order to make a to-be-processed liquid and air flow into the pressure balance type reactor 12,
Although a two-fluid nozzle is used, a pressure vessel 40 and a reaction cartridge 42 are used instead of the two-fluid nozzle, respectively.
May be provided with a separate inflow nozzle.

【0012】[0012]

【発明が解決しようとする課題】しかし、上述の圧力バ
ランス型反応器を反応器として使用している超臨界水反
応装置を運転している間に、圧力バランス型反応器の圧
力容器40の内壁に腐食が発生していることが判った。
特に、図3に示すように、圧力容器40の上部壁に腐食
が著しいことが確認された。超臨界水反応装置は、高圧
高温下で反応を進行させているので、万一反応器の壁に
極めて小さな腐食孔が発生しても、応力集中等により、
予期しない危険な事態を招くおそれがある。
However, during operation of the supercritical water reactor using the above-described pressure-balanced reactor as a reactor, the inner wall of the pressure vessel 40 of the pressure-balanced reactor is operated. It was found that corrosion had occurred.
In particular, as shown in FIG. 3, it was confirmed that the upper wall of the pressure vessel 40 was significantly corroded. Since the supercritical water reactor promotes the reaction under high pressure and high temperature, even if extremely small corrosion holes are generated on the reactor wall,
This can lead to unexpected and dangerous situations.

【0013】そこで、本発明の目的は、圧力バランス型
反応器の圧力容器の内壁に腐食を発生させないようにす
る対策を提供することである。
An object of the present invention is to provide a countermeasure for preventing the corrosion of the inner wall of the pressure vessel of the pressure balanced reactor.

【0014】[0014]

【課題を解決するための手段】本発明者は、圧力容器の
内壁に腐食が発生する原因を追求した結果、次のことを
見い出した。超臨界水反応装置を緊急停止した際には、
反応器周りの配管、例えば被処理液管、空気送入管、処
理液管等に設けた緊急遮断弁が閉止するので、反応器は
周りから遮断され、被処理液、空気は流入せず、処理液
は流出しないものの、反応カートリッジ内の反応流体
は、暫時の間、温度が高いため、対流現象によって反応
カートリッジの上部に向かって流れ、連通孔44を通っ
て環状部46に流入する。圧力容器は比較的耐腐食性の
低い材質の鋼板で製作されているので、環状部46に流
入した反応流体中の塩酸等の酸物質によって、圧力容器
の上部壁が腐食される。
The present inventor has found the following as a result of pursuing the cause of the corrosion of the inner wall of the pressure vessel. When the supercritical water reactor is shut down urgently,
The piping around the reactor, for example, the liquid pipe to be processed, the air inlet pipe, the emergency shutoff valve provided in the processing liquid pipe, etc. is closed, so the reactor is shut off from around, the liquid to be processed, air does not flow in, Although the processing liquid does not flow out, the reaction fluid in the reaction cartridge has a high temperature for a while, so that it flows toward the upper part of the reaction cartridge by a convection phenomenon and flows into the annular portion 46 through the communication hole 44. Since the pressure vessel is made of a steel plate having a relatively low corrosion resistance, the upper wall of the pressure vessel is corroded by an acid substance such as hydrochloric acid in the reaction fluid flowing into the annular portion 46.

【0015】上述の現象は、超臨界水反応装置の緊急停
止時のみならず、通常の運転停止時にも、大なり小な
り、程度の差こそあれ、生じる現象であって、従って、
圧力バランス型反応器を使用する際には、上述の腐食に
留意することが重要である。そこで、本発明者は、
(1)装置の停止時にも反応器の圧力バランスを維持し
て、反応カートリッジ内の反応流体を環状部に流出させ
ないようにすることが必須であること、(2)反応器内
の被処理液の有機物が全て酸化されてしまえば、更に、
空気を送入しても、超臨界水反応が進行して異常な状態
になるようなことがないことを考慮し、通常の装置停止
時は、当然として、緊急停止時にも、空気を反応器の反
応カートリッジ内と環状部とに送入して、圧力バランス
を保持することを着想し、研究の末、本発明を完成する
に到った。
The above phenomenon occurs not only when the supercritical water reactor is stopped in an emergency but also when the normal operation is stopped, and the phenomenon occurs to a greater or lesser extent, but to a greater or lesser degree.
It is important to note the above-mentioned corrosion when using a pressure balanced reactor. Therefore, the present inventor
(1) It is essential to maintain the pressure balance of the reactor even when the apparatus is stopped so that the reaction fluid in the reaction cartridge does not flow out to the annular portion. (2) The liquid to be treated in the reactor Once all of the organic matter has been oxidized,
Considering that the supercritical water reaction does not proceed to an abnormal state even if air is supplied, air is usually supplied to the With the idea of maintaining the pressure balance in the reaction cartridge and in the annular portion, the present invention was completed as a result of research.

【0016】上記目的を達成するために、上述の知見に
基づいて、本発明に係る超臨界水反応装置の運転停止方
法は、相互に連通する圧力容器と反応カートリッジとか
らなる2重筒体として形成され、超臨界水を収容する圧
力バランス型反応器を備え、被処理液と、酸化剤として
酸素含有ガスとを反応カートリッジ内に供給し、かつ、
圧力容器と反応カートリッジとの間に圧力バランス用ガ
スとして酸素含有ガスを供給して、超臨界水の存在下で
被処理液中の有機物と酸素との超臨界水反応を行う超臨
界水反応装置の運転を停止する方法であって、運転を停
止する際、酸素含有ガスを供給しながら、反応器に供給
する流体のうち酸素含有ガスを除く流体の供給を順次に
又は一度に停止するステップと、反応器の温度が所定温
度以下に降温した時点で、酸素含有ガスの供給を停止す
るステップとを有することを特徴としている。
In order to achieve the above object, based on the above findings, a method for shutting down the operation of a supercritical water reactor according to the present invention is described as a double cylinder comprising a pressure vessel and a reaction cartridge communicating with each other. A pressure-balanced reactor formed and containing supercritical water is provided, and a liquid to be treated and an oxygen-containing gas as an oxidizing agent are supplied into a reaction cartridge, and
A supercritical water reactor that supplies an oxygen-containing gas as a pressure balancing gas between a pressure vessel and a reaction cartridge to perform a supercritical water reaction between an organic substance in a liquid to be treated and oxygen in the presence of supercritical water. A method of stopping the operation of, when stopping the operation, while supplying the oxygen-containing gas, stopping the supply of the fluid excluding the oxygen-containing gas in the fluid to be supplied to the reactor sequentially or at once. And stopping the supply of the oxygen-containing gas when the temperature of the reactor has dropped to a predetermined temperature or lower.

【0017】反応器に供給する流体とは、例えば被処理
液、補助燃料、超臨界水、中和剤、亜臨界水等を言う。
反応器から流出する流体とは、例えば処理液、亜臨界排
水等を言う。酸素含有ガスとして、通常、空気を使用す
る。本発明方法で、運転停止とは、緊急運転停止、及び
それ以外の通常の運転停止を含む概念である。圧力バラ
ンス型反応器の反応カートリッジ内に被処理液と酸素含
有ガスとを流入させる方式には、制約はなく、二流体ノ
ズルでも良く、又は個別の流入ノズルを使っても良く、
また、被処理液と酸素含有ガスとの混合流体を流入させ
ても良い。本発明方法で所定温度とは、臨界温度、好ま
しくは300℃である。
The fluid supplied to the reactor refers to, for example, a liquid to be treated, an auxiliary fuel, supercritical water, a neutralizing agent, subcritical water and the like.
The fluid flowing out of the reactor refers to, for example, a treatment liquid, subcritical wastewater, and the like. Air is usually used as the oxygen-containing gas. In the method of the present invention, the shutdown is a concept including an emergency shutdown and other normal shutdowns. There is no restriction on the method of flowing the liquid to be treated and the oxygen-containing gas into the reaction cartridge of the pressure balanced reactor, and a two-fluid nozzle or a separate inflow nozzle may be used.
Further, a mixed fluid of the liquid to be treated and the oxygen-containing gas may be flowed. In the method of the present invention, the predetermined temperature is a critical temperature, preferably 300 ° C.

【0018】[0018]

【発明の実施の形態】以下に、実施形態例を挙げ、添付
図面の図1、図2を参照して、本発明の実施の形態を具
体的かつ詳細に説明する。実施形態例1 本実施形態例は、本発明に係る超臨界水反応装置の運転
停止方法を前述した超臨界水反応装置10の通常運転停
止に適用した実施形態の一例である。超臨界水反応装置
10の運転を通常停止する際には、通常運転時と同様
に、空気圧縮機28を動かし続けながら、空気送入管2
6を経由して二流体ノズル34から空気を反応器12の
反応カートリッジ42内に、また、空気送入管26及び
空気送入枝管56を経由して空気送入ノズル50から空
気を環状部46に供給しつつ、被処理液管22、アルカ
リ送入管31、及び補助燃料管30に設けた開閉弁(図
示せず)を閉止し、かつ、処理液管14に設けた開閉弁
(図示せず)は開口したままとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below specifically and in detail with reference to FIGS. 1 and 2 of the accompanying drawings. Embodiment 1 This embodiment is an example of an embodiment in which the method for stopping the operation of the supercritical water reactor according to the present invention is applied to the normal operation stop of the supercritical water reactor 10 described above. When the operation of the supercritical water reactor 10 is normally stopped, as in the normal operation, the air inlet pipe 2
6 from the two-fluid nozzle 34 into the reaction cartridge 42 of the reactor 12 and from the air inlet nozzle 50 via the air inlet pipe 26 and the air inlet branch pipe 56 to the While supplying the liquid to the processing liquid pipe 46, the on-off valves (not shown) provided on the liquid pipe 22, the alkali inlet pipe 31, and the auxiliary fuel pipe 30 are closed, and the on-off valve (not shown) provided on the processing liquid pipe 14. (Not shown) are left open.

【0019】次いで、反応器12の温度が所定温度、例
えば臨界温度以下、好ましくは300℃℃以下に降温し
た時点で、空気送入管26に設けた開閉弁(図示せず)
を閉止して、空気の供給を停止する。
Next, when the temperature of the reactor 12 drops to a predetermined temperature, for example, a critical temperature or lower, preferably 300 ° C. or lower, an on-off valve (not shown) provided in the air inlet pipe 26.
And shut off the air supply.

【0020】実施形態例2 本実施形態例は、本発明に係る超臨界水反応装置の運転
停止方法を前述した超臨界水反応装置10の緊急運転停
止に適用した実施形態の一例である。超臨界水反応装置
10の運転を継続している際に、例えば反応器12内の
温度が設定温度より高くなり、緊急停止する際には、通
常運転時と同様に、空気圧縮機28を動かし続けなが
ら、空気送入管26を経由して二流体ノズル34から空
気を反応器12の反応カートリッジ42内に、また、空
気送入管26及び空気送入枝管56を経由して空気送入
ノズル50から空気を環状部46に供給しつつ、被処理
液管22、アルカリ送入管31、及び補助燃料管30に
設けた緊急遮断弁(図示せず)を閉止し、かつ、処理液
管14に設けた開閉弁(図示せず)は開口したままとす
る。
Embodiment 2 This embodiment is an example of an embodiment in which the method for stopping the operation of the supercritical water reactor according to the present invention is applied to the emergency stop of the supercritical water reactor 10 described above. When the operation of the supercritical water reactor 10 is continued, for example, when the temperature in the reactor 12 becomes higher than the set temperature and the emergency stop is performed, the air compressor 28 is operated as in the normal operation. While continuing, air is supplied from the two-fluid nozzle 34 into the reaction cartridge 42 of the reactor 12 via the air supply pipe 26 and air is supplied via the air supply pipe 26 and the air supply branch 56. While supplying air from the nozzle 50 to the annular portion 46, the emergency shutoff valves (not shown) provided in the liquid pipe 22, the alkali feed pipe 31, and the auxiliary fuel pipe 30 are closed, and the processing liquid pipe is closed. The on-off valve (not shown) provided at 14 is kept open.

【0021】次いで、反応器12の温度が所定温度、臨
界温度以下、好ましくは300℃以下に降温した時点
で、空気送入管26に設けた開閉弁(図示せず)を閉止
して、空気の供給を停止する。
Next, when the temperature of the reactor 12 drops to a predetermined temperature, a critical temperature or lower, preferably 300 ° C. or lower, an on-off valve (not shown) provided in the air inlet pipe 26 is closed to allow air to flow. Stop supplying.

【0022】[0022]

【発明の効果】本発明方法によれば、超臨界水反応装置
の運転停止の際、酸素含有ガス以外の流体の供給、及び
流体の反応器からの流出を停止し、かつ、圧力バランス
型反応器の反応カートリッジ内と環状部とに酸素含有ガ
スを供給し続けるので、反応カートリッジ内と環状部と
の圧力バランスを維持することができるので、従来のよ
うに、超臨界水反応装置の運転停止に際して、腐食性反
応流体が反応カートリッジから環状部に流出し、圧力容
器の内壁を腐食するような事態は、生じない。
According to the method of the present invention, when the operation of the supercritical water reactor is stopped, the supply of the fluid other than the oxygen-containing gas and the outflow of the fluid from the reactor are stopped, and the pressure balanced type reaction is stopped. Since the oxygen-containing gas is continuously supplied to the inside of the reaction cartridge and the annular portion of the reactor, the pressure balance between the inside of the reaction cartridge and the annular portion can be maintained. At this time, a situation in which the corrosive reaction fluid flows out of the reaction cartridge into the annular portion and corrodes the inner wall of the pressure vessel does not occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧力バランス型反応器を反応器として備えた超
臨界水反応装置の構成を示すフローシートである。
FIG. 1 is a flow sheet showing a configuration of a supercritical water reactor equipped with a pressure balanced reactor as a reactor.

【図2】圧力バランス型反応器の構成を示す断面図であ
る。
FIG. 2 is a cross-sectional view illustrating a configuration of a pressure balanced reactor.

【図3】圧力バランス型反応器の腐食領域を示す断面図
である。
FIG. 3 is a sectional view showing a corroded area of the pressure balanced reactor.

【符号の説明】[Explanation of symbols]

10 超臨界水反応装置 12 反応器 14 処理液管 16 冷却器 18 圧力制御弁 20 気液分離器 22 被処理液管 24 被処理液ポンプ 26 空気送入管 28 空気圧縮機 30 補助燃料管 31 アルカリ剤送入管 34 二流体ノズル 40 圧力容器 42 反応カートリッジ 44 連通孔 46 環状部 48 処理液導管 50 空気送入ノズル 52 二流体ノズルの内管 54 二流体ノズルの外管 56 空気送入枝管 REFERENCE SIGNS LIST 10 supercritical water reactor 12 reactor 14 treatment liquid pipe 16 cooler 18 pressure control valve 20 gas-liquid separator 22 liquid liquid to be treated 24 liquid to be treated pump 26 air inlet pipe 28 air compressor 30 auxiliary fuel pipe 31 alkali Agent supply pipe 34 Two-fluid nozzle 40 Pressure vessel 42 Reaction cartridge 44 Communication hole 46 Annular part 48 Treatment liquid conduit 50 Air supply nozzle 52 Inner pipe of two-fluid nozzle 54 Outer pipe of two-fluid nozzle 56 Air supply branch pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D050 AA13 AB19 BB01 BC01 BC02 BC10 BD02 BD03 BD06 BD08 CA13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akira Suzuki 1-2-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation F-term (reference) 4D050 AA13 AB19 BB01 BC01 BC02 BC10 BD02 BD03 BD06 BD08 CA13

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 相互に連通する圧力容器と反応カートリ
ッジとからなる2重筒体として形成され、超臨界水を収
容する圧力バランス型反応器を備え、被処理液と、酸化
剤として酸素含有ガスとを反応カートリッジ内に供給
し、かつ、圧力容器と反応カートリッジとの間に圧力バ
ランス用ガスとして酸素含有ガスを供給して、超臨界水
の存在下で被処理液中の有機物と酸素との超臨界水反応
を行う超臨界水反応装置の運転を停止する方法であっ
て、運転を停止する際、 酸素含有ガスを供給しながら、反応器に供給する流体の
うち酸素含有ガスを除く流体の供給を順次に又は一度に
停止するステップと、 反応器の温度が所定温度以下に降温した時点で、酸素含
有ガスの供給を停止するステップとを有することを特徴
とする超臨界水反応装置の運転停止方法。
A pressure-balanced reactor formed of a pressure vessel and a reaction cartridge communicating with each other and containing supercritical water; a liquid to be treated; and an oxygen-containing gas as an oxidizing agent. Is supplied into the reaction cartridge, and an oxygen-containing gas is supplied as a pressure-balancing gas between the pressure vessel and the reaction cartridge, so that the organic substance and oxygen in the liquid to be treated are mixed with each other in the presence of supercritical water. A method for stopping the operation of a supercritical water reactor for performing a supercritical water reaction, wherein, when the operation is stopped, while supplying an oxygen-containing gas, a fluid excluding an oxygen-containing gas in a fluid supplied to the reactor is supplied. Operation of a supercritical water reactor characterized by having a step of stopping the supply sequentially or at once, and a step of stopping the supply of the oxygen-containing gas when the temperature of the reactor falls below a predetermined temperature. Stop method.
JP09063299A 1999-03-31 1999-03-31 Method for shutting down supercritical water reactor Expired - Fee Related JP3836270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09063299A JP3836270B2 (en) 1999-03-31 1999-03-31 Method for shutting down supercritical water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09063299A JP3836270B2 (en) 1999-03-31 1999-03-31 Method for shutting down supercritical water reactor

Publications (3)

Publication Number Publication Date
JP2000279790A true JP2000279790A (en) 2000-10-10
JP2000279790A5 JP2000279790A5 (en) 2005-03-17
JP3836270B2 JP3836270B2 (en) 2006-10-25

Family

ID=14003877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09063299A Expired - Fee Related JP3836270B2 (en) 1999-03-31 1999-03-31 Method for shutting down supercritical water reactor

Country Status (1)

Country Link
JP (1) JP3836270B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137959A (en) * 2003-11-04 2005-06-02 Japan Organo Co Ltd Supercritical water reaction apparatus
JP2006043551A (en) * 2004-08-03 2006-02-16 Japan Organo Co Ltd Method for stopping operation of hydrothermal reaction apparatus
CN102674712A (en) * 2012-05-07 2012-09-19 绥中滨海经济区乐威科技发展有限公司 Cooling device of photovoltaic glass gluing curing kettle
JP2014023974A (en) * 2012-07-24 2014-02-06 Ricoh Co Ltd Fluid purifier
CN115007066A (en) * 2022-08-05 2022-09-06 山西阳煤化工机械(集团)有限公司 Cold hydrogenation reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137959A (en) * 2003-11-04 2005-06-02 Japan Organo Co Ltd Supercritical water reaction apparatus
JP4545417B2 (en) * 2003-11-04 2010-09-15 オルガノ株式会社 Supercritical water reactor
JP2006043551A (en) * 2004-08-03 2006-02-16 Japan Organo Co Ltd Method for stopping operation of hydrothermal reaction apparatus
JP4508766B2 (en) * 2004-08-03 2010-07-21 オルガノ株式会社 Hydrothermal reactor shutdown method
CN102674712A (en) * 2012-05-07 2012-09-19 绥中滨海经济区乐威科技发展有限公司 Cooling device of photovoltaic glass gluing curing kettle
JP2014023974A (en) * 2012-07-24 2014-02-06 Ricoh Co Ltd Fluid purifier
CN115007066A (en) * 2022-08-05 2022-09-06 山西阳煤化工机械(集团)有限公司 Cold hydrogenation reactor

Also Published As

Publication number Publication date
JP3836270B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US5240619A (en) Two-stage subcritical-supercritical wet oxidation
JP3297680B2 (en) Supercritical reactor and method
JP2003340261A (en) Batch hydrothermal reactor and hydrothermal reaction apparatus
JPH07313987A (en) High pressure reaction container apparatus
JP2000279790A (en) Operation stopping method of supercritical water reaction device
JP4455703B2 (en) Supercritical water reactor
JP2001232382A (en) Supercritical water reacting apparatus
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JP2002102672A (en) Method and apparatus for hydrothermal reaction
KR100522575B1 (en) Wastewater and wasteliquid disposal apparatus using supercritical water oxidation process
JP2001170664A (en) Supercritical water treating device
JP4355863B2 (en) High pressure reaction vessel
JP4267791B2 (en) Supercritical water treatment equipment
US20090226351A1 (en) Supercritical Oxidation Process for the Treatment of Corrosive Materials
JP4107637B2 (en) Hydrothermal reactor
JP2001269566A (en) Supercritical water reaction apparatus
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction
JP2002361069A (en) Supercritical hydroreaction apparatus and vessel
JP2002355696A (en) Supercritical water oxidative decomposition apparatus
JP3280797B2 (en) Apparatus for supercritical water oxidation of harmful organic substances and operating method thereof
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JPH10314766A (en) Supercritical water reaction apparatus
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
US20240034655A1 (en) A treatment process for waste streams
JP2005152804A (en) Supercritical hydration method and apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees