JP2000268999A - Cavity resonator - Google Patents

Cavity resonator

Info

Publication number
JP2000268999A
JP2000268999A JP11066767A JP6676799A JP2000268999A JP 2000268999 A JP2000268999 A JP 2000268999A JP 11066767 A JP11066767 A JP 11066767A JP 6676799 A JP6676799 A JP 6676799A JP 2000268999 A JP2000268999 A JP 2000268999A
Authority
JP
Japan
Prior art keywords
high vacuum
ultra
cavity resonator
section
auxiliary exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11066767A
Other languages
Japanese (ja)
Other versions
JP3335939B2 (en
Inventor
Shunichi Hiasa
俊一 日朝
Yukio Kumada
幸生 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP06676799A priority Critical patent/JP3335939B2/en
Publication of JP2000268999A publication Critical patent/JP2000268999A/en
Application granted granted Critical
Publication of JP3335939B2 publication Critical patent/JP3335939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrahigh vacuum cavity resonator of simple configuration and to reduce the operating cost. SOLUTION: This cavity resonator is provided with structure materials 22B and 22L having a thickness resistant to an atmospheric pressure, a thin conductor plate 30 disposed along the inside thereof in the metal touch condition an auxiliary evacuating part 40 formed between the structure materials and the conductor plate 30 and an ultrahigh vacuum part 50 surrounded by the conductor plate 30. Thereby, the ultrahigh vacuum part 50 and the auxiliary evacuating part 40 are evacuated by different evacuating pumps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空洞共振器に係
り、特に、イオン加速器や電子線加速器等で、高周波、
高電圧の加速電圧を発生させる際に用いるのに好適な、
簡単な構造で、大気圧に耐え得る強度を有し、且つ、超
高真空状態を保つことが可能な、低コストの空洞共振器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cavity resonator, and particularly to an ion accelerator, an electron beam accelerator, etc.
Suitable for use when generating high voltage acceleration voltage,
The present invention relates to a low-cost cavity resonator having a simple structure, strength enough to withstand atmospheric pressure, and capable of maintaining an ultra-high vacuum state.

【0002】[0002]

【従来の技術】イオン加速器や電子線加速器等で、高周
波、高電圧の加速電圧を発生させる際には、通常、空洞
共振器が用いられる。このような場合、共振器内の導体
は、普通、水冷された無酸素銅の板が材料として使用さ
れる。一方、空洞共振器内を加速粒子が通過する場合、
特に重イオン等の多価イオンを加速するときには、その
透過率(生存率)を保つために、10-6Pa程度の超高
真空状態でなければならない。そして、内部が真空状態
の空洞共振器は、当然のことながら、大気圧に耐え得る
強度を有していなければならない。
2. Description of the Related Art When generating high-frequency and high-voltage accelerating voltages with an ion accelerator, an electron beam accelerator, or the like, a cavity resonator is usually used. In such a case, the conductor in the resonator is usually made of a water-cooled plate of oxygen-free copper. On the other hand, when accelerating particles pass through the cavity resonator,
In particular, when multiply charged ions such as heavy ions are accelerated, they must be in an ultra-high vacuum state of about 10 −6 Pa in order to maintain the transmittance (survival rate). Then, the cavity resonator in which the inside is in a vacuum state must have, of course, a strength that can withstand the atmospheric pressure.

【0003】一般的に、このような超高真空の空洞共振
器を製作する場合、一番外側の構造材料は、強度、透磁
率の観点からステンレス材が用いられる。そして、内側
導体は、無酸素銅の板であり、これは冷却水によって冷
却される。
Generally, when manufacturing such an ultra-high vacuum cavity resonator, a stainless steel material is used as the outermost structural material from the viewpoint of strength and magnetic permeability. The inner conductor is a plate of oxygen-free copper, which is cooled by cooling water.

【0004】従って従来、超高真空に適用するために
は、図1に示すような、無酸素銅10Cとステンレス1
0Sのクラッド材10を用いる他なかった。図におい
て、10Wは、例えば無酸素銅10Cに形成された冷却
水通路である。
Therefore, conventionally, in order to apply to an ultra-high vacuum, as shown in FIG.
There was no other choice but to use the cladding material 10 of 0S. In the drawing, 10W is a cooling water passage formed in, for example, oxygen-free copper 10C.

【0005】超高真空でなければ、図2に示す如く、大
気側に配設されるステンレス板12と、その内側に間隔
を空けて配設される、穴16hが開けられた穴開き銅板
16、又は、メッシュ状の銅板で二重構造とし、前記ス
テンレス板12と銅板16の間の空間14に、冷却水を
通すための銅管18を配設することも考えられる。
[0005] Unless an ultra-high vacuum is used, as shown in FIG. 2, a stainless steel plate 12 provided on the air side and a perforated copper plate 16 provided with a space inside and having a hole 16h provided therein. Alternatively, it is also conceivable to form a double structure with a mesh-shaped copper plate, and to provide a copper tube 18 for passing cooling water in the space 14 between the stainless steel plate 12 and the copper plate 16.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図2の
ような構成では、銅板16とステンレス板12の間の空
間14でのアウトガスが多く、且つ、コンダクタンスが
小さいことから、銅板16内側の空洞内を超高真空に保
つことは困難であり、大量の排気ポンプが必要となるた
め、コストがかさむという問題点を有していた。
However, in the configuration as shown in FIG. 2, since there is much outgas in the space 14 between the copper plate 16 and the stainless steel plate 12 and the conductance is small, the inside of the cavity inside the copper plate 16 is small. However, it is difficult to maintain the vacuum in an ultra-high vacuum, and a large amount of evacuation pumps is required, so that the cost is increased.

【0007】本発明は、前記従来の問題点を解決するべ
くなされたもので、簡単な構造で、大気圧に耐え得る強
度を有し、且つ、超高真空状態を保つことが可能な空洞
共振器を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has a simple structure, a cavity resonance strength capable of withstanding atmospheric pressure, and capable of maintaining an ultra-high vacuum state. It is an object to provide a vessel.

【0008】[0008]

【課題を解決するための手段】本発明は、空洞共振器
を、大気圧に耐え得る厚さの構造材と、その内側に沿っ
てメタルタッチ状態で配設される薄い導体板と、前記構
造材と導体板の間に形成される補助排気部と、前記導体
板に囲まれた超高真空部を用いて構成し、該超高真空部
と補助真空部を、異なる排気ポンプで排気するようにし
て、前記課題を解決したものである。
SUMMARY OF THE INVENTION According to the present invention, there is provided a cavity resonator comprising a structural member having a thickness capable of withstanding atmospheric pressure, a thin conductive plate disposed in a metal touch state along the inside thereof, and An auxiliary evacuation unit formed between the material and the conductor plate and an ultra-high vacuum unit surrounded by the conductor plate are configured, and the ultra-high vacuum unit and the auxiliary vacuum unit are evacuated by different evacuation pumps. This has solved the above problems.

【0009】又、前記補助排気部を、10-3〜10-5
a程度の通常の高真空とし、前記超高真空部を、10-6
Pa以下の超高真空としたものである。
Further, the auxiliary exhaust unit is provided with 10 -3 to 10 -5 P
a normal high vacuum of about a, the ultra-high vacuum unit, 10-6
It is an ultra-high vacuum of Pa or less.

【0010】まず、本発明の実現性について検討する。
図3のように、空洞共振器20を、超高真空部50と補
助排気部40に分割して考え、真空計算のモデルとして
は、図4のようなモデルで考える。
First, the feasibility of the present invention will be discussed.
As shown in FIG. 3, the cavity resonator 20 is divided into an ultra-high vacuum section 50 and an auxiliary exhaust section 40, and a vacuum calculation model is considered as a model as shown in FIG.

【0011】即ち、一番外側の構造材(例えばステンレ
スボディ22Bとステンレス蓋22L)は、大気圧に十
分耐え得る厚さのものを用い、導体板としては比較的薄
い板(例えば銅板30)を用いる。構造材と導体板の間
の空間を補助排気部40、導体(銅板30)に囲まれた
空洞内部を超高真空部50とする。
That is, the outermost structural materials (for example, the stainless steel body 22B and the stainless steel lid 22L) have a thickness enough to withstand the atmospheric pressure, and a relatively thin plate (for example, the copper plate 30) is used as the conductive plate. Used. The space between the structural material and the conductor plate is referred to as an auxiliary exhaust unit 40, and the inside of the cavity surrounded by the conductor (copper plate 30) is referred to as an ultra-high vacuum unit 50.

【0012】今、図4の左側に示す如く、超高真空部5
0と補助排気部40が、あるコンダクタンスC(m3
s)で接続される前の単独排気したと考えたときのアウ
トガス量と圧力を、それぞれQ10(Pa・m3/s)、
P10(Pa)、Q20(Pa・m3/s)、P20(Pa)
とし、図4の右側に示す如く、コンダクタンスCで接続
した後のアウトガス量と圧力を、それぞれQ1(Pa・
3/s)、P1(Pa)、Q2(Pa・m3/s)、P2
(Pa)とした場合、接続後の平衡状態では、次式が成
り立つ。
Now, as shown on the left side of FIG.
0 and the auxiliary exhaust unit 40 have a certain conductance C (m 3 /
The outgas amount and the pressure when it is considered that the single exhaust was performed before the connection in s) are respectively represented by Q10 (Pa · m 3 / s),
P10 (Pa), Q20 (Pa · m 3 / s), P20 (Pa)
As shown on the right side of FIG. 4, the outgas amount and the pressure after the connection with the conductance C are Q1 (Pa ·
m 3 / s), P1 (Pa), Q2 (Pa · m 3 / s), P2
In the case of (Pa), the following equation holds in an equilibrium state after connection.

【0013】 Q1=Q10+C・(P2−P1) …(1) Q2=Q20+C・(P1−P2) …(2)Q1 = Q10 + C · (P2−P1) (1) Q2 = Q20 + C · (P1−P2) (2)

【0014】各排気室においてアウトガス量と到達圧力
が比例すると考えれば、(1)式と(2)式を解くこと
によって、次の(3)式と(4)式が得られる。
Assuming that the outgas amount and the ultimate pressure are proportional in each exhaust chamber, the following equations (3) and (4) can be obtained by solving equations (1) and (2).

【0015】 K1=P1/P10 =(Q10・Q20+C・P20・Q10+C・P20・Q20) /(Q10・Q20+C・P20・Q10+C・P10・Q20) …(3) K2=P2/P20 =(Q20+C・P10・K1)/(Q20+C・P20) …(4)K1 = P1 / P10 = (Q10 · Q20 + C · P20 · Q10 + C · P20 · Q20) / (Q10 · Q20 + C · P20 · Q10 + C · P10 · Q20) (3) K2 = P2 / P20 = (Q20 + C · P10)・ K1) / (Q20 + C ・ P20)… (4)

【0016】従って、Q10、P10、Q20、P20が既知で
あれば、CとK1の関係を評価することによって、超高
真空部50の目標到達圧力を保持したまま、あるコンダ
クタンスCで超高真空部50と補助排気部40を接続す
ることができる。
Therefore, if Q10, P10, Q20, and P20 are known, the relationship between C and K1 is evaluated, and the ultra-high vacuum is maintained at a certain conductance C while maintaining the target ultimate pressure of the ultra-high vacuum section 50. The unit 50 and the auxiliary exhaust unit 40 can be connected.

【0017】このようにして得られた許容コンダクタン
スC以下となるように、超高真空部50と補助排気部4
0の間の隙間を許容することで、単独排気時と同等の排
気ポンプで、エラストマやメタルシール機構を必要とし
ない、単純なメタルタッチ二重構造の超高真空空洞共振
器を製作できる。
The ultra-high vacuum section 50 and the auxiliary exhaust section 4 are controlled so that the permissible conductance C obtained in this manner is not more than C.
By allowing a gap between zero, an ultrahigh-vacuum cavity resonator having a simple metal-touch double structure, which does not require an elastomer or a metal seal mechanism, can be manufactured with an evacuation pump equivalent to that of a single evacuation.

【0018】[0018]

【発明の実施の形態】以下、図面を参照して、本発明の
実施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】本実施形態は、図3に示す如く、空洞共振
器20を、大気圧に耐え得る厚さの構造材であるステン
レス製の箱状ボディ22B及び蓋22Lと、該ボディ2
2B及び蓋22Lの内側に沿って、例えばステンレス製
の台座24に直接ねじ止めすることにより、メタルタッ
チ状態で配設される薄い銅板30と、前記ボディ22B
又は蓋22Lと銅板30の間に形成される補助排気部4
0と、該補助排気部40の銅板30側に配設される冷却
水用の銅管32と、前記銅板30に囲まれた超高真空部
50とを用いて構成し、前記補助排気部40を、例えば
ターボ分子ポンプで構成される補助排気部排気ポンプで
排気し、前記超高真空部50を、例えばクライオポンプ
で構成される超高真空部排気ポンプで排気するようにし
たものである。
In this embodiment, as shown in FIG. 3, a hollow resonator 20 is made up of a stainless steel box-shaped body 22B and a lid 22L, which are structural members having a thickness capable of withstanding the atmospheric pressure.
2B and a thin copper plate 30 disposed in a metal touch state by directly screwing to the pedestal 24 made of, for example, stainless steel along the inside of the lid 22L and the body 22B.
Or, the auxiliary exhaust unit 4 formed between the lid 22L and the copper plate 30
0, a copper pipe 32 for cooling water disposed on the copper plate 30 side of the auxiliary exhaust unit 40, and an ultra-high vacuum unit 50 surrounded by the copper plate 30. Is evacuated by an auxiliary evacuation unit exhaust pump composed of, for example, a turbo molecular pump, and the ultrahigh vacuum unit 50 is evacuated by an ultrahigh vacuum unit exhaust pump composed of, for example, a cryopump.

【0020】本実施形態において、図4の左側に示した
如く、超高真空部50と補助排気部40間の洩れがない
場合、それぞれの排気部のアウトガス量Q10、Q20、及
び到達圧力P10、P20は、次のとおりである。
In this embodiment, as shown on the left side of FIG. 4, when there is no leakage between the ultrahigh vacuum section 50 and the auxiliary exhaust section 40, the outgas amounts Q10 and Q20 of each exhaust section and the ultimate pressure P10, P20 is as follows.

【0021】Q10=1.0×10-5(Pa・m3/s) Q20=5.0×10-5(Pa・m3/s) P10=1.0×10-6(Pa) P20=5.0×10-4(Pa)Q10 = 1.0 × 10 −5 (Pa · m 3 / s) Q20 = 5.0 × 10 −5 (Pa · m 3 / s) P10 = 1.0 × 10 −6 (Pa) P20 = 5.0 × 10 -4 (Pa)

【0022】これらは、各排気室単独での計算値であ
り、超高真空部50は10000(リットル/s)クラ
スのクライオポンプを2台用い、補助排気部40は、5
00(リットル/s)のターボ分子ポンプを2台用いた
結果である。
These are calculated values for each exhaust chamber alone. The ultrahigh vacuum section 50 uses two 10,000 (liter / s) class cryopumps, and the auxiliary exhaust section 40
This is a result of using two turbo molecular pumps of 00 (liter / s).

【0023】この条件下で、図4の右側に示した如く、
各排気部を接続したときのコンダクタンスC(m3
s)と超高真空部50の圧力P1の関係の計算結果を図
5に示す。図から明らかなように、超高真空部50内の
圧力P1を2×10-6Pa以下の超高真空に保つための
許容コンダクタンスCは、2×10-2(m3/s)以下
であることが分かる。
Under these conditions, as shown on the right side of FIG.
Conductance C (m 3 /
FIG. 5 shows the calculation result of the relationship between s) and the pressure P1 of the ultrahigh vacuum section 50. As is clear from the figure, the allowable conductance C for maintaining the pressure P1 in the ultrahigh vacuum section 50 at an ultrahigh vacuum of 2 × 10 −6 Pa or less is 2 × 10 −2 (m 3 / s) or less. You can see that there is.

【0024】一方、超高真空部50と補助排気部40を
空間的につなぐ主要部分は、銅板30のつなぎ目である
と考えられる。銅板30のつなぎ目における隙間bとコ
ンダクタンスCの関係の計算結果を図6に示す。ここで
は、銅板30のつなぎ目の全長aを50mとし、隙間の
厚さlを5mmと仮定している。
On the other hand, the main part spatially connecting the ultrahigh vacuum section 50 and the auxiliary exhaust section 40 is considered to be a joint of the copper plate 30. FIG. 6 shows a calculation result of the relationship between the gap b and the conductance C at the joint of the copper plates 30. Here, it is assumed that the total length a of the joint of the copper plate 30 is 50 m and the thickness l of the gap is 5 mm.

【0025】コンダクタンスCが2×10-2(m3
s)以下となるためには、隙間の許容値を0.063m
m以下とすればよいことが分かる。この隙間は、銅板3
0を、図3に示したような簡単な構造で固定することに
よって、容易に実現可能な寸法である。
The conductance C is 2 × 10 -2 (m 3 /
s) In order to be less than or equal to, the allowable value of the gap is 0.063 m
It can be seen that it should be m or less. This gap is the copper plate 3
0 is a size that can be easily realized by fixing the same with a simple structure as shown in FIG.

【0026】このようにして、エラストマやメタルシー
ル機構を有しない、単純なメタルタッチ二重構造の超高
真空空洞共振器を製作できる。
In this way, it is possible to manufacture an ultra-high vacuum cavity resonator having a simple metal touch double structure without an elastomer or a metal seal mechanism.

【0027】なお、前記実施形態においては、構造材と
してステンレスが用いられ、導体板として銅板が用いら
れていたが、構造材や導体板の材質はこれに限定されな
い。
In the above-described embodiment, stainless steel is used as the structural material and a copper plate is used as the conductive plate. However, the material of the structural material and the conductive plate is not limited to this.

【0028】[0028]

【発明の効果】本発明によれば、コストのかかるクラッ
ド材を使用したり、エラストマやメタルシール機構を設
けることなく、単純なメタルタッチ二重構造で超高真空
空洞共振器を製作できるので、空洞共振器を安価に構成
できる。更に、大量の排気ポンプを用いる必要がないの
で、運転コストも安価である。
According to the present invention, an ultra-high vacuum cavity resonator can be manufactured with a simple double metal touch structure without using an expensive clad material or providing an elastomer or a metal seal mechanism. The cavity resonator can be configured at low cost. Furthermore, since there is no need to use a large amount of exhaust pump, the operating cost is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ステンレス−銅クラッド材を用いた従来の空洞
共振器の壁の構造を示す断面図
FIG. 1 is a sectional view showing a structure of a wall of a conventional cavity resonator using a stainless-copper clad material.

【図2】穴開き銅板を用いた従来の空洞共振器の壁の構
成を示す断面図
FIG. 2 is a cross-sectional view showing a configuration of a wall of a conventional cavity resonator using a perforated copper plate.

【図3】本発明の実施形態の構成を示す断面図FIG. 3 is a sectional view showing the configuration of the embodiment of the present invention.

【図4】本発明の原理を説明するための作動排気概念図FIG. 4 is a conceptual diagram of working exhaust for explaining the principle of the present invention.

【図5】同じく各排気部を接続したときのコンダクタン
スと超高真空部の圧力の計算結果を示す線図
FIG. 5 is a diagram showing calculation results of conductance and pressure of an ultra-high vacuum section when each exhaust section is connected.

【図6】同じく銅板つなぎ目の隙間とコンダクタンスの
関係の計算結果を示す表
FIG. 6 is a table showing a calculation result of a relationship between a gap and a conductance of a joint of a copper plate.

【符号の説明】[Explanation of symbols]

20…空洞共振器 22B…ステンレスボディ 22L…ステンレス蓋 24…台座 30…銅板 32…銅管 40…補助排気部 50…超高真空部 Reference Signs List 20 cavity resonator 22B stainless steel body 22L stainless steel lid 24 pedestal 30 copper plate 32 copper tube 40 auxiliary exhaust unit 50 ultra-high vacuum unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】大気圧に耐え得る厚さの構造材と、 その内側に沿ってメタルタッチ状態で配設される薄い導
体板と、 前記構造材と導体板の間に形成される補助排気部と、 前記導体板に囲まれた超高真空部とを有し、 該超高真空部と補助排気部が、異なる排気ポンプで排気
されることを特徴とする空洞共振器。
1. A structural member having a thickness capable of withstanding atmospheric pressure, a thin conductive plate disposed in a metal touch state along the inside thereof, an auxiliary exhaust portion formed between the structural member and the conductive plate, A cavity resonator comprising: an ultra-high vacuum section surrounded by the conductor plate; wherein the ultra-high vacuum section and the auxiliary exhaust section are evacuated by different exhaust pumps.
【請求項2】請求項1において、前記補助排気部が、1
-3〜10-5Pa程度の通常の高真空とされ、前記超高
真空部が、10-6Pa以下の超高真空とされることを特
徴とする空洞共振器。
2. The apparatus according to claim 1, wherein the auxiliary exhaust unit is configured to
A cavity resonator characterized by a normal high vacuum of about 0 -3 to 10 -5 Pa and an ultra-high vacuum of the ultra-high vacuum section of 10 -6 Pa or less.
JP06676799A 1999-03-12 1999-03-12 Cavity resonator and method of manufacturing the same Expired - Fee Related JP3335939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06676799A JP3335939B2 (en) 1999-03-12 1999-03-12 Cavity resonator and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06676799A JP3335939B2 (en) 1999-03-12 1999-03-12 Cavity resonator and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000268999A true JP2000268999A (en) 2000-09-29
JP3335939B2 JP3335939B2 (en) 2002-10-21

Family

ID=13325371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06676799A Expired - Fee Related JP3335939B2 (en) 1999-03-12 1999-03-12 Cavity resonator and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3335939B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068609A (en) * 2001-08-24 2003-03-07 Nikon Corp Processing equipment linder atmospheric pressure, energy beam irradiation equipment and aligner
JPWO2015012089A1 (en) * 2013-07-26 2017-03-02 宇部興産機械株式会社 Container deaerator for extrusion press

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068609A (en) * 2001-08-24 2003-03-07 Nikon Corp Processing equipment linder atmospheric pressure, energy beam irradiation equipment and aligner
JP4655433B2 (en) * 2001-08-24 2011-03-23 株式会社ニコン Depressurized atmosphere processing apparatus, energy beam irradiation apparatus, and exposure apparatus
JPWO2015012089A1 (en) * 2013-07-26 2017-03-02 宇部興産機械株式会社 Container deaerator for extrusion press

Also Published As

Publication number Publication date
JP3335939B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
JP5372239B2 (en) Combined pump system including getter pump and ion pump
US5548183A (en) Magnetic field immersion type electron gun
US5899666A (en) Ion drag vacuum pump
JP3335939B2 (en) Cavity resonator and method of manufacturing the same
US3996464A (en) Mass spectrometer with magnetic pole pieces providing the magnetic fields for both the magnetic sector and an ion-type vacuum pump
JP2006190563A (en) Sputter ion pump
KR20100129427A (en) Ion pump with surface treated permanent magnet
JP6271822B1 (en) Film forming unit for sputtering equipment
CN208753262U (en) A kind of sputter ion pump
CN110246746B (en) Tripolar sputtering ion pump
US3379365A (en) Magnetically confined ion getter pump having combined coupling flange and pole piece structure
JP3926169B2 (en) Vacuum exhaust device
JPH1019711A (en) Cold cathode ionization gauge
WO2022264603A1 (en) Plasma source, and atomic clock employing said plasma source
JP2714826B2 (en) Magnetron sputtering equipment
JPH02273443A (en) Multistage acceleration type charged particle beam source
JPH09204994A (en) Vacuum chamber with built-in pump for particle accelerator
JP2000182800A (en) Vacuum container
JPH0822803A (en) Sputter ion pump
CN117026166A (en) Ultrathin vacuum transition device and pressure difference eliminating system
Gould Vacuum system for a thirty billion electron volt particle accelerator
JPH05251200A (en) High frequency quadrupole accelerator
JP2021002455A (en) Ion beam source
JP2018021235A (en) Film deposition unit for sputtering device, and film deposition apparatus
Schuchman Vacuum system design and fabrication of electron storage rings

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees