JPH02273443A - Multistage acceleration type charged particle beam source - Google Patents

Multistage acceleration type charged particle beam source

Info

Publication number
JPH02273443A
JPH02273443A JP9284189A JP9284189A JPH02273443A JP H02273443 A JPH02273443 A JP H02273443A JP 9284189 A JP9284189 A JP 9284189A JP 9284189 A JP9284189 A JP 9284189A JP H02273443 A JPH02273443 A JP H02273443A
Authority
JP
Japan
Prior art keywords
electrode
stage
shield electrode
beam source
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9284189A
Other languages
Japanese (ja)
Inventor
Junji Endo
潤二 遠藤
Takeshi Kawasaki
猛 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9284189A priority Critical patent/JPH02273443A/en
Priority to US07/507,798 priority patent/US5059859A/en
Publication of JPH02273443A publication Critical patent/JPH02273443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To enhance the discharge resisting property and magnetic shield property of the invention stated in the title by providing first and second shield electrodes and providing a division resistance for applying acceleration voltage with partial pressure therebetween. CONSTITUTION:Charged particle beams drawn out from an electron beam source 1 are accelerated by the plural accelerating electrodes 11 of a multistage accelerating tube 2. Outside the tube 2 are provided a first shield electrode 12 kept in the same electric potential as that of each electrode 11 and a second shield electrode 13 kept in the same electric potential and located on the outside of the electrode 12, and a division electrode 28 for applying acceleration voltage to the electrode 11 is provided between the electrodes 12, 13 so that the potential distribution of the pipe 2 and that of the resistance 28 are uniformed, and also, an insulating bar 20 i.e., a metallic member is disposed in a position corresponding to the electric potential of the electrode 11 in phase with the cycle of division of the pipe 2, and acceleration voltage of each stage is applied thereto so that the potential distribution of the bar 20 is also uniformed. As a result, the invention has its high pressure resisting property improved so that its discharge resisting property is enhanced and also that its magnetic shield effect is further increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は多段加速型荷電粒子線源の改良に係り、特に」
00〜300kV以」二の高い加速電圧を有する多段加
速型荷電粒子線源、例えば多段加速方式の電界放射型電
子銃に好適な改良構造に関する。
[Industrial Application Field] The present invention relates to improvement of a multi-stage accelerated charged particle beam source, and in particular,
The present invention relates to an improved structure suitable for a multi-stage acceleration type charged particle beam source having a high acceleration voltage of 00 to 300 kV, for example, a multi-stage acceleration field emission type electron gun.

【従来の技術】[Conventional technology]

従来の多段加速型荷電粒子線源は、例えば特開昭60−
、+−17534号公報に記載のように、多段加速管の
内側各段に加速電極、外側各段にはシールド電極を設け
、多段加速管壁とシールド電極の間に、各段に加速電圧
を分割印加するための分割抵抗が設置されていた。また
一般に、上記加速電極とシールド電極は、高透磁率の金
属で作られており、多段加速管壁の電位分布を緩和する
とともに、外部磁界のシールドをする役割をはたしてい
る。 [発明が解決しようとする課題] この種の多段加速型荷電粒子線源において、高電圧放電
が最も起こり易い部位は、多段加速管各段の絶縁性円筒
部材と加速電極に接続をとるために各絶縁性円筒部材間
に設置される金属製スペーサとの接合部である。この部
分の電界強度は、接合部の形状や、加速電極およびシー
ルド電極の形状・配置によって決まるが、最も基本的な
ことはその部分に電界を集中させないことである。 上記従来技術では、多段加速管壁とシール1−電極との
間に分割抵抗や荷電粒子源に接続される絶縁棒などを設
置していたので、加速電極とシールド電極との間隔が離
れ、さらに分割抵抗によって電位分布が不均一になるた
め、上記接合部の電界強度を緩和するには限界があった
。また同様の理由で、外部磁界をシールドする効果にも
限界があった。特に加速電圧が高くなればなるほど、高
電圧放電と磁気シールドをより完壁にすることが必要と
なるが、従来技術ではもはやこの要請に十分対応できな
くなってきている。 したがって、本発明の目的は、多段加速型荷電粒子線源
における耐放電特性と磁気シールド特性とをより一層向
」ニさせることにある。
A conventional multi-stage accelerated charged particle beam source is, for example, disclosed in Japanese Patent Application Laid-open No. 1983-
, +-17534, an accelerating electrode is provided at each inner stage of a multistage accelerating tube, a shield electrode is provided at each outer stage, and an accelerating voltage is applied to each stage between the multistage accelerating tube wall and the shield electrode. A dividing resistor was installed for dividing the voltage. Generally, the accelerating electrode and shielding electrode are made of a metal with high magnetic permeability, and play the role of relaxing the potential distribution on the wall of the multistage accelerating tube and shielding from external magnetic fields. [Problem to be solved by the invention] In this type of multistage accelerated charged particle beam source, the part where high voltage discharge is most likely to occur is the part where the insulating cylindrical member of each stage of the multistage acceleration tube is connected to the acceleration electrode. This is the joint with the metal spacer installed between each insulating cylindrical member. The electric field strength in this part is determined by the shape of the joint and the shape and arrangement of the accelerating electrode and the shield electrode, but the most basic thing is not to concentrate the electric field in that part. In the above-mentioned conventional technology, dividing resistors and insulating rods connected to the charged particle source were installed between the multistage accelerating tube wall and the seal 1 electrode. Since the potential distribution becomes non-uniform due to the divided resistors, there is a limit to relaxing the electric field strength at the junction. Furthermore, for the same reason, there is a limit to the effectiveness of shielding external magnetic fields. In particular, as the accelerating voltage becomes higher, it is necessary to perfect the high voltage discharge and magnetic shielding, but the conventional technology is no longer able to adequately meet this requirement. Therefore, an object of the present invention is to further improve the discharge resistance characteristics and magnetic shielding characteristics of a multistage accelerated charged particle beam source.

【課題を解決するための手段1 上記目的は、多段加速管各段の外周部に、高透磁率金属
製の第一シールド電極と、さらに第一シール1く電極の
各膜外側にやはり高透磁率金属製の第二シールド電極と
を設け、分割抵抗や絶縁棒等を第一シール1−電極と第
二シールド電極との間に設置することにより達成される
。 また、上記絶縁棒を、多段加速管の分割周期に合わせて
各加速電極電位に対応する位置に金属部材を配置した構
造とし、該各金属部材にそれぞれ対応する各段の加速電
圧を印加することによって、絶縁棒に沿った電位分布を
均一にすれば、絶縁棒の耐電圧特性が大幅に向上する。 [作用] 多段加速管の絶縁部材表面および内部の電位分布は、多
段加速管内側の加速電極と外側のシールド電極の形状や
配置によって決定される。高電圧放電を効果的に防止す
るためには、多段加速管の各段における絶縁性円筒部材
と金属製スペーサとの接合部への電界集中を防ぐことが
肝要である。 このためには、(1)円周方向で電位分布が均一・にな
るようにすること、(2)加速電極とシールド電極とを
近づけること、および(3)面電極端部と上記接合部と
の距離を大きくすること、などが効果がある。 本発明では、上記(1)、(2)を実現するために、多
段加速管各段の外周部に略同心円状の第一シールド電極
を配し、分割抵抗あるいは絶縁棒等はその外側に配設し
た。さらに、分割抵抗や絶縁棒等によって乱される電界
を均一化するために、その外側の各段に第二シールド電
極を配設した。 これら第一および第二シールド電極に高透磁率金属を用
いれば、磁気シールド効果も従来より一層良くなるため
、シールド性能が向上する。 対策が必要どなる。また、加速電圧が高くなると、高電
圧を絶縁するに要する長さも電圧に比例して長くする必
要がある。ところが、シールド性能も長さにほぼ比例的
に向」二させることが必要となる。 本発明を用いれば、こうした高電圧化に伴なうシールド
対策上、放電防止対策上の諸問題を一挙に解決すること
ができる。 [実施例] 以下、本発明の一実施例を第1図により説明する。この
実施例は多段加速方式電界放射型電子銃についてのもの
である。 鏡体3上に、多段加速管2とその上にフランジ4が取付
けられ、真空容器を構成している。この内部は鏡体側か
ら真空排気され、多段加速管2とsiハウジング33の
間はフレオン等の絶縁性ガ仝 ス雰囲気になっている。フランクT′は電界放射電子線
源1−が取りつけられ、これに対向して引出し電極J−
0が設置される。また、多段加速管各段の内側には加速
電極11、外側には第一シールド電極12および第二シ
ールド電極13が取り付けられている。第一シールド電
極12と第二シール1−完接13との間には、分割抵抗
28および絶縁棒20が取り付けられている。 電子線源を活性化する。引出し電源30は、電界放射電
子線源と引出し電極との間に3〜6kVの電圧な供給し
、電界放射を行なわせるものである。 加速電源31で発生した加速電圧は、電界放射電子線源
に印加され、同時に分割抵抗28によって多段加速管各
段に分割印加される。電界放射した電子線は、引出し電
極]Oに設けられた電極孔を通過し、各加速電極によっ
て所定のエネルギーに加速される。この後、図示してい
ない偏向コイル・集束Iノンズ等の照射系を経て試料に
至る。 電子ビームの軸合わせは、駆動機構25によって絶縁棒
20を回転させ、さらにその回転運動が微動機構26に
よって並進運動に変換され、微動皿5な動かすことによ
って行なわれる。 本実施例によれば1分割抵抗28および絶縁棒20を第
一シールド電極と第二シールド電極との開に設置したこ
とにより、多段加速管2、分割抵抗28および絶縁棒2
0のいずれも耐放電特性が向上した。 第2図は、本発明の他の一実施例である。基本構成は前
述の第1図示の実施例と同じであるが、絶縁棒20の構
造を、多段加速管2の分割周期と1.2.13と接触せ
しめられている。これにより、絶縁棒20の耐放電特性
がさらに向上した。 なお、]二記実施例は電界放射型電子銃を例にとって示
したが、本発明は通常の電子銃、イオン源も含む荷電粒
子源一般に適用できるものであることは言うまでもない
。 【発明の効果】 本発明によれば、多段加速管1分割抵抗および絶縁棒の
いずれの電位分布もより均一かつなめらかにすることが
できるので、耐高電圧特性が向上する。また同時に、磁
気シールド効果が一層増大するので、磁気シールド効果
も向上する。
[Means for Solving the Problem 1] The above purpose is to provide a first shield electrode made of a high magnetic permeability metal on the outer periphery of each stage of the multistage accelerator tube, and a first shield electrode made of a metal with high permeability on the outside of each membrane of the electrode. This is achieved by providing a second shield electrode made of magnetic metal, and installing a dividing resistor, an insulating rod, etc. between the first seal electrode and the second shield electrode. Further, the insulating rod has a structure in which metal members are arranged at positions corresponding to each accelerating electrode potential in accordance with the division period of the multistage accelerating tube, and accelerating voltages of each stage corresponding to each of the metal members are applied. By making the potential distribution uniform along the insulating rod, the withstand voltage characteristics of the insulating rod can be greatly improved. [Function] The potential distribution on the surface and inside of the insulating member of the multistage acceleration tube is determined by the shape and arrangement of the acceleration electrode inside the multistage acceleration tube and the shield electrode on the outside. In order to effectively prevent high voltage discharge, it is important to prevent electric field concentration at the joint between the insulating cylindrical member and the metal spacer in each stage of the multistage accelerator tube. To achieve this, (1) make the potential distribution uniform in the circumferential direction, (2) bring the accelerating electrode and the shield electrode close together, and (3) bring the end of the surface electrode and the above-mentioned joint together. Increasing the distance between the two is effective. In the present invention, in order to realize the above (1) and (2), a substantially concentric first shield electrode is arranged around the outer periphery of each stage of the multi-stage accelerator tube, and dividing resistors or insulating rods are arranged outside of the first shield electrode. Established. Furthermore, in order to equalize the electric field disturbed by the dividing resistors, insulating rods, etc., second shield electrodes were provided at each stage outside of the dividing resistors, insulating rods, etc. If high magnetic permeability metal is used for these first and second shield electrodes, the magnetic shielding effect will be even better than before, and the shielding performance will be improved. Countermeasures are needed. Furthermore, as the accelerating voltage increases, the length required to insulate the high voltage also needs to increase in proportion to the voltage. However, it is necessary to improve the shielding performance almost in proportion to the length. By using the present invention, it is possible to solve all the problems in terms of shielding measures and discharge prevention measures that accompany the increase in voltage. [Example] Hereinafter, an example of the present invention will be described with reference to FIG. This embodiment concerns a multi-stage acceleration field emission type electron gun. A multi-stage accelerator tube 2 and a flange 4 are mounted on the mirror body 3 to form a vacuum vessel. This interior is evacuated from the mirror body side, and an atmosphere of insulating gas such as freon exists between the multistage accelerator tube 2 and the Si housing 33. A field emission electron beam source 1- is attached to the flank T', and an extraction electrode J- is mounted opposite to the field emission electron beam source 1-.
0 is set. Further, an accelerating electrode 11 is attached to the inside of each stage of the multistage accelerating tube, and a first shield electrode 12 and a second shield electrode 13 are attached to the outside. A dividing resistor 28 and an insulating rod 20 are attached between the first shield electrode 12 and the second seal 1-complete connection 13. Activate the electron beam source. The extraction power supply 30 supplies a voltage of 3 to 6 kV between the field emission electron beam source and the extraction electrode to cause field emission. The accelerating voltage generated by the accelerating power supply 31 is applied to the field emission electron beam source, and at the same time is dividedly applied to each stage of the multistage accelerating tube by the dividing resistor 28. The field-emitted electron beam passes through an electrode hole provided in the extraction electrode ]O, and is accelerated to a predetermined energy by each accelerating electrode. Thereafter, it reaches the sample through an irradiation system such as a deflection coil and a focusing I-nons (not shown). The axis alignment of the electron beam is performed by rotating the insulating rod 20 by the drive mechanism 25, further converting the rotational movement into a translational movement by the fine movement mechanism 26, and moving the fine movement plate 5. According to this embodiment, by installing the single-divided resistor 28 and the insulating rod 20 between the first shield electrode and the second shield electrode, the multistage accelerator tube 2, the divided resistor 28, and the insulating rod 2
In both cases, the discharge resistance characteristics were improved. FIG. 2 shows another embodiment of the present invention. The basic structure is the same as the first embodiment shown above, but the structure of the insulating rod 20 is brought into contact with the division period of the multi-stage acceleration tube 2 and the division period 1.2.13. Thereby, the discharge resistance characteristics of the insulating rod 20 were further improved. Note that, although the second embodiment has been shown using a field emission type electron gun as an example, it goes without saying that the present invention is applicable to charged particle sources in general, including ordinary electron guns and ion sources. Effects of the Invention According to the present invention, it is possible to make the potential distribution of both the single-divided resistor of the multistage accelerator tube and the insulating rod more uniform and smooth, thereby improving high voltage resistance characteristics. At the same time, since the magnetic shielding effect is further increased, the magnetic shielding effect is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、いずれも本発明の一実施例にな
る多段加速方式電界放射型電子銃の構成を示す縦断面図
である。 ]・・電界放射電子線源、2・・多段加速管、3 ・鏡
体、4・・フランジ、5・・・微動皿、10・弓出し電
極、]1・・加速電極、12 第一シールド電極、13
・・第二シールド電極、20・絶縁棒、21・・・絶縁
部材、22 金属部材、25 駆動機構、26・・微動
機構、28・分割抵抗、30弓出し電源、 31・・−加速電源、 フラッシング 電源、 33・・・絶縁ハウジング。 0ミ引とし響巳糧 ミカロ速電イ1に
FIG. 1 and FIG. 2 are both longitudinal sectional views showing the structure of a multi-stage acceleration field emission type electron gun, which is an embodiment of the present invention. ]...Field emission electron beam source, 2...Multi-stage accelerator tube, 3...Mirror body, 4...Flange, 5...Micro-motion plate, 10-Archive electrode, ]1...Acceleration electrode, 12 First shield electrode, 13
...Second shield electrode, 20. Insulating rod, 21.. Insulating member, 22. Metal member, 25. Drive mechanism, 26.. Fine movement mechanism, 28. Division resistor, 30. Bowing power source, 31.. - Acceleration power source. Flushing power supply, 33...Insulating housing. 1

Claims (1)

【特許請求の範囲】 1、荷電粒子線源と、該荷電粒子線源から引き出された
荷電粒子線を加速するための少なくとも2つ以上の加速
電極を内部に有する多段加速管と、該多段加速管の外部
に、上記加速電極に加速電圧を分割印加せしめるための
分割抵抗とを有する多段加速型荷電粒子線源において、
上記多段加速管外側の各段に、各加速電極と同電位に保
持された第一のシールド電極と、該第一のシールド電極
の外側に、それと同電位に保持された第二のシールド電
極とを設け、上記分割抵抗を、第一シールド電極と第二
シールド電極との間に設置してなることを特徴とする多
段加速型荷電粒子線源。 2、第1項記載の多段加速型荷電粒子線源において、前
記多段加速管の外側に該多段加速管の長手方向に沿って
、前記荷電粒子線源側に連結された絶縁棒がさらに設け
られており、該絶縁棒も前記した第一シールド電極と第
二シールド電極との間に設置されてなることを特徴とす
る多段加速型荷電粒子源。 3、第2項記載の多段加速型荷電粒子線源において、前
記の絶縁棒は前記多段加速管の各段の加速電極電位位置
に金属部材を有してなり、該各金属部材が各々対応する
位置の第一シールド電極と第二シールド電極とに接触せ
しめられていることを特徴とする多段加速型荷電粒子線
源。 4、耐真空構造を有する多段加速管と、該多段加速管内
部に、電子線源と、該電子線源から電界放射せしめるた
めの引出電極と、該引出電極の電極孔から出射した電子
線を加速するための少なくとも2つ以上の加速電極を有
し、かつ上記多段加速管外部に、上記加速電極に加速電
圧を分割印加せしめる分割抵抗と、上記電子線源を電子
線学軸上に位置せしめる軸合せ機構を有する多段加速方
式電界放射型電子銃において、上記多段加速管外側の各
段に、各加速電極と同電位に保持された高透磁率金属製
の第一シールド電極と、該第一シールド電極と略同心円
状でそれと同電位に保持された高透磁率金属製の第二シ
ールド電極とを有し、上記分割抵抗と軸合せ機構の駆動
軸とを、第一シールド電極と第二シールド電極との間に
設置したことを特徴とする多段加速方式電界放射型電子
銃。 5、第4項記載の装置において、前記軸合せ機構駆動軸
が、多段加速管の分割周期と同じ周期で金属部材を配し
、かつ該金属部材が各々対応する前記第一もしくは第二
のシールド電極に接触するごとき構造を有する絶縁棒で
あることを特徴とする多段加速方式電界放射型電子銃。
[Claims] 1. A charged particle beam source, a multistage acceleration tube having therein at least two or more accelerating electrodes for accelerating the charged particle beam extracted from the charged particle beam source, and the multistage acceleration tube. In a multi-stage accelerated charged particle beam source having a dividing resistor for applying an accelerating voltage to the accelerating electrode in a divided manner on the outside of the tube,
A first shield electrode held at the same potential as each accelerating electrode is provided at each stage on the outside of the multistage accelerating tube, and a second shield electrode held at the same potential outside the first shield electrode. A multistage accelerated charged particle beam source, characterized in that the dividing resistor is installed between a first shield electrode and a second shield electrode. 2. In the multistage acceleration charged particle beam source according to item 1, an insulating rod is further provided outside the multistage acceleration tube along the longitudinal direction of the multistage acceleration tube and connected to the charged particle beam source side. A multistage accelerated charged particle source characterized in that the insulating rod is also installed between the first shield electrode and the second shield electrode. 3. In the multi-stage accelerated charged particle beam source according to item 2, the insulating rod has a metal member at the acceleration electrode potential position of each stage of the multi-stage acceleration tube, and the metal members correspond to each other. A multi-stage accelerated charged particle beam source, characterized in that the first shield electrode and the second shield electrode are brought into contact with each other. 4. A multi-stage accelerator tube having a vacuum-resistant structure, an electron beam source inside the multi-stage accelerator tube, an extraction electrode for emitting an electric field from the electron beam source, and an electron beam emitted from the electrode hole of the extraction electrode. It has at least two or more accelerating electrodes for acceleration, and a dividing resistor for applying an accelerating voltage to the accelerating electrodes in divided parts is located outside the multi-stage accelerating tube, and the electron beam source is located on the electron beam axis. In a multi-stage acceleration field emission electron gun having an axis alignment mechanism, each stage on the outside of the multi-stage acceleration tube includes a first shield electrode made of a high magnetic permeability metal held at the same potential as each acceleration electrode; It has a second shield electrode made of high magnetic permeability metal that is approximately concentric with the shield electrode and held at the same potential as the shield electrode, and the dividing resistor and the driving shaft of the alignment mechanism are connected between the first shield electrode and the second shield electrode. A multi-stage acceleration field emission type electron gun characterized by being installed between the electrodes. 5. In the apparatus according to item 4, the alignment mechanism drive shaft has metal members disposed at the same period as the division period of the multistage accelerator tube, and the metal members correspond to the first or second shields. A multi-stage acceleration field emission type electron gun characterized by an insulating rod having a structure that makes contact with an electrode.
JP9284189A 1989-04-14 1989-04-14 Multistage acceleration type charged particle beam source Pending JPH02273443A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9284189A JPH02273443A (en) 1989-04-14 1989-04-14 Multistage acceleration type charged particle beam source
US07/507,798 US5059859A (en) 1989-04-14 1990-04-12 Charged particle beam generating apparatus of multi-stage acceleration type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9284189A JPH02273443A (en) 1989-04-14 1989-04-14 Multistage acceleration type charged particle beam source

Publications (1)

Publication Number Publication Date
JPH02273443A true JPH02273443A (en) 1990-11-07

Family

ID=14065662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9284189A Pending JPH02273443A (en) 1989-04-14 1989-04-14 Multistage acceleration type charged particle beam source

Country Status (1)

Country Link
JP (1) JPH02273443A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509771A1 (en) * 1991-04-19 1992-10-21 Hitachi, Ltd. High voltage insulation device
JP2011507163A (en) * 2007-12-10 2011-03-03 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Electric stress reduction technology in acceleration / deceleration system
JP2012522335A (en) * 2009-03-27 2012-09-20 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド Flight source heating time
WO2020235003A1 (en) * 2019-05-21 2020-11-26 株式会社日立ハイテク Electron gun and charged particle beam device equipped with electron gun

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509771A1 (en) * 1991-04-19 1992-10-21 Hitachi, Ltd. High voltage insulation device
JP2011507163A (en) * 2007-12-10 2011-03-03 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Electric stress reduction technology in acceleration / deceleration system
JP2012522335A (en) * 2009-03-27 2012-09-20 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド Flight source heating time
WO2020235003A1 (en) * 2019-05-21 2020-11-26 株式会社日立ハイテク Electron gun and charged particle beam device equipped with electron gun
JPWO2020235003A1 (en) * 2019-05-21 2020-11-26
US11978609B2 (en) 2019-05-21 2024-05-07 Hitachi High-Tech Corporation Electron gun and charged particle beam device equipped with electron gun

Similar Documents

Publication Publication Date Title
JP2732961B2 (en) Charged particle beam equipment
JPH02501965A (en) Electron cyclotron resonance plasma source
EP0257394B1 (en) Electron beam apparatus
US5548183A (en) Magnetic field immersion type electron gun
US7947965B2 (en) Ion source for generating negatively charged ions
JPH02273443A (en) Multistage acceleration type charged particle beam source
US5059859A (en) Charged particle beam generating apparatus of multi-stage acceleration type
US2680825A (en) Traveling-wave amplifying tube
US3070283A (en) Vacuum pump
US4891525A (en) SKM ion source
US3502863A (en) Electron bombardment type ion source with permanent magnet focusing means therein
US3869675A (en) Heating arrangement with focused electron beams under vacuum
US4516050A (en) Ion chamber for electron-bombardment ion sources
JPS60240039A (en) Ion gun
JP3098360B2 (en) Single / tandem acceleration dual-purpose ion accelerator
JP4111441B2 (en) Large-diameter electrostatic accelerator with discharge breakdown prevention function
CN112582248B (en) Electron gun device for mercury ion microwave frequency standard
US3857014A (en) Electron beam generator
JPS588104B2 (en) Electron gun for heating, melting and drying
JP2685503B2 (en) Synchrotron radiation generator
JP3076176B2 (en) Combined ion source device
CA1065386A (en) Electron tube provided with a cylindrical ceramic envelope part
JP2008507811A (en) Electronic equipment
JP3369020B2 (en) Ultra-compact scanning electron microscope
KR0137305B1 (en) High current ion accelerator tube