JP4111441B2 - Large-diameter electrostatic accelerator with discharge breakdown prevention function - Google Patents

Large-diameter electrostatic accelerator with discharge breakdown prevention function Download PDF

Info

Publication number
JP4111441B2
JP4111441B2 JP2003047060A JP2003047060A JP4111441B2 JP 4111441 B2 JP4111441 B2 JP 4111441B2 JP 2003047060 A JP2003047060 A JP 2003047060A JP 2003047060 A JP2003047060 A JP 2003047060A JP 4111441 B2 JP4111441 B2 JP 4111441B2
Authority
JP
Japan
Prior art keywords
accelerator
electric field
insulating tube
vicinity
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003047060A
Other languages
Japanese (ja)
Other versions
JP2004259506A (en
Inventor
多加志 井上
正樹 谷口
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2003047060A priority Critical patent/JP4111441B2/en
Publication of JP2004259506A publication Critical patent/JP2004259506A/en
Application granted granted Critical
Publication of JP4111441B2 publication Critical patent/JP4111441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、イオンや電子などの荷電粒子のビームをMeV級の高エネルギーまで加速する静電加速器である。従来、高エネルギー物理学や原子核物理学で広く用いられている従来の静電加速器では、荷電粒子を加速するために加速器に印加される高電圧を高価なセラミック管で絶縁しているが、本発明は、大型の電界緩和リングを装着することによって絶縁管の電界集中を防止し、セラミック管の代わりに安価なFRP(ガラス繊維強化プラスチック)製の絶縁管でも放電破壊を起こさない、大口径の静電加速器を提供する。
【0002】
【従来の技術】
静電加速器では、外部から印加される高電圧によって加速器内部に電界を形成し、その電界により荷電粒子を加速する。従来の静電加速器では、この高電圧の絶縁にセラミック等の高融点無機材料製の絶縁管を用いており、図1の「従来加速器」の部分に示されるように、セラミック絶縁管と加速器内部へ電位を供給するフランジ(金属)とはロウ付け等によって接合される。
【0003】
この構造は、フランジ(金属)、絶縁管及び加速器内部の真空側の接点である三重点において、真空と絶縁材の誘電率の違いから電界が集中して放電を誘起することを防止するだけでなく、そこに少々の電界集中やそれに伴う放電破壊を生じても絶縁材の融点が高いために絶縁管の損傷が防止されるものである。
【0004】
例えば、絶縁管にアルミナセラミックを用い、三重点の電界緩和のために内面形状を工夫した静電加速器(例えば、非特許文献1)についての報告があり、又絶縁管にFRPを用いた加速器で、大型電界緩和リング装着以前の報告で、1MVの安定保持が困難であったときの性能報告がある(例えば、非特許文献2)。
【0005】
【非特許文献1】
1979 LINEAR ACCELERATOR CONFERENCE,DESIGN CRITERIA FOR HIGH VOLTAGE, HIGH CURRENT ACCELERATING COLUMNS,AECL-6745(p.1−4)
【非特許文献2】
REVIEW OF SCIENTIFIC INSTRUMENTS,VOLUME 69,NUMBER 2,FEBRUARY1998
【0006】
【発明が解決しようとする課題】
しかしながら、図1の左下の「従来加速器」に示されるように、上記3重点近傍に「電界緩和効果不十分」な部分が依然として残存すること、大口径のセラミック管の製作が困難なために大型の加速器を製作できないこと、及び万一の絶縁管損傷時には、絶縁管とフランジ(金属)とがロウ付け等によって接合されるために、これらを容易に分解できないこと等の問題点があった。
【0007】
【課題を解決するための手段】
本発明は、これらの問題を解決する静電加速器である。即ち、本発明は、イオンや電子などの荷電粒子のビームをMeV級の高エネルギーまで加速する静電加速器において、加速器内部に電位を供給する金属部品、FRP製絶縁管及び加速器内部の真空側の接点である三重点近傍に、FRPの肉厚と同等以上の半径を有する、電界集中を低減するための円弧断面形状の金属製電界緩和リングを装着して上記近傍への電界集中を防止し、電界強度を1.5kV/mm以下まで低減することにより、絶縁管の放電破壊を防止する静電加速器を提供するものである。
【0008】
図1の右下の「本発明の加速器」に示されるように、電界緩和リングの断面形状の半径は120mm(R120)であり、そのリング断面の外部形状は1/4円弧を形成するのに対し、FRP絶縁管の肉厚は54mmである点で、電界緩和リングの断面形状の半径は絶縁管の肉厚以上のものが使用されている。又、リングの断面形状先端の丸みの半径は、10mm(R10)のものが示されている。
【0009】
本発明は、図1の右下に示されているように、個々の大口径単純円筒形状のFRP製絶縁管の間に金属フランジを挿入し、この両者をクランプにより結合して円筒形状の加速器構造体を形成する。この円筒形状の加速器構造体の内側で、個々の絶縁管の間に挿入された金属フランジの内側延長部で、絶縁管の内面に接する位置に、円弧断面形状の金属製電界緩和リングが装着されている。本発明の加速器においては、イオン又は電子等の荷電粒子をイオン源から発生させ、外部から高電圧を、金属フランジを経て絶縁管中心部に設置された多孔電極に印加し、絶縁管内に荷電粒子を加速する加速電界を形成し、その加速電界によってイオン源からの荷電粒子が所望の速度に加速される。この際に、電界緩和リングの存在により絶縁管への電界集中が抑制されるので、絶縁管の放電破壊が防がれる。
【0010】
【発明の実施の形態】
従来の加速器と本発明による静電加速器の断面を比較して第1図に示す。本発明の加速器の特長とその効果は以下のとおりである。
【0011】
1)本発明では、加速器内部に電位を供給する金属部品(フランジ)、FRP製絶縁管及び加速器内部の真空の接点である三重点における電界集中を低減するために、陰極側三重点近傍にFRPの肉厚と同等以上の半径を有する、円弧断面形状の金属製電界緩和リングを装着し、電界強度を1.5kV/mm以下まで低減する。図1中には加速器内側三重点にのみ電界緩和リングが装着されているが、同様な金属構造物を加速器外側に装着しても、内側三重点の電界緩和効果が得られる。
【0012】
2)この効果として、従来の加速器で用いられるセラミックなどの高融点無機材料に代え、絶縁管材料にFRP(ガラス繊維強化プラスチック)を用いることが可能となる。FRPは100℃程度で軟化する低融点有機材料であるが、上記の電界強度では微小放電による性能劣化は起こりえない。従来用いられてきたセラミックでは圧縮整形や焼成などの工程が必要なため、絶縁管は高価でありかつ直径1.6mを越える大口径のものは現状では製作不可能である。FRPを用いることによって、1.6m越えの大口径でも安価に製作可能となる。
【0013】
3)従来にも、FRPを絶縁管に用いた静電加速器は少数ながらあるが、中細りや中太りの断面形状として、電界集中の低減や沿面距離の延長による放電破壊の防止を図っていた。しかしながら、これら複雑な断面形状を有する大口径FRPの製作は容易ではなく、コストの上昇を招いていた。本発明では単純円筒断面形状のFRP絶縁管を用いることで、安価な静電加速器を提供する。
【0014】
4)FRP絶縁管は、加速器内部に電位を供給する金属部品あるいは金属製支持構造物に対してクランプ締めによって固定される。加速器内外の気密は、両者の間(絶縁管とフランジ(金属)あるいは金属製支持構造物との間)にO−リングを挿入することによって保持する。この構造はO−リングのつぶししろによって三重点に隙間ができ、電界集中を生じるため従来用いられなかったが、上記1)の電界緩和リングによって電界集中を低減して放電破壊を防止できる。また、万一絶縁管表面を放電破壊によって損傷しても、加速器を分解して損傷部分のFRP絶縁管のみを交換することが容易に可能である。
【0015】
5)図2に本発明による加速器の耐電圧性能の向上効果を示す。図2は多段で構成される静電加速器の1段のみについて行った耐電圧試験の結果である。従来の加速器構造でFRP絶縁管を用いた際には、コンディショニング(枯化運転)に6時間を費やしても設計定格電圧200kVには到達せず、180kVを保持するのがやっとであった。
【0016】
一方同じ加速器構造の陰極側三重点近傍に半径120mm(FRP管肉厚54mm)、1/4円弧断面形状を有する電界緩和リングを装着して耐電圧試験を行ったところ、わずか数分で設計定格200kVに到達し、その後6時問のコンディショニングの後、定格の1.5倍に相当する300kVをも安定に保持できた。
【0017】
【発明の効果】
本発明においては、加速器内部に電位を供給する金属部品、FRP製絶縁管及び加速器内部の真空の接点である三重点近傍に電界集中を低減するための円弧断面形状の金属製電界緩和リングを装着することにより、単純円筒形状のFRP製の絶縁管でも、上記三重点近傍への電界集中を防止できるために絶縁管の放電破壊を起こさないという、本発明に特有な顕著な効果を有するものである。
【図面の簡単な説明】
【図1】 従来加速器と本発明による加速器の内部構造の比較を示す図である。
【図2】 従来の加速器と本発明による電界緩和リングを装着した加速器の耐電圧性能を示す図である。
【図3】 本発明の大型電界緩和リングを装着した加速器内部の鳥瞰図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention is an electrostatic accelerator that accelerates a beam of charged particles such as ions and electrons to a high energy of MeV class. Conventional electrostatic accelerators widely used in high energy physics and nuclear physics insulate high voltage applied to the accelerator with an expensive ceramic tube to accelerate charged particles. The invention prevents the electric field concentration of the insulating tube by mounting a large electric field relaxation ring, and does not cause discharge breakdown even in an inexpensive FRP (glass fiber reinforced plastic) insulating tube instead of a ceramic tube. An electrostatic accelerator is provided.
[0002]
[Prior art]
In an electrostatic accelerator, an electric field is formed inside the accelerator by a high voltage applied from the outside, and charged particles are accelerated by the electric field. In a conventional electrostatic accelerator, an insulating tube made of a high-melting-point inorganic material such as ceramic is used for this high-voltage insulation. As shown in the “conventional accelerator” portion of FIG. It is joined to a flange (metal) for supplying a potential to the metal by brazing or the like.
[0003]
This structure only prevents the electric field from concentrating on the triple point, which is the contact point on the vacuum side inside the flange (metal), the insulating tube, and the accelerator due to the difference in dielectric constant between the vacuum and the insulating material. However, even if a small amount of electric field concentration and accompanying electric discharge breakdown occur, the insulating material has a high melting point, so that damage to the insulating tube is prevented.
[0004]
For example, there has been a report on an electrostatic accelerator (for example, Non-Patent Document 1) that uses alumina ceramic for the insulating tube and devised the inner surface shape to reduce the electric field at the triple point, and is an accelerator that uses FRP for the insulating tube. In addition, there is a performance report when it is difficult to stably maintain 1 MV in a report before the large electric field relaxation ring is mounted (for example, Non-Patent Document 2).
[0005]
[Non-Patent Document 1]
1979 LINEAR ACCELERATOR CONFERENCE, DESIGN CRITERIA FOR HIGH VOLTAGE, HIGH CURRENT ACCELERATING COLUMNS, AECL-6745 (p.1-4)
[Non-Patent Document 2]
REVIEW OF SCIENTIFIC INSTRUMENTS, VOLUME 69, NUMBER 2, FEBRUARY 1998
[0006]
[Problems to be solved by the invention]
However, as shown in “Conventional Accelerator” in the lower left of FIG. 1, the portion where “the electric field relaxation effect is insufficient” still remains in the vicinity of the three points, and it is difficult to manufacture a large-diameter ceramic tube. However, when the insulation tube is damaged, the insulation tube and the flange (metal) are joined by brazing or the like, so that they cannot be easily disassembled.
[0007]
[Means for Solving the Problems]
The present invention is an electrostatic accelerator that solves these problems. That is, the present invention relates to an electrostatic accelerator that accelerates a beam of charged particles such as ions and electrons to a high energy of MeV class, a metal part that supplies a potential inside the accelerator, an FRP insulating tube, and a vacuum side inside the accelerator. In the vicinity of the triple point as a contact, a metal electric field relaxation ring having an arc cross-sectional shape for reducing electric field concentration having a radius equal to or greater than the thickness of the FRP is attached to prevent electric field concentration in the vicinity. The present invention provides an electrostatic accelerator that prevents discharge breakdown of an insulating tube by reducing the electric field strength to 1.5 kV / mm or less.
[0008]
As shown in the “accelerator of the present invention” in the lower right of FIG. 1, the radius of the cross-sectional shape of the electric field relaxation ring is 120 mm (R120), and the outer shape of the ring cross-section forms a ¼ arc. On the other hand, the thickness of the FRP insulating tube is 54 mm, and the radius of the cross-sectional shape of the electric field relaxation ring is greater than the thickness of the insulating tube. Further, the radius of the roundness at the tip of the cross-sectional shape of the ring is 10 mm (R10).
[0009]
As shown in the lower right of FIG. 1, the present invention inserts a metal flange between individual large-diameter simple cylindrical FRP insulating pipes, and couples them with a clamp to form a cylindrical accelerator. Form a structure. Inside the cylindrical accelerator structure, a metal electric field relaxation ring with an arc cross-sectional shape is attached at a position in contact with the inner surface of the insulating tube at the inner extension of the metal flange inserted between the individual insulating tubes. ing. In the accelerator of the present invention, charged particles such as ions or electrons are generated from an ion source, and a high voltage is applied from the outside to a porous electrode installed at the center of the insulating tube through a metal flange, and charged particles are placed in the insulating tube. An accelerating electric field is generated to accelerate the charged particles from the ion source to a desired speed. At this time, since the electric field concentration on the insulating tube is suppressed due to the presence of the electric field relaxation ring, discharge breakdown of the insulating tube is prevented.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a cross section of a conventional accelerator and a cross section of an electrostatic accelerator according to the present invention. The features and effects of the accelerator of the present invention are as follows.
[0011]
1) In the present invention, in order to reduce electric field concentration at the triple point that is a metal part (flange) for supplying electric potential inside the accelerator, the FRP insulating tube, and the vacuum contact inside the accelerator, A metal electric field relaxation ring having an arc cross-sectional shape having a radius equal to or greater than the wall thickness is attached, and the electric field strength is reduced to 1.5 kV / mm or less. In FIG. 1, the electric field relaxation ring is attached only to the accelerator inner triple point, but even if a similar metal structure is attached to the accelerator outer side, the electric field relaxation effect of the inner triple point can be obtained.
[0012]
2) As an effect, it is possible to use FRP (glass fiber reinforced plastic) as an insulating tube material instead of a high-melting-point inorganic material such as ceramic used in a conventional accelerator. FRP is a low-melting-point organic material that softens at about 100 ° C., but performance deterioration due to micro-discharge cannot occur at the above electric field strength. Conventionally used ceramics require processes such as compression shaping and firing, so that the insulating tube is expensive and a large diameter exceeding 1.6 m cannot be manufactured at present. By using FRP, it is possible to manufacture at a low cost even with a large diameter exceeding 1.6 m.
[0013]
3) Although there are a few electrostatic accelerators that use FRP as an insulating tube in the past, the cross-sectional shape is thin or thick, and the discharge breakdown is prevented by reducing the electric field concentration and extending the creepage distance. . However, it is not easy to manufacture large-diameter FRPs having these complicated cross-sectional shapes, which causes an increase in cost. In the present invention, an inexpensive electrostatic accelerator is provided by using an FRP insulating tube having a simple cylindrical cross section.
[0014]
4) The FRP insulating tube is fixed by clamping to a metal part or metal support structure that supplies a potential to the inside of the accelerator. The airtightness inside and outside the accelerator is maintained by inserting an O-ring between the two (between the insulating tube and the flange (metal) or metal support structure). This structure has not been used heretofore because a gap is formed at the triple point due to the crushing of the O-ring and electric field concentration occurs. However, the electric field relaxation ring of 1) can reduce electric field concentration and prevent discharge breakdown. Even if the surface of the insulating tube is damaged by electric discharge breakdown, it is possible to easily disassemble the accelerator and replace only the damaged FRP insulating tube.
[0015]
5) FIG. 2 shows the effect of improving the withstand voltage performance of the accelerator according to the present invention. FIG. 2 shows the results of a withstand voltage test conducted on only one stage of a multi-stage electrostatic accelerator. When an FRP insulating tube was used in the conventional accelerator structure, the design rated voltage of 200 kV was not reached even if 6 hours were spent for conditioning (dehydration operation), and 180 kV was finally maintained.
[0016]
On the other hand, when a withstand voltage test was carried out with an electric field relaxation ring having a radius of 120 mm (FRP tube thickness of 54 mm) and a 1/4 arc cross section in the vicinity of the cathode triple point of the same accelerator structure, the design rating was only a few minutes. After reaching 200 kV, and after 6 hours of conditioning, 300 kV corresponding to 1.5 times the rating could be stably maintained.
[0017]
【The invention's effect】
In the present invention, a metal part for supplying electric potential to the accelerator, an FRP insulating tube, and a metal electric field relaxation ring having an arc cross-sectional shape for reducing electric field concentration in the vicinity of the triple point, which is a vacuum contact inside the accelerator, are mounted. Thus, even a simple cylindrical FRP insulating tube has a remarkable effect peculiar to the present invention that does not cause discharge breakdown of the insulating tube because electric field concentration near the triple point can be prevented. is there.
[Brief description of the drawings]
FIG. 1 is a diagram showing a comparison of internal structures of a conventional accelerator and an accelerator according to the present invention.
FIG. 2 is a diagram showing a withstand voltage performance of a conventional accelerator and an accelerator equipped with an electric field relaxation ring according to the present invention.
FIG. 3 is a bird's-eye view of the inside of an accelerator equipped with the large electric field relaxation ring of the present invention.

Claims (2)

イオン又は電子の荷電粒子のビームをMeV級の高エネルギーまで加速する静電加速器において、加速器内部に電位を供給する金属部品、ガラス繊維強化プラスチック(FRP)製絶縁管及び加速器内部の真空側の接点である三重点近傍に、FRPの肉厚と同等以上の半径を有する、上記近傍の電界集中を低減するための円弧断面形状の金属製電界緩和リングを装着して電界強度を1.5kV/mm以下まで低減することにより、上記近傍への電界集中を防止し、絶縁管の放電破壊を防止する静電加速器。  In an electrostatic accelerator that accelerates a beam of charged particles of ions or electrons to a high energy of MeV class, a metal part that supplies a potential to the inside of the accelerator, a glass fiber reinforced plastic (FRP) insulating tube, and a vacuum side contact inside the accelerator In the vicinity of the triple point, a metal electric field relaxation ring having a radius equal to or greater than the thickness of the FRP and having an arc cross-sectional shape for reducing the electric field concentration in the vicinity is mounted, and the electric field strength is 1.5 kV / mm. An electrostatic accelerator that prevents electric field concentration in the vicinity and prevents discharge breakdown of the insulating tube by reducing to the following. 複数の略同じ形状の円筒形状のガラス繊維強化プラスチック(FRP)製絶縁管が同軸に配置されているその絶縁管間に、加速器内部に電位を供給する金属フランジが挿入され、この両者をクランプにより結合して円筒形状の加速器構造体が構成され、且つ
前記加速器構造体の内部で、個々の絶縁管の間に挿入された金属フランジの内側延長部の下側であって、金属フランジ、絶縁管及び加速器内部の真空側の接点である三重点近傍に、電界集中を低減するための円弧断面形状の金属製電界緩和リングを装着し、そのリングの断面形状の半径(R120)を絶縁管の肉厚以上に形成することにより、上記近傍の電界強度を1.5kV/mm以下まで低減することを特徴とする、請求項1記載の静電加速器。
A plurality of cylindrical glass fiber reinforced plastic (FRP) insulation tubes having substantially the same shape are coaxially arranged , and a metal flange for supplying a potential to the inside of the accelerator is inserted between the insulation tubes. A cylindrical accelerator structure is formed by coupling, and inside the accelerator structure, below the inner extension of the metal flange inserted between the individual insulating tubes, the metal flange, the insulating tube In addition, a metal electric field relaxation ring having an arc cross-sectional shape for reducing electric field concentration is mounted in the vicinity of the triple point that is a vacuum side contact inside the accelerator, and the radius (R120) of the cross-sectional shape of the ring is set to the thickness of the insulating tube. The electrostatic accelerator according to claim 1, wherein the electric field strength in the vicinity is reduced to 1.5 kV / mm or less by forming it to be thicker or thicker.
JP2003047060A 2003-02-25 2003-02-25 Large-diameter electrostatic accelerator with discharge breakdown prevention function Expired - Fee Related JP4111441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047060A JP4111441B2 (en) 2003-02-25 2003-02-25 Large-diameter electrostatic accelerator with discharge breakdown prevention function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047060A JP4111441B2 (en) 2003-02-25 2003-02-25 Large-diameter electrostatic accelerator with discharge breakdown prevention function

Publications (2)

Publication Number Publication Date
JP2004259506A JP2004259506A (en) 2004-09-16
JP4111441B2 true JP4111441B2 (en) 2008-07-02

Family

ID=33113407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047060A Expired - Fee Related JP4111441B2 (en) 2003-02-25 2003-02-25 Large-diameter electrostatic accelerator with discharge breakdown prevention function

Country Status (1)

Country Link
JP (1) JP4111441B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799999B2 (en) * 2007-08-20 2010-09-21 Varian Semiconductor Equipment Associates, Inc. Insulated conducting device with multiple insulation segments
WO2011033849A1 (en) * 2009-09-15 2011-03-24 三菱電機株式会社 Plasma generation device
RU2456781C1 (en) * 2010-12-27 2012-07-20 Государственное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Charged dust particle cyclic accelerator
WO2014008943A1 (en) * 2012-07-12 2014-01-16 Siemens Aktiengesellschaft Electrical insulator for high-voltage electrostatic generator

Also Published As

Publication number Publication date
JP2004259506A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
US5215703A (en) High-flux neutron generator tube
CN109786205B (en) Electron cyclotron resonance ion source
US20040104683A1 (en) Negative ion source with external RF antenna
JPH07502862A (en) ion beam gun
CN107195527B (en) Hydrogen molecular ion ratio system and its method in a kind of raising ecr ion source
US2501882A (en) High-voltage high-vacuum acceleration tube
US20030218430A1 (en) Ion source with external RF antenna
US20200231492A1 (en) Vacuum compatible electrical insulator
JP4111441B2 (en) Large-diameter electrostatic accelerator with discharge breakdown prevention function
CN205789863U (en) The miniature Penning ion source of anti-ion sputtering
CN109192641B (en) Penning cold cathode ion source
US7947965B2 (en) Ion source for generating negatively charged ions
RU2389990C2 (en) Combined ionisation vacuum-gauge transducer
CN106098517A (en) Miniature Penning ion source under a kind of highfield
US9721760B2 (en) Electron beam plasma source with reduced metal contamination
CN106508075B (en) Hot cathode Plasma electron gun
US6683317B1 (en) Electrically insulating vacuum coupling
Wang et al. Practical design of triple junction for a 90 kV electron gun
US8003938B2 (en) Apertured diaphragms between RF ion guides
JP5105775B2 (en) Insulating piping, plasma processing apparatus and method
CN205881869U (en) Miniature penning ion source under high field
JP2011034888A (en) Ion source
CN114126183B (en) Detachable ion beam accelerating tube
US3973158A (en) Device comprising an ion source in which the ions are accelerated in a direction perpendicular to a magnetic field of high intensity
Saito et al. Metal ion source using rf discharge combined with sputtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees