JP2000266307A - Method and apparatus for protecting pressurized fluidized-bed boiler - Google Patents

Method and apparatus for protecting pressurized fluidized-bed boiler

Info

Publication number
JP2000266307A
JP2000266307A JP11068993A JP6899399A JP2000266307A JP 2000266307 A JP2000266307 A JP 2000266307A JP 11068993 A JP11068993 A JP 11068993A JP 6899399 A JP6899399 A JP 6899399A JP 2000266307 A JP2000266307 A JP 2000266307A
Authority
JP
Japan
Prior art keywords
pressure
emergency
air
gas
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11068993A
Other languages
Japanese (ja)
Inventor
Shigekazu Hori
茂和 堀
Kazuo Murakami
和生 村上
Shigenobu Oshima
重信 大嶋
Taro Sakata
太郎 坂田
Shuhei Akimoto
修平 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP11068993A priority Critical patent/JP2000266307A/en
Publication of JP2000266307A publication Critical patent/JP2000266307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent backflow of a furnace side to an air side by pressure reducing and exhausting high pressure air and high temperature gas, when a boiler is emergency stopped so that the ratio of relief capacity of the air to that of the gas becomes equal to the ratio of the weight of the air to that of the gas. SOLUTION: An emergency pressure reduced mixed gas relief valve 22 is opened fully, after being equalized at emergency stop. A high temperature gas from emergency pressure reducing high temperature gas relief piping 18 and a high pressure air from emergency pressure reducing air relief piping 20 are mixed, temperature lowered by an emergency pressure reducing air high temperature gas mixer 21, and pressure reduced by an emergency pressure reducing mixed gas pressure reducing orifice 24. The mixed gas is reduced for noise by a silencer 25, dust removed by a dust removing tower 26, and then discharged from an discharge port 27 of the tower into the atmosphere. Here, a discharge ratio A:G of high pressure air A to high temperature gas G of the emergency pressure reducing system is set equal to a ratio Wa:Wg of the high pressure air weight Wa in the air system from high pressure air piping 3 to a wind case 8 to the high temperature gas weight Wg in the gas system from a flow layer 9 to a gas turbine inlet valve 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加圧流動層ボイラ
の保護方法および装置に関し、特に緊急停止時における
高圧空気および高温ガス系統の緊急減圧方法および装置
に関する。
The present invention relates to a method and an apparatus for protecting a pressurized fluidized-bed boiler, and more particularly to a method and an apparatus for emergency depressurization of a high-pressure air and hot gas system during an emergency stop.

【0002】[0002]

【従来の技術】加圧流動層ボイラは、流動層内に高圧空
気を供給する配管系統と、該ボイラの火炉から高温の燃
焼排ガスを排出する高温ガスの配管系統と、ボイラの給
水、蒸気配管系統とを有している。
2. Description of the Related Art A pressurized fluidized-bed boiler includes a piping system for supplying high-pressure air into a fluidized bed, a high-temperature gas piping system for discharging high-temperature combustion exhaust gas from a furnace of the boiler, and water supply and steam piping for the boiler. System.

【0003】図2は、加圧流動層ボイラ装置の基本的構
成を示す図である。圧縮機2で約10kg/cm2 に昇圧さ
れた空気は空気配管3を通り圧力容器4に供給され、さ
らに流量調整されて火炉10に入り、流動媒体層9を流
動化させる。流動媒体層9内に石炭燃料が投入され、こ
こで流動燃焼が起こる。火炉10で発生した加圧燃焼ガ
ス(例えば約10kg/cm2 、950℃)は高温ガス配管
11を通り、ガスタービン15に供給され、圧縮機2の
駆動および図示していない発電機の動力源となる。
FIG. 2 is a diagram showing a basic configuration of a pressurized fluidized-bed boiler apparatus. The air pressurized to about 10 kg / cm 2 by the compressor 2 is supplied to the pressure vessel 4 through the air pipe 3, the flow rate of the air is further adjusted, and the air enters the furnace 10 to fluidize the fluidized medium layer 9. Coal fuel is introduced into the fluidized medium bed 9, where fluidized combustion occurs. Pressurized combustion gas (for example, about 10 kg / cm 2 , 950 ° C.) generated in the furnace 10 is supplied to a gas turbine 15 through a high-temperature gas pipe 11 to drive the compressor 2 and a power source of a generator (not shown). Becomes

【0004】一方、給水系統においては、図示していな
い給水加熱器を出た給水は、給水管39を通り火炉10
に入り、伝熱管40を通り、蒸発、過熱が行われ、主蒸
気管11を通り、高圧タービン43で仕事をした後、さ
らに低温再熱蒸気管44より再熱器管45に供給され、
蒸気を再過熱される。再熱器管45を出た蒸気は高温再
熱蒸気管46を通り、低圧タービン48に供給され、仕
事をした後、復水器49に排気される。
On the other hand, in the water supply system, water supplied from a water heater not shown flows through a water supply pipe 39 to the furnace 10.
After passing through the heat transfer tube 40, evaporating and superheating are performed, passing through the main steam pipe 11, working in the high-pressure turbine 43, and further supplied from the low-temperature reheat steam pipe 44 to the reheater pipe 45,
The steam is reheated. The steam that has exited the reheater tube 45 passes through the high-temperature reheat steam tube 46, is supplied to the low-pressure turbine 48, performs work, and is exhausted to the condenser 49.

【0005】プラントを停止するときは負荷を下げ、高
圧タービン43、低圧タービン48の入口に設置した主
塞止弁42および再熱塞止弁47を閉じ、蒸気を遮断し
た後再熱管ドレン弁50をあけて復水器49へ接続し、
再熱器系の乾燥を行う。空気、ガス系は負荷下げに伴い
減圧停止し大気圧となる。
When the plant is stopped, the load is reduced, the main shut-off valve 42 and the reheat shut-off valve 47 installed at the inlets of the high-pressure turbine 43 and the low-pressure turbine 48 are closed, steam is shut off, and then the reheat pipe drain valve 50 is shut off. And connect it to the condenser 49,
Dry the reheater system. The air and gas systems stop depressurizing as the load decreases, and reach atmospheric pressure.

【0006】ボイラの緊急停止時には上記操作が速やか
に行われるが、流動層内に残留する未燃分が燃焼発熱
し、火炉側から空気が逆流したりする危険があった。ま
た、蒸気系統においても、万一、再熱器45が流動媒体
との摩擦により穴明き等が発生した場合は、管外は大気
圧であるため流動媒体を管内に吸い込むことになり、そ
れは復水器49の真空が保持される間、流動媒体の飛散
範囲が拡大するという問題があった。
When the boiler is stopped in an emergency, the above operation is performed promptly. However, there is a danger that unburned components remaining in the fluidized bed will burn and generate heat, and air will flow backward from the furnace side. Also, in the steam system, in the event that the reheater 45 punctures due to friction with the flowing medium, the outside of the pipe is at atmospheric pressure, so the flowing medium is sucked into the pipe. While the vacuum of the condenser 49 is maintained, there is a problem that the scattering range of the flowing medium is increased.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、加圧
流動層ボイラ用高圧空気および高温ガス系統において、
緊急停止時に流動層内に残留する未燃分の燃焼発熱を極
力抑制するために、流動層内の空気流れを微小に抑制
し、かつ火炉側から空気側へ逆流することを防止し、ま
た蒸気系統における損傷等のトラブルに対応することが
できる加圧流動層ボイラの保護方法および装置を提供す
ることにある。
An object of the present invention is to provide a high-pressure air and high-temperature gas system for a pressurized fluidized-bed boiler,
In order to minimize the combustion heat generated in the unburned portion remaining in the fluidized bed at the time of an emergency stop, the air flow in the fluidized bed is minutely suppressed, and the backflow from the furnace side to the air side is prevented. An object of the present invention is to provide a method and an apparatus for protecting a pressurized fluidized-bed boiler capable of coping with troubles such as damage in a system.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求される発明は下記のとおりである。 (1)加圧流動層ボイラの高圧空気および高温ガス系統
において、該ボイラの緊急停止時に該系統内の高圧空気
と高温ガスを、高圧空気の逃し容量と高温ガスの逃し容
量の比率が、高圧空気の系内重量と高温ガスの系内重量
の比率と同じになるように、減圧排出することを特徴と
する加圧流動層ボイラの保護方法。 (2)加圧流動層ボイラに高圧空気を供給する高圧空気
配管系統と、前記ボイラから高温ガスを排出する高温ガ
ス配管系統とを有する加圧流動層ボイラにおいて、前記
高温ガス配管に緊急減圧高温ガス逃しオリフィスを有す
る分岐配管と、前記高圧空気配管に緊急減圧空気逃し弁
を有する分岐配管とを設け、これらの分岐配管をさらに
緊急減圧空気高温ガス混合器に連結し、該混合器から減
圧オリフィスを通して混合ガスを排出するようにしたこ
とを特徴とする(1)記載の方法に関する加圧流動層ボ
イラの保護装置。 (3)前記ボイラ内の流動層内の流量を調整するため
に、該流動層内に差圧計を設けるとともに、前記ボイラ
と前記分岐配管の間の高圧空気配管に緊急減圧空気逃し
流量調節弁を有する分岐管を設け、前記流動層内の差圧
が所定値になるように、前記緊急減圧空気逃し流量調節
弁を調節するようにしたことを特徴とする(2)記載の
装置。 (4)前記加圧流動層ボイラが、非常用温水タンク、汽
水分離器、およびボイラ再循環ポンプを有し、前記ボイ
ラ再循環ポンプと前記非常用温水タンクをボイラ再循環
ポンプミニマムフロー配管で接続するとともに、前記非
常用温水タンクと前記汽水分離器を非常用温水オーバー
フロー配管で接続したことを特徴とする(2)または
(3)記載の加圧流動層ボイラの保護装置。 (5)加圧流動層ボイラの蒸気配管系統において、流動
層内の前記配管系統の損傷時に、該配管内の圧力変動を
検知して、外部から加圧気体を注入し、前記配管に設け
た圧力調整弁により前記配管内の圧力を流動層内の圧力
よりも高く保持することを特徴とする(1)記載の加圧
流動層ボイラの保護方法。
The invention claimed in the present application to achieve the above object is as follows. (1) In the high-pressure air and high-temperature gas system of a pressurized fluidized-bed boiler, when the boiler is stopped in an emergency, the ratio of the high-pressure air release capacity to the high-temperature gas release capacity is changed to the high pressure A method for protecting a pressurized fluidized-bed boiler, comprising discharging under reduced pressure so as to have the same ratio as the weight of air in the system and the weight of hot gas in the system. (2) In a pressurized fluidized-bed boiler having a high-pressure air piping system for supplying high-pressure air to a pressurized fluidized-bed boiler and a high-temperature gas piping system for discharging hot gas from the boiler, an emergency depressurized high-temperature A branch pipe having a gas release orifice and a branch pipe having an emergency depressurized air release valve are provided on the high-pressure air pipe, and these branch pipes are further connected to an emergency depressurized air hot gas mixer. And a discharge device for discharging the mixed gas through the pressure vessel. (3) In order to adjust the flow rate in the fluidized bed in the boiler, a differential pressure gauge is provided in the fluidized bed, and an emergency depressurized air release flow control valve is provided in a high pressure air pipe between the boiler and the branch pipe. (2) The apparatus according to (2), wherein a branch pipe is provided, and the emergency depressurized air release flow control valve is adjusted so that the differential pressure in the fluidized bed becomes a predetermined value. (4) The pressurized fluidized bed boiler has an emergency hot water tank, a brackish water separator, and a boiler recirculation pump, and connects the boiler recirculation pump and the emergency hot water tank with a boiler recirculation pump minimum flow pipe. The emergency hot water tank and the brackish water separator are connected by an emergency hot water overflow pipe, and the protection device for a pressurized fluidized bed boiler according to (2) or (3), (5) In the steam piping system of the pressurized fluidized-bed boiler, when the piping system in the fluidized bed is damaged, a pressure fluctuation in the piping is detected, and a pressurized gas is injected from the outside and provided in the piping. The method for protecting a pressurized fluidized-bed boiler according to (1), wherein the pressure in the pipe is maintained higher than the pressure in the fluidized bed by a pressure regulating valve.

【0009】上記課題は、まず空気と高温ガスを一定の
比率で排出するために、高温ガスの緊急減圧配管系に減
圧オリフィスを設置し、オリフィスの後流で高温ガスを
高圧空気、減圧配管系の空気と混合冷却した後で大気圧
まで減圧するオリフィスを設置することにより達成され
る。
In order to discharge air and high-temperature gas at a constant ratio, a depressurizing orifice is installed in a high-pressure gas emergency depressurizing piping system. This is achieved by installing an orifice that mixes and cools with air before reducing the pressure to atmospheric pressure.

【0010】また通常運転時は緊急減圧系統を遮断する
ために、高圧空気減圧配管に締切弁を設置し、高圧空気
と高温ガスが混合した配管に締切弁を設置する。また、
流動層内の流れを極力抑制するために、流動層内差圧を
検知して、この差圧が生じないように高圧空気を減圧し
て大気に放出する緊急減圧空気逃し流量調節弁を設置す
ることで達成される。
In normal operation, in order to shut off the emergency pressure reducing system, a shutoff valve is installed in the high pressure air pressure reducing pipe, and a shutoff valve is installed in a pipe in which high pressure air and high temperature gas are mixed. Also,
In order to suppress the flow in the fluidized bed as much as possible, an emergency depressurized air release flow control valve that detects the pressure difference in the fluidized bed and decompresses the high-pressure air and releases it to the atmosphere so that this pressure difference does not occur is installed. Is achieved by

【0011】[0011]

【作用】高圧空気配管系内の空気重量Waと高温ガス配
管系内の高温ガス重量Wgの比率に、緊急減圧系統の空
気と高温ガスの排出容量の比率を合わせる。すなわち、
高圧空気逃し容量A:高温ガス逃し容量G=高圧空気系
内重量Wa:高温ガス系内重量Wgとなるように減圧オ
リフィスの容量を決定することで、流動層内での空気流
または逆流を起こすことなく減圧することができる。
The discharge capacity of the air and the hot gas in the emergency pressure reducing system is adjusted to the ratio of the weight of the air in the high-pressure air piping system to the weight of the high-temperature gas in the high-temperature gas piping system. That is,
High-pressure air release capacity A: High-temperature gas release capacity G = High-pressure air system weight Wa: By determining the capacity of the decompression orifice so as to satisfy the high-temperature gas system weight Wg, an air flow or backflow occurs in the fluidized bed. The pressure can be reduced without any pressure.

【0012】また、緊急停止時にガスタービン入口弁の
シート面に付着する灰の影響により、ガスタービン入口
弁からのガスリーク量が増減する場合、および圧力容器
内のボイラ伝熱管でリークが発生した異常時には、空気
とガスの減圧比率が変動して流動層内に空気流が生じて
しまうのを避けるため、前記した空気とガスを一定の比
率で減圧する系統とは別に、流動層内差圧を生じないよ
うに高圧空気を減圧して大気放出する空気流量を制御し
て流動層内の乱れをなくすことができる。
Further, when the amount of gas leak from the gas turbine inlet valve increases or decreases due to the effect of ash adhering to the seat surface of the gas turbine inlet valve at the time of an emergency stop, and an abnormality where a leak occurs in the boiler heat transfer tube in the pressure vessel. Sometimes, in order to avoid air flow in the fluidized bed due to fluctuations in the decompression ratio of air and gas, apart from the above-mentioned system for decompressing air and gas at a constant ratio, the differential pressure in the fluidized bed is The turbulence in the fluidized bed can be eliminated by controlling the flow rate of the air discharged to the atmosphere by reducing the pressure of the high-pressure air so as not to cause the occurrence.

【0013】[0013]

【発明の実施の形態】図1の系統図に基づき、加圧流動
層ボイラにおける高圧空気および高温ガス配管系統と、
その緊急減圧系統の全体構成を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Based on the system diagram of FIG. 1, a high-pressure air and high-temperature gas piping system in a pressurized fluidized-bed boiler;
The overall configuration of the emergency pressure reducing system will be described.

【0014】(1)高圧空気系統は、空気圧縮機2、高
圧空気配管3、圧力容器4、熱風発生炉入口空気配管
5、熱風発生炉6、熱風発生炉出口配管7および風箱8
で構成される。
(1) The high-pressure air system includes an air compressor 2, a high-pressure air pipe 3, a pressure vessel 4, a hot-air generator inlet air pipe 5, a hot-air generator 6, a hot-air generator outlet pipe 7, and a wind box 8.
It consists of.

【0015】(2)高温ガス系統は流動層9、火炉1
0、高温ガス配管11、1次サイクロン12および2次
サイクロン13で構成され、高温ガスはガスタービン1
5で減圧減温されてガスタービン排気ダクト16から低
圧ダクト系へ排出される。
(2) The high temperature gas system is a fluidized bed 9 and a furnace 1
0, a high-temperature gas pipe 11, a primary cyclone 12 and a secondary cyclone 13.
In 5, the temperature is reduced and the gas is discharged from the gas turbine exhaust duct 16 to the low-pressure duct system.

【0016】(3)緊急減圧系統は緊急減圧高温ガス逃
しオリフィス17、緊急減圧高温ガス逃し配管18、緊
急減圧空気逃し弁19、緊急減圧空気逃し配管20、緊
急減圧空気高温ガス混合器21、緊急減圧混合気逃し弁
22、シール空気配管23、緊急減圧混合気減圧オリフ
ィス24、サイレンサ25、除塵塔26および除塵排気
口27で構成される。
(3) The emergency pressure reducing system includes an emergency pressure reducing hot gas release orifice 17, an emergency pressure reducing hot gas release pipe 18, an emergency pressure reducing air release valve 19, an emergency pressure reducing air release pipe 20, an emergency pressure reducing air high temperature gas mixer 21, It comprises a pressure-reducing air-fuel mixture relief valve 22, a seal air pipe 23, an emergency pressure-reducing air-fuel mixture pressure reducing orifice 24, a silencer 25, a dust removing tower 26, and a dust removing outlet 27.

【0017】シール空気配管23は、通常運転時に緊急
減圧系統を締め切っているが、高温ガスのリークを防止
するために、緊急減圧混合気逃し弁22(二重弁)の間
にシール空気を供給する。
The seal air pipe 23 shuts off the emergency pressure reducing system during normal operation, but supplies seal air between the emergency pressure reducing mixture release valve 22 (double valve) in order to prevent leakage of high-temperature gas. .

【0018】(4)空気とガスの減圧比率が変動する場
合に、流動層内の流れを抑制する系統は、流動層内差圧
計28、緊急減圧空気逃し流量調節元弁29、緊急減圧
空気逃し流量調節弁30およびサイレンサ31で構成さ
れる。
(4) When the decompression ratio of air and gas fluctuates, the system for suppressing the flow in the fluidized bed includes a differential pressure gauge 28 in the fluidized bed, an emergency depressurized air release flow control valve 29, and an emergency depressurized air release. It comprises a flow control valve 30 and a silencer 31.

【0019】上記装置系統において、空気圧縮機2は流
動層9および火炉10の燃焼に必要な空気を空気圧縮機
吸気口1から吸入し、加圧して高圧空気配管3を経由し
て風箱8から供給する。熱風発生炉6は起動時に流動層
9を昇温するときに熱風を供給し、通常運転時は圧力容
器4からの燃焼空気を風箱へ供給する配管の一部として
使用される。
In the above system, the air compressor 2 draws in air required for combustion in the fluidized bed 9 and the furnace 10 from the air compressor intake port 1, pressurizes the air, and passes through the high-pressure air pipe 3 to the wind box 8. Supplied from The hot-air generating furnace 6 supplies hot air when the fluidized bed 9 is heated at the time of startup, and is used as a part of a pipe for supplying combustion air from the pressure vessel 4 to the wind box during normal operation.

【0020】流動層9および火炉10で燃焼した高温ガ
スは高温ガス配管11を経由し、1次サイクロン12お
よび2次サイクロン13で除塵されてからガスタービン
入口弁14を経由してガスタービン15で減圧、減温さ
れてガスタービン排気ダクト16から低圧ダクト系へ排
出される。
The high-temperature gas burned in the fluidized bed 9 and the furnace 10 passes through a high-temperature gas pipe 11, is dedusted in a primary cyclone 12 and a secondary cyclone 13, passes through a gas turbine inlet valve 14, and passes through a gas turbine 15. The pressure is reduced and the temperature is reduced, and the gas is discharged from the gas turbine exhaust duct 16 to a low-pressure duct system.

【0021】緊急停止時には空気圧縮機2およびガスタ
ービン15は停止し、同時に空気圧縮機出口弁は全閉と
なり圧力容器4への高圧空気供給は停止され、ガスター
ビン入口弁14は全閉となり、ガスタービン15への高
温ガス排出は停止される。緊急停止直後は高圧空気系の
圧力は高温ガス系の圧力より高いが、この圧力差により
高圧空気は流動層9を通過して高温ガス系に流れる。ま
た、緊急減圧空気逃し弁19を約10秒以下の短時間で
全開とすることで、高圧空気配管3から弁19、配管2
0、混合器21、配管18、オリフィス17を通り、高
温ガス配管11へ高圧空気を流して均圧させる。均圧後
に緊急減圧混合気逃し弁22を全開とし、緊急減圧高温
ガス逃し配管18からの高温ガスと緊急減圧空気逃し配
管20からの高圧空気を緊急減圧空気高温ガス混合器2
1で混合減温して、緊急減圧混合気減圧オリフィス24
で減圧し、サイレンサ25での騒音低減および除塵塔2
6での除塵後に除塵塔排気口27から大気へ排出され
る。
At the time of an emergency stop, the air compressor 2 and the gas turbine 15 are stopped. At the same time, the air compressor outlet valve is fully closed, the supply of high-pressure air to the pressure vessel 4 is stopped, and the gas turbine inlet valve 14 is fully closed. The discharge of the high-temperature gas to the gas turbine 15 is stopped. Immediately after the emergency stop, the pressure of the high-pressure air system is higher than the pressure of the high-temperature gas system. Due to this pressure difference, the high-pressure air flows through the fluidized bed 9 and flows into the high-temperature gas system. Also, by fully opening the emergency depressurized air release valve 19 in a short time of about 10 seconds or less, the high pressure air pipe 3 is connected to the valve 19 and the pipe 2.
0, high-pressure air is passed through the mixer 21, the pipe 18, and the orifice 17 to the high-temperature gas pipe 11 to equalize the pressure. After the pressure equalization, the emergency pressure-reducing mixture release valve 22 is fully opened, and the high-pressure gas from the emergency pressure-reducing high-temperature gas releasing pipe 18 and the high-pressure air from the emergency pressure-reducing air releasing pipe 20 are used for the emergency reduced-pressure air high-temperature gas mixer 2.
1 to reduce the temperature of the mixture,
To reduce the noise in the silencer 25 and the dust removal tower 2
After the dust removal in step 6, the dust is exhausted to the atmosphere from a dust removal tower exhaust port 27.

【0022】緊急減圧系の高圧空気Aと高温ガスGの排
出比率A:Gを、高圧空気配管3から風箱8までの高圧
空気系内の高圧空気重量Wa(=空気容積×比重)と流
動層9からガスタービン入口弁14までの高温ガス系内
の高温ガス重量Wg(=高温ガス容積×比重)の比率W
a:Wgと同じくすること、つまりA:G=Wa:Wg
とすることで、流動層9内部での空気流れおよび火炉側
から風箱側への逆流を極力小さく抑制し、流動層内の残
留未燃分が燃焼発熱するのを極力抑制できる。
The discharge ratio A: G of the high-pressure air A and the high-temperature gas G in the emergency depressurizing system flows to the high-pressure air weight Wa (= air volume × specific gravity) in the high-pressure air system from the high-pressure air pipe 3 to the wind box 8. Ratio W of hot gas weight Wg (= hot gas volume × specific gravity) in the hot gas system from layer 9 to gas turbine inlet valve 14
a: Same as Wg, that is, A: G = Wa: Wg
By doing so, the air flow inside the fluidized bed 9 and the backflow from the furnace side to the wind box side can be suppressed as small as possible, and the combustion of the remaining unburned components in the fluidized bed can be suppressed as much as possible.

【0023】高圧空気と高温ガスの排出比率を一定にす
るのはオリフィスの容量を下記比率に選定することで達
成される。 1)緊急減圧高温ガス逃しオリフィス17の容量 G=K・Wg 2)緊急減圧混合気減圧オリフィス24の容量 (A+G)=K・(Wa+Wg) 3)K:緊急減圧系の容量と高圧空気および高温ガス系
内の重量による係数 緊急停止時にガスタービン入口弁のシート面に付着する
灰の影響により、ガスタービン入口弁からのガスリーク
量が増減する場合、および圧力容器内のボイラ伝熱管で
リークが発生した異常時には、流動層内差圧計28の差
圧を正圧で、かつ極力0に制御するように緊急減圧空気
逃し流量調節弁30の開度を制御して、サイレンサ31
で減音して大気に放出することで流動層9での流れを抑
制できる。このとき、緊急減圧空気逃し流量調節元弁2
9は全開とし、通常運転時は全閉とする。
The constant discharge ratio between high-pressure air and high-temperature gas is achieved by selecting the capacity of the orifice to the following ratio. 1) The capacity of the emergency depressurized high-temperature gas relief orifice 17 G = K · Wg 2) The capacity of the emergency depressurized air-fuel mixture decompression orifice 24 (A + G) = K · (Wa + Wg) 3) K: The capacity of the emergency depressurization system and the high-pressure air and high temperature Coefficient based on weight in gas system Leakage occurs when the amount of gas leak from the gas turbine inlet valve increases or decreases due to the effect of ash adhering to the gas turbine inlet valve seat during an emergency stop, and in the boiler heat transfer tube inside the pressure vessel In the event of an abnormality, the opening of the emergency depressurized air release flow control valve 30 is controlled so that the differential pressure of the differential pressure gauge 28 in the fluidized bed is controlled to a positive pressure and as low as possible.
By releasing the sound to the atmosphere, the flow in the fluidized bed 9 can be suppressed. At this time, the emergency depressurized air release flow control source valve 2
9 is fully open and fully closed during normal operation.

【0024】図1の発明によれば、流動層内の流れを極
力小さくして高圧空気と高温ガスを減圧排出できるの
で、流動層内の残留未燃分が燃焼発熱するのを抑制し、
また流動層内への空気の逆流を防止することができる。
According to the invention shown in FIG. 1, the flow in the fluidized bed can be reduced as much as possible, and the high-pressure air and the high-temperature gas can be discharged under reduced pressure.
In addition, backflow of air into the fluidized bed can be prevented.

【0025】図2は、本発明の他の実施例を示す加圧流
動層ボイラの系統図である。この装置は、従来の装置系
統の高圧タービン43から再熱器管45に到る配管途中
に、外部から蒸気を注入する蒸気注入管51、圧力調整
弁52および圧力検出装置53を設けたものである。加
圧用気体としては蒸気のほかに窒素、清浄空気等を用い
ることができる。再熱器管45が流動媒体等との接触に
より損傷した場合、圧力検出装置5が圧力の変動を検知
し、圧力調整弁52により蒸気注入管51から蒸気を注
入し、管内を所定圧力以上に保持し、流動媒体等の進入
を阻止する。
FIG. 2 is a system diagram of a pressurized fluidized-bed boiler showing another embodiment of the present invention. This apparatus is provided with a steam injection pipe 51 for injecting steam from the outside, a pressure regulating valve 52, and a pressure detection device 53 in the middle of a pipe from a high-pressure turbine 43 of a conventional system to a reheater pipe 45. is there. As the pressurizing gas, nitrogen, clean air or the like can be used in addition to steam. When the reheater tube 45 is damaged due to contact with a fluid medium or the like, the pressure detecting device 5 detects a change in pressure, and injects steam from the steam injection tube 51 by the pressure adjusting valve 52 to maintain the inside of the tube at a predetermined pressure or higher. Hold to prevent the ingress of fluid media and the like.

【0026】図2に示す実施例によれば、再熱蒸気管損
傷時の流動媒体の伝熱管内の進入防止が図れ、万一、流
動媒体が管内に進入した時の再熱器管、低、高温再熱蒸
気管内の検査、または清掃、清掃のための管切断、復旧
または化学洗浄等の多大な費用発生、作業によるプラン
ト停止時間の延長を防止し、電力の安定供給を図ること
ができる。
According to the embodiment shown in FIG. 2, it is possible to prevent the fluid medium from entering the heat transfer tube when the reheat steam pipe is damaged. Inspection of the inside of the high-temperature reheat steam pipe, or cleaning, cutting of the pipe for cleaning, restoration or chemical cleaning, etc., and avoiding the prolonged downtime of the plant due to the work, and the stable supply of electric power can be achieved. .

【0027】なお、図2に示す装置は、図1に示す装置
と組み合わせて用いられる外、一般の加圧流動層ボイラ
にも適用可能である。
The apparatus shown in FIG. 2 is applicable to a general pressurized fluidized bed boiler in addition to being used in combination with the apparatus shown in FIG.

【0028】図3は、本発明のさらに他の実施例を示す
加圧流動層ボイラの水蒸気系統を示す図である。図にお
いて、ボイラ給水は主給水ポンプ61より主給水管62
を通って火炉63、火炉内にある蒸発器64に供給され
る。蒸発器を出た汽水混合流体は汽水分離器65で蒸気
と水に分離され、蒸気は火炉63内にある過熱器70で
過熱された後、高圧タービン77に通気される。一方、
水はボイラ再循環ポンプ76にて主給水管62に戻さ
れ、ボイラ給水の一部として再び火炉63および蒸発器
64に供給される。所内全停などの非常時には主給水ポ
ンプ61が停止し、ボイラ給水が止まるため、非常用温
水タンク68内の温水を非常用温水止弁74を開するこ
とにより、主給水管62に供給する。非常用温水は非常
用温水タンク68が均圧管69により汽水分離器出口と
接続されているため、ヘッドのみで供給される。最低貫
流負荷以下では、汽水分離器65にて分離されたボイラ
水は、ボイラ再循環ポンプ66にて火炉63へ戻され
る。
FIG. 3 is a view showing a steam system of a pressurized fluidized-bed boiler showing still another embodiment of the present invention. In the figure, boiler water is supplied from a main water supply pump 61 to a main water supply pipe 62.
Is supplied to a furnace 63 and an evaporator 64 in the furnace. The brackish water mixed fluid that has exited the evaporator is separated into steam and water by a steam separator 65, and the steam is superheated by a superheater 70 in a furnace 63, and then is passed through a high-pressure turbine 77. on the other hand,
The water is returned to the main water supply pipe 62 by the boiler recirculation pump 76 and supplied again to the furnace 63 and the evaporator 64 as a part of the boiler water supply. In an emergency such as a stop at the station, the main water supply pump 61 stops and the boiler water supply stops. Therefore, the hot water in the emergency hot water tank 68 is supplied to the main water supply pipe 62 by opening the emergency hot water stop valve 74. The emergency hot water is supplied only from the head because the emergency hot water tank 68 is connected to the outlet of the steam separator by the equalizing pipe 69. Below the minimum flow through load, the boiler water separated by the steam separator 65 is returned to the furnace 63 by the boiler recirculation pump 66.

【0029】非常用温水は定格運転に達する以前に非常
用温水を所定の温度に到達させ、かつその温度に維持さ
れていることが望ましく、従来の系統では非常用温水は
ボイラ起動前に補給水配管15より水張りをしてから加
温しており、その加温源は電気ヒータのみであるため電
気容量、加温時間等の点で配慮されていなかった。
It is desirable that the emergency hot water reach the predetermined temperature before reaching the rated operation and be maintained at that temperature. In the conventional system, the emergency hot water is made up of makeup water before starting the boiler. The system is heated after being filled with water from the pipe 15. Since the heating source is only the electric heater, no consideration is given to the electric capacity, the heating time, and the like.

【0030】本発明においては、起動時から最低貫流負
荷までボイラ再循環ポンプ66が作動している間、ボイ
ラ再循環ポンプミニマムフローはボイラ再循環ポンプミ
ニマムフロー配管77を経て非常用温水タンク68へ到
り、非常用温水タンク68を所定容量に注水した後、非
常用温水オーバーフロー配管77にて汽水分離器65へ
戻る。
In the present invention, during the operation of the boiler recirculation pump 66 from the start-up to the minimum flow-through load, the minimum flow of the boiler recirculation pump is transferred to the emergency hot water tank 68 via the minimum flow pipe 77 of the boiler recirculation pump. After the emergency hot water tank 68 is filled to a predetermined volume, the emergency hot water overflow pipe 77 returns to the brackish water separator 65.

【0031】図3に示す加圧流動層ボイラの水蒸気系統
においては、汽水分離器65出口と非常用温水タンク6
8が均圧管69で接続され、非常用温水タンクと火炉6
3、蒸発器64間にヘッド差を持たせているのみなら
ず、さらに非常用温水タンク68と汽水分離器65との
間にもヘッド差を持たせることにより、非常用温水オー
バーフロー配管77による汽水分離器65への流れを確
保し、非常用温水タンク68内の水位上昇を防ぐことが
できる。
In the steam system of the pressurized fluidized-bed boiler shown in FIG. 3, the outlet of the brackish water separator 65 and the emergency hot water tank 6
8 are connected by an equalizing pipe 69, and an emergency hot water tank and a furnace 6 are connected.
3. In addition to having a head difference between the evaporators 64, a head difference is also provided between the emergency hot water tank 68 and the brackish water separator 65, so that the brackish water by the emergency hot water overflow piping 77 The flow to the separator 65 can be secured, and the water level in the emergency hot water tank 68 can be prevented from rising.

【0032】さらに、ミニマムフローは非常用温水タン
ク78内でなるべく底に近い位置に注水し、非常用温水
オーバーフロー配管77をなるべく遠ざけるようにする
ことにより、非常用温水タンク78内を均一に所定の温
度に加温維持することができる。
Further, the minimum flow is poured into the emergency hot water tank 78 as close to the bottom as possible, and the emergency hot water overflow pipe 77 is kept as far away as possible so that the emergency hot water tank 78 can be uniformly filled in the emergency hot water tank 78 at a predetermined rate. It can be kept warm to the temperature.

【0033】従来の技術では、ボイラ本体への水張り、
非常用温水タンクへの水張りが完了した後、ボイラを起
動し、その系統構成上、非常用温水の加温源は電気ヒー
タのみであり、そのため水張り時常温から所定の温度、
汽水分離器圧力の飽和温度(10〜30℃)まで温度を
上昇させるのに大きな電気容量と長い加温時間がかかっ
ていたが、本発明では、ボイラ水張りの後、起動し、起
動時から最低貫流負荷まで作動するボイラ再循環ポンプ
のミニマムフローを利用して非常用温水タンクの水張り
を行い、このときミニマムフローはボイラ再循環ポンプ
により昇温されているため、水張り時点から温かいボイ
ラ水が非常用温水タンク内に流入するので、改めて加温
する必要がなくなる。ただし、ボイラ貫流運転になった
後は、非常用温水タンク内の温水は上記所定の温度に維
持する必要があるため、電気ヒータは従来どおり設置す
る必要があるが、従来の常温から所定の温度までの加熱
を要せず、所定温度維持のみでよいため電気ヒータの容
量がかなり軽減できる。
In the prior art, the boiler body is filled with water,
After the filling of the emergency hot water tank is completed, the boiler is started, and the heating source of the emergency hot water is only an electric heater due to its system configuration.
Although a large electric capacity and a long heating time were required to raise the temperature to the saturation temperature (10 to 30 ° C.) of the brackish water separator pressure, in the present invention, after the boiler is filled with water, the boiler is started up, and the boiler is started up at least. The emergency hot water tank is filled with water using the minimum flow of the boiler recirculation pump that operates up to the once-through load.At this time, since the minimum flow is heated by the boiler recirculation pump, warm boiler water is discharged from the point of water filling. Since it flows into the hot water tank, there is no need to heat it again. However, after the boiler once-through operation, the hot water in the emergency hot water tank must be maintained at the above-mentioned predetermined temperature. Therefore, the capacity of the electric heater can be considerably reduced because only the predetermined temperature needs to be maintained without the need for heating.

【0034】非常用温水タンク内温水容量は例えば30
3 とかなり大きいため、従来技術では例えば約3メガ
ワットの電気容量が必要であったが、本発明においては
約100キロワットの容量を持つ電気ヒータでよいた
め、効率上および経済的にも効果は非常に大きい。
The hot water capacity in the emergency hot water tank is, for example, 30.
In the prior art, an electric capacity of, for example, about 3 megawatts was required because of the large size of m 3. However, in the present invention, an electric heater having a capacity of about 100 kilowatts is sufficient, so that the efficiency and the economical effect are low. Very large.

【0035】なお、図3に示した装置系統は、図1また
は2の装置と組み合わせて用いられる外、一般の加圧流
動層ボイラにも適用することができる。
The apparatus system shown in FIG. 3 can be used not only in combination with the apparatus shown in FIG. 1 or 2 but also in a general pressurized fluidized bed boiler.

【0036】[0036]

【発明の効果】本発明によれば、緊急停止時に流動層内
の空気流れを微小に抑制し、流動層内に残留する未燃分
の燃焼発熱を極力抑制し、かつ火炉側から空気側へ逆流
することを防止し、また蒸気系統における損傷等のトラ
ブルに対応することができる加圧流動層ボイラの保護方
法および装置を提供することができる。
According to the present invention, at the time of an emergency stop, the air flow in the fluidized bed is minutely suppressed, the combustion heat generated in the unburned portion remaining in the fluidized bed is suppressed as much as possible, and the furnace is moved from the furnace side to the air side. It is possible to provide a method and an apparatus for protecting a pressurized fluidized-bed boiler that can prevent backflow and can cope with troubles such as damage in a steam system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の加圧流動層ボイラの高圧空気および高
温ガス系統の緊急減圧方法の一実施例を示す系統図。
FIG. 1 is a system diagram showing an embodiment of an emergency depressurization method for a high-pressure air and high-temperature gas system of a pressurized fluidized-bed boiler of the present invention.

【図2】本発明の加圧流動層ボイラの保護装置の蒸気系
統の改善例を示す系統図。
FIG. 2 is a system diagram showing an improved example of a steam system of the pressurized fluidized-bed boiler protection device of the present invention.

【図3】本発明の加圧流動層ボイラの保護装置の蒸気系
統の他の改善例を示す系統図。
FIG. 3 is a system diagram showing another improved example of the steam system of the protection device for the pressurized fluidized-bed boiler of the present invention.

【符号の説明】[Explanation of symbols]

1…空気圧縮機吸気口、2…空気圧縮機、3…高圧空気
配管、4…圧力容器、5…熱風発生炉入口空気配管、6
…熱風発生炉、7…熱風発生炉出口配管、8…インター
セプト弁、9…流動層、10…火炉、11…高温ガス配
管、12…一次サイクロン、13…二次サイクロン、1
4…ガスタービン入口弁、15…ガスタービン、16…
ガスタービン排気ダクト、17…緊急減圧高温ガス逃し
オリフィス、18…緊急減圧高温ガス逃し配管、19…
緊急減圧空気逃し弁、20…緊急減圧空気逃し配管、2
1…緊急減圧空気高温ガス混合器、22…緊急減圧混合
気逃がし弁、23…シール空気配管、24…緊急減圧混
合気減圧オリフィス、25…サイレンサ、26…除じん
塔、27…除じん塔排気口、28…流動層内差圧計、2
9…緊急減圧空気逃し流量調節元弁、30…緊急減圧空
気逃し流量調節弁、31…サイレンサ。
DESCRIPTION OF SYMBOLS 1 ... Air compressor inlet, 2 ... Air compressor, 3 ... High pressure air piping, 4 ... Pressure vessel, 5 ... Hot air generating furnace inlet air piping, 6
... hot-air generating furnace, 7 ... hot-air generating furnace outlet piping, 8 ... intercept valve, 9 ... fluidized bed, 10 ... furnace, 11 ... high-temperature gas piping, 12 ... primary cyclone, 13 ... secondary cyclone, 1
4 ... Gas turbine inlet valve, 15 ... Gas turbine, 16 ...
Gas turbine exhaust duct, 17 ... Emergency depressurized hot gas escape orifice, 18 ... Emergency depressurized hot gas escape pipe, 19 ...
Emergency depressurized air release valve, 20 ... Emergency depressurized air release piping, 2
1 Emergency decompressed air high-temperature gas mixer, 22 Emergency depressurized air-fuel mixture relief valve, 23 Sealed air piping, 24 Emergency depressurized air-fuel mixture decompression orifice, 25 Silencer, 26 Dust tower, 27 Evacuation tower exhaust Mouth, 28 ... Differential pressure gauge in fluidized bed, 2
9: Emergency depressurized air release flow control valve, 30: Emergency depressurized air release flow control valve, 31: Silencer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大嶋 重信 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 坂田 太郎 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 秋元 修平 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 Fターム(参考) 3K064 AA06 AA12 AB01 AC05 AC13 AE02 BA17 BA24  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigenobu Oshima 6-9 Takaracho, Kure-shi, Hiroshima Pref. Inside the Kure Factory (72) Inventor Taro Sakata 6-9 Takaracho, Kure-shi, Hiroshima Pref. Babcock Hitachi, Ltd. Inside the Kure Factory (72) Shuhei Akimoto Inventor 6-9, Takara-cho, Kure-shi, Hiroshima Babcock Hitachi Kure Factory F-term (reference) 3K064 AA06 AA12 AB01 AC05 AC13 AE02 BA17 BA24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加圧流動層ボイラの高圧空気および高温
ガス系統において、該ボイラの緊急停止時に該系統内の
高圧空気と高温ガスを、高圧空気の逃し容量と高温ガス
の逃し容量の比率が、高圧空気の系内重量と高温ガスの
系内重量の比率と同じになるように、減圧排出すること
を特徴とする加圧流動層ボイラの保護方法。
In a high-pressure air and high-temperature gas system of a pressurized fluidized-bed boiler, when an emergency stop of the boiler is performed, the high-pressure air and high-temperature gas in the system have a ratio of a high-pressure air release capacity to a high-temperature gas release capacity. A method for protecting a pressurized fluidized-bed boiler, wherein the pressure is reduced so as to be equal to the ratio of the system weight of high-pressure air to the system weight of high-temperature gas.
【請求項2】 加圧流動層ボイラに高圧空気を供給する
高圧空気配管系統と、前記ボイラから高温ガスを排出す
る高温ガス配管系統とを有する加圧流動層ボイラにおい
て、前記高温ガス配管に緊急減圧高温ガス逃しオリフィ
スを有する分岐配管と、前記高圧空気配管に緊急減圧空
気逃し弁を有する分岐配管とを設け、これらの分岐配管
をさらに緊急減圧空気高温ガス混合器に連結し、該混合
器から減圧オリフィスを通して混合ガスを排出するよう
にしたことを特徴とする請求項1記載の方法に関する加
圧流動層ボイラの保護装置。
2. In a pressurized fluidized-bed boiler having a high-pressure air piping system for supplying high-pressure air to a pressurized fluidized-bed boiler and a high-temperature gas piping system for discharging hot gas from the boiler, an emergency A branch pipe having a reduced-pressure high-temperature gas release orifice and a branch pipe having an emergency reduced-pressure air release valve are provided on the high-pressure air pipe, and these branch pipes are further connected to an emergency reduced-pressure air high-temperature gas mixer. The apparatus according to claim 1, wherein the mixed gas is discharged through a reduced pressure orifice.
【請求項3】 前記ボイラ内の流動層内の流量を調整す
るために、該流動層内に差圧計を設けるとともに、前記
ボイラと前記分岐配管の間の高圧空気配管に緊急減圧空
気逃し流量調節弁を有する分岐管を設け、前記流動層内
の差圧が所定値になるように、前記緊急減圧空気逃し流
量調節弁を調節するようにしたことを特徴とする請求項
2記載の装置。
3. A pressure difference gauge is provided in the fluidized bed for adjusting a flow rate in the fluidized bed in the boiler, and an emergency depressurized air release flow rate is adjusted to a high pressure air pipe between the boiler and the branch pipe. 3. The apparatus according to claim 2, wherein a branch pipe having a valve is provided, and the emergency pressure-reducing air release flow control valve is adjusted so that a differential pressure in the fluidized bed becomes a predetermined value.
【請求項4】 前記加圧流動層ボイラが、非常用温水タ
ンク、汽水分離器、およびボイラ再循環ポンプを有し、
前記ボイラ再循環ポンプと前記非常用温水タンクをボイ
ラ再循環ポンプミニマムフロー配管で接続するととも
に、前記非常用温水タンクと前記汽水分離器を非常用温
水オーバーフロー配管で接続したことを特徴とする請求
項2または3記載の加圧流動層ボイラの保護装置。
4. The pressurized fluidized bed boiler has an emergency hot water tank, a steam separator, and a boiler recirculation pump,
The boiler recirculation pump and the emergency hot water tank are connected by a boiler recirculation pump minimum flow pipe, and the emergency hot water tank and the brackish water separator are connected by an emergency hot water overflow pipe. 4. The protection device for a pressurized fluidized-bed boiler according to 2 or 3.
【請求項5】 加圧流動層ボイラの蒸気配管系統におい
て、流動層内の前記配管系統の損傷時に、該配管内の圧
力変動を検知して、外部から加圧気体を注入し、前記配
管に設けた圧力調整弁により前記配管内の圧力を流動層
内の圧力よりも高く保持することを特徴とする請求項1
記載の加圧流動層ボイラの保護方法。
5. In a steam piping system of a pressurized fluidized-bed boiler, when the piping system in a fluidized bed is damaged, a pressure fluctuation in the piping is detected, and a pressurized gas is injected from the outside, and the gas is injected into the piping. The pressure in the pipe is maintained higher than the pressure in the fluidized bed by a pressure regulating valve provided.
The method for protecting a pressurized fluidized-bed boiler according to the above.
JP11068993A 1999-03-15 1999-03-15 Method and apparatus for protecting pressurized fluidized-bed boiler Pending JP2000266307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11068993A JP2000266307A (en) 1999-03-15 1999-03-15 Method and apparatus for protecting pressurized fluidized-bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11068993A JP2000266307A (en) 1999-03-15 1999-03-15 Method and apparatus for protecting pressurized fluidized-bed boiler

Publications (1)

Publication Number Publication Date
JP2000266307A true JP2000266307A (en) 2000-09-29

Family

ID=13389705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11068993A Pending JP2000266307A (en) 1999-03-15 1999-03-15 Method and apparatus for protecting pressurized fluidized-bed boiler

Country Status (1)

Country Link
JP (1) JP2000266307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103225811A (en) * 2012-01-31 2013-07-31 月岛机械株式会社 A pressurized fluidized furnace system and a control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103225811A (en) * 2012-01-31 2013-07-31 月岛机械株式会社 A pressurized fluidized furnace system and a control method thereof

Similar Documents

Publication Publication Date Title
WO2015041122A1 (en) Exhaust gas cooler steam-generation prevention device for oxygen combustion boiler
JPH10251671A (en) Composite generation system
JP2000266307A (en) Method and apparatus for protecting pressurized fluidized-bed boiler
KR20020027611A (en) Method and device for increasing the pressure of a gas
JP2810791B2 (en) Combined cycle pressurized fluidized bed power plant with gas and steam and method of operating the same
JP4452328B2 (en) Combined power plant
JP2006283655A (en) Surplus steam quantity control system for gas turbine cogeneration system
JP3700075B2 (en) Pressurized fluidized bed combined power plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JP2001033004A (en) Method of draining for waste heat recovery boiler
JP3670791B2 (en) Steam supply method and apparatus for coke dry fire extinguishing equipment
JPH08312902A (en) Starting method and device for steam prime plant having a plurality of boilers
JPS6337281B2 (en)
RU2170387C1 (en) Method of preservation of boilers with gas
JP2007100621A (en) Stop control method for pressurized fluidized bed plant
JP3794831B2 (en) Power generation equipment
JP2003083501A (en) Fluidized bed boiler
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH05322105A (en) Device for heating feedwater for boiler
JP3010910B2 (en) How to protect pressurized fluidized bed boilers
JP2001303974A (en) Combined-cycle generator set
KR19990023027A (en) Method and apparatus for generating additional energy in power units
JP2006017353A (en) Drying device and method using pressure vessel
JP3117392B2 (en) Start-up method of an exhaust gas re-combustion complex plant
JPH0674419A (en) Pressurized fluidized bed boiler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081222