JP2000260440A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JP2000260440A
JP2000260440A JP11057605A JP5760599A JP2000260440A JP 2000260440 A JP2000260440 A JP 2000260440A JP 11057605 A JP11057605 A JP 11057605A JP 5760599 A JP5760599 A JP 5760599A JP 2000260440 A JP2000260440 A JP 2000260440A
Authority
JP
Japan
Prior art keywords
layer
air
solid electrolyte
cell
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11057605A
Other languages
Japanese (ja)
Other versions
JP3667141B2 (en
Inventor
Shoji Yamashita
祥二 山下
Yuji Tateishi
勇二 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP05760599A priority Critical patent/JP3667141B2/en
Publication of JP2000260440A publication Critical patent/JP2000260440A/en
Application granted granted Critical
Publication of JP3667141B2 publication Critical patent/JP3667141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To prevent break of a cell due to thermal expansion in the air or in hydrogen gas during operation by specifying a difference between a thermal expansion coefficient of a collector layer in the air and that of a solid electrolyte layer in the air to a specific value or less. SOLUTION: This solid electrolyte fuel cell has an air electrode layer 21, a solid electrolyte layer 22, a fuel electrode layer 23, and a collector layer 24, and these layers are laminated together into a multilayer cylinder shape. When a difference α2-α1 between a thermal expansion coefficient α1 of the collector layer 24 in the air and that α2 of the solid electrolyte layer 22 in the air is represented by Δα21, α1<α2 and Δα21>=0.5×10-6/ deg.C. The air electrode layer 21 is formed of a LaMnO3 group material or LaCoO3 group material prepared by replacing La with 10-30 at% of Ca, Sr, while the solid electrolyte layer 22 is formed of stabilized ZrO2 containing 3-15 at% of Y2O3, Yb2O3 and the like or CeO2 containing Y2O3, Yb2O3, Sc2O3, Nd2O3, Sm2O3, CaO and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒状の固体電解
質型燃料電池セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical solid oxide fuel cell.

【0002】[0002]

【従来の技術】従来の代表的な円筒状の固体電解質型燃
料電池(Solid Oxide Fuel Cell で、以下、SO燃料電
池という)Fを図2に示す(特開平8−162140号
公報参照)。同図はSO燃料電池Fの断面図であり、1
は全体を納めたケース、2はセラミック等から成り円筒
状のSO燃料電池Fセル(以下、セルと略す)であり、
一端が開放され他端が閉じた構造となっている。また、
セル2の断面は多層円筒状をしており、空気極、固体電
解質、燃料極等が積層された構成である。
2. Description of the Related Art FIG. 2 shows a conventional typical solid oxide fuel cell (Solid Oxide Fuel Cell, hereinafter referred to as SO fuel cell) F (see Japanese Patent Application Laid-Open No. 8-162140). FIG. 1 is a sectional view of an SO fuel cell F,
Is a case containing the whole, 2 is a cylindrical SO fuel cell F cell (hereinafter abbreviated as a cell) made of ceramic or the like,
One end is open and the other end is closed. Also,
The cross section of the cell 2 has a multilayer cylindrical shape, and has a configuration in which an air electrode, a solid electrolyte, a fuel electrode, and the like are stacked.

【0003】また、3は断熱材から成りセル2の上端側
を保持し固定する仕切り部材、5は燃焼室であり、ケー
ス1の下端の供給口13から供給された燃料ガス
(H2 ,CO,CH4 等)の排気ガスが、仕切り部材3
に形成された通気孔等(図示せず)を通して燃焼室5内
で空気の排気と混合され、セル2内で反応しなかった酸
素と水素ガスが燃焼室5内で燃焼する。6はセル2内に
空気を通すための空気管であり、空気供給口12から一
旦空気分配器14に送られた空気は、空気管6を通じて
セル2の底部に達し、発電反応に寄与した後、セル2内
を上方に向かい上端側の開口から燃焼室5に至る。
A partition member 3 made of a heat insulating material and holding and fixing the upper end side of the cell 2 is a combustion chamber, and a fuel gas (H 2 , CO 2 ) supplied from a supply port 13 at a lower end of the case 1 is provided. , CH 4, etc.) from the partition member 3
The oxygen and the hydrogen gas which are mixed with the exhaust of the air in the combustion chamber 5 through the ventilation holes (not shown) formed in the combustion chamber 5 and not reacted in the cell 2 are burned in the combustion chamber 5. Reference numeral 6 denotes an air pipe for passing air into the cell 2. The air once sent from the air supply port 12 to the air distributor 14 reaches the bottom of the cell 2 through the air pipe 6 and contributes to the power generation reaction. Then, the inside of the cell 2 is directed upward and reaches the combustion chamber 5 from the opening on the upper end side.

【0004】7は燃焼室5からの排気ガスが排出される
排気口、8はセル2集合体の最外側面に設けられた集電
板、9は電力を外部へ取り出す集電棒、10はNiフェ
ルト、11はセル2を電気的に接続するためのインター
コネクタである。同図の場合、所望の電力を得るために
複数のセル2が直列に接続され、所謂スタック化されて
いる。
[0004] Reference numeral 7 denotes an exhaust port through which exhaust gas from the combustion chamber 5 is discharged, 8 denotes a current collector provided on the outermost surface of the cell 2 assembly, 9 denotes a current collecting rod for extracting electric power to the outside, and 10 denotes Ni. The felt 11 is an interconnector for electrically connecting the cells 2. In the case of the drawing, a plurality of cells 2 are connected in series to obtain a desired power, and are so-called stacked.

【0005】ここで、上記発電反応は以下のようにして
生じる。セル2の各層は厚さ数μm〜2.5mm程度で
あり、それぞれ導電性,通気性,固体電解質,電気化学
触媒性等の機能を有する。約1000℃の温度に保持さ
れたセル2の内側に酸化剤としての空気等を流し、外側
には水素ガスを流すと、セル2内ではO2-イオンが移動
して電気化学反応が起こり、空気極と燃料極との間に電
位差が生じ発電が可能となる。
[0005] Here, the power generation reaction occurs as follows. Each layer of the cell 2 has a thickness of about several μm to 2.5 mm, and has functions such as conductivity, air permeability, solid electrolyte, and electrochemical catalysis. When air or the like as an oxidant is flowed inside the cell 2 maintained at a temperature of about 1000 ° C., and hydrogen gas is flown outside, the O 2− ions move inside the cell 2 to cause an electrochemical reaction, A potential difference is generated between the air electrode and the fuel electrode, and power generation becomes possible.

【0006】近年、このようなSO燃料電池Fは、小型
であることに加えてセル2での動作温度が1000〜1
050℃と高温であるため、発電効率が高く、第3世代
の発電システムとして期待されている。
In recent years, such an SO fuel cell F has a small operating temperature in the cell 2 in addition to a small size.
Since the temperature is as high as 050 ° C., the power generation efficiency is high and is expected as a third generation power generation system.

【0007】一般に、SO燃料電池F用のセルには、円
筒状のセル2と平板型セルの2種類が知られている。平
板型セルは、単位体積当たりの出力密度が高いという特
長があるが、実用化においてはガスシールの不完全性や
平板型セル内の温度分布の不均一性の問題がある。一
方、円筒状のセル2は出力密度は低いもののその形状に
より機械的強度が高く、また内部の温度分布を均一に維
持できるという特長がある。
In general, two types of cells for an SO fuel cell F are known, a cylindrical cell 2 and a flat cell. The flat plate cell has a feature that the output density per unit volume is high. However, in practical use, there are problems of imperfect gas sealing and non-uniformity of temperature distribution in the flat plate cell. On the other hand, although the cylindrical cell 2 has a low output density, its shape has high mechanical strength and its internal temperature distribution can be maintained uniformly.

【0008】また、セル2は上記の通りセラミックスか
ら成り、開気通気孔率が30%程度のCaO安定化Zr
2 等を支持管とし、その外側にCa,Srを固溶させ
たLaMnO3 系材料等からなる多通気孔性の空気極
層、Y2 3 安定化ZrO2 等からなる固体電解質層、
多通気孔性のNi−ZrO2 等のサーメットからなる燃
料極層が順次設けられている。そして、空気極層と固体
電解質層の一部にCa,Sr,Mgを固溶させたLaC
rO3 系材料等からなる集電体層(インターコネクタ
層)を設けている。
The cell 2 is made of ceramics as described above, and has a CaO-stabilized Zr having an open porosity of about 30%.
A multi-porous air electrode layer made of a LaMnO 3 -based material or the like in which O 2 or the like is used as a support tube and Ca and Sr are dissolved as a solid solution, a solid electrolyte layer made of Y 2 O 3 stabilized ZrO 2 or the like,
A fuel electrode layer made of a cermet such as Ni—ZrO 2 having high air permeability is sequentially provided. LaC in which Ca, Sr, and Mg are dissolved in a part of the air electrode layer and the solid electrolyte layer
A current collector layer (interconnector layer) made of an rO 3 -based material or the like is provided.

【0009】近年、このようなセル2において、その製
造工程を簡略化するために、空気極層,固体電解質層,
燃料極層,集電体層等の構成部材のうち少なくとも2つ
を同時に焼成するという所謂共焼結法が提案されてい
る。共焼結法は、例えば円筒状の空気極層成形体に固体
電解質層成形体及び集電体層成形体をロール状に巻き付
けて同時焼成を行い、その後固体電解質層表面に燃料極
層を形成する方法である。この共焼結法は、製造工程が
少なくなるので製造歩留りが向上し、コスト低減に有効
である。
In recent years, in such a cell 2, in order to simplify the manufacturing process, an air electrode layer, a solid electrolyte layer,
A so-called co-sintering method has been proposed in which at least two of the constituent members such as the fuel electrode layer and the current collector layer are simultaneously fired. In the co-sintering method, for example, a solid electrolyte layer molded body and a current collector layer molded body are wound in a roll shape around a cylindrical air electrode layer molded body and simultaneously fired, and then a fuel electrode layer is formed on the surface of the solid electrolyte layer. How to This co-sintering method reduces the number of manufacturing steps, so that the manufacturing yield is improved and the cost is reduced.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記共
焼結法により空気極層,固体電解質層,集電体層を共焼
結させた後、或いは更に燃料極層を固体電解質層表面に
焼結させた後に、セル2に何ら異常がなく状態が良好で
あっても、燃料極層を還元処理したり発電実施のために
燃料ガスとして水素ガスを導入すると、熱膨張率差に起
因して集電体層が破壊されるという問題が発生してい
た。
However, after the air electrode layer, the solid electrolyte layer, and the current collector layer are co-sintered by the above-described co-sintering method, or further, the fuel electrode layer is sintered on the surface of the solid electrolyte layer. After that, even if there is no abnormality in the cell 2 and the condition is good, if the fuel electrode layer is subjected to reduction treatment or hydrogen gas is introduced as a fuel gas for power generation, a difference due to a difference in coefficient of thermal expansion causes a collection. There has been a problem that the conductor layer is destroyed.

【0011】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的は、空気中及び動作時の雰囲
気ガスである水素ガス中において、熱膨張に起因してセ
ルが破壊されるという問題を解消することにある。
Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to destroy a cell due to thermal expansion in air and hydrogen gas which is an atmosphere gas during operation. That is to solve the problem.

【0012】[0012]

【課題を解決するための手段】本発明の固体電解質型燃
料電池セルは、多層円筒状に積層された空気極層、固体
電解質層、燃料極層及び集電体層を有し、集電体層の空
気中での熱膨張係数をα1、固体電解質層の空気中での
熱膨張係数をα2とした場合、α2とα1の差α2−α
1をΔα21とした場合、α1<α2であり、且つΔα21
≦0.5×10-6/℃であることを特徴とする。
The solid oxide fuel cell of the present invention has an air electrode layer, a solid electrolyte layer, a fuel electrode layer and a current collector layer laminated in a multilayer cylindrical shape. When the coefficient of thermal expansion of the layer in air is α1, and the coefficient of thermal expansion of the solid electrolyte layer in air is α2, the difference between α2 and α1 is α2−α.
If 1 is Δα21, α1 <α2 and Δα21
≦ 0.5 × 10 −6 / ° C.

【0013】本発明は上記構成により、空気極層,固体
電解質層,集電体層の大気中での共焼結工程、燃料極層
の固体電解質層表面への焼結工程、還元雰囲気中での燃
料極層の還元工程及び発電実施中において集電体層に生
じる熱応力を最小にすることができ、熱膨張に起因する
集電体層の破壊を防止することができる。
According to the present invention, a co-sintering step of the air electrode layer, the solid electrolyte layer and the current collector layer in the air, a sintering step of the fuel electrode layer on the surface of the solid electrolyte layer, The thermal stress generated in the current collector layer during the fuel electrode layer reduction step and the power generation is minimized, and the current collector layer can be prevented from being broken due to thermal expansion.

【0014】本発明において、好ましくは、前記集電体
層の水素ガス中での熱膨張係数をα3、固体電解質層の
水素ガス中での熱膨張係数をα4、α3とα4の差α3
−α4をΔα34とした場合、α3>α4であり、且つΔ
α34≦0.3×10-6/℃である。
In the present invention, preferably, the thermal expansion coefficient of the current collector layer in hydrogen gas is α3, the thermal expansion coefficient of the solid electrolyte layer in hydrogen gas is α4, and the difference α3 between α3 and α4 is α3.
When −α4 is Δα34, α3> α4 and Δ
α34 ≦ 0.3 × 10 −6 / ° C.

【0015】即ち、集電体層は大気中で焼結されるが、
発電時には集電体層の一部は還元雰囲気中に晒される。
従って、集電体層材料としては、大気中及び還元雰囲気
中の両方で熱膨張係数が殆ど変化しないものが好ましい
が、現在使用されているLaCrO3 系材料は空気中よ
りも還元雰囲気(水素ガス)中での熱膨張係数が大きい
特徴がある。このため、各工程でセルに作用する応力を
最小にするには、空気中において集電体層の熱膨張係数
を固体電解質層の熱膨張係数よりも小さくし、還元雰囲
気中では集電体層の熱膨張係数を固体電解質層の熱膨張
係数よりも大きくするのが良いことが判った。
That is, although the current collector layer is sintered in the air,
At the time of power generation, a part of the current collector layer is exposed to a reducing atmosphere.
Therefore, as the current collector layer material, a material whose thermal expansion coefficient hardly changes both in the air and in a reducing atmosphere is preferable. However, LaCrO 3 -based materials currently used are more preferably used in a reducing atmosphere (hydrogen gas) than in air. There is a feature that the coefficient of thermal expansion in ()) is large. Therefore, to minimize the stress acting on the cell in each step, the thermal expansion coefficient of the current collector layer in air should be smaller than the thermal expansion coefficient of the solid electrolyte layer, and the current It has been found that it is better to make the thermal expansion coefficient of the solid electrolyte layer larger than that of the solid electrolyte layer.

【0016】また好ましくは、Δα21>Δα34である。
即ち、円筒状のセルでは、集電体層の電気伝導度で示さ
れるように集電体層中のポテンシャル(電位)勾配は空
気極層側で大きく減少する。即ち発電中に集電体層の空
気極層側で電気伝導度が急激に低下する。これは、発電
中に集電体層の大部分が水素ガスの環境下に晒されてい
ることを意味し、固体電解質層の熱膨張係数が雰囲気ガ
スによらずほぼ一定であるので、発電中の集電体層との
熱膨張係数差を小さくすることが良いことになる。故
に、Δα21>Δα34とすることによって、製造工程から
発電実施までの全工程でセルに作用する熱応力を最小に
することができる。
Preferably, Δα21> Δα34.
That is, in the cylindrical cell, the potential gradient in the current collector layer is greatly reduced on the air electrode layer side as indicated by the electric conductivity of the current collector layer. That is, during the power generation, the electric conductivity decreases rapidly on the air electrode layer side of the current collector layer. This means that most of the current collector layer was exposed to the environment of hydrogen gas during power generation, and the coefficient of thermal expansion of the solid electrolyte layer was almost constant regardless of the atmospheric gas. It is better to reduce the difference in thermal expansion coefficient between the current collector layer and the current collector layer. Therefore, by setting Δα21> Δα34, it is possible to minimize the thermal stress acting on the cell in all steps from the manufacturing process to the execution of power generation.

【0017】[0017]

【発明の実施の形態】本発明のセルを以下に説明する。
図1は本発明の円筒状のセル2の基本構成を示し、21
は空気極層、22は空気極層の外表面に被覆焼結された
固体電解質層、23は固体電解質層22の外表面に被覆
焼結された燃料極層、24は固体電解質層22の一部切
り欠き部を通じて空気極層21外表面に一部接する集電
体層(インターコネクタ)24である。即ち、集電体層
24の内側(セル2中心側)端面は空気極層21に接続
され、集電体層24の外側(セル2外表面側)端面はN
iフェルト10等の接続部材を介して他のセル2の燃料
極層23に接続され、スタック化される(図2参照)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The cell of the present invention will be described below.
FIG. 1 shows the basic structure of a cylindrical cell 2 of the present invention,
Is an air electrode layer; 22 is a solid electrolyte layer coated and sintered on the outer surface of the air electrode layer; 23 is a fuel electrode layer coated and sintered on the outer surface of the solid electrolyte layer 22; The current collector layer (interconnector) 24 partially contacts the outer surface of the air electrode layer 21 through the notch. That is, the inside (the center side of the cell 2) end face of the current collector layer 24 is connected to the air electrode layer 21, and the outside (the outside surface side of the cell 2) end face of the current collector layer 24 is N
It is connected to the fuel electrode layer 23 of another cell 2 via a connecting member such as i-felt 10 and is stacked (see FIG. 2).

【0018】本発明において、セル2の層構成は、上記
の如く円筒状の固体電解質層22の内側に空気極層2
1、外側に燃料極層23が形成された構成、又は固体電
解質層22の内側に燃料極層23、外側に空気極層21
が形成された構成のいずれであっても良い。固体電解質
層22の内側に燃料極層23、外側に空気極層21が形
成された構成の場合、集電体層24は固体電解質層22
の切り欠き部を通じて燃料極層23の外表面の一部に接
続される。
In the present invention, the layer structure of the cell 2 is such that the air electrode layer 2 is provided inside the cylindrical solid electrolyte layer 22 as described above.
1, a structure in which the fuel electrode layer 23 is formed on the outside, or the fuel electrode layer 23 on the inside of the solid electrolyte layer 22 and the air electrode layer 21 on the outside
May be formed. In a configuration in which the fuel electrode layer 23 is formed inside the solid electrolyte layer 22 and the air electrode layer 21 is formed outside, the current collector layer 24 is formed of the solid electrolyte layer 22.
Is connected to a part of the outer surface of the fuel electrode layer 23 through the notch.

【0019】本発明のセル2は、集電体層24の空気中
での熱膨張係数をα1、固体電解質層22の空気中での
熱膨張係数をα2、α2とα1との差をα2−α1=Δ
α21とした場合、α1<α2であり、且つΔα21≦
0.5×10-6/℃である。α1,α2,Δα21を前記
の如く規定したことにより、共焼結による製造工程から
発電時までの全工程で、熱膨張により破壊されることの
ないセル2が得られる。特に、Δα21が0.5×10-6
/℃を超えると、共焼結後にセル2の破壊が生じる。
In the cell 2 of the present invention, the thermal expansion coefficient of the current collector layer 24 in air is α1, the thermal expansion coefficient of the solid electrolyte layer 22 in air is α2, and the difference between α2 and α1 is α2- α1 = Δ
When α21, α1 <α2 and Δα21 ≦
0.5 × 10 −6 / ° C. By defining α1, α2 and Δα21 as described above, it is possible to obtain a cell 2 that is not broken by thermal expansion in all steps from the production process by co-sintering to the time of power generation. In particular, Δα21 is 0.5 × 10 −6
If the temperature exceeds / ° C, the cell 2 is broken after co-sintering.

【0020】また、好ましくは、集電体層24の水素ガ
ス中での熱膨張係数をα3、固体電解質層22の水素ガ
ス中での熱膨張係数をα4、α3とα4の差をα3−α
4=Δα34とした場合、α3>α4であり、且つΔα34
≦0.3×10-6/℃である。α3,α4,Δα34を前
記の如く規定したことにより、共焼結による製造工程で
は勿論のこと、特に発電時において熱膨張で破壊される
ことのないセル2とすることができる。
Preferably, the thermal expansion coefficient of the current collector layer 24 in hydrogen gas is α3, the thermal expansion coefficient of the solid electrolyte layer 22 in hydrogen gas is α4, and the difference between α3 and α4 is α3-α.
When 4 = Δα34, α3> α4, and Δα34
≦ 0.3 × 10 −6 / ° C. By defining α3, α4, and Δα34 as described above, it is possible to obtain a cell 2 that is not damaged by thermal expansion during power generation, not to mention in the production process by co-sintering.

【0021】上記熱膨張係数α1〜α4は、3mm×3
mm×10mmの試験片を作製し、熱膨張率測定装置を
用いて室温から1000℃までの試験片の伸びから求め
ている。尚、α1,α2は空気中で、α3,α4はフォ
ーミングガス(水素ガス12.5体積%、窒素ガス8
7.5体積%)中で測定する。このフォーミングガス
は、純粋な水素ガスを使用すると爆発する可能性が高い
ため、熱膨張係数を測定する場合に水素ガス中で測定す
るのと実質的に同じ結果が得られるものである。
The thermal expansion coefficients α1 to α4 are 3 mm × 3
A test piece having a size of 10 mm × 10 mm was prepared and determined from the elongation of the test piece from room temperature to 1000 ° C. using a thermal expansion coefficient measuring apparatus. Α1 and α2 are in air, α3 and α4 are forming gas (hydrogen gas 12.5% by volume, nitrogen gas 8
7.5% by volume). Since the forming gas has a high possibility of explosion when pure hydrogen gas is used, substantially the same result as that obtained in hydrogen gas can be obtained when measuring the coefficient of thermal expansion.

【0022】本発明のセル2の各層について以下説明す
る。空気極層21は、LaをCa,Srで10〜30a
t(原子)%置換したLaMnO3 系材料あるいはLa
CoO3 系材料からなり、固体電解質層22は、3〜1
5at%のY2 3 ,Yb23 等を含有した安定化Z
rO2 或いは部分安定化ZrO2 、又はY2 3 ,Yb
2 3 ,Sc2 3 ,Nd2 3 ,Sm2 3 ,CaO
等を含有するCeO2からなる。
Each layer of the cell 2 of the present invention will be described below. The air electrode layer 21 is composed of La and Ca, Sr of 10 to 30 a.
La (MnO 3 ) material substituted by t (atomic)% or La
The solid electrolyte layer 22 is made of a CoO 3 -based material,
Stabilized Z containing 5 at% of Y 2 O 3 , Yb 2 O 3, etc.
rO 2 or partially stabilized ZrO 2 , or Y 2 O 3 , Yb
2 O 3 , Sc 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , CaO
It consists CeO 2 containing such.

【0023】集電体層24は、金属元素として少なくと
もLa,Crを含有するペロブスカイト型複合酸化物を
主成分とし、La2 3 を0.5〜3.0wt(重量)
%含有し更にMgOを5〜30wt%含有する材料から
なる。好ましくは、LaCrO3 系材料のCrを5〜3
0at%Mgで置換したものが良い。La2 3 が0.
5wt%未満の場合及び3.0wt%を超える場合、焼
結性が低下する。焼結性を向上させる上で好ましくは、
1.0〜3.0wt%含有させるのが良い。また、Mg
O含有量を調整することにより集電体層24の熱膨張係
数を制御できる。
The current collector layer 24 is composed mainly of a perovskite-type composite oxide containing at least La and Cr as metal elements, and contains 0.5 to 3.0 wt.% (By weight) of La 2 O 3.
% Of MgO and 5 to 30 wt% of MgO. Preferably, the Cr of the LaCrO 3 -based material is 5-3.
Those substituted with 0 at% Mg are preferable. La 2 O 3 is 0.
If it is less than 5 wt% or more than 3.0 wt%, the sinterability is reduced. In order to improve sinterability, preferably
It is preferable to contain 1.0 to 3.0 wt%. In addition, Mg
By adjusting the O content, the thermal expansion coefficient of the current collector layer 24 can be controlled.

【0024】燃料極層23は、Ni,Co,Fe,Ru
等を含有した多孔性のZrO2 あるいはCeO2 のサー
メットからなる。
The fuel electrode layer 23 is made of Ni, Co, Fe, Ru.
And a porous cermet of ZrO 2 or CeO 2 containing the same.

【0025】前記集電体層24の厚みは30〜300μ
mが好ましく、30μm未満では酸素イオンの燃料極層
23側への拡散が大きく発電性能を低下させ、また30
0μmを超えると集電体層24の電気抵抗が大きくなり
発電性能が低下する。より好ましくは50〜150μm
である。
The thickness of the current collector layer 24 is 30 to 300 μm.
m is preferably less than 30 μm, the diffusion of oxygen ions to the fuel electrode layer 23 side is large, and the power generation performance is reduced.
If the thickness exceeds 0 μm, the electric resistance of the current collector layer 24 increases and the power generation performance decreases. More preferably 50 to 150 μm
It is.

【0026】前記空気極層21、固体電解質層22及び
燃料極層23の各厚さは、セルの固体電解質層22全面
で発電させるために空気極層21と燃料極層23のシー
ト抵抗をできるだけ近くするのが良く、そのためには空
気極層21の厚さは1.5mm〜2.5mm、固体電解
質層22の厚さは40〜100μm、燃料極層23の厚
さは50〜400μmが好ましい。
The thicknesses of the air electrode layer 21, the solid electrolyte layer 22 and the fuel electrode layer 23 are determined so that the sheet resistance of the air electrode layer 21 and the fuel electrode layer 23 is as small as possible in order to generate power over the entire solid electrolyte layer 22 of the cell. The thickness is preferably 1.5 mm to 2.5 mm, the thickness of the solid electrolyte layer 22 is 40 to 100 μm, and the thickness of the fuel electrode layer 23 is 50 to 400 μm. .

【0027】また、その他の基本構造として、開気通気
孔率が30%程度のCaO安定化ZrO2 を支持管と
し、その外表面に上記空気極層21、固体電解質層2
2、燃料極層23、集電体層24を形成したものもあ
る。
Further, as another basic structure, CaO-stabilized ZrO 2 having an open air porosity of about 30% is used as a support tube, and the air electrode layer 21 and the solid electrolyte layer 2 are formed on the outer surface thereof.
2. In some cases, a fuel electrode layer 23 and a current collector layer 24 are formed.

【0028】本発明のセル2の製造方法は下記工程〔A
1〕〜〔A5〕によって構成される。
The method for producing the cell 2 of the present invention comprises the following steps [A
1] to [A5].

【0029】〔A1〕空気極層21用の成形体を、押し
出し成形法あるいはラバー成形法で作製し、円筒状支持
管とする。
[A1] A molded body for the air electrode layer 21 is produced by an extrusion molding method or a rubber molding method to obtain a cylindrical support tube.

【0030】〔A2〕空気極層21の外表面に、ドクタ
ーブレード法によって作製した固体電解質層22のシー
トを、集電体層24用の切り欠き部を除いて貼り付け
る。
[A2] A sheet of the solid electrolyte layer 22 produced by the doctor blade method is attached to the outer surface of the air electrode layer 21 except for a cutout for the current collector layer 24.

【0031】〔A3〕固体電解質層22の前記切り欠き
部に、ドクターブレード法によって作製した集電体層2
4のシートを貼り付ける。〔A2〕,〔A3〕におい
て、集電体層24用の切り欠き部は、固体電解質層22
を空気極層21の外表面に貼り付けた後に、研磨法等に
より形成しても良い。
[A3] A current collector layer 2 formed by a doctor blade method is provided in the cutout portion of the solid electrolyte layer 22.
Paste the sheet of No. 4. In [A2] and [A3], the cutout for the current collector layer 24 is formed by the solid electrolyte layer 22.
May be formed by a polishing method or the like after sticking to the outer surface of the air electrode layer 21.

【0032】〔A4〕さらに、固体電解質層22の集電
体層24部を除いた外表面に、ドクターブレード法によ
って作製した燃料極層23のシートを貼り付ける。この
とき、燃料極層23はスラリーディップ法によって形成
しても良い。
[A4] Further, a sheet of the fuel electrode layer 23 produced by the doctor blade method is attached to the outer surface of the solid electrolyte layer 22 except for the current collector layer 24. At this time, the fuel electrode layer 23 may be formed by a slurry dipping method.

【0033】〔A5〕1500〜1600℃の温度で2
〜10時間大気中で共焼結する。
[A5] 2 at a temperature of 1500 to 1600 ° C.
Co-sinter for 10 hours in air.

【0034】また、集電体層24のシートの製造方法
を、以下の工程〔B1〕〜〔B3〕によって説明する。
The method of manufacturing the sheet of the current collector layer 24 will be described with reference to the following steps [B1] to [B3].

【0035】〔B1〕所定量のLa2 (CO3 3 ,C
2 3 ,MgOの混合粉末を1000〜1500℃で
仮焼し、ペロブスカイト型複合酸化物を合成した後、ジ
ルコニアボールを用いた周知の回転ミル等の方法により
0.1〜5.0μmの大きさに粉砕する。
[B1] A predetermined amount of La 2 (CO 3 ) 3 , C
A mixed powder of r 2 O 3 and MgO is calcined at 1000 to 1500 ° C. to synthesize a perovskite-type composite oxide, and then 0.1 to 5.0 μm by a known method such as a rotary mill using zirconia balls. Crush to size.

【0036】〔B2〕La2 (CO3 3 をLa2 3
換算で0.5〜3.0wt%、MgOを5〜30wt%
添加し、ジルコニアボールを用いて混合する。
[B2] La 2 (CO 3 ) 3 is converted to La 2 O 3
0.5 to 3.0 wt% in conversion, 5 to 30 wt% MgO
Add and mix using zirconia balls.

【0037】〔B3〕得られた粉末に水及びバインダー
樹脂を加え、混合後ドクターブレード法により30〜1
00μmの厚さにシート成形する。
[B3] Water and a binder resin are added to the obtained powder, and after mixing, 30 to 1 by a doctor blade method.
Sheets are formed to a thickness of 00 μm.

【0038】本発明のセル2は、図2に示すような一端
が開放され一端が閉じた構造、又は両端が開放された構
造、又は両端が閉じた構造であり空気を空気管でセル2
の中途から供給するもの等、種々の構成を採り得る。
The cell 2 of the present invention has a structure in which one end is open and one end is closed as shown in FIG. 2, a structure in which both ends are open, or a structure in which both ends are closed.
Various configurations such as those supplied from the middle can be adopted.

【0039】かくして、本発明は、空気中及び動作時の
雰囲気ガスである水素ガス中において、熱膨張に起因し
てセルが破壊されるという問題を解消するという作用効
果を有する。
Thus, the present invention has the effect of eliminating the problem that cells are destroyed due to thermal expansion in air and in hydrogen gas, which is an atmospheric gas during operation.

【0040】尚、本発明は上記実施形態に限定されるも
のではなく、本発明の要旨を逸脱しない範囲内で種々の
変更は何等差し支えない。
It should be noted that the present invention is not limited to the above embodiment, and various changes may be made without departing from the scope of the present invention.

【0041】[0041]

【実施例】本発明の実施例を以下に説明する。Embodiments of the present invention will be described below.

【0042】(実施例)図1のセル2を以下の工程〔a
1〕〜〔a10〕によって作製した。
(Embodiment) The cell 2 of FIG.
1] to [a10].

【0043】〔a1〕空気極層21材料として純度9
9. 9%以上のLa2 3 ,MnO2 ,CaCO3 の各
粉末を用意し、これらをLa0.8 Ca0.2 MnO3 の化
学量論組成になるように秤量混合した後、1500℃で
3時間仮焼し、粉砕して平均粒径が6μmの固溶体粉末
を得た。
[A1] The purity of the material of the air electrode layer 21 is 9
9.9% or more of La 2 O 3 , MnO 2 , and CaCO 3 powders are prepared, weighed and mixed so as to have a stoichiometric composition of La 0.8 Ca 0.2 MnO 3 , and then mixed at 1500 ° C. for 3 hours. The powder was calcined and pulverized to obtain a solid solution powder having an average particle diameter of 6 μm.

【0044】〔a2〕この固溶体粉末にバインダー樹脂
を添加し、押し出し成形法により円筒状の空気極層21
の成形体を作製した。
[A2] A binder resin is added to the solid solution powder, and the cylindrical air electrode layer 21 is formed by extrusion molding.
Was formed.

【0045】〔a3〕空気極層21の成形体を乾燥後、
1250℃で10時間仮焼して脱バインダー処理し、仮
焼体を作製した。
[A3] After drying the formed body of the air electrode layer 21,
The material was calcined at 1250 ° C. for 10 hours to remove the binder, thereby producing a calcined body.

【0046】〔a4〕共沈法によって得られたY2 3
を8mol%の割合で含有する平均粒径1.0μmのZ
rO2 粉末に、トルエンとバインダー樹脂を添加してス
ラリーを調製し、ドクターブレード法によって厚さ10
0μmの固体電解質層22用のシートを得た。
[A4] Y 2 O 3 obtained by the coprecipitation method
Having an average particle size of 1.0 μm containing
Toluene and a binder resin were added to the rO 2 powder to prepare a slurry, and the slurry was prepared to a thickness of 10 by a doctor blade method.
A sheet for the solid electrolyte layer 22 of 0 μm was obtained.

【0047】〔a5〕純度99.9%以上のLa
2 3 ,Cr2 3 ,MgOの各粉末を用意し、これら
をLaMg0.1 Cr0.9 3 の化学量論組成になるよう
に秤量混合した後、1500℃で3時間仮焼し、粉砕し
て平均粒径が2μmの固溶体粉末を得た。更に、La2
3 を1.0wt%、及びMgOを所定量加え混合し
た。
[A5] La having a purity of 99.9% or more
Each powder of 2 O 3 , Cr 2 O 3 , and MgO was prepared, weighed and mixed so as to have a stoichiometric composition of LaMg 0.1 Cr 0.9 O 3 , calcined at 1500 ° C. for 3 hours, and pulverized. Thus, a solid solution powder having an average particle size of 2 μm was obtained. Furthermore, La 2
1.0 wt% of O 3 and a predetermined amount of MgO were added and mixed.

【0048】〔a6〕この固溶体粉末にトルエンとバイ
ンダー樹脂を添加してスラリーを調製し、ドクターブレ
ード法により厚さ75μmの集電体層24用のシートを
作製した。このとき、MgOの添加量の異なる固溶体粉
末や、LaMg0.1 Cr0.9 3 中のMgの固溶量を種
々変化させたシートも作製した。
[A6] Toluene and a binder resin were added to the solid solution powder to prepare a slurry, and a sheet for the current collector layer 24 having a thickness of 75 μm was prepared by a doctor blade method. At this time, solid solution powders having different addition amounts of MgO and sheets having various changes in the solid solution amount of Mg in LaMg 0.1 Cr 0.9 O 3 were also produced.

【0049】〔a7〕円筒状の空気極層21焼結体に固
体電解質層22用のシートをロール状に巻き付け、11
00℃で3時間の仮焼を行い、その後集電体層24用の
シートの積層箇所に相当する固体電解質層22仮焼体の
表面を平面研磨し、空気極層21を一部露出させ集電体
層24のシートをその露出部に貼り付けた。
[A7] A sheet for the solid electrolyte layer 22 is wound into a roll around the cylindrical air electrode layer 21 sintered body,
After calcining at 00 ° C. for 3 hours, the surface of the calcined body of the solid electrolyte layer 22 corresponding to the lamination position of the sheet for the current collector layer 24 is polished with a plane, and the air electrode layer 21 is partially exposed to collect. The sheet of the electric body layer 24 was stuck on the exposed portion.

【0050】〔a8〕円筒状の空気極層21焼結体、固
体電解質層22仮焼体、集電体層24のシートを、大気
中で1530℃で6時間共焼結した。
[A8] Sheets of the cylindrical air electrode layer 21 sintered body, solid electrolyte layer 22 calcined body, and current collector layer 24 were co-sintered at 1530 ° C. for 6 hours in the atmosphere.

【0051】この共焼結体の水に対する安定性をプレッ
シャークッカー法により評価した。具体的には、共焼結
体を加湿加圧装置に入れ、温度150℃、相対湿度約1
00%で3日間放置し、集電体層24の化学的安定性を
評価した。即ち、集電体層24中に未反応の酸化ランタ
ンが残存すると水で潮解し、集電体層24が壊れるため
である。
The stability of this co-sintered body to water was evaluated by a pressure cooker method. Specifically, the co-sintered body was placed in a humidifying and pressurizing device, and the temperature was 150 ° C. and the relative humidity was about 1
It was left at 00% for 3 days, and the chemical stability of the current collector layer 24 was evaluated. That is, if unreacted lanthanum oxide remains in the current collector layer 24, it deliquesces with water and breaks the current collector layer 24.

【0052】更にセル2内部に空気を加圧注入してその
内気圧が外気圧よりも1kgf/cm2 高くなるように
し、その状態のセル2を水没させ気泡の発生の有無によ
り集電体層24の破壊を評価した。
Further, air is pressurized and injected into the inside of the cell 2 so that the internal pressure becomes 1 kgf / cm 2 higher than the external pressure. The cell 2 in this state is submerged, and the current collector layer is determined based on the presence or absence of bubbles. 24 were evaluated for failure.

【0053】〔a9〕燃料極層23用の原料粉末とし
て、平均粒径1.0μmのNiO粉末と、8mol%の
2 3 を含有する平均粒径1.5μmのZrO2
を、重量比で8:2になるように混合し、スラリーを調
製した。
[A9] NiO powder having an average particle size of 1.0 μm and ZrO 2 having an average particle size of 1.5 μm containing 8 mol% of Y 2 O 3 were used as raw material powders for the fuel electrode layer 23. The mixture was mixed at a ratio of 8: 2 to prepare a slurry.

【0054】〔a10〕上記共焼結体に燃料極層23用の
スラリーを塗布し、大気中で1400℃で2時間焼結
し、セル2を作製した。
[A10] A slurry for the fuel electrode layer 23 was applied to the above-mentioned co-sintered body, and sintered at 1400 ° C. for 2 hours in the air to prepare a cell 2.

【0055】図2に示すように、作製したセル2内に空
気、外側に水素ガスを流して1000℃で発電を行っ
た。そして、α1,α3,Δα21,Δα34,共焼結時の
セル2の破壊の有無,発電時のセル2の破壊の有無を調
査した結果を表1に示す。
As shown in FIG. 2, air was generated at 1000 ° C. by flowing air into the cell 2 and hydrogen gas outside. Table 1 shows the results of investigation on α1, α3, Δα21, Δα34, whether the cell 2 was broken during co-sintering, and whether the cell 2 was broken during power generation.

【0056】[0056]

【表1】 [Table 1]

【0057】表1において、α1〜α4の測定は、集電
体層24用の原料粉末を円盤状にプレス成形し、大気中
で1500℃で6時間焼結し、得られた焼結体から試料
を切り出し、空気中と水素ガス中で室温〜1000℃ま
での熱膨張係数を測定した。また、固体電解質層22の
試料も同様に作製し熱膨張係数を測定した。
In Table 1, α1 to α4 were measured by pressing the raw material powder for the current collector layer 24 into a disk shape and sintering it at 1500 ° C. for 6 hours in the atmosphere. A sample was cut out, and the coefficient of thermal expansion from room temperature to 1000 ° C. was measured in air and hydrogen gas. In addition, a sample of the solid electrolyte layer 22 was prepared in the same manner, and the coefficient of thermal expansion was measured.

【0058】表1に示すように、MgOの添加により集
電体層24の空気中及び水素ガス中での熱膨張係数を調
整することができる。MgOを添加していないNO.1
とMgOの添加量が少ないNO.2では、空気中の熱膨
張係数α1が小さいために固体電解質層22の熱膨張係
数α2との差Δα21が大きくなり、共焼結時にセル2の
破壊が起きた。MgOの添加量を増やしたNO.3,4
では、α1及びα3共に大きくなるが、Δα21とΔα34
は小さくなり、共焼結時及び発電時にセル2の破壊は生
じなかった。
As shown in Table 1, the thermal expansion coefficient of the current collector layer 24 in air and hydrogen gas can be adjusted by adding MgO. NO. To which MgO was not added. 1
NO. In No. 2, since the coefficient of thermal expansion α1 in the air was small, the difference Δα21 from the coefficient of thermal expansion α2 of the solid electrolyte layer 22 was large, and the cell 2 was destroyed during co-sintering. NO. 3,4
Then, both α1 and α3 increase, but Δα21 and Δα34
Was small, and no destruction of the cell 2 occurred during co-sintering and during power generation.

【0059】LaCrO3 中のMg固溶成分がないN
O.6とMg固溶成分が少ないNO.7であっても、M
gOの添加量を増やすことで、α1,α3を制御してΔ
α21とΔα34を小さくでき、共焼結時及び発電時にセル
2の破壊を防止できた。また、Mg固溶成分が多いN
O.9では、MgOの添加量を少なくしても、α1が低
下してΔα21が大きくなり、共焼結時にセル2の破壊が
生じた。Mg固溶成分及びMgO添加量の両方が多いN
O.12では、Δα34が大きくなり、発電時にセル2の
破壊が発生した。
N having no Mg solid solution component in LaCrO 3
O. NO. 6 and NO. Even if it is 7, M
By increasing the amount of gO added, α1 and α3 are controlled and Δ
α21 and Δα34 can be reduced, and the destruction of the cell 2 during co-sintering and power generation can be prevented. In addition, N, which has a high Mg solid solution component,
O. In No. 9, even if the added amount of MgO was reduced, α1 was decreased and Δα21 was increased, and the cell 2 was broken during co-sintering. N with a high content of both Mg solid solution component and MgO
O. In No. 12, Δα34 increased, and the cell 2 was destroyed during power generation.

【0060】Mg固溶成分及びMgO添加量の両方共ほ
ぼ中間値であるNO.8、及びMg固溶成分は多いがM
gO添加量がほぼ中間値であるNO.10,11では、
共焼結時及び発電時にセル2の破壊は発生しなかった。
In both the Mg solid solution component and the added amount of MgO, NO. 8, and Mg solid solution components are large, but M
In the case of NO. In 10 and 11,
No destruction of the cell 2 occurred during co-sintering and during power generation.

【0061】このように、Mg固溶量を5〜30at
%、MgO添加量を6〜18wt%の範囲内で調整する
ことで、α1,α3,Δα21,Δα34を制御できた。
As described above, the Mg solid solution amount is set to 5 to 30 at.
%, MgO added amount within the range of 6 to 18 wt%, α1, α3, Δα21, Δα34 could be controlled.

【0062】[0062]

【発明の効果】本発明は、集電体層の空気中での熱膨張
係数をα1、固体電解質層の空気中での熱膨張係数をα
2、α2とα1の差をα2−α1=Δα21とした場合、
α1<α2であり、且つΔα21≦0.5×10-6/℃で
あることにより、空気中及び動作時の雰囲気ガスである
水素ガス中において、熱膨張係数差に起因してセルが破
壊されるという問題を解消するという効果を有する。
According to the present invention, the thermal expansion coefficient of the current collector layer in air is α1, and the thermal expansion coefficient of the solid electrolyte layer in air is α1.
2. When the difference between α2 and α1 is α2-α1 = Δα21,
When α1 <α2 and Δα21 ≦ 0.5 × 10 −6 / ° C., the cell is destroyed in air and in hydrogen gas, which is an atmosphere gas during operation, due to a difference in thermal expansion coefficient. This has the effect of eliminating the problem of

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のSO燃料電池セルの部分断面の斜視図
である。
FIG. 1 is a perspective view of a partial cross section of an SO fuel cell unit of the present invention.

【図2】SO燃料電池F全体の基本構成の断面図であ
る。
FIG. 2 is a sectional view of the basic configuration of the entire SO fuel cell F;

【符号の説明】[Explanation of symbols]

1:ケース 2:セル 5:燃焼室 6:空気管 10:Niフェルト 11:インターコネクタ(集電体層) 21:空気極層 22:固体電解質層 23:燃料極層 24:集電体層 1: Case 2: Cell 5: Combustion chamber 6: Air tube 10: Ni felt 11: Interconnector (current collector layer) 21: Air electrode layer 22: Solid electrolyte layer 23: Fuel electrode layer 24: Current collector layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多層円筒状に積層された空気極層、固体電
解質層、燃料極層及び集電体層を有し、集電体層の空気
中での熱膨張係数をα1、固体電解質層の空気中での熱
膨張係数をα2、α2とα1の差α2−α1をΔα21と
した場合、α1<α2であり、且つΔα21≦0.5×1
-6/℃であることを特徴とする固体電解質型燃料電池
セル。
An air electrode layer, a solid electrolyte layer, a fuel electrode layer, and a current collector layer laminated in a multilayer cylindrical shape, wherein the current collector layer has a coefficient of thermal expansion in air of α1, and a solid electrolyte layer. When the thermal expansion coefficient in the air is α2, and the difference α2−α1 between α2 and α1 is Δα21, α1 <α2 and Δα21 ≦ 0.5 × 1
A solid oxide fuel cell having a temperature of 0 -6 / ° C.
【請求項2】前記集電体層の水素ガス中での熱膨張係数
をα3、固体電解質層の水素ガス中での熱膨張係数をα
4、α3とα4の差α3−α4をΔα34とした場合、α
3>α4であり、且つΔα34≦0.3×10-6/℃であ
る請求項1記載の固体電解質型燃料電池セル。
2. The thermal expansion coefficient of the current collector layer in hydrogen gas is α3, and the thermal expansion coefficient of the solid electrolyte layer in hydrogen gas is α3.
4, when the difference α3-α4 between α3 and α4 is Δα34, α
3. The solid oxide fuel cell according to claim 1, wherein 3> α4 and Δα34 ≦ 0.3 × 10 −6 / ° C.
【請求項3】Δα21>Δα34である請求項2記載の固体
電解質型燃料電池セル。
3. The solid oxide fuel cell according to claim 2, wherein Δα21> Δα34.
JP05760599A 1999-03-04 1999-03-04 Solid oxide fuel cell Expired - Fee Related JP3667141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05760599A JP3667141B2 (en) 1999-03-04 1999-03-04 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05760599A JP3667141B2 (en) 1999-03-04 1999-03-04 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2000260440A true JP2000260440A (en) 2000-09-22
JP3667141B2 JP3667141B2 (en) 2005-07-06

Family

ID=13060504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05760599A Expired - Fee Related JP3667141B2 (en) 1999-03-04 1999-03-04 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3667141B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012423A (en) * 2005-06-30 2007-01-18 Kyocera Corp Fuel battery cell and fuel battery
JP2007220548A (en) * 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012423A (en) * 2005-06-30 2007-01-18 Kyocera Corp Fuel battery cell and fuel battery
JP2007220548A (en) * 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology Fuel cell system

Also Published As

Publication number Publication date
JP3667141B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US8658328B2 (en) Stack structure for laminated solid oxide fuel cell, laminated solid oxide fuel cell and manufacturing method
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
US20070141423A1 (en) Tubular electrochemical reactor cell and electrochemical reactor system which is composed of the cell
EP1662599A1 (en) Fuel electrode material, a fuel electrode, and a solid oxide fuel cell
EP1930975A1 (en) Electrochemical device and electrochemical apparatus
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
WO2012133438A1 (en) Medium-to-low-temperature high-efficiency electrochemical cell and electrochemical reaction system comprising same
JP4462727B2 (en) Solid electrolyte fuel cell
JP2003208902A (en) Solid electrolyte-type fuel cell
JPH0992302A (en) Unit cell of cylindrical fuel cell and its manufacture
JP4367843B2 (en) Fuel electrode, electrochemical cell, and method of manufacturing fuel electrode
JP3339998B2 (en) Cylindrical fuel cell
JP2000260440A (en) Solid electrolyte fuel cell
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
JP3342610B2 (en) Solid oxide fuel cell
JP3725997B2 (en) Method for manufacturing solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP2002134133A (en) Cell of solid electrolyte fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JP2000077082A (en) Solid electrolyte fuel cell
JP4683830B2 (en) Support for fuel cell, fuel cell and fuel cell
JPH07122282A (en) Solid electrolyte type fuel cell
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees