JP2000256797A - HIGH-Mn AUSTENITIC STAINLESS STEEL PRODUCT IMPROVED IN HIGH TEMPERATURE OXIDATION CHARACTERISTIC - Google Patents

HIGH-Mn AUSTENITIC STAINLESS STEEL PRODUCT IMPROVED IN HIGH TEMPERATURE OXIDATION CHARACTERISTIC

Info

Publication number
JP2000256797A
JP2000256797A JP11057733A JP5773399A JP2000256797A JP 2000256797 A JP2000256797 A JP 2000256797A JP 11057733 A JP11057733 A JP 11057733A JP 5773399 A JP5773399 A JP 5773399A JP 2000256797 A JP2000256797 A JP 2000256797A
Authority
JP
Japan
Prior art keywords
stainless steel
mass
austenitic stainless
temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11057733A
Other languages
Japanese (ja)
Other versions
JP4245720B2 (en
Inventor
Manabu Oku
学 奥
Yoshiyuki Fujimura
佳幸 藤村
Toshiro Nagoshi
敏郎 名越
Naoto Hiramatsu
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP05773399A priority Critical patent/JP4245720B2/en
Publication of JP2000256797A publication Critical patent/JP2000256797A/en
Application granted granted Critical
Publication of JP4245720B2 publication Critical patent/JP4245720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-Mn austenitic stainless steel product usable in a high temperature region not lower than 900 deg.C. SOLUTION: This stainless steel product has a composition consisting of, by mass, <=0.1% C, >2.0-4.5% Si, >5.0-7.0% Mn, 3.0-5.0% Ni, 15.0-25.0% Cr, 0.10-0.25% N, 0-2.5% (including 0%), preferably 0.5-2.5% Al, 0-0.1%; (including 0%) REM, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種熱機関、例え
ば発電,廃棄物焼却プラントの高温燃焼雰囲気に曝され
る部材や、内燃機関の排ガス経路部材に使用される、高
温酸化特性および高温強度に優れた高Mnオーステナイト
系ステンレス鋼材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-temperature oxidation characteristics and high-temperature strength used for members exposed to a high-temperature combustion atmosphere of various heat engines, for example, power generation and waste incineration plants, and exhaust gas passage members of an internal combustion engine. The present invention relates to a high-Mn austenitic stainless steel excellent in steel.

【0002】[0002]

【従来の技術】ステンレス鋼は良好な耐食性および耐熱
性を有するため、上記の用途に幅広く使用されている。
耐熱用途において最も重要な特性は、高温酸化特性およ
び高温強度である。
2. Description of the Related Art Stainless steel is widely used in the above applications because of its good corrosion resistance and heat resistance.
The most important properties in heat resistant applications are high temperature oxidation properties and high temperature strength.

【0003】フェライト系ステンレス鋼は、オーステナ
イト系ステンレス鋼に比べ高温酸化特性に優れ、また熱
膨張係数が小さいことから、熱応力が繰り返される用
途、例えば各種燃焼器具や自動車排ガス部材に適してい
る。しかし、高温強度がオーステナイト系ステンレス鋼
に比べ本質的に低く、構造材としては650℃程度が使用
限界温度とされる。
[0003] Ferritic stainless steel is excellent in high-temperature oxidation characteristics and smaller in thermal expansion coefficient than austenitic stainless steel, and therefore is suitable for applications in which thermal stress is repeated, for example, various burning appliances and automobile exhaust gas members. However, the high-temperature strength is essentially lower than that of austenitic stainless steel, and about 650 ° C. is considered to be the usage limit temperature for structural materials.

【0004】オーステナイト系ステンレス鋼は、JIS G
4305に規定される300系(SUS304,SUS316,SUS302B,SU
S310S等)や200系(SUS201,SUS202等)のものが耐熱用
途に幅広く使用されており、使用温度が700℃を超える
構造材などの用途にも適用されている。
Austenitic stainless steel is JIS G
300 series specified in 4305 (SUS304, SUS316, SUS302B, SU
S310S, etc.) and 200 series (SUS201, SUS202, etc.) are widely used for heat-resistant applications, and are also used for applications such as structural materials whose operating temperature exceeds 700 ° C.

【0005】300系のオーステナイト系ステンレス鋼はM
n含有量が2.0質量%以下に規定されていて耐高温酸化性
にも比較的優れている。SUS304やSUS316は850〜900℃ま
での温度で使用可能とされ、SUS302B,SUS310Sでは900
℃を超える高温域で使用可能とされる。
[0005] 300 series austenitic stainless steel is M
The n content is specified to be 2.0% by mass or less, and the high temperature oxidation resistance is relatively excellent. SUS304 and SUS316 can be used at temperatures between 850 and 900 ° C, and SUS302B and SUS310S have 900
It can be used in the high temperature range exceeding ℃.

【0006】一方、200系のオーステナイト系ステンレ
ス鋼はNiをMnで置換した高Mnステンレス鋼であり、Nを
多く含むため高温強度が高く、また安価であることが特
徴である。これらは各種内燃機関の弁用部材や各種プラ
ントの耐熱耐摩耗部材に使用されている。しかしなが
ら、200系のものはMn含有量が高いことに起因して300系
のものより耐高温酸化性に劣り、SUS201やSUS202の使用
限界温度は800〜850℃付近までとされている。近年開発
されたCr含有量の高い高Mn系ステンレス鋼では耐高温酸
化性も多少向上しているが、それでも使用限界温度はSU
S304と同程度で高々850〜900℃までとされる。
On the other hand, 200 type austenitic stainless steel is a high Mn stainless steel in which Ni is replaced with Mn, and is characterized by high temperature strength and high cost because it contains a large amount of N. These are used for valve members of various internal combustion engines and heat and wear resistant members of various plants. However, those of the 200 series are inferior in high-temperature oxidation resistance to those of the 300 series due to the high Mn content, and the working limit temperature of SUS201 or SUS202 is set to around 800 to 850 ° C. Although the high-Mn stainless steel with a high Cr content developed in recent years has slightly improved high-temperature oxidation resistance, the service limit temperature is still SU
It is about the same as S304 and up to 850-900 ° C.

【0007】[0007]

【発明が解決しようとする課題】オーステナイト系ステ
ンレス鋼の耐高温酸化性を改善する手段に関し、Mn含有
量が2.0質量%以下の300系については従来から多くの検
討がなされており、例えば特公昭54−12890号公報に開
示されているように、Cr,Si,Al,REM(希土類元
素),Ca等の元素が有効に作用することが知られてい
る。しかし、200系の高Mnオーステナイト系ステンレス
鋼の場合、高温酸化の厳しい用途には適さないとされて
おり、その耐高温酸化性の改善を検討した例は非常に少
ない。その中で、特開昭57−108250号公報には、95%窒
素−5%酸素雰囲気中1200℃×2時間までの加熱条件にお
いてCaおよびREMの添加が有効であることが示されてい
る。しかしこれは、鋼材製造過程のスラブ加熱を想定し
たものであり、耐熱部材として大気中で高温に曝される
場合の耐高温酸化性改善を意図したものではない。高Mn
オーステナイト系ステンレス鋼において、900℃以上の
高温大気中における耐高温酸化性を向上させる手法は確
立されておらず、SUS302BやSUS310Sのように900℃以上
の高温域で使用できる高Mnオーステナイト系ステンレス
鋼は未だ出現していないのが現状である。
With respect to the means for improving the high-temperature oxidation resistance of austenitic stainless steel, many studies have been made on 300 series having a Mn content of 2.0% by mass or less. As disclosed in JP-A-54-12890, it is known that elements such as Cr, Si, Al, REM (rare earth element), and Ca act effectively. However, high-Mn austenitic stainless steel of 200 series is not suitable for severe applications of high-temperature oxidation, and there are very few cases in which improvement in high-temperature oxidation resistance has been studied. Among them, Japanese Patent Application Laid-Open No. 57-108250 discloses that the addition of Ca and REM is effective under heating conditions of up to 1200 ° C. × 2 hours in a 95% nitrogen-5% oxygen atmosphere. However, this is intended for slab heating in the steel material manufacturing process, and is not intended to improve high-temperature oxidation resistance when exposed to high temperatures in the atmosphere as a heat-resistant member. High Mn
For austenitic stainless steels, no method has been established to improve the high-temperature oxidation resistance in high-temperature atmospheres of 900 ° C or higher, and high-Mn austenitic stainless steels such as SUS302B and SUS310S that can be used in high-temperature regions of 900 ° C or higher Has not yet emerged.

【0008】本発明は、このような現状に対応すべく、
900℃以上の高温域においても優れた耐高温酸化性を呈
する高Mnオーステナイト系ステンレス鋼材を提供するこ
とを目的とする。
[0008] The present invention, in order to cope with such a current situation,
An object of the present invention is to provide a high-Mn austenitic stainless steel material that exhibits excellent high-temperature oxidation resistance even in a high-temperature range of 900 ° C or higher.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、質量%で、C:0.1%以下,Si:
2.0%超え〜4.5%,Mn:5.0%超え〜7.0%,Ni:3.0〜
5.0%,Cr:15.0〜25.0%,N:0.10〜0.25%,Al:0〜
2.5%(無添加を含む),REM:0〜0.1%(無添加を含
む)を含有し、残部がFeおよび不可避的不純物からなる
高Mnオーステナイト系ステンレス鋼材である。ここで、
REMはCe,La,Y等に代表される希土類元素であり、希土
類元素の合計含有量を規定するものである。
In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that, in mass%, C: 0.1% or less, Si:
2.0% to 4.5%, Mn: 5.0% to 7.0%, Ni: 3.0 to
5.0%, Cr: 15.0 to 25.0%, N: 0.10 to 0.25%, Al: 0 to
This is a high Mn austenitic stainless steel material containing 2.5% (including no addition) and REM: 0 to 0.1% (including no addition), with the balance being Fe and unavoidable impurities. here,
REM is a rare earth element represented by Ce, La, Y, etc., and defines the total content of rare earth elements.

【0010】請求項2の発明は、請求項1の発明におい
て、Al含有量が0.5〜2.5質量%である点を規定したもの
である。
[0010] The invention of claim 2 is the invention of claim 1, wherein the Al content is 0.5 to 2.5% by mass.

【0011】請求項3の発明は、請求項1または2の鋼
材において、特に、1000℃×100時間の大気中連続加熱
後の酸化増量が0.1kg/m2未満,1100℃×100時間の大気
中連続加熱後の酸化増量が0.2kg/m2以下,かつ900℃に
おける0.2%耐力が90N/mm2以上である点を規定したもの
である。
[0011] The invention according to claim 3 is the steel according to claim 1 or 2, wherein the oxidation increase after continuous heating in the air at 1000 ° C for 100 hours is less than 0.1 kg / m 2 , and in the air at 1100 ° C for 100 hours. It specifies that the oxidation weight gain after medium continuous heating is 0.2 kg / m 2 or less and the 0.2% proof stress at 900 ° C is 90 N / mm 2 or more.

【0012】ここで、酸化増量は、JIS Z 2281に準拠し
た高温酸化試験を実施して求める。加熱→空冷の過程で
酸化スケールが剥離した場合は剥離した酸化スケールの
質量も含めて酸化増量を算出する。900℃における0.2%
耐力は、JIS G 0567に準拠した高温引張試験を行って求
める。
Here, the increase in oxidation is determined by conducting a high-temperature oxidation test in accordance with JIS Z 2281. When the oxide scale is peeled off in the process of heating → air cooling, the oxidation increase is calculated including the mass of the peeled oxide scale. 0.2% at 900 ° C
The yield strength is determined by performing a high-temperature tensile test according to JIS G0567.

【0013】請求項4の発明は、請求項3の発明におい
て、1100℃×100時間の大気中連続加熱後の酸化増量が
0.1kg/m2未満である点を規定したものである。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the oxidation increase after continuous heating in the atmosphere at 1100 ° C. × 100 hours is reduced.
It is specified that it is less than 0.1 kg / m 2 .

【0014】[0014]

【発明の実施の形態】発明者らは種々検討の結果、Mnを
多量に含有するオーステナイト系ステンレス鋼におい
て、Siを特定量以上含有させたとき、900℃以上の高温
域での耐高温酸化性が顕著に向上することを見出した。
また、微量のAlやREMをSiと複合で含有させると、さら
に良好な耐高温酸化性を示すことも明らかになった。本
発明はこれらの知見に基づいてなされたものである。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of various studies, the inventors have found that, when a specific amount of Si is contained in an austenitic stainless steel containing a large amount of Mn, the high-temperature oxidation resistance in a high-temperature region of 900 ° C. or more is obtained. Was found to be significantly improved.
In addition, it was also revealed that when a small amount of Al or REM is included in a composite with Si, better high-temperature oxidation resistance is exhibited. The present invention has been made based on these findings.

【0015】高Mnオーステナイト系ステンレス鋼材の耐
高温酸化性に及ぼすSi含有量の影響を調査した一例とし
て、図1に、Fe−17Cr−6Mn−4Ni−0.2Nを基本成分とす
る高Mnオーステナイト系ステンレス鋼においてSi含有量
を変化させたときの、耐高温酸化性に及ぼすSi含有量の
影響を示す。図1には、1000℃×100時間の大気中連続
加熱後の酸化増量と、1100℃×100時間の大気中連続加
熱後の酸化増量のデータを示してある。また、比較のた
め、SUS304およびSUS310Sについての1100℃×100時間加
熱による酸化増量もプロットしてある。
As an example of investigating the influence of the Si content on the high-temperature oxidation resistance of a high-Mn austenitic stainless steel, FIG. 1 shows a high-Mn austenitic stainless steel containing Fe-17Cr-6Mn-4Ni-0.2N as a basic component. The effect of the Si content on the high-temperature oxidation resistance when the Si content is changed in stainless steel is shown. FIG. 1 shows data on the increase in oxidation after continuous heating in air at 1000 ° C. × 100 hours and the increase in oxidation after continuous heating in air at 1100 ° C. × 100 hours. Further, for comparison, the oxidation increase of SUS304 and SUS310S by heating at 1100 ° C. × 100 hours is also plotted.

【0016】図1から、高Mnオーステナイト系ステンレ
ス鋼にSiを添加していくと、Si含有量の増加とともに酸
化増量は減少し、Si含有量が2.0質量%を超えたときに
酸化増量は極めて低い値に安定することがわかる。加熱
温度が1000℃の場合と1100℃の場合とを比較すると、Si
含有量が2質量%以下の範囲では両者の酸化増量に大き
な差が見られる。これは、加熱温度が高いほど酸化が激
しくなるという、材料の一般的な性質を示しているもの
といえる。一方、Si含有量が2.0質量%を超えると、100
0℃,1100℃いずれの場合でも酸化増量は非常に少なく
なる。また、スケール剥離量も極めて少なくなる。本発
明ではこの新たな知見に基づき、高Mnオーステナイト系
ステンレス鋼材の耐高温酸化性をSUS310Sと同程度にま
で向上させることを可能にした。以下、本発明を特定す
る事項について説明する。
FIG. 1 shows that when Si is added to high-Mn austenitic stainless steel, the increase in oxidation decreases with an increase in the Si content. When the Si content exceeds 2.0% by mass, the increase in oxidation becomes extremely large. It can be seen that the value is stabilized at a low value. When comparing the case where the heating temperature is 1000 ° C and the case where the heating temperature is 1100 ° C, Si
When the content is in the range of 2% by mass or less, there is a large difference in the oxidation increase between the two. This can be said to indicate a general property of the material that the higher the heating temperature is, the more the oxidation is intensified. On the other hand, if the Si content exceeds 2.0% by mass, 100%
At both 0 ° C and 1100 ° C, the amount of increase in oxidation is very small. In addition, the amount of scale peeling becomes extremely small. Based on this new knowledge, the present invention has made it possible to improve the high-temperature oxidation resistance of a high-Mn austenitic stainless steel material to about the same level as SUS310S. Hereinafter, matters specifying the present invention will be described.

【0017】Cは、一般にクリープ特性を向上させる元
素として有効であるが、0.10質量%を超えると炭化物の
析出による脆化や溶接施工時のビード割れを誘発しやす
くなる。したがって、C含有量は0.1質量%以下とした。
C is generally effective as an element for improving creep properties, but if it exceeds 0.10% by mass, embrittlement due to precipitation of carbides and bead cracking during welding work are likely to occur. Therefore, the C content is set to 0.1% by mass or less.

【0018】Siは、前述のように2.0質量%を超える含
有量とすることで高Mnオーステナイト系ステンレス鋼材
の高温酸化特性を著しく改善する他、高温腐食特性を向
上させるためにも有効に作用する。しかし、Siを4.5質
量%を超えて多量に含有させると、σ脆化感受性が高く
なり、また、溶接性および熱間加工性の低下も懸念され
る。このため、Si含有量は2.0質量%を超え4.5質量%以
下の範囲に規定した。好ましいSi含有量の範囲は2.0質
量%を超え4.0質量%以下である。なお、特に優れた耐
高温酸化性を安定して得るためにはSiを3.5質量%以上
含有させるのがよい。 したがって、高温酸化特性を特
に重視する場合は、Si含有量を3.5〜4.5質量%にするの
がよい。より一層好ましいSi含有量の範囲は3.5〜4.0質
量%である。
The content of Si exceeding 2.0% by mass as described above significantly improves the high-temperature oxidation characteristics of the high-Mn austenitic stainless steel material and also effectively acts to improve the high-temperature corrosion characteristics. . However, when Si is contained in a large amount exceeding 4.5% by mass, the susceptibility to σ embrittlement increases, and there is a concern that the weldability and the hot workability may decrease. For this reason, the Si content is specified in the range of more than 2.0% by mass and 4.5% by mass or less. The preferred range of the Si content is more than 2.0% by mass and 4.0% by mass or less. In order to stably obtain particularly excellent high-temperature oxidation resistance, it is preferable to contain 3.5% by mass or more of Si. Therefore, when special emphasis is placed on high-temperature oxidation characteristics, the Si content is preferably set to 3.5 to 4.5% by mass. An even more preferable range of the Si content is 3.5 to 4.0% by mass.

【0019】Mnは、本成分系においてはオーステナイト
生成元素であるNiの代替として添加される。Mn含有量が
少ないとNiまたはNを多量に添加する必要があるが、Ni
の多量添加は製鋼原価の上昇を、またNの多量添加は鋼
の硬質化を招く。一方、Mn含有量が多くなりすぎると、
Siを2.0質量%を超えて添加しても十分な耐高温酸化性
が得られなくなる。したがって、Mn含有量は5.0質量%
を超え7.0質量%以下の範囲に規定した。
Mn is added in the present component system as a substitute for Ni, which is an austenite-forming element. If the Mn content is low, it is necessary to add a large amount of Ni or N.
Addition of a large amount of N increases the steelmaking cost, and addition of a large amount of N causes the steel to become harder. On the other hand, if the Mn content is too large,
Even if Si is added in excess of 2.0% by mass, sufficient high-temperature oxidation resistance cannot be obtained. Therefore, the Mn content is 5.0% by mass.
Over 7.0 mass%.

【0020】Niは、オーステナイト系ステンレス鋼に含
まれる基本元素の1つである。本成分系ではNiの替わり
にMnおよびNを含有させてオーステナイト組織とするた
め、300系のオーステナイト系ステンレス鋼ほどの添加
は必要としない。製造コストの低減とオーステナイト単
相組織を得ることを目的として、Ni含有量は3.0〜5.0質
量%とした。
Ni is one of the basic elements contained in austenitic stainless steel. In this component system, since Mn and N are contained instead of Ni to form an austenitic structure, it is not necessary to add as much as 300 type austenitic stainless steel. For the purpose of reducing the production cost and obtaining the austenitic single phase structure, the Ni content was set to 3.0 to 5.0% by mass.

【0021】Crは、ステンレス鋼材の耐高温酸化性を確
保するのに不可欠な元素であるが、15.0質量%未満では
十分な特性が得られない。一方、25.0質量%を超えると
δフェライトが生成しやすくなり、σ脆化の促進を招
く。したがって、Cr含有量は15.0〜25.0質量%とした。
Cr is an element indispensable for securing the high-temperature oxidation resistance of the stainless steel material, but if it is less than 15.0% by mass, sufficient characteristics cannot be obtained. On the other hand, when the content exceeds 25.0% by mass, δ ferrite is easily generated, which promotes σ embrittlement. Therefore, the Cr content was set to 15.0 to 25.0% by mass.

【0022】Nは、オーステナイト系ステンレス鋼材の
高温強度を上昇させる元素であるが、本成分系ではNiの
代替元素としての役割もある。0.10質量%未満では強度
上昇の効果が小さいこと、0.25質量%を超えると加工性
が劣化することから、N含有量は0.10〜0.25質量%とし
た。
N is an element that increases the high-temperature strength of the austenitic stainless steel material. In the present component system, N also serves as an alternative element to Ni. When the content is less than 0.10% by mass, the effect of increasing the strength is small, and when it exceeds 0.25% by mass, the workability is deteriorated. Therefore, the N content is set to 0.10 to 0.25% by mass.

【0023】Alは、鋼の溶製時に残存酸素を除去する脱
酸剤として作用するとともに、耐高温酸化性の改善に有
効に作用する。これらの作用は0.5質量%以上のAl含有
により、一層効果的に発揮される。ただし、2.5質量%
を超えると加工性および溶接性の劣化を招くようにな
る。したがって、Alを添加する場合は、0.5〜2.5質量%
の含有量とすることが望ましい。
Al acts as a deoxidizing agent for removing residual oxygen during smelting of steel, and also effectively acts to improve high-temperature oxidation resistance. These effects are more effectively exhibited when the Al content is 0.5% by mass or more. However, 2.5 mass%
If it exceeds 300, workability and weldability will deteriorate. Therefore, when adding Al, 0.5 to 2.5 mass%
Is desirable.

【0024】REM(希土類元素)は、Cr,Siなどからな
る酸化皮膜の保護性を著しく改善する。しかし、多量に
添加すると熱間加工性を害する。このため、REMを添加
する場合は、1.0質量%以下の含有量とすることが望ま
しい。
REM (rare earth element) remarkably improves the protection of an oxide film made of Cr, Si or the like. However, when added in a large amount, hot workability is impaired. Therefore, when REM is added, the content is desirably 1.0% by mass or less.

【0025】[0025]

【実施例】表1に示す鋼を真空溶解炉にて30kg溶製し、
熱延→焼鈍→冷延→焼鈍の工程で板厚2.0mmの供試材を
得た。各供試材について、高温引張試験,高温酸化試験
および常温引張試験を実施した。高温引張試験では、JI
S G 0567に準拠して900℃における0.2%耐力を求めた。
高温酸化試験では、JIS Z 2281に準拠して1000℃×100
時間の大気中連続加熱後の酸化増量および1100℃×100
時間の大気中連続加熱後の酸化増量を求めた。常温引張
試験では、JIS Z 2241に準拠した引張試験を25℃で行
い、伸びを求めて加工性の指標とした。結果を表2に示
す。
[Example] 30 kg of the steel shown in Table 1 was melted in a vacuum melting furnace.
In the process of hot rolling → annealing → cold rolling → annealing, a test material having a thickness of 2.0 mm was obtained. A high-temperature tensile test, a high-temperature oxidation test, and a normal-temperature tensile test were performed on each test material. In the high temperature tensile test, JI
The 0.2% proof stress at 900 ° C was determined according to SG 0567.
In the high-temperature oxidation test, 1000 ° C x 100 in accordance with JIS Z 2281
Oxidation after continuous heating in the atmosphere for 1 hour and 1100 ℃ × 100
The amount of increase in oxidation after continuous heating in the atmosphere for a long time was determined. In the room temperature tensile test, a tensile test based on JIS Z 2241 was performed at 25 ° C., and the elongation was determined as an index of workability. Table 2 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表2の結果にみられるように、発明例であ
る鋼No.01〜07では、大気中連続加熱後の酸化増量が、1
000℃×100時間の加熱で0.1kg/m2未満、かつ1100℃×10
0時間の加熱で0.2kg/m2以下であり、良好な耐高温酸化
性を呈する。特にSi含有量が3.5質量%以上であるNo.0
2,04、AlまたはREMを添加したNo.06,07は、いずれも1
100℃×100時間の加熱後の酸化増量が0.1kg/m2未満と、
非常に優れた耐高温酸化性を示す。また、発明例のもの
はいずれも900℃の0.2%耐力が90N/mm2以上であり、こ
の値はSUS304よりも高く、SUS201と同レベルの優れたも
のである。常温での伸びも50%以上であり、比較的良好
な加工性を有している。
As can be seen from the results in Table 2, in steel Nos. 01 to 07 which are invention examples, the oxidation increase after continuous heating in the atmosphere was 1%.
0.1 kg / m of less than 2 by heating at 000 ° C. × 100 hours, and 1100 ° C. × 10
It is 0.2 kg / m 2 or less after heating for 0 hours, and exhibits good high-temperature oxidation resistance. No. 0 with an Si content of 3.5% by mass or more
2,04, No.06,07 to which Al or REM was added,
And less than 0.1 kg / m 2 is oxidized amounts after heating 100 ° C. × 100 hours,
Shows excellent high temperature oxidation resistance. Further, all of the examples of the invention have a 0.2% proof stress at 900 ° C. of 90 N / mm 2 or more, which is higher than SUS304 and excellent at the same level as SUS201. Elongation at room temperature is 50% or more, and it has relatively good workability.

【0029】一方、比較例のNo.08(SUS201相当)およ
びNo.09は、Si含有量が低いため十分な耐高温酸化性を
示さない。No.10はSi含有量が多いため耐高温酸化性に
は優れるものの、伸び(加工性)は劣っている。No.11
はSUS304相当鋼であり、高温酸化特性はSUS201よりも良
好であるが、上記本発明例の鋼材には及ばない。またN
含有量が少ないため高温強度は本発明例の鋼材より大き
く劣る。No.12はSUS202系鋼にSiを多量に添加したもの
であるが、Mn含有量が本発明規定範囲から外れて多いた
め、高温酸化特性の改善は十分でない。
On the other hand, Comparative Examples No. 08 (corresponding to SUS201) and No. 09 do not show sufficient high-temperature oxidation resistance due to low Si content. No. 10 is excellent in high-temperature oxidation resistance due to high Si content, but is inferior in elongation (workability). No.11
Is a steel equivalent to SUS304, and has high-temperature oxidation characteristics better than SUS201, but does not reach the above-mentioned steel material of the present invention. Also N
Since the content is small, the high temperature strength is significantly inferior to the steel material of the present invention. No. 12 is obtained by adding a large amount of Si to the SUS202 series steel, but the Mn content is out of the specified range of the present invention, so that the improvement in high-temperature oxidation characteristics is not sufficient.

【0030】[0030]

【発明の効果】本発明により、高Mnオーステナイト系ス
テンレス鋼材の耐高温酸化性を大幅に向上させることが
でき、900℃以上の高温域で使用可能な高Mnオーステナ
イト系ステンレス鋼材が得られた。
According to the present invention, the high Mn austenitic stainless steel material can be greatly improved in high-temperature oxidation resistance, and a high Mn austenitic stainless steel material usable in a high temperature range of 900 ° C. or higher can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe−17Cr−6Mn−4Ni−0.2N系高Mnオーステナイ
ト系ステンレス鋼の1000℃または1100℃×100時間大気
加熱後の酸化増量に及ぼすSi含有量の影響を表したグラ
フである。
FIG. 1 is a graph showing the effect of the Si content on the oxidation increase of Fe-17Cr-6Mn-4Ni-0.2N high Mn austenitic stainless steel after air heating at 1000 ° C. or 1100 ° C. for 100 hours.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 名越 敏郎 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内 (72)発明者 平松 直人 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshiro Nagoshi 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Pref.Nippon Steel Technology Co., Ltd. Steel Technology Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.1%以下,Si:2.0%超
え〜4.5%,Mn:5.0%超え〜7.0%,Ni:3.0〜5.0%,C
r:15.0〜25.0%,N:0.10〜0.25%,Al:0〜2.5%(無
添加を含む),REM:0〜0.1%(無添加を含む)を含有
し、残部がFeおよび不可避的不純物からなる高Mnオース
テナイト系ステンレス鋼材。
1. In mass%, C: 0.1% or less, Si: more than 2.0% to 4.5%, Mn: more than 5.0% to 7.0%, Ni: 3.0 to 5.0%, C
r: 15.0 to 25.0%, N: 0.10 to 0.25%, Al: 0 to 2.5% (including no addition), REM: 0 to 0.1% (including no addition), the balance being Fe and unavoidable impurities High-Mn austenitic stainless steel made of
【請求項2】 Al含有量が0.5〜2.5質量%である請求項
1に記載の鋼材。
2. The steel material according to claim 1, wherein the Al content is 0.5 to 2.5% by mass.
【請求項3】 1000℃×100時間の大気中連続加熱後の
酸化増量が0.1kg/m2未満,1100℃×100時間の大気中連
続加熱後の酸化増量が0.2kg/m2以下,かつ900℃におけ
る0.2%耐力が90N/mm2以上である請求項1または2に記
載の鋼材。
3. The oxidation gain after continuous heating in air at 1000 ° C. × 100 hours is less than 0.1 kg / m 2 , the oxidation weight after continuous heating in air at 1100 ° C. × 100 hours is 0.2 kg / m 2 or less, and 3. The steel material according to claim 1, having a 0.2% proof stress at 900 ° C. of 90 N / mm 2 or more.
【請求項4】 1100℃×100時間の大気中連続加熱後の
酸化増量が0.1kg/m2未満である請求項3に記載の鋼材。
4. The steel material according to claim 3, wherein the weight gain of oxidation after continuous heating in air at 1100 ° C. for 100 hours is less than 0.1 kg / m 2 .
JP05773399A 1999-03-04 1999-03-04 High Mn austenitic stainless steel with improved high temperature oxidation characteristics Expired - Fee Related JP4245720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05773399A JP4245720B2 (en) 1999-03-04 1999-03-04 High Mn austenitic stainless steel with improved high temperature oxidation characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05773399A JP4245720B2 (en) 1999-03-04 1999-03-04 High Mn austenitic stainless steel with improved high temperature oxidation characteristics

Publications (2)

Publication Number Publication Date
JP2000256797A true JP2000256797A (en) 2000-09-19
JP4245720B2 JP4245720B2 (en) 2009-04-02

Family

ID=13064133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05773399A Expired - Fee Related JP4245720B2 (en) 1999-03-04 1999-03-04 High Mn austenitic stainless steel with improved high temperature oxidation characteristics

Country Status (1)

Country Link
JP (1) JP4245720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111932A (en) * 2004-10-15 2006-04-27 Nisshin Steel Co Ltd Austenitic stainless steel material with high proportional limit stress, and manufacturing method therefor
WO2006125412A1 (en) * 2005-05-23 2006-11-30 Scheller Piotr R Austenitic lightweight steel and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7447630B2 (en) * 2003-11-26 2008-11-04 Microsoft Corporation Method and apparatus for multi-sensory speech enhancement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111932A (en) * 2004-10-15 2006-04-27 Nisshin Steel Co Ltd Austenitic stainless steel material with high proportional limit stress, and manufacturing method therefor
JP4606113B2 (en) * 2004-10-15 2011-01-05 日新製鋼株式会社 Austenitic stainless steel with high proportional limit stress and manufacturing method
WO2006125412A1 (en) * 2005-05-23 2006-11-30 Scheller Piotr R Austenitic lightweight steel and use thereof
JP2008542528A (en) * 2005-05-23 2008-11-27 シェラー・ピオトル・エル Austenitic lightweight steel and its use

Also Published As

Publication number Publication date
JP4245720B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JPH03274245A (en) Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JP5605996B2 (en) Austenitic stainless steel for heat-resistant materials
JPWO2002063056A1 (en) Steel and air preheater with excellent sulfuric acid dew point corrosion resistance
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP3427502B2 (en) Ferrite stainless steel for automotive exhaust system components
JP3915717B2 (en) Thin stainless steel sheet
JP4245720B2 (en) High Mn austenitic stainless steel with improved high temperature oxidation characteristics
JP4577256B2 (en) Austenitic stainless steel
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JPH09324246A (en) Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance
JPH0533104A (en) Heat resisting ferritic stainless steel excellent in heat resistance toughness at low temperature, and weldability
CN1093887C (en) Austenitic stainless steel with good oxidation resistance
JP2896077B2 (en) Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion
US3784373A (en) Austenitic stainless steel
JP4123870B2 (en) High temperature oxidation resistant austenitic stainless steel sheet
JPH04224657A (en) Ferritic stainless steel excellent in strength at high temperature and toughness in weld heat-affected zone
JP2004285393A (en) Heat resistant material
JP3901293B2 (en) Incinerator with excellent corrosion resistance
JP3381457B2 (en) Austenitic stainless steel for high temperature with excellent weldability
JPH11302798A (en) High nitrogen austenitic heat resistant steel
JPH07116556B2 (en) Austenitic heat resistant steel for processing
JPH11256287A (en) Ferritic stainless steel excellent in high temperature oxidation resistance and scale adhesion
JPH09241810A (en) Austenitic stainless steel for high temperature equipment with welded structure
JPS61117251A (en) Heat resisting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees