JP2000256770A - LOW THERMAL EXPANSION Ni BASE SUPERALLOY - Google Patents

LOW THERMAL EXPANSION Ni BASE SUPERALLOY

Info

Publication number
JP2000256770A
JP2000256770A JP11056059A JP5605999A JP2000256770A JP 2000256770 A JP2000256770 A JP 2000256770A JP 11056059 A JP11056059 A JP 11056059A JP 5605999 A JP5605999 A JP 5605999A JP 2000256770 A JP2000256770 A JP 2000256770A
Authority
JP
Japan
Prior art keywords
less
thermal expansion
low thermal
base superalloy
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11056059A
Other languages
Japanese (ja)
Other versions
JP3781402B2 (en
Inventor
Ryutaro Umagoe
龍太郎 馬越
Hisataka Kawai
久孝 河合
Yoshikuni Kadoya
好邦 角屋
Ryuichi Yamamoto
隆一 山本
Toshiharu Noda
俊治 野田
Susumu Isobe
晋 磯部
Michio Okabe
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Daido Steel Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Daido Steel Co Ltd
Priority to JP05605999A priority Critical patent/JP3781402B2/en
Priority to US09/517,305 priority patent/US20020015656A1/en
Priority to AT00104667T priority patent/ATE296901T1/en
Priority to EP00104667A priority patent/EP1035225B1/en
Priority to DE60020424T priority patent/DE60020424T8/en
Publication of JP2000256770A publication Critical patent/JP2000256770A/en
Priority to US10/255,716 priority patent/US7160400B2/en
Application granted granted Critical
Publication of JP3781402B2 publication Critical patent/JP3781402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemically Coating (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low thermal expansion Ni base superalloy having a linear expansion coefficient equal to that of 12Cr steel and also having high temp. strength and corrosion resistance and oxidation resistance similar to those of an austenitic heat resistant alloy. SOLUTION: This superalloy has a compsn. contg., by weight, <=0.15% C, <=1% Si, <=1% Mn, 5 to <10% Cr, one or >= two kinds among Mo, W and Re so as to satisfy Mo+1/2(W+Re): 10 to 25%, one or two kinds among 0.2 to 2% Al, 0.5 to 4.5% Ti, <=10% Fe, <=0.02% B and <=0.2% Zr, in which the atomic % of Al+Ti is controlled to 2.5 to 7.0%, and consisting of the balance Ni with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低熱膨張Ni基超
合金、詳細には高強度であるとともに耐食・耐酸化性に
優れた低熱膨張Ni基超合金に関する。
The present invention relates to a low thermal expansion Ni-base superalloy, and more particularly to a low thermal expansion Ni-base superalloy having high strength and excellent corrosion and oxidation resistance.

【0002】[0002]

【従来の技術】従来、蒸気タービンおよびガスタービン
機器の車室などの高温に加熱される圧力容器部材に使用
される高温用のボルト材には、フェライト系12Cr鋼
(C:0.12%,Si:0.04%,Mn:0.7 %,P:0.1 %,
Ni:0.4 %,Cr:10.5%,Mo:0.5 %,Cu:0.03%,
V:0.2 %,W:1.7 %,Nb:0.1 %,Fe:残部)や
オーステナイト系耐熱合金(Cr:10.5%,Mn:0.4 %,
Al:1.4 %,Ti:2.4 %,Sl:0.3 %,C:0.06%,Z
r:0.06%,B:0.003 %,Ni:残部のNimonic alloy 8
0A 、Cr:18%,Co:20%,Mo:3 %,Ti:2.6 %,F
e:16%,C:0.05%,Ni:残部のRefractaloy26)が使
用されている。
2. Description of the Related Art Conventionally, high-temperature bolts used for members of a pressure vessel heated to a high temperature, such as a cabin of a steam turbine and a gas turbine device, include ferrite-based 12Cr steel (C: 0.12%, Si: 0.04%, Mn: 0.7%, P: 0.1%,
Ni: 0.4%, Cr: 10.5%, Mo: 0.5%, Cu: 0.03%,
V: 0.2%, W: 1.7%, Nb: 0.1%, Fe: balance) and austenitic heat-resistant alloy (Cr: 10.5%, Mn: 0.4%,
Al: 1.4%, Ti: 2.4%, Sl: 0.3%, C: 0.06%, Z
r: 0.06%, B: 0.003%, Ni: balance of Nimonic alloy 8
0A, Cr: 18%, Co: 20%, Mo: 3%, Ti: 2.6%, F
e: 16%, C: 0.05%, Ni: Refractaloy26) is used.

【0003】近年、蒸気タービンの熱効率を向上させる
ため、蒸気温度をさらに上昇させており、高温用ボルト
はますます過酷な条件で使用されるようになっている。
この様な過酷な条件のところに上記各材料を高温ボルト
に使用する場合、フェライト系12Cr鋼は、コストが
低く、製造性に優れているが、現在より蒸気温度等が高
くなると高温強度が不足するという問題があり、またオ
ーステナイト系耐熱合金は、フェライト系12Cr鋼よ
り耐食・耐酸化性に優れ、かつ高い高温強度を有する
が、線膨張係数が大きいため、ボルトの締め付け力の不
足による蒸気漏れなどの問題が生じるとともに、熱疲労
が発生するという問題があり、より高温で使用される部
材に用いられるには問題が大きい。
In recent years, the steam temperature has been further increased in order to improve the thermal efficiency of the steam turbine, and high-temperature bolts have been used under increasingly severe conditions.
When the above materials are used for high-temperature bolts under such severe conditions, ferritic 12Cr steel is low in cost and excellent in manufacturability, but the high-temperature strength is insufficient when the steam temperature and the like are higher than now. Austenitic heat-resistant alloys have higher corrosion resistance and oxidation resistance and higher high-temperature strength than ferritic 12Cr steel, but have a large linear expansion coefficient, so steam leakage due to insufficient bolt tightening force. In addition to the above-mentioned problems, there is a problem that thermal fatigue occurs, and this is a serious problem when used for members used at higher temperatures.

【0004】耐食・耐酸化性に優れた低熱膨張Ni基超
耐熱合金としてC:0.2%以下、Si:1%以下、M
n:1%以下、Cr:10〜24%、MoおよびWの1
種または2種をMo+ 1/2W:5〜17%、Al:0.
5〜2%、Ti:1〜3%、Fe:10%以下、B:
0.02%以下およびZr:0.2%以下の1種または
2種を含有し、必要に応じてCo:5%以下、Nb:
1.0%以下を含有し、残部Niと不可避的不純物から
なるものが特開平9─157779号公報に開示されて
おり、同様なものが、特開平8─85838号公報に開
示されている。
As a low thermal expansion Ni-base super heat resistant alloy having excellent corrosion resistance and oxidation resistance, C: 0.2% or less, Si: 1% or less, M
n: 1% or less, Cr: 10 to 24%, 1 of Mo and W
Mo + 1 / 2W: 5-17%, Al: 0.
5 to 2%, Ti: 1 to 3%, Fe: 10% or less, B:
Contains one or two of 0.02% or less and Zr: 0.2% or less, and if necessary, Co: 5% or less, Nb:
Japanese Patent Application Laid-Open No. 9-157779 discloses a composition containing 1.0% or less and the balance consisting of Ni and inevitable impurities, and a similar substance is disclosed in Japanese Patent Application Laid-Open No. 8-85838.

【0005】また、線膨張係数の低い合金として、ジェ
ットエンジン用部材として開発されたインバー合金のイ
ンコネル783(Cr:3.21%、Mn:0.08%、Al:5.4
%、Ti:0.2 %、Si:0.07%、C:0.03%、B:0.003
%、Fe:24.5 %、Ni:28.2%、Co:35.3 %、比較例のN
o.2) が知られている。この合金は、Fe─Ni−Co
のバランスでキューリー点を調整し、強磁性体状態で低
い線膨張係数を持つものであるが、この合金を蒸気ター
ビンなどに使用するには耐食性が不足しているという問
題がある。
As an alloy having a low linear expansion coefficient, Inconel 783 (Cr: 3.21%, Mn: 0.08%, Al: 5.4), an Invar alloy developed as a member for a jet engine, is used.
%, Ti: 0.2%, Si: 0.07%, C: 0.03%, B: 0.003%
%, Fe: 24.5%, Ni: 28.2%, Co: 35.3%, N in Comparative Example
o.2) is known. This alloy is Fe @ Ni-Co
Although the Curie point is adjusted by the balance of the above and has a low linear expansion coefficient in a ferromagnetic state, there is a problem that the corrosion resistance is insufficient when this alloy is used for a steam turbine or the like.

【0006】[0006]

【本発明が解決しようとする課題】本発明は、12Cr
鋼と同等の線膨張係数を持ち、かつ上記オーステナイト
系耐熱合金と同様の高温強度と耐食・耐酸化性を持つ低
熱膨張Ni基超合金を提供することを課題としている。
SUMMARY OF THE INVENTION The present invention provides a 12Cr
It is an object of the present invention to provide a low-thermal-expansion Ni-base superalloy having a linear expansion coefficient equivalent to that of steel and having the same high-temperature strength, corrosion resistance, and oxidation resistance as the austenitic heat-resistant alloy.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明者達は、低熱膨張Ni基超合金について鋭意
研究していたところ、Mo、WおよびReについて、M
o+ 1/2(W+Re)で表される値が10以上になると
目標の熱膨張率が得られること、このとき、熱膨張率を
大きくするCrは20%以下であることが必要であるこ
と、またMo+ 1/2(W+Re)を17を超える値と
し、Crを10%未満にするとより熱膨張率が低下する
こと、Crは従来のNi基耐熱合金より低くても蒸気中
の水蒸気酸化の問題がないことなどの知見を得て本発明
をなしたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies on low thermal expansion Ni-base superalloys.
When the value represented by o + 1/2 (W + Re) is 10 or more, a target coefficient of thermal expansion is obtained. At this time, Cr for increasing the coefficient of thermal expansion must be 20% or less; Further, when Mo + 1/2 (W + Re) is set to a value exceeding 17, and when Cr is set to less than 10%, the thermal expansion coefficient is further reduced. Even if Cr is lower than the conventional Ni-based heat-resistant alloy, there is a problem of steam oxidation in steam. The present invention has been made based on the finding that there is no such element.

【0008】すなわち、本発明の低熱膨張Ni基超合金
においては、C:0.15%以下、Si:1%以下、M
n:1%以下、Cr:5〜10未満%、Mo、Wおよび
Reの1種または2種以上をMo+ 1/2(W+Re):
10〜25%、Al:0.2〜2%、Ti:0.5〜
4.5%、Fe:10%以下、B:0.02%以下およ
びZr:0.2%以下の1種または2種を含有し、必要
に応じてNbおよびTaの1種または2種をNb+ 1/2
Ta:1.5%以下を含有し、さらに必要応じて、C
o:5%以下含有し、Nb、Taを含有しない場合には
Al+Tiの原子%を2.5〜7.0%とし、Nb、T
aを含有する場合にはAl+Ti+Nb+Taの原子%
を2.5〜7.0%とし、残部Niと不可避的不純物か
らなるものとすることである。
That is, in the low thermal expansion Ni-base superalloy of the present invention, C: 0.15% or less, Si: 1% or less, M
n: 1% or less, Cr: 5 to less than 10%, one or more of Mo, W and Re: Mo + 1/2 (W + Re):
10-25%, Al: 0.2-2%, Ti: 0.5-
One or two of 4.5%, Fe: 10% or less, B: 0.02% or less and Zr: 0.2% or less, and if necessary, one or two of Nb and Ta Nb + 1/2
Ta: 1.5% or less, and if necessary, C
o: contains 5% or less, and when Nb and Ta are not contained, the atomic% of Al + Ti is set to 2.5 to 7.0%, and Nb, T
atomic% of Al + Ti + Nb + Ta when a is contained
Is set to 2.5 to 7.0%, and the balance consists of Ni and inevitable impurities.

【0009】なお、上記「Mo、WおよびReの1種ま
たは2種以上をMo+ 1/2(W+Re):10〜25
%」は、Mo、WおよびReの1種または2種以上をM
o+1/2(W+Re)の式で計算して10〜25%の範
囲にすることを意味するものである。また、上記「Nb
およびTaの1種または2種をNb+ 1/2Ta:1.5
%以下」は、NbおよびTaのうちの1種または2種を
Nb+ 1/2Ta:1.5%以下の式で計算して1.5%
以下であることを意味するものである。
In addition, one or more of the above Mo, W and Re is Mo + 1/2 (W + Re): 10 to 25.
% "Means that one or more of Mo, W and Re are M
This means that it is calculated in the formula of o + 1/2 (W + Re) to be in the range of 10 to 25%. In addition, the above “Nb
One or two of Ta and Nb + 1 / 2Ta: 1.5
% Or less "means that 1.5% or less of one or two of Nb and Ta is calculated by the following formula: Nb + 1 / 2Ta: 1.5% or less.
It means the following.

【0010】さらに、本発明の低熱膨張Ni基超合金に
おいては、C:0.15%以下、Si:1%以下、M
n:1%以下、Cr:5〜20%、Mo、WおよびRe
の1種または2種以上をMo+ 1/2(W+Re):17
超〜25%、Al:0.2〜2%、Ti:0.5〜4.
5%、Fe:10%以下、B:0.02%以下およびZ
r:0.2%以下の1種または2種を含有し、必要に応
じてNbおよびTaのうちの1種または2種をNb+ 1
/2Taで1.5%以下を含有し、さらに必要に応じて、
Co:5%以下含有し、Nb、Taを含有しない場合に
はAl+Tiの原子%を2.5〜7.0%とし、Nb、
Taを含有する場合にはAl+Ti+Nb+Taの原子
%を2.5〜7.0%とし、残部Niと不可避的不純物
からなるものとすることである。
Further, in the low thermal expansion Ni-base superalloy of the present invention, C: 0.15% or less, Si: 1% or less, M:
n: 1% or less, Cr: 5 to 20%, Mo, W and Re
Mo + 1/2 (W + Re): 17
Ultra-25%, Al: 0.2-2%, Ti: 0.5-4.
5%, Fe: 10% or less, B: 0.02% or less, and Z
r: contains one or two kinds of 0.2% or less, and if necessary, one or two of Nb and Ta is Nb + 1
1.5% or less in / 2Ta, and if necessary,
Co: contains 5% or less, and when Nb and Ta are not contained, the atomic% of Al + Ti is set to 2.5 to 7.0%, and Nb,
When Ta is contained, the atomic percentage of Al + Ti + Nb + Ta is set to 2.5 to 7.0%, and the balance is made up of Ni and unavoidable impurities.

【0011】また、本発明の低熱膨張Ni基超合金にお
いては、C:0.15%以下、Si:1%以下、Mn:
1%以下、Cr:5〜20%、Mo、WおよびReの1
種または2種以上をMo+ 1/2(W+Re):10〜2
5%、Al:0.2〜0.4未満%、Ti:0.5〜
4.5%、Fe:10%以下、B:0.02%以下およ
びZr:0.2%以下の1種または2種を含有し、必要
に応じてNbおよびTaのうちの1種または2種をNb
+ 1/2Taで1.5%以下を含有し、さらに必要に応じ
て、Co:5%以下含有し、Nb、Taを含有しない場
合にはAl+Tiの原子%を2.5〜7.0%とし、N
b、Taを含有する場合にはAl+Ti+Nb+Taの
原子%を2.5〜7.0%とし、残部Niと不可避的不
純物からなるものとすることである。
In the low thermal expansion Ni-base superalloy of the present invention, C: 0.15% or less, Si: 1% or less, Mn:
1% or less, Cr: 5 to 20%, 1 of Mo, W and Re
Mo + 1/2 (W + Re): 10-2
5%, Al: 0.2 to less than 0.4%, Ti: 0.5 to
One or two of 4.5%, Fe: 10% or less, B: 0.02% or less, and Zr: 0.2% or less, and if necessary, one or two of Nb and Ta Seed Nb
+ 1 / 2Ta contains 1.5% or less, and if necessary, Co: 5% or less, and when Nb and Ta are not contained, the atomic% of Al + Ti is 2.5 to 7.0%. And N
When b and Ta are contained, the atomic percentage of Al + Ti + Nb + Ta is set to 2.5 to 7.0%, and the balance consists of Ni and inevitable impurities.

【0012】また、本発明の低熱膨張Ni基超合金にお
いては、C:0.15%以下、Si:1%以下、Mn:
1%以下、Cr:5〜20%、Mo、WおよびReの1
種または2種以上をMo+ 1/2(W+Re):10〜2
5%、Al:0.2〜2.0%、Ti:3.5超〜4.
5%、Fe:10%以下、B:0.02%以下およびZ
r:0.2%以下の1種または2種を含有し、必要に応
じてNbおよびTaのうちの1種または2種をNb+ 1
/2Taで1.5%以下を含有し、さらに必要に応じて、
Co:5%以下含有し、Nb、Taを含有しない場合に
はAl+Tiの原子%を2.5〜7.0%とし、Nb、
Taを含有する場合にはAl+Ti+Nb+Taの原子
%を2.5〜7.0%とし、残部Niと不可避的不純物
からなるものとすることである。
Further, in the low thermal expansion Ni-base superalloy of the present invention, C: 0.15% or less, Si: 1% or less, Mn:
1% or less, Cr: 5 to 20%, 1 of Mo, W and Re
Mo + 1/2 (W + Re): 10-2
5%, Al: 0.2 to 2.0%, Ti: more than 3.5 to 4.
5%, Fe: 10% or less, B: 0.02% or less, and Z
r: contains one or two kinds of 0.2% or less, and if necessary, one or two of Nb and Ta is Nb + 1
1.5% or less in / 2Ta, and if necessary,
Co: contains 5% or less, and when Nb and Ta are not contained, the atomic% of Al + Ti is set to 2.5 to 7.0%, and Nb,
When Ta is contained, the atomic percentage of Al + Ti + Nb + Ta is set to 2.5 to 7.0%, and the balance is made up of Ni and unavoidable impurities.

【0013】また、本発明の低熱膨張Ni基超合金は、
上記低熱膨張Ni基超合金の室温ないし700℃の平均
膨張係数が、14.0×10-6/℃以下のものとするこ
とである。
The low thermal expansion Ni-base superalloy of the present invention comprises:
The low thermal expansion Ni-base superalloy has an average coefficient of expansion from room temperature to 700 ° C. of 14.0 × 10 −6 / ° C. or less.

【0014】[0014]

【発明の実施の形態】次に、本発明において、成分組成
を上記のように特定した理由を説明する。 C:0.15%以下 Cは、Ti、Nb、CrおよびMoと結合して炭化物を
形成し、高温強度を高めるとともに、結晶粒の粗大化を
防止するために含有させる元素であるが、0.15%よ
り多いと熱間加工性を低下するので、その含有量を0.
15%以下とする。望ましくは、0.10%以下であ
る。
Next, the reasons for specifying the component compositions as described above in the present invention will be described. C: 0.15% or less C is an element that combines with Ti, Nb, Cr, and Mo to form carbides, enhances high-temperature strength, and prevents crystal grains from becoming coarse. If the content is more than 0.15%, the hot workability deteriorates.
15% or less. Desirably, it is 0.10% or less.

【0015】Si:1%以下 Siは、脱酸剤として添加されるばかりでなく、耐酸化
性を改善させるために含有させる元素であるが、1%を
超えて含有させると延性を低下するので、その含有量を
1%以下とする。望ましくは0.5%以下である。 Mn:1%以下 Mnは、Siと同様に脱酸剤として添加されるが、1%
を超えて添加すると高温酸化特性が悪くなるばかりでな
く、延性を害するη相(Ni3 Ti)の析出を助長する
ので、その含有量を1%以下とする。望ましくは0.5
%以下である。
Si: 1% or less Si is an element added not only as a deoxidizing agent but also for improving the oxidation resistance. However, if it exceeds 1%, the ductility is reduced. , Its content is 1% or less. Desirably, it is 0.5% or less. Mn: 1% or less Mn is added as a deoxidizing agent like Si, but 1%
If added in excess of, not only the high-temperature oxidation characteristics will deteriorate, but also the precipitation of the η phase (Ni 3 Ti) which impairs the ductility will be promoted, so the content is made 1% or less. Desirably 0.5
% Or less.

【0016】Cr:5〜20% Crは、オーステナイト相に固溶し、高温酸化および腐
食を改善させるために含有させる元素である。十分な耐
高温酸化および腐食特性を維持するためには多いほうが
望ましていが、熱膨張係数を増加する元素であるので、
熱膨張の観点からは少ないほうが望ましい。本発明が目
的とした使用温度の650〜700℃付近において、目
的の熱膨張率を得るためにはCr量は5〜20%が望ま
しい。より低い熱膨張率を得るためにはCr量は5〜1
5%が望ましく、さらに、より低い熱膨張率を得るため
にはCr量を5〜10未満%にするのが望ましい。
Cr: 5 to 20% Cr is an element which forms a solid solution with the austenite phase and is contained for improving high-temperature oxidation and corrosion. In order to maintain sufficient high-temperature oxidation resistance and corrosion characteristics, it is desirable to increase the amount, but since it is an element that increases the coefficient of thermal expansion,
From the viewpoint of thermal expansion, a smaller amount is desirable. At around 650 to 700 ° C., which is the intended use temperature of the present invention, the amount of Cr is preferably 5 to 20% in order to obtain a desired coefficient of thermal expansion. In order to obtain a lower coefficient of thermal expansion, the amount of Cr should be 5-1.
5% is desirable, and in order to obtain a lower coefficient of thermal expansion, the Cr content is desirably 5 to less than 10%.

【0017】Mo+ 1/2(W+Re):10〜25% Mo、WおよびReは、オーステナイト相に固溶し、固
溶強化によって高温強度を高めるとともに熱膨張率を下
げるために含有させる元素である。本発明の目的とする
熱膨張率を得るためには、これらの元素の1種または2
種以上のMo+1/2(W+Re)の総和が最低10%以
上必要であり、また、この総和が25%を超えると、熱
間加工性が低下するばかりでなく、脆化相が析出して延
性が低下するので、Mo+ 1/2(W+Re)の含有量を
10〜25%とする。さらに、より低い熱膨張率を得る
ためにはMo+ 1/2(W+Re)を17超〜25%にす
るのが望ましい。
Mo + 1/2 (W + Re): 10 to 25% Mo, W and Re are elements which are dissolved in the austenite phase to increase the high-temperature strength and lower the coefficient of thermal expansion by solid solution strengthening. . In order to obtain the desired thermal expansion coefficient of the present invention, one or two of these elements must be used.
At least 10% of the sum of Mo + 1/2 (W + Re) of more than one kind is required. If this total exceeds 25%, not only the hot workability is reduced, but also the embrittled phase is precipitated and the ductility is reduced. Therefore, the content of Mo + 1/2 (W + Re) is set to 10 to 25%. Further, in order to obtain a lower coefficient of thermal expansion, it is desirable that Mo + 1/2 (W + Re) is more than 17 to 25%.

【0018】Ti:0.5〜4.5% Tiは、Niと結合してγ′相を形成し、γ′相を強化
するとともに熱膨張係数を低下させ、またγ′相の時効
析出硬化を促進させるために含有させる元素である。こ
の効果を得るためには0.8%以上含有させる必要があ
るが、4.5%以上含有させると脆化相のη相(Ni3
Ti)を析出させる結果となり、延性の低下をまねくの
で、その含有量を0.5〜4.5%とする。本発明が目
的とする使用温度の700℃において十分な強度と低い
熱膨張率をえるためには3.5%を超え、4.5%以下
が望ましい。
Ti: 0.5-4.5% Ti combines with Ni to form a γ 'phase, strengthening the γ' phase, lowering the coefficient of thermal expansion, and aging precipitation hardening of the γ 'phase. Is an element to be contained in order to promote. In order to obtain this effect, it is necessary to contain 0.8% or more. However, if 4.5% or more is contained, the embrittlement phase η phase (Ni 3
Since Ti) results in precipitation and leads to a decrease in ductility, the content is set to 0.5 to 4.5%. In order to obtain a sufficient strength and a low coefficient of thermal expansion at the intended use temperature of 700 ° C. of the present invention, the content is preferably more than 3.5% and 4.5% or less.

【0019】Al:0.2〜2.0% Alは、Niと結合してγ′相を形成し析出強化する最
も重要な元素であるので、そのために含有させるもので
ある。この含有量が0.2%より少ないとγ′相の析出
が十分でなく、またTiやNbとTaが多量に存在する
場合には、γ′相が不安定にη相やδ相が析出して脆化
を起こし、2.0%より多いと熱間加工性が低下し、部
品への鍛造成形が不可能になるので、その含有量を0.
2〜2.0%とする。望ましい範囲は0.2〜0.4未
満%である。
Al: 0.2 to 2.0% Al is the most important element that combines with Ni to form a γ 'phase and strengthens precipitation, and is therefore included. If this content is less than 0.2%, the precipitation of the γ 'phase is not sufficient, and if a large amount of Ti, Nb and Ta are present, the γ' phase is unstable and the η phase and δ phase are precipitated. If the content exceeds 2.0%, the hot workability decreases, and forging into a part becomes impossible.
2 to 2.0%. A desirable range is from 0.2 to less than 0.4%.

【0020】Fe:10%以下 Feは、合金のコストを低減するために原料として安価
なスクラップやW、MoなどのFeを含む安価な母合金
を用いることにより含まれる不純物であり、高温強度を
低下させ、熱膨張率を高くする元素であるので、少ない
ほうが望ましいが、10%以下であれば、高温強度およ
び熱膨張率に及ぼす影響がわずかであるので、その含有
量を10%以下とする。望ましくは5%以下、より望ま
しくは2%以下である。
Fe: 10% or less Fe is an impurity contained by using an inexpensive scrap or an inexpensive mother alloy containing Fe such as W or Mo as a raw material in order to reduce the cost of the alloy. Since it is an element which lowers and increases the coefficient of thermal expansion, it is desirable that the amount is small, but if it is 10% or less, the effect on the high-temperature strength and the coefficient of thermal expansion is negligible. . It is preferably at most 5%, more preferably at most 2%.

【0021】B:0.02%以下、Zr:0.2%以下 BおよびZrは、結晶粒界に偏析してクリープ強度を高
めるほか、BはTiの多い合金ではη相の析出を押さえ
る効果があるので、そのために含有させる元素である
が、過剰に含有させると熱間加工性が低下し、Zrはク
リープ特性を害するので、Bの含有量を0.02%以
下、Zrの含有量を0.2%以下とする。 Co:5%以下 Coは、合金に固溶して、高温強度を高くするので、そ
のために含有させる元素であるが、その効果は他の元素
に比較して小さく、また高価であるので、その含有量を
5%以下とする。
B: 0.02% or less, Zr: 0.2% or less B and Zr segregate at the crystal grain boundaries to increase the creep strength, and B has the effect of suppressing the precipitation of the η phase in an alloy containing a large amount of Ti. Therefore, it is an element to be contained for this purpose. However, if it is contained excessively, the hot workability is reduced and Zr impairs the creep characteristics. Therefore, the content of B is set to 0.02% or less, and the content of Zr is decreased. 0.2% or less. Co: 5% or less Co is a solid solution in the alloy and increases the high-temperature strength. Therefore, Co is an element to be contained. However, its effect is smaller than other elements, and it is expensive. The content is 5% or less.

【0022】Nb+ 1/2Ta:1.5%以下 NbおよびTaは、Ni基超合金の析出強化相である
γ′相(Ni3(Al、Nb、Ta))を形成する元素であり、γ′
相の強化を図るばかりでなく、γ′相の巨大化を防ぐ効
果があるので、そのために含有させる元素であるが、多
く含有させ過ぎるとδ相(Ni3(Nb 、Ta))が析出して延性
を低下するので、その含有量をNb+ 1/2Taで1.5
%とする。また、望ましい範囲は1.0%以下である。 Ni:残 Niは、マトリックスであるオーステナイトを形成する
主元素であり、耐熱性および耐食性を向上させる元素で
ある。また析出強化相であるγ′相を形成する元素でも
ある。
Nb + 1 / 2Ta: 1.5% or less Nb and Ta are elements that form a γ ′ phase (Ni 3 (Al, Nb, Ta)) which is a precipitation strengthening phase of a Ni-base superalloy. ′
In addition to strengthening the phase, it has the effect of preventing the γ 'phase from becoming too large, so it is an element to be contained.However, if too much is contained, the δ phase (Ni 3 (Nb, Ta)) precipitates. The content is 1.5% at Nb + 1 / 2Ta.
%. A desirable range is 1.0% or less. Ni: Remaining Ni is a main element that forms austenite as a matrix, and is an element that improves heat resistance and corrosion resistance. It is also an element that forms the γ 'phase, which is a precipitation strengthening phase.

【0023】Al+Ti:原子%で2.5〜7.0%、
Al+Ti+Nb+Ta:原子%で2.5〜7.0% Al、Ti、NbおよびTaは、γ′相の構成元素であ
るので、十分なNiが存在している場合には、γ′相の
析出体積率はこれら元素の原子%の総和に比例する。ま
た高温強度は、γ′相の体積率に比例することから、こ
れら元素の総和に比例して高温強度は増加する。そのた
め、本発明が目的とする十分な強度を発揮するには2.
5%以上必要であるが、7.0%を超えるとγ′相の体
積率が多くなり過ぎて熱間加工性を著しく低下するの
で、これらの含有量を原子%で2.5〜7.0%とす
る。望ましくは原子%で3.5〜6.0%である。
Al + Ti: 2.5-7.0% by atomic%,
Al + Ti + Nb + Ta: 2.5 to 7.0% in atomic% Since Al, Ti, Nb and Ta are constituent elements of the γ ′ phase, if sufficient Ni is present, the precipitation volume of the γ ′ phase The ratio is proportional to the sum of the atomic percentages of these elements. Since the high-temperature strength is proportional to the volume ratio of the γ 'phase, the high-temperature strength increases in proportion to the sum of these elements. Therefore, in order to exhibit sufficient strength intended by the present invention, 2.
5% or more is necessary, but if it exceeds 7.0%, the volume ratio of the γ 'phase becomes too large and the hot workability is remarkably reduced. 0%. Desirably, it is 3.5 to 6.0% in atomic%.

【0024】その他の元素 Mg、Ca、P、SおよびCuは、Mg:0.03%以
下、Ca:0.03%以下、P:0.05%以下、S:
001%以下、Cu:2%以下であれば、本発明の低熱
膨張Ni基超合金の特性を低下することがない。
Other elements Mg, Ca, P, S and Cu are as follows: Mg: 0.03% or less, Ca: 0.03% or less, P: 0.05% or less, S:
When the content is 001% or less and Cu: 2% or less, the characteristics of the low thermal expansion Ni-based superalloy of the present invention are not reduced.

【0025】本発明の低熱膨張Ni基超合金は、従来か
らあるNi基超合金と同様な方法で製造することができ
る。またその熱処理は、950℃以上の固溶化熱処理の
後、1段時効(700〜850℃)および2段時効(1
段目:800〜900℃、2段目:700〜800℃)
のいずれも有効である。
The low thermal expansion Ni-base superalloy of the present invention can be manufactured by a method similar to a conventional Ni-base superalloy. After the solution heat treatment at 950 ° C. or more, the heat treatment is performed in one-stage aging (700 to 850 ° C.) and two-stage aging (1
(Stage: 800-900 ° C, second stage: 700-800 ° C)
Both are valid.

【0026】[0026]

【実施例】次に、本発明の実施例を説明する。下記表1
に示す組成の合金を容量50kgの真空誘導炉を用いて
溶解し、50kgのインゴットを鋳造した。これらのイ
ンゴットの鋳肌部を旋削除去し、その後1150℃で1
5hr均質化熱処理した後、60mm角の棒に鍛造し
た。これらの鍛造した棒材を1100℃で2hr加熱し
たあと水冷する固溶化熱処理をした後、750℃で16
hr加熱する時効処理を行った。これらの熱処理材から
試験片を切り出して下記各種の試験を実施し、下記表2
に示した。
Next, embodiments of the present invention will be described. Table 1 below
Was melted using a vacuum induction furnace having a capacity of 50 kg, and a 50 kg ingot was cast. The casting surface of these ingots was removed by turning, and then at 1150 ° C for 1 hour.
After the homogenizing heat treatment for 5 hours, the bar was forged into a 60 mm square bar. After heating these forged rods at 1100 ° C. for 2 hours and then cooling them with water, they are subjected to solution heat treatment at 750 ° C. for 16 hours.
An aging treatment by heating for hr was performed. Test specimens were cut out from these heat-treated materials and subjected to the following various tests.
It was shown to.

【0027】熱膨張率の測定は、理学電気製熱機械分析
装置TMAで、標準試料に石英を用い、示差膨張方式に
よって、昇温速度5℃/minの条件で、室温から70
0℃までの平均熱膨張率を測定した。用いた試験片はφ
5×L19である。高温引張試験は、平行部6mmのツ
バ付き引張試験片を用い、JISの高温引張試験法に準
拠して700℃で行った。クリープ破断試験は、平行部
6.4mmの試験片を用い、700℃で、負荷応力34
3MPaで実施した。蒸気タービン部材で問題となる水
蒸気酸化試験は、幅10mm、長さ10mm、厚さ5m
mの試験片を用い、温度600℃で100時間の試験を
行い、試験後の酸化増量を測定した。試験環境は、常圧
で、蒸気濃度83%、水蒸気流量7.43ml/sであ
った。
The coefficient of thermal expansion was measured using a thermomechanical analyzer TMA manufactured by Rigaku Denki using quartz as a standard sample, and by a differential expansion method at a temperature rising rate of 5 ° C./min from room temperature to 70 ° C.
The average coefficient of thermal expansion up to 0 ° C. was measured. The test piece used was φ
5 × L19. The high-temperature tensile test was performed at 700 ° C. in accordance with the JIS high-temperature tensile test method, using a tensile test piece with a flange having a parallel portion of 6 mm. The creep rupture test was performed using a test piece having a parallel portion of 6.4 mm at 700 ° C. under a load stress of 34.
The test was performed at 3 MPa. The steam oxidation test, which is a problem for steam turbine members, is 10 mm wide, 10 mm long, and 5 m thick.
A test was conducted at a temperature of 600 ° C. for 100 hours using a test piece of m, and the oxidation increase after the test was measured. The test environment was a normal pressure, a steam concentration of 83%, and a steam flow rate of 7.43 ml / s.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】これらの結果より、本発明例のものは、い
ずれも室温から700℃までの平均熱膨張率が14.0
×10-6/℃以下であり、また700℃における引張強
さは890〜1118MPaであった。また、クリープ
破断寿命が791〜2880hrであり、水蒸気酸化増
量が0.05〜0.21mg/cm2 であった。一方、
比較例1は、フェライト系12Cr鋼であり、平均熱膨
張率が12.4×10-6/℃と低いが、高温引張強度が
本発明例のものに比べ著しく低かった。また比較例2,
3は、高温ボルト材として知られているNimonic80Aおよ
びRefractaloy26 であるが、この合金の平均熱膨張率が
それぞれ14.5×10-6/℃および16.1×10-6
/℃であり、本発明例のものより大きかった。比較例4
および比較例5は、Inconel783およびIncoloy909であ
り、平均熱膨張率が本発明例のものと同等またはそれよ
り低いが、水蒸気酸化特性が本発明例のものより悪かっ
た。
From these results, all of the examples of the present invention have an average coefficient of thermal expansion from room temperature to 700 ° C. of 14.0.
× 10 −6 / ° C. or less, and the tensile strength at 700 ° C. was 890 to 1118 MPa. Further, the creep rupture life was 791-2880 hr, and the steam oxidation weight increase was 0.05-0.21 mg / cm 2 . on the other hand,
Comparative Example 1 was a ferritic 12Cr steel having a low average coefficient of thermal expansion of 12.4 × 10 −6 / ° C., but had a significantly lower high-temperature tensile strength than that of the inventive example. Comparative Example 2,
No. 3 is Nimonic 80A and Refractaloy 26, which are known as high-temperature bolt materials, and their average thermal expansion coefficients are 14.5 × 10 −6 / ° C. and 16.1 × 10 −6, respectively.
/ ° C, which is larger than that of the present invention. Comparative Example 4
And Comparative Example 5 were Inconel 783 and Incoloy 909, which had average thermal expansion coefficients equal to or lower than those of the inventive examples, but had poorer steam oxidation properties than those of the inventive examples.

【0031】比較例6は、Al含有量が本発明の上限を
超え、またAl+Tiの総量も本発明の上限を超えた合
金であるが、熱処理の固溶化処理時の水冷において素材
に割れが発生した。また、比較例7は、Al+Tiの総
量が本発明の上限を超えたものであるが、比較例6と同
様に固溶化処理時の水冷において素材に割れが発生し、
その後の評価ができなかった。比較例8は、本発明より
Crが多く、またMo+ 1/2(W+Re)の値が小さい
合金で、平均熱膨張率が14.1×10-6/℃と大きか
った。比較例9は、本発明よりMo+ 1/2(W+Re)
が多く、この合金は鍛造性が悪く、鍛造時に割れが発生
し、その後の評価ができなかった。比較例10は、Al
+Tiの総量が本発明より低く、γ′相の析出量が十分
でないため、高温強度が本発明のものに比較して小さく
なっていた。
Comparative Example 6 is an alloy in which the Al content exceeds the upper limit of the present invention and the total amount of Al + Ti also exceeds the upper limit of the present invention. However, cracks occur in the material by water cooling during the solution treatment of heat treatment. did. In Comparative Example 7, although the total amount of Al + Ti exceeded the upper limit of the present invention, cracks occurred in the material during water cooling during the solution treatment, as in Comparative Example 6.
No further evaluation was possible. Comparative Example 8 was an alloy having a larger amount of Cr and a smaller value of Mo + 1/2 (W + Re) than the present invention, and had a large average coefficient of thermal expansion of 14.1 × 10 −6 / ° C. Comparative Example 9 shows that Mo + 1/2 (W + Re)
This alloy had poor forgeability, and cracks occurred during forging, and subsequent evaluation was not possible. Comparative Example 10 was made of Al
Since the total amount of + Ti was lower than that of the present invention and the precipitation amount of the γ 'phase was not sufficient, the high-temperature strength was smaller than that of the present invention.

【0032】[0032]

【発明の効果】本発明の低熱膨張Ni基超合金は、上記
成分組成にしたことにより、平均熱膨張率が14.0×
10-6/℃以下で12Cr鋼とほぼ同等であり、またク
リープ破断寿命が791〜2880hrおよび水蒸気酸
化増量が0.05〜0.21mg/cm2 で、上記オー
ステナイト系耐熱合金とほぼ同様の高温強度と耐食・耐
酸化性を持っているという優れた効果を奏する。また、
本発明の低熱膨張Ni基超合金は、蒸気タービン、ガス
タービンおよびジェットエンジンのボルト、翼ならびに
ディスク、加熱機器のボイラーチューブ、圧力機などへ
適用することにより火力発電プラントの信頼性の向上に
つながるという優れた効果を奏する。
The low thermal expansion Ni-base superalloy of the present invention has an average thermal expansion coefficient of 14.0.times.
It is almost the same as 12Cr steel at 10 -6 / ° C or less, has a creep rupture life of 791-2880 hr and a steam oxidation increase of 0.05-0.21 mg / cm 2 , and has a high temperature almost similar to that of the austenitic heat-resistant alloy. It has an excellent effect of having strength, corrosion resistance and oxidation resistance. Also,
The low thermal expansion Ni-base superalloy of the present invention leads to an improvement in the reliability of a thermal power plant by being applied to bolts, blades and disks of steam turbines, gas turbines and jet engines, boiler tubes of heating equipment, pressure machines and the like. It has an excellent effect.

フロントページの続き (72)発明者 河合 久孝 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 角屋 好邦 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 山本 隆一 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 野田 俊治 岐阜県多治見市脇之島町4丁目26─11 (72)発明者 磯部 晋 愛知県名古屋市昭和区滝川町12ライオンズ マンション杁中ガーデン (72)発明者 岡部 道生 愛知県知多市旭桃台137番地Continued on the front page (72) Inventor Hisataka Kawai 2-1-1 Shinama, Araimachi, Takasago-shi, Hyogo Prefecture Inside Takasago Works, Mitsubishi Heavy Industries, Ltd. (72) Yoshikuni Tsunoya 2-1-1 Shinama, Araimachi, Takasago-shi, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Ryuichi Yamamoto 2-1-1, Shinhama, Araimachi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Shunji Noda 4-26, Wakinoshima-cho, Tajimi-shi, Gifu Prefecture 11 (72) Inventor Susumu Isobe 12 Lions Mansion Iraka Garden 12 Takikawacho, Showa-ku, Nagoya-shi, Aichi Prefecture (72) Inventor Michio Okabe 137 Asahi Momodai, Chita-shi, Aichi Prefecture

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 重量%(以下、特定してないものは同
じ)で、C:0.15%以下、Si:1%以下、Mn:
1%以下、Cr:5〜10未満%、Mo、WおよびRe
の1種または2種以上をMo+ 1/2(W+Re):10
〜25%、Al:0.2〜2%、Ti:0.5〜4.5
%、Fe:10%以下、B:0.02%以下およびZ
r:0.2%以下の1種または2種を含有し、Al+T
iの原子%が2.5〜7.0%であり、残部Niと不可
避的不純物からなることを特徴とする低熱膨張Ni基超
合金。
C .: 0.15% or less, Si: 1% or less, Mn:
1% or less, Cr: 5 to less than 10%, Mo, W and Re
Mo + 1/2 (W + Re): 10 or more
-25%, Al: 0.2-2%, Ti: 0.5-4.5
%, Fe: 10% or less, B: 0.02% or less, and Z
r: contains one or two kinds of 0.2% or less, and Al + T
A low thermal expansion Ni-base superalloy characterized in that the atomic% of i is 2.5 to 7.0% and the balance consists of Ni and unavoidable impurities.
【請求項2】 C:0.15%以下、Si:1%以下、
Mn:1%以下、Cr:5〜10未満%、Mo、Wおよ
びReの1種または2種以上をMo+ 1/2(W+R
e):10〜25%、Al:0.2〜2%、Ti:0.
5〜4.5%、Fe:10%以下、B:0.02%以下
およびZr:0.2%以下の1種または2種を含有し、
さらにNbおよびTaの1種または2種をNb+ 1/2T
a:1.5%以下を含有し、Al+Ti+Nb+Taの
原子%が2.5〜7.0%であり、残部Niと不可避的
不純物からなることを特徴とする低熱膨張Ni基超合
金。
2. C: 0.15% or less, Si: 1% or less,
Mn: 1% or less, Cr: 5 to less than 10%, one or more of Mo, W and Re are Mo + 1/2 (W + R
e): 10-25%, Al: 0.2-2%, Ti: 0.
5 to 4.5%, Fe: 10% or less, B: 0.02% or less, and Zr: 0.2% or less.
Further, one or two of Nb and Ta are replaced with Nb + 1 / 2T
a: A low thermal expansion Ni-base superalloy containing 1.5% or less, wherein the atomic percentage of Al + Ti + Nb + Ta is 2.5 to 7.0%, and the balance is composed of Ni and unavoidable impurities.
【請求項3】 C:0.15%以下、Si:1%以下、
Mn:1%以下、Cr:5〜20%、Mo、WおよびR
eの1種または2種以上をMo+ 1/2(W+Re):1
7超〜25%、Al:0.2〜2%、Ti:0.5〜
4.5%、Fe:10%以下、B:0.02%以下およ
びZr:0.2%以下の1種または2種を含有し、Al
+Tiの原子%が2.5〜7.0%であり、残部Niと
不可避的不純物からなることを特徴とする低熱膨張Ni
基超合金。
3. C: 0.15% or less, Si: 1% or less,
Mn: 1% or less, Cr: 5 to 20%, Mo, W and R
Mo + 1/2 (W + Re): 1 or more of e
More than 7 to 25%, Al: 0.2 to 2%, Ti: 0.5 to
One or two of 4.5%, Fe: 10% or less, B: 0.02% or less, and Zr: 0.2% or less.
Low thermal expansion Ni, wherein the atomic% of + Ti is 2.5 to 7.0%, and the balance is Ni and unavoidable impurities.
Base superalloy.
【請求項4】 C:0.15%以下、Si:1%以下、
Mn:1%以下、Cr:5〜20%、Mo、WおよびR
eの1種または2種以上をMo+ 1/2(W+Re):1
7超〜25%、Al:0.2〜2%、Ti:0.5〜
4.5%、Fe:10%以下、B:0.02%以下およ
びZr:0.2%以下の1種または2種を含有し、さら
にNbおよびTaの1種または2種をNb+ 1/2Ta:
1.5%以下を含有し、Al+Ti+Nb+Taの原子
%が2.5〜7.0%であり、残部Niと不可避的不純
物からなることを特徴とする低熱膨張Ni基超合金。
4. C: 0.15% or less, Si: 1% or less,
Mn: 1% or less, Cr: 5 to 20%, Mo, W and R
Mo + 1/2 (W + Re): 1 or more of e
More than 7 to 25%, Al: 0.2 to 2%, Ti: 0.5 to
One or two of 4.5%, Fe: 10% or less, B: 0.02% or less, and Zr: 0.2% or less. Further, one or two of Nb and Ta are Nb + 1 / 2Ta:
A low thermal expansion Ni-base superalloy containing 1.5% or less, wherein the atomic percentage of Al + Ti + Nb + Ta is 2.5 to 7.0%, and the balance is Ni and unavoidable impurities.
【請求項5】 C:0.15%以下、Si:1%以下、
Mn:1%以下、Cr:5〜20%、Mo、WおよびR
eの1種または2種以上をMo+ 1/2(W+Re):1
0〜25%、Al:0.2〜0.4未満%、Ti:0.
5〜4.5%、Fe:10%以下、B:0.02%以下
およびZr:0.2%以下の1種または2種を含有し、
Al+Tiの原子%が2.5〜7.0%であり、残部N
iと不可避的不純物からなることを特徴とする低熱膨張
Ni基超合金。
5. C: 0.15% or less, Si: 1% or less,
Mn: 1% or less, Cr: 5 to 20%, Mo, W and R
Mo + 1/2 (W + Re): 1 or more of e
0 to 25%, Al: 0.2 to less than 0.4%, Ti: 0.
5 to 4.5%, Fe: 10% or less, B: 0.02% or less, and Zr: 0.2% or less.
The atomic percentage of Al + Ti is 2.5-7.0%, and the balance N
A low thermal expansion Ni-base superalloy comprising i and unavoidable impurities.
【請求項6】 C:0.15%以下、Si:1%以下、
Mn:1%以下、Cr:5〜20%、Mo、WおよびR
eの1種または2種以上をMo+ 1/2(W+Re):1
0〜25%、Al:0.2〜0.4未満%、Ti:0 .
5〜4.5%、Fe:10%以下、B:0.02%以下
およびZr:0.2%以下の1種または2種を含有し、
さらにNbおよびTaの1種または2種をNb+ 1/2T
a:1.5%以下を含有し、Al+Ti+Nb+Taの
原子%が2.5〜7.0%であり、残部Niと不可避的
不純物からなることを特徴とする低熱膨張Ni基超合
金。
6. C: 0.15% or less, Si: 1% or less,
Mn: 1% or less, Cr: 5 to 20%, Mo, W and R
Mo + 1/2 (W + Re): 1 or more of e
0 to 25%, Al: 0.2 to less than 0.4%, Ti: 0.
5 to 4.5%, Fe: 10% or less, B: 0.02% or less, and Zr: 0.2% or less.
Further, one or two of Nb and Ta are replaced with Nb + 1 / 2T
a: A low thermal expansion Ni-base superalloy containing 1.5% or less, wherein the atomic percentage of Al + Ti + Nb + Ta is 2.5 to 7.0%, and the balance is composed of Ni and unavoidable impurities.
【請求項7】 C:0.15%以下、Si:1%以下、
Mn:1%以下、Cr:5〜20%、Mo、WおよびR
eの1種または2種以上をMo+ 1/2(W+Re):1
0〜25%、Al:0.2〜2.0%、Ti:3.5超
〜4.5%、Fe:10%以下、B:0.02%以下お
よびZr:0.2%以下の1種または2種を含有し、A
l+Tiの原子%が2.5〜7.0%であり、残部Ni
と不可避的不純物からなることを特徴とする低熱膨張N
i基超合金。
7. C: 0.15% or less, Si: 1% or less,
Mn: 1% or less, Cr: 5 to 20%, Mo, W and R
Mo + 1/2 (W + Re): 1 or more of e
0 to 25%, Al: 0.2 to 2.0%, Ti: more than 3.5 to 4.5%, Fe: 10% or less, B: 0.02% or less, and Zr: 0.2% or less Containing one or two kinds, A
The atomic% of l + Ti is 2.5-7.0%, and the balance Ni
And low thermal expansion N characterized by comprising unavoidable impurities
i-base superalloy.
【請求項8】 C:0.15%以下、Si:1%以下、
Mn:1%以下、Cr:5〜15%、Mo、WおよびR
eの1種または2種以上をMo+ 1/2(W+Re):1
0〜25%、Al:0.2〜2.0%、Ti:3.5超
〜4.5%、Fe:10%以下、B:0.02%以下お
よびZr:0.2%以下の1種または2種を含有し、さ
らにNbおよびTaの1種または2種をNb+ 1/2T
a:1.5%以下を含有し、Al+Ti+Nb+Taの
原子%が2.5〜7.0%であり、残部Niと不可避的
不純物からなることを特徴とする低熱膨張Ni基超合
金。
8. C: 0.15% or less, Si: 1% or less,
Mn: 1% or less, Cr: 5 to 15%, Mo, W and R
Mo + 1/2 (W + Re): 1 or more of e
0 to 25%, Al: 0.2 to 2.0%, Ti: more than 3.5 to 4.5%, Fe: 10% or less, B: 0.02% or less, and Zr: 0.2% or less One or two of Nb and Ta, and one or two of Nb and Ta
a: A low thermal expansion Ni-base superalloy containing 1.5% or less, wherein the atomic percentage of Al + Ti + Nb + Ta is 2.5 to 7.0%, and the balance is composed of Ni and unavoidable impurities.
【請求項9】 上記Niの一部を5%以下のCoで置換
することを特徴とする請求項1ないし請求項8のいずれ
か1項記載の低熱膨張Ni基超合金。
9. The low thermal expansion Ni-base superalloy according to claim 1, wherein a part of the Ni is replaced by 5% or less of Co.
【請求項10】 上記Mo+ 1/2(W+Re)が17超〜
25%であることを特徴とする請求項1、請求項2およ
び請求項5ないし請求項9のういずれか1項記載の低熱
膨張Ni基超合金。
10. The Mo + 1/2 (W + Re) is greater than 17
The low thermal expansion Ni-base superalloy according to any one of claims 1, 2 and 5 to 9, characterized in that it is 25%.
【請求項11】 上記Cr が5〜10未満%であることを
特徴とする請求項3ないし請求項10のいずれか1項記載
の低熱膨張Ni基超合金。
11. The low thermal expansion Ni-base superalloy according to claim 3, wherein the Cr is 5% to less than 10%.
【請求項12】 上記Alが0.2〜0.4未満%である
ことを特徴とする請求項1ないし請求項4および請求項
7ないし請求項11のいずれか1項記載の低熱膨張Ni基
超合金。
12. The low thermal expansion Ni-base according to claim 1, wherein the Al content is 0.2 to less than 0.4%. Super alloy.
【請求項13】 上記Tiが3.5超〜4.5%であるこ
とを特徴とする請求項1ないし請求項6および請求項9
ないし請求項12のいずれか1項記載の低熱膨張Ni基超
合金。
13. The method according to claim 1, wherein the Ti content is more than 3.5% to 4.5%.
13. The low thermal expansion Ni-base superalloy according to claim 12.
【請求項14】 上記低熱膨張Ni基超合金の室温ないし
700℃の平均膨張係数が、14.0×10-6/℃以下
であることを特徴する請求項1ないし請求項8のいずれ
か1項記載の低熱膨張Ni基超合金。
14. The low thermal expansion Ni-base superalloy according to claim 1, wherein an average coefficient of expansion from room temperature to 700 ° C. is 14.0 × 10 −6 / ° C. or less. Item 4. The low thermal expansion Ni-base superalloy according to the above item.
JP05605999A 1999-03-03 1999-03-03 Low thermal expansion Ni-base superalloy Expired - Fee Related JP3781402B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP05605999A JP3781402B2 (en) 1999-03-03 1999-03-03 Low thermal expansion Ni-base superalloy
US09/517,305 US20020015656A1 (en) 1999-03-03 2000-03-02 Low thermal expansion NI-base superalloy
AT00104667T ATE296901T1 (en) 1999-03-03 2000-03-03 NICKEL-BASED SUPER ALLOY
EP00104667A EP1035225B1 (en) 1999-03-03 2000-03-03 Ni-base superalloy
DE60020424T DE60020424T8 (en) 1999-03-03 2000-03-03 Nickel-base superalloy
US10/255,716 US7160400B2 (en) 1999-03-03 2002-09-27 Low thermal expansion Ni-base superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05605999A JP3781402B2 (en) 1999-03-03 1999-03-03 Low thermal expansion Ni-base superalloy

Publications (2)

Publication Number Publication Date
JP2000256770A true JP2000256770A (en) 2000-09-19
JP3781402B2 JP3781402B2 (en) 2006-05-31

Family

ID=13016523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05605999A Expired - Fee Related JP3781402B2 (en) 1999-03-03 1999-03-03 Low thermal expansion Ni-base superalloy

Country Status (5)

Country Link
US (1) US20020015656A1 (en)
EP (1) EP1035225B1 (en)
JP (1) JP3781402B2 (en)
AT (1) ATE296901T1 (en)
DE (1) DE60020424T8 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124776A (en) * 2004-10-28 2006-05-18 Toshiba Corp Heat resistant alloy and method for producing heat resistant alloy
JP2008144202A (en) * 2006-12-07 2008-06-26 Daido Steel Co Ltd Heat-resistant spring and manufacturing method therefor
WO2009028671A1 (en) * 2007-08-31 2009-03-05 Hitachi Metals, Ltd. Low-thermal-expansion ni-based super-heat-resistant alloy for boiler and having excellent high-temperature strength, and boiler component and boiler component production method using the same
EP2172299A2 (en) 2008-09-09 2010-04-07 Hitachi Ltd. Ni-base alloy, high-temperature member for steam turbine and welded rotor for turbine using the same, and method for manufacturing the same
WO2010038680A1 (en) * 2008-09-30 2010-04-08 日立金属株式会社 Process for manufacturing ni-base alloy and ni-base alloy
EP2241399A1 (en) 2009-03-31 2010-10-20 Hitachi Ltd. Welding material and welding rotor
JP2010249050A (en) * 2009-04-16 2010-11-04 Toshiba Corp Steam turbine and steam turbine installation
US8083874B2 (en) 2004-04-27 2011-12-27 Mitsubishi Heavy Industries, Ltd. Method for producing low thermal expansion Ni-base superalloy
JP2014501845A (en) * 2011-02-18 2014-01-23 ヘインズ インターナショナル,インコーポレーテッド High temperature low thermal expansion Ni-Mo-Cr alloy

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830466B2 (en) * 2005-01-19 2011-12-07 大同特殊鋼株式会社 Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
JP4972972B2 (en) * 2006-03-22 2012-07-11 大同特殊鋼株式会社 Ni-based alloy
JP4800856B2 (en) 2006-06-13 2011-10-26 大同特殊鋼株式会社 Low thermal expansion Ni-base superalloy
JP2008275119A (en) * 2007-05-07 2008-11-13 Mitsubishi Heavy Ind Ltd Valve device
JP5254693B2 (en) * 2008-07-30 2013-08-07 三菱重工業株式会社 Welding material for Ni-base alloy
CN101748314A (en) * 2008-11-28 2010-06-23 江苏龙鑫特殊钢实业总公司 Nickel-based alloy of nuclear power steam generator
US9469893B2 (en) * 2010-07-16 2016-10-18 The Florida State University Research Foundation, Inc. Age-hardening process featuring anomalous aging time
CN117418153B (en) * 2023-12-18 2024-03-12 北京北冶功能材料有限公司 Nickel-based high-temperature alloy foil with stable long-term structure and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064900B2 (en) * 1984-12-19 1994-01-19 日立金属株式会社 Corrosion resistance High strength Ni-based alloy
JPH079048B2 (en) * 1986-05-01 1995-02-01 三菱マテリアル株式会社 Corrosion resistant Ni-base alloy wire rod with high strength and hardness
JPH0261019A (en) * 1988-08-25 1990-03-01 Mitsubishi Steel Mfg Co Ltd High strength electrifying roll for electroplating
JPH083665A (en) * 1994-06-20 1996-01-09 Mitsubishi Materials Corp Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
JP4037929B2 (en) * 1995-10-05 2008-01-23 日立金属株式会社 Low thermal expansion Ni-base superalloy and process for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083874B2 (en) 2004-04-27 2011-12-27 Mitsubishi Heavy Industries, Ltd. Method for producing low thermal expansion Ni-base superalloy
JP4575111B2 (en) * 2004-10-28 2010-11-04 株式会社東芝 Heat-resistant alloy and method for producing heat-resistant alloy
JP2006124776A (en) * 2004-10-28 2006-05-18 Toshiba Corp Heat resistant alloy and method for producing heat resistant alloy
JP2008144202A (en) * 2006-12-07 2008-06-26 Daido Steel Co Ltd Heat-resistant spring and manufacturing method therefor
US8444778B2 (en) 2007-08-31 2013-05-21 Hitachi Metals, Ltd. Low-thermal-expansion Ni-based super-heat-resistant alloy for boiler and having excellent high-temperature strength, and boiler component and boiler component production method using the same
WO2009028671A1 (en) * 2007-08-31 2009-03-05 Hitachi Metals, Ltd. Low-thermal-expansion ni-based super-heat-resistant alloy for boiler and having excellent high-temperature strength, and boiler component and boiler component production method using the same
JP5236651B2 (en) * 2007-08-31 2013-07-17 日立金属株式会社 Low thermal expansion Ni-base superalloy for boiler excellent in high temperature strength, boiler component using the same, and method for manufacturing boiler component
EP2172299A2 (en) 2008-09-09 2010-04-07 Hitachi Ltd. Ni-base alloy, high-temperature member for steam turbine and welded rotor for turbine using the same, and method for manufacturing the same
US8883072B2 (en) 2008-09-09 2014-11-11 Hitachi, Ltd. Ni-base alloy, high-temperature member for steam turbine and welded rotor for turbine using the same, and method for manufacturing the same
WO2010038680A1 (en) * 2008-09-30 2010-04-08 日立金属株式会社 Process for manufacturing ni-base alloy and ni-base alloy
JP5500452B2 (en) * 2008-09-30 2014-05-21 日立金属株式会社 Ni-based alloy manufacturing method and Ni-based alloy
US8845958B2 (en) 2008-09-30 2014-09-30 Hitachi Metals, Ltd. Process for manufacturing Ni-base alloy and Ni-base alloy
EP2241399A1 (en) 2009-03-31 2010-10-20 Hitachi Ltd. Welding material and welding rotor
JP2010249050A (en) * 2009-04-16 2010-11-04 Toshiba Corp Steam turbine and steam turbine installation
JP2014501845A (en) * 2011-02-18 2014-01-23 ヘインズ インターナショナル,インコーポレーテッド High temperature low thermal expansion Ni-Mo-Cr alloy

Also Published As

Publication number Publication date
DE60020424D1 (en) 2005-07-07
EP1035225B1 (en) 2005-06-01
DE60020424T8 (en) 2006-08-17
JP3781402B2 (en) 2006-05-31
EP1035225A1 (en) 2000-09-13
US20020015656A1 (en) 2002-02-07
DE60020424T2 (en) 2006-04-27
ATE296901T1 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
US8491838B2 (en) Low thermal expansion Ni-base superalloy
JP5270123B2 (en) Nitride reinforced cobalt-chromium-iron-nickel alloy
JP4861651B2 (en) Advanced Ni-Cr-Co alloy for gas turbine engines
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
EP1591548A1 (en) Method for producing of a low thermal expansion Ni-base superalloy
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
EP1696108A1 (en) Heat resistant alloy for exhaust valves durable at 900°C and exhaust valves made for the alloy
GB2405643A (en) A nickel-chromium-molybdenum alloy
US7160400B2 (en) Low thermal expansion Ni-base superalloy
JPH086164B2 (en) Method for enhancing crevice and pitting corrosion resistance of nickel-base alloys
JP2003013161A (en) Ni-BASED AUSTENITIC SUPERALLOY WITH LOW THERMAL EXPANSION AND MANUFACTURING METHOD THEREFOR
USH2245H1 (en) Age-hardenable, nickel-base superalloy with improved notch ductility
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JP5595495B2 (en) Nickel-base superalloy
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP2002235134A (en) Heat resistant alloy having excellent strength and toughness and heat resistant alloy parts
JP3424314B2 (en) Heat resistant steel
JP2001234292A (en) LOW THERMAL EXPANSION Fe-BASE HEAT RESISTANT ALLOY, EXCELLENT IN HIGH TEMPERATURE STRENGTH
WO2016121495A1 (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CREEP CHARACTERISTICS, AND GAS TURBINE MEMBER USING SAME
JP7551935B2 (en) High strength, heat stable nickel-based alloy
JPH05209249A (en) Low thermal expansion superalloy
JP3137426B2 (en) High temperature bolt material
JPH06228714A (en) Low thermal expansion superalloy excellent in oxidation resistance
JP3556701B2 (en) Heat treatment method of precipitation strengthened nickel base superalloy material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees