JP2000252336A - Method for sorting acceptable and rejective silicon wafer - Google Patents

Method for sorting acceptable and rejective silicon wafer

Info

Publication number
JP2000252336A
JP2000252336A JP11047377A JP4737799A JP2000252336A JP 2000252336 A JP2000252336 A JP 2000252336A JP 11047377 A JP11047377 A JP 11047377A JP 4737799 A JP4737799 A JP 4737799A JP 2000252336 A JP2000252336 A JP 2000252336A
Authority
JP
Japan
Prior art keywords
silicon wafer
silicon
esr
wafer
silicon crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11047377A
Other languages
Japanese (ja)
Inventor
Masaaki Koiizuka
正明 小飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11047377A priority Critical patent/JP2000252336A/en
Publication of JP2000252336A publication Critical patent/JP2000252336A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the breakthrough of detection limit concerning to the size and density of an oxygen deposit to be measured by sorting an acceptable silicon wafer when a specific ESR signal obtained through ESR measurement of a micro oxygen deposit in silicon crystal is 0. SOLUTION: Surface part of a just grown silicon crystal wafer, inside of a DZ-IG silicon wafer, and the surface part of a silicon wafer having an epitaxially grown silicon crystal layer are measure by means of an ESR measuring instrument and an acceptable silicon wafer having an ESR signal of 0 when the g value of micro oxygen deposit equal to 2.006 is detected at high sensitivity and sorted. Since an oxygen deposit can be discriminated from other defects based on a g value obtained from the ESR signal, only the oxygen deposit can be identified and the breakthrough of detection limit can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成長させたまま
(as grown)のシリコン結晶からなるウエハに
於ける表面近傍、又は、表面にシリコン・エピタキシャ
ル成長層をもつシリコン・ウエハに於ける表面近傍に生
成されデバイス不良の原因となる微小酸素析出物の存在
を検出してシリコン・ウエハの良否を選別する方法の改
良に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing a silicon wafer near the surface of an as-grown silicon crystal or a silicon wafer having a silicon epitaxial growth layer on the surface. The present invention relates to an improvement in a method for detecting the presence of minute oxygen precipitates that are generated and cause device failure and for determining the quality of a silicon wafer.

【0002】[0002]

【従来の技術】一般に、シリコン・デバイスを作り込む
為の基板となるシリコン・ウエハに於いては、デバイス
活性域となる表面近傍に於いては無欠陥であることが要
求される。
2. Description of the Related Art Generally, a silicon wafer serving as a substrate for forming a silicon device is required to have no defect near a surface serving as a device active region.

【0003】然しながら、実際には、成長させたままの
シリコン結晶からなるウエハ内、DZ(denuded
zone)−IG(intrinsic gette
ring)シリコン・ウエハ、即ち、高温の格子間酸素
外方拡散熱処理及び酸素析出二段熱処理を加えてDZと
IG層を作り込んだシリコン・ウエハのDZ内、エピタ
キシャル成長シリコン結晶層をもつシリコン・ウエハの
エピタキシャル成長シリコン結晶層内などには微小酸素
析出物が存在し、デバイス特性、即ち、酸化膜を形成し
た際の耐圧やリーク電流に悪影響を及ぼしている。
However, in practice, DZ (denuded) is used in a wafer made of as-grown silicon crystal.
zone) -IG (intrinsic gette)
ring) a silicon wafer, that is, a silicon wafer having an epitaxially grown silicon crystal layer in the DZ of a silicon wafer having a high temperature interstitial oxygen out-diffusion heat treatment and a two-step oxygen precipitation heat treatment to produce a DZ and an IG layer In the epitaxially grown silicon crystal layer and the like, minute oxygen precipitates are present, which has an adverse effect on device characteristics, that is, withstand voltage and leak current when an oxide film is formed.

【0004】一般に、成長させたままのシリコン結晶か
らなるウエハに於ける表面近傍、或いは、エピタキシャ
ル成長シリコン結晶層をもつシリコン・ウエハの表面近
傍などに生成される微小酸素析出物を検出するには、化
学エッチング後の光学顕微鏡に依る観察、赤外散乱トモ
グラフに依る検出、電子顕微鏡に依る観察などの手段が
知られている。
In general, to detect minute oxygen precipitates formed near the surface of a wafer made of as-grown silicon crystal or near the surface of a silicon wafer having an epitaxially grown silicon crystal layer, Means such as observation using an optical microscope after chemical etching, detection using an infrared scattering tomograph, and observation using an electron microscope are known.

【0005】前記従来の手段のうち、光学顕微鏡に依る
観察、及び、赤外散乱トモグラフに於いては、検出でき
る微小酸素析出物は大きいものに限られてしまい、例え
ば、感度が高い赤外散乱トモグラフを用いた場合であっ
ても、検出できる欠陥の大きさは20〔nm〕以上であ
る。
[0005] Among the above-mentioned conventional means, in observation by an optical microscope and in infrared scattering tomography, the detectable minute oxygen precipitates are limited to large ones. Even when a tomograph is used, the size of a defect that can be detected is 20 nm or more.

【0006】また、電子顕微鏡に依る観察では、原子レ
ベルの欠陥を検出することもできるが、成長させたまま
のシリコン結晶からなるウエハの表面近傍、DZ−IG
シリコン・ウエハのDZ内、エピタキシャル成長シリコ
ン結晶層をもつシリコン・ウエハの表面近傍などに於け
る欠陥の存在密度が低い場合には、それ等の欠陥を検出
することは難しい。
[0008] Atomic level defects can be detected by observation with an electron microscope. However, in the vicinity of the surface of a wafer made of as-grown silicon crystal, DZ-IG
If the density of defects existing in the DZ of the silicon wafer or in the vicinity of the surface of the silicon wafer having the epitaxially grown silicon crystal layer is low, it is difficult to detect such defects.

【0007】[0007]

【発明が解決しようとする課題】本発明では、被測定酸
素析出物の大きさ及び密度に関する検出限界のブレイク
・スルーを実現し、更に小さい微小酸素析出物を検出で
きるように、また、更に密度が低い微小酸素析出物を検
出できるようにする。
SUMMARY OF THE INVENTION In the present invention, a breakthrough of the detection limit relating to the size and density of the oxygen precipitate to be measured is realized, so that a smaller minute oxygen precipitate can be detected. Low oxygen precipitates can be detected.

【0008】[0008]

【課題を解決するための手段】本発明者は、成長させた
ままのシリコン結晶からなるウエハの表面近傍、DZ−
IGシリコン・ウエハのDZ内、エピタキシャル成長シ
リコン結晶層をもつシリコン・ウエハの表面近傍などを
ESR(electron spin resonan
ce)測定器で測定したところ、驚くべきことには、微
小酸素析出物をg値=2.006なるESRシグナルに
依って高感度で検出できることを見出した。
SUMMARY OF THE INVENTION The present inventor has proposed a method for measuring the vicinity of the surface of a wafer made of as-grown silicon crystal, DZ-
In the DZ of an IG silicon wafer, near the surface of a silicon wafer having an epitaxially grown silicon crystal layer, etc., an ESR (electron spin resonance) is used.
ce) As a result of measurement with a measuring instrument, it was surprisingly found that minute oxygen precipitates could be detected with high sensitivity based on an ESR signal having a g value of 2.006.

【0009】本発明の方法が得られた過程としては、当
初、成長させたままのシリコン結晶からなるウエハにつ
いて、DLTS(deep level transi
ent spectroscopy)法を適用して微小
酸素析出物を検出する実験を行っていたところ、その結
果がMOSデバイスに於ける酸化膜の良否を判断する為
に実施されている同じDLTS法に依る実験結果と良く
似ていることが判ったので、ESR測定器に依る測定を
試行したところ、前記の結果が得られたので、その後、
DZ−IGシリコン・ウエハ、エピタキシャル成長シリ
コン結晶層をもつシリコン・ウエハについて次々と実験
を行ったところ、全く同じ結果が得られたものである。
The process in which the method of the present invention is obtained is as follows: First, a DLTS (deep level transitivity) is applied to a wafer made of as-grown silicon crystal.
An experiment was conducted to detect minute oxygen precipitates by applying the ent spectroscopy method, and the result is an experimental result based on the same DLTS method that is being carried out to judge the quality of the oxide film in the MOS device. It turned out to be very similar to the above, so when we tried to measure with an ESR measuring instrument, the above result was obtained.
Experiments were successively conducted on a DZ-IG silicon wafer and a silicon wafer having an epitaxially grown silicon crystal layer, and the same result was obtained.

【0010】ところで、g値=2.006なるESRシ
グナルは、MOSデバイスに於けるシリコン/酸化膜界
面で検出されることが既に報告されている(要すれば、
「Y.Nisi,Jpn.J.Appl.Phys.1
0,52(1971)」を参照)。
It has been reported that an ESR signal having a g value of 2.006 is detected at a silicon / oxide film interface in a MOS device (if necessary,
"Y. Nisi, Jpn. J. Appl. Phys. 1
0, 52 (1971) ").

【0011】前記MOSデバイスに於けるシリコン/酸
化膜界面をESR測定した場合にg値=2.006のE
SRシグナルが現れる確たる理由は現時点で不分明であ
り、一説に依ると、シリコン/アモーファスSiO2
場合、SiとO2 とのダングリング・ボンドが切れてい
る場合に現れるとのことである。
When ESR measurement is performed on the silicon / oxide film interface in the MOS device, an E value of 2.006 is obtained.
The exact reason for the appearance of the SR signal is unclear at this time, and according to one theory, in the case of silicon / amorphous SiO 2 , it appears when the dangling bond between Si and O 2 is broken.

【0012】然しながら、本発明が対象としたシリコン
結晶中の微小酸素析出物の場合にシリコン/アモーファ
スSiO2 の界面と同じ現象が起こっているのかどう
か、現在のところ、本発明者は解明できていないのであ
るが、何れにせよ、本発明で開示した実験を行うことに
依り、シリコン結晶中の微小酸素析出物を簡単且つ高感
度で検出可能であることを容易に確認することができ、
その威力は、従来の如何なる方法にも勝っていると認識
される。
However, at present, the present inventors have been able to elucidate whether the same phenomenon as the silicon / amorphous SiO 2 interface occurs in the case of minute oxygen precipitates in the silicon crystal targeted by the present invention. However, in any case, by conducting the experiments disclosed in the present invention, it can be easily confirmed that minute oxygen precipitates in silicon crystals can be detected easily and with high sensitivity,
Its power is perceived to be superior to any conventional method.

【0013】前記したところから、本発明に依るシリコ
ン・ウエハの良否選別方法に於いては、 (1)シリコン・ウエハを構成するシリコン結晶中に於
ける微小酸素析出物をESR測定して得られるg値=
2.006のESRシグナルが0であるシリコン・ウエ
ハを良品として選別することを特徴とするか、或いは、
From the above description, in the method for screening the quality of a silicon wafer according to the present invention, (1) a fine oxygen precipitate in a silicon crystal constituting a silicon wafer is obtained by ESR measurement. g value =
Selecting a silicon wafer having an ESR signal of 2.006 equal to 0 as a non-defective product, or

【0014】(2)前記(1)に於いて、ESR測定対
象であるシリコン・ウエハが成長したままのシリコン結
晶からなるか、又は、DZ−IGシリコン・ウエハから
なるか、又は、エピタキシャル成長シリコン結晶層をも
つシリコン・ウエハからなるかの何れかであることを特
徴とする。
(2) In the above (1), the silicon wafer to be subjected to the ESR measurement is made of a silicon crystal as grown, a DZ-IG silicon wafer, or an epitaxially grown silicon crystal. Or a silicon wafer having a layer.

【0015】前記手段を採ることに依り、光学顕微鏡や
赤外散乱トモグラフを用いる場合と異なり、被測定酸素
析出物は大きさに拘わらず検出することができ、また、
電子顕微鏡の場合と異なり、密度の検出下限は、電子顕
微鏡の場合と異なり、対象物の大きさを大きくすること
で充分に引き下げることができ、更にまた、ESRシグ
ナルから得られるg値に依って、酸素析出物と他の欠陥
と区別することができるから、酸素析出物のみを同定す
ることが可能であり、従って、g値=2.006のES
Rシグナルが0であるシリコン・ウエハ、或いは、DZ
−IGシリコン・ウエハ、或いは、エピタキシャル成長
シリコン結晶層をもつシリコン・ウエハを選択して現用
の半導体装置を製造して若し不良品が発生した場合に
は、その原因はウエハに於ける酸素析出物以外のところ
にあることは殆ど確実である。
By employing the above-mentioned means, the oxygen precipitate to be measured can be detected irrespective of the size, unlike the case where an optical microscope or an infrared scattering tomograph is used.
Unlike the case of the electron microscope, the lower detection limit of the density can be sufficiently reduced by increasing the size of the object, unlike the case of the electron microscope, and furthermore, depends on the g value obtained from the ESR signal. Since it is possible to distinguish oxygen precipitates from other defects, it is possible to identify only oxygen precipitates, and therefore, an ES having a g value of 2.006
Silicon wafer with R signal of 0 or DZ
If an active semiconductor device is manufactured by selecting an IG silicon wafer or a silicon wafer having an epitaxially grown silicon crystal layer, and a defective product is generated, the cause is oxygen precipitates on the wafer. It is almost certain that it is in a place other than.

【0016】[0016]

【発明の実施の形態】図1は試料となるシリコン結晶の
内部に於ける酸素析出の様子を表す光学顕微鏡写真であ
る。
FIG. 1 is an optical microscope photograph showing the appearance of oxygen precipitation inside a silicon crystal as a sample.

【0017】この場合に用いたシリコン結晶は、p型の
CZ(Czochralski)−Si結晶に 温度:500〔℃〕 時間:時間10〔時間〕 及び 温度:700〔℃〕 時間:時間60〔時間〕 の酸素析出熱処理を連続して加えることで、シリコン結
晶中に酸素析出物を生成させたものである。
The silicon crystal used in this case is a p-type CZ (Czochralski) -Si crystal. Temperature: 500 [° C.] Time: time 10 [hours] and Temperature: 700 [° C.] Time: time 60 [hours] The oxygen precipitate heat treatment is continuously applied to generate oxygen precipitates in the silicon crystal.

【0018】図1に付記したスケールを参照して、酸素
析出物(白い部分)をカウントすれば、その密度は、
3.9×1010〔cm-3〕であることが判る。
Referring to the scale attached to FIG. 1, if the oxygen precipitates (white portions) are counted, the density is as follows:
It turns out that it is 3.9 × 10 10 [cm −3 ].

【0019】このシリコン結晶から、面指数(10
0)、大きさ2〔mm〕×2〔mm〕×20〔mm〕の
棒状試料を切り出し、その試料の温度が10(K)にな
るよう冷却してからESR測定器を用いて測定を行う。
From this silicon crystal, the plane index (10
0) A rod-shaped sample having a size of 2 [mm] x 2 [mm] x 20 [mm] is cut out, cooled to a temperature of 10 (K), and then measured using an ESR measuring device. .

【0020】ESR測定は、ESR測定器に於ける二つ
のコイルの間に試料をセットし、試料の長軸に垂直に磁
場が加わるようにして、その磁場の値を331.0〔m
T〕〜341.0〔mT〕に亙って変化させ、且つ、試
料に於ける被測定箇所に9.43〔GHz〕のマイクロ
波を照射して実施した。
In the ESR measurement, a sample is set between two coils in an ESR measuring instrument, and a magnetic field is applied perpendicularly to the long axis of the sample, and the value of the magnetic field is set to 331.0 [m
T] to 341.0 [mT], and the measurement was performed by irradiating a 9.43 [GHz] microwave to the measured portion of the sample.

【0021】図2は磁場−帯磁率を磁場で微分した値の
関係を表す線図であり、横軸には磁場を、また、縦軸に
は帯磁率を磁場で微分した値をそれぞれ採ってある。
FIG. 2 is a diagram showing the relationship between the magnetic field and the value obtained by differentiating the magnetic susceptibility with the magnetic field. The horizontal axis represents the magnetic field, and the vertical axis represents the value obtained by differentiating the magnetic susceptibility with the magnetic field. is there.

【0022】図に依れば、3360〔G〕近傍にg値=
2.006のESRシグナルが現れていることを明瞭に
看取でき、このESRシグナルは、酸素析出物に依るも
のであり、シグナル強度から界面準位密度を求めると
1.3×1012〔cm-3〕であることが判る。
According to the figure, g value = 3360 G!
The appearance of an ESR signal of 2.006 can be clearly seen, and this ESR signal is due to oxygen precipitates. When the interface state density is determined from the signal intensity, 1.3 × 10 12 [cm] -3 ].

【0023】図1に見られる試料に於ける酸素析出物の
大きさは、TEM(transmission ele
ctron microscopy)に依る観察から約
10〔nm〕程度であることが判っている。
The size of the oxygen precipitate in the sample shown in FIG. 1 is determined by a TEM (transmission element).
It has been found from observation by tron microscopy that the diameter is about 10 [nm].

【0024】それからすると、酸素析出物1〔個〕がも
つ界面準位数は、 界面でのダングリング・ボンドの面密度×析出物の界面
積=1×1016〔cm-2〕×4π(10×10-92 〔c
2 〕≒10〔個〕 となる。
Then, the number of interface states of one oxygen precipitate is determined by the following equation: the surface density of dangling bonds at the interface × the boundary area of the precipitate = 1 × 10 16 [cm −2 ] × 4π ( 10 × 10 -9 ) 2 [c
m 2 ] ≒ 10 [pieces].

【0025】従って、ESRシグナルから、酸素析出物
密度は1.3×1011〔cm-3〕となり、この値は図1の
光学顕微鏡写真から求めた値よりも大きいが、その理由
は、光学顕微鏡に依る観察では、小さい酸素析出物を検
出しきれない為である。
Therefore, from the ESR signal, the oxygen precipitate density was 1.3 × 10 11 [cm -3 ], which is larger than the value obtained from the optical micrograph of FIG. This is because observation by a microscope cannot detect small oxygen precipitates.

【0026】図3は本発明に於ける別の実施の形態を説
明する為の光学顕微鏡観察結果とESR測定結果を表す
線図であり、横軸に光学顕微鏡観察から得られた酸素析
出物密度〔cm-3〕を、縦軸にESR測定から得られた酸
素析出物密度〔cm-3〕をそれぞれ採ってある。
FIG. 3 is a diagram showing an optical microscope observation result and an ESR measurement result for explaining another embodiment of the present invention, and the horizontal axis represents the oxygen precipitate density obtained from the optical microscope observation. [Cm -3 ] is plotted on the vertical axis, and the oxygen precipitate density [cm -3 ] obtained from ESR measurement is plotted on the vertical axis.

【0027】この場合に用いたシリコン結晶は、p型の
CZ−Si結晶に 温度:500〔℃〕 時間:時間1〔時間〕 及び 温度:700〔℃〕 時間:時間60〔時間〕 の酸素析出熱処理と 温度:500〔℃〕 時間:時間5〔時間〕 及び 温度:700〔℃〕 時間:時間60〔時間〕 の酸素析出熱処理とを加えることで、シリコン結晶中に
酸素析出物を生成させたものである。
The silicon crystal used in this case is a p-type CZ-Si crystal, which is obtained by depositing oxygen at a temperature of 500 ° C. for a time of 1 hour and a temperature of 700 ° C. for a time of 60 hours. The heat treatment and the temperature: 500 [° C] time: time 5 [hours] and the temperature: 700 [° C] time: time 60 [hours] were added to generate oxygen precipitates in the silicon crystal. Things.

【0028】図3に於いて、破線は光学顕微鏡観察結果
を、また、プロットはESR測定結果をそれぞれ示して
いて、それ等の間には密接な相関が存在することを窺知
できる。
In FIG. 3, the dashed line shows the result of observation with an optical microscope, and the plot shows the result of ESR measurement. It can be seen that there is a close correlation between them.

【0029】図示されたところからすると、光学顕微鏡
観察結果とESR検出結果と比較した場合、ESR検出
結果が光学顕微鏡観察結果よりも上になっているので、
これからすると、ESRに依った場合には光学顕微鏡観
察よりも良好に酸素析出物を検出できることが明らかで
ある。
As shown in the figure, when the result of optical microscope observation and the result of ESR detection are compared, the result of ESR detection is higher than the result of optical microscope observation.
From this, it is clear that the oxygen precipitate can be detected better by ESR than by optical microscope observation.

【0030】図4は図1乃至図3について説明した試料
と異なる試料に関する磁場−帯磁率を磁場で微分した値
の関係を表す線図であり、横軸には磁場を、また、縦軸
には帯磁率を磁場で微分した値をそれぞれ採ってある。
FIG. 4 is a diagram showing the relationship between the magnetic field and the value obtained by differentiating the magnetic susceptibility with respect to the sample different from the samples described with reference to FIGS. 1 to 3, wherein the horizontal axis represents the magnetic field, and the vertical axis represents the magnetic field. Represents the value obtained by differentiating the magnetic susceptibility with the magnetic field.

【0031】この場合に用いた試料は、p型のCZ−S
i結晶に 温度:700〔℃〕 時間:時間10〔時間〕 の酸素析出熱処理とを加えることで、シリコン結晶中に
酸素析出物を生成させたものである。
The sample used in this case was a p-type CZ-S
An oxygen precipitate is generated in the silicon crystal by adding an oxygen precipitation heat treatment at a temperature of 700 [° C.] time: 10 [hours] to the i crystal.

【0032】図に依れば、3360〔G〕近傍にg値=
2.006のESRシグナルが現れていることが看取さ
れ、このESRシグナルは、酸素析出物に依るものであ
ることが確認された。尚、同試料について、光学顕微鏡
で観察したところ、欠陥は発見できなかった。
According to the figure, g value = 3360 [G]
It was observed that an ESR signal of 2.006 appeared, and it was confirmed that this ESR signal was due to oxygen precipitates. When the same sample was observed with an optical microscope, no defect was found.

【0033】本発明に於いては、前記実施の形態に限ら
れず、他に多くの改変を実現することができ、例えば、
熱処理工程が含まれる半導体装置の製造工程中に前記E
SR測定を行ない、シリコン・ウエハの良否を判定し、
不良品の発生を未然に防ぐ為の管理を実施することがで
きる。
In the present invention, the present invention is not limited to the above-described embodiment, and many other modifications can be realized.
During the manufacturing process of the semiconductor device including the heat treatment process,
Perform SR measurement, judge pass / fail of silicon wafer,
Management for preventing the occurrence of defective products can be implemented.

【0034】[0034]

【発明の効果】本発明に依るシリコン・ウエハの良否選
別方法に於いては、シリコン・ウエハを構成するシリコ
ン結晶中に於ける微小酸素析出物をESR測定して得ら
れるg値=2.006のESRシグナルが0であるシリ
コン・ウエハを良品として選別する。
According to the method for screening the quality of a silicon wafer according to the present invention, a g-value = 2.0006 obtained by ESR measurement of minute oxygen precipitates in a silicon crystal constituting the silicon wafer. Are selected as non-defective silicon wafers whose ESR signal is zero.

【0035】前記構成を採ることに依り、光学顕微鏡や
赤外散乱トモグラフを用いる場合と異なり、被測定酸素
析出物は大きさに拘わらず検出することができ、また、
電子顕微鏡の場合と異なり、密度の検出下限は、電子顕
微鏡の場合と異なり、対象物の大きさを大きくすること
で充分に引き下げることができ、更にまた、ESRシグ
ナルから得られるg値に依って、酸素析出物と他の欠陥
と区別することができるから、酸素析出物のみを同定す
ることが可能であり、従って、g値=2.006のES
Rシグナルが0であるシリコン・ウエハ、或いは、DZ
−IGシリコン・ウエハ、或いは、エピタキシャル成長
シリコン結晶層をもつシリコン・ウエハを選択して現用
の半導体装置を製造して若し不良品が発生した場合に
は、その原因はウエハに於ける酸素析出物以外のところ
にあることは殆ど確実である。
By adopting the above configuration, unlike the case of using an optical microscope or an infrared scattering tomograph, the oxygen precipitate to be measured can be detected regardless of its size.
Unlike the case of the electron microscope, the lower detection limit of the density can be sufficiently reduced by increasing the size of the object, unlike the case of the electron microscope, and furthermore, depends on the g value obtained from the ESR signal. Since it is possible to distinguish oxygen precipitates from other defects, it is possible to identify only oxygen precipitates, and therefore, an ES having a g value of 2.006
Silicon wafer with R signal of 0 or DZ
If an active semiconductor device is manufactured by selecting an IG silicon wafer or a silicon wafer having an epitaxially grown silicon crystal layer, and a defective product is generated, the cause is oxygen precipitates on the wafer. It is almost certain that it is in a place other than.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試料となるシリコン結晶の内部に於ける酸素析
出の様子を表す光学顕微鏡写真である。
FIG. 1 is an optical microscope photograph showing a state of oxygen precipitation inside a silicon crystal serving as a sample.

【図2】磁場−帯磁率を磁場で微分した値の関係を表す
線図である。
FIG. 2 is a diagram showing a relationship between a magnetic field and a value obtained by differentiating magnetic susceptibility with a magnetic field.

【図3】本発明に於ける別の実施の形態を説明する為の
光学顕微鏡観察結果とESR測定結果を表す線図であ
る。
FIG. 3 is a diagram showing an optical microscope observation result and an ESR measurement result for explaining another embodiment of the present invention.

【図4】図1乃至図3について説明した試料と異なる試
料に関する磁場−帯磁率を磁場で微分した値の関係を表
す線図である。
FIG. 4 is a diagram showing a relationship between a magnetic field and a value obtained by differentiating magnetic susceptibility with respect to a sample different from the samples described with reference to FIGS. 1 to 3;

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シリコン・ウエハを構成するシリコン結晶
中に於ける微小酸素析出物をESR(electron
spin resonance)測定して得られるg
値=2.006のESRシグナルが0であるシリコン・
ウエハを良品として選別することを特徴とするシリコン
・ウエハの良否選別方法。
A micro oxygen precipitate in a silicon crystal constituting a silicon wafer is removed by ESR (electron).
g obtained by spin resonance) measurement
Silicon whose value is 2.006 and whose ESR signal is 0
A method for selecting quality of a silicon wafer, the method comprising selecting a wafer as a non-defective product.
【請求項2】ESR測定対象であるシリコン・ウエハが
成長したままのシリコン結晶からなるか、又は、DZ
(denuded zone)−IG(intrins
icgettering)シリコン・ウエハからなる
か、又は、エピタキシャル成長シリコン結晶層をもつシ
リコン・ウエハからなるかの何れかであることを特徴と
する請求項1記載のシリコン・ウエハの良否選別方法。
2. The method according to claim 1, wherein the silicon wafer to be subjected to the ESR measurement is made of as-grown silicon crystal or DZ
(Denuded zone) -IG (intrins)
2. The method as claimed in claim 1, wherein the method comprises one of a silicon wafer and a silicon wafer having an epitaxially grown silicon crystal layer.
JP11047377A 1999-02-25 1999-02-25 Method for sorting acceptable and rejective silicon wafer Withdrawn JP2000252336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11047377A JP2000252336A (en) 1999-02-25 1999-02-25 Method for sorting acceptable and rejective silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11047377A JP2000252336A (en) 1999-02-25 1999-02-25 Method for sorting acceptable and rejective silicon wafer

Publications (1)

Publication Number Publication Date
JP2000252336A true JP2000252336A (en) 2000-09-14

Family

ID=12773417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11047377A Withdrawn JP2000252336A (en) 1999-02-25 1999-02-25 Method for sorting acceptable and rejective silicon wafer

Country Status (1)

Country Link
JP (1) JP2000252336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077704A (en) * 2019-11-06 2021-05-20 株式会社Sumco Evaluation method for evaluating passivation effect of epitaxial silicon wafer, and epitaxial silicon wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077704A (en) * 2019-11-06 2021-05-20 株式会社Sumco Evaluation method for evaluating passivation effect of epitaxial silicon wafer, and epitaxial silicon wafer
JP7259706B2 (en) 2019-11-06 2023-04-18 株式会社Sumco Passivation effect evaluation method for epitaxial silicon wafers

Similar Documents

Publication Publication Date Title
KR100821970B1 (en) A method of revealing crystalline defects in a bulk substrate
US5611855A (en) Method for manufacturing a calibration wafer having a microdefect-free layer of a precisely predetermined depth
US5418172A (en) Method for detecting sources of contamination in silicon using a contamination monitor wafer
US7244306B2 (en) Method for measuring point defect distribution of silicon single crystal ingot
KR101895817B1 (en) Silicon wafer and method for manufacturing same
JP2001081000A (en) Method of evaluating crystal defect in silicon single crystal
JP2936916B2 (en) Quality evaluation method of silicon single crystal
Higgs et al. Photoluminescence characterization of defects in Si and SiGe structures
US20230118491A1 (en) Method for evaluating of defect area of wafer
JP2000252336A (en) Method for sorting acceptable and rejective silicon wafer
JP5521775B2 (en) Single crystal silicon wafer evaluation method
JPH1154579A (en) Evaluation of semiconductor substrate
JP3955441B2 (en) Evaluation method of silicon wafer and nitrogen-doped annealing wafer
JP2004119446A (en) Annealed wafer and method for manufacturing the same
KR100384680B1 (en) A Method for detecting micro defects
JP4200845B2 (en) Method for measuring point defect distribution of silicon single crystal ingot
JPH1174493A (en) Inspecting method for defect of soi wafer
JP2004087591A (en) Method for measuring point defect distribution of silicon monocrystal ingot
JP2002334886A (en) Method for evaluating oxygen deposit density in silicon wafer, and the silicon wafer manufactured based on the evaluation method
JP4952871B2 (en) Silicon wafer evaluation method
JPH09260447A (en) Particle monitor-oriented silicon single-crystal wafer, and its manufacture
JP2007142063A (en) Silicon single-crystal wafer, method of manufacturing device using the same, and method of manufacturing the silicon single-crystal wafer and evaluation method of the wafer
JP3874254B2 (en) Evaluation method of BMD density in silicon wafer
JPH10135293A (en) Semiconductor crystal estimation method
Kim et al. Observation of micro-oxygen precipitates in the vicinity of the oxidation-induced stacking fault ring and their effects on thin gate oxide breakdown

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509