JPH1154579A - Evaluation of semiconductor substrate - Google Patents

Evaluation of semiconductor substrate

Info

Publication number
JPH1154579A
JPH1154579A JP22083097A JP22083097A JPH1154579A JP H1154579 A JPH1154579 A JP H1154579A JP 22083097 A JP22083097 A JP 22083097A JP 22083097 A JP22083097 A JP 22083097A JP H1154579 A JPH1154579 A JP H1154579A
Authority
JP
Japan
Prior art keywords
substrate
pits
density
cleaning
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22083097A
Other languages
Japanese (ja)
Inventor
Yasuo Koike
康夫 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22083097A priority Critical patent/JPH1154579A/en
Publication of JPH1154579A publication Critical patent/JPH1154579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable observation on the entire surface of substrate to a predetermined depth in a wide range and with high sensitivity, and evaluation from the observation, by increasing the size of pits formed by etching and exposing the surface of the substrate, and measuring a pit density by a laser foreign matter detecting device. SOLUTION: Oxygen precipitates l are cleaned with aqueous solution having HF concentration of 20 to 50% for about 30 minutes, thus the oxygen precipitates 1 exposed on the surface of a wafer are dissolved. The HF cleaning forms pits 2 on the wafer surface. The density of pits 2 is measured by the laser foreign matter detecting device. The current minimum detection size of the laser foreign matter detecting device is about 110 nm. If there is a pit of a size smaller than this size, all the pits cannot be measured. Accordingly, cleaning is performed 5 to 10 cycles (10 minutes/cycle) by using alkali cleaning liquid composed of NH4 OH/H2 O2 /H2 O, attaining a comparatively large amount of silicon etching. The cleaning greatly changes the width of pits 3. Next, the laser foreign matter detecting device may detect oxygen precipitates of about several 10 nm, in defective distribution on the entire wafer surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、CZ法を用いて
製造され、種々の熱処理を行った半導体基板における結
晶欠陥を評価して結晶欠陥の少ない高品質な半導体基板
を製造するための評価方法に係り、半導体基板の極表面
近傍のバルク中に存在する微小酸素析出物の密度を、H
F洗浄で酸化物を除去してピットを露出させ、さらにア
ルカリ洗浄でピットサイズを拡大することにより、レー
ザー異物検出装置にて基板全面の広範囲に、かつ高感度
に観察、評価可能にした半導体基板の評価方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaluation method for manufacturing a high-quality semiconductor substrate having few crystal defects by evaluating crystal defects in a semiconductor substrate manufactured by using a CZ method and subjected to various heat treatments. The density of the minute oxygen precipitates existing in the bulk near the very surface of the semiconductor substrate is
A semiconductor substrate that can be observed and evaluated over a wide area and with high sensitivity using a laser foreign matter detector by removing oxides by F cleaning to expose pits and expanding the pit size by alkali cleaning. The evaluation method.

【0002】[0002]

【従来の技術】CZ(チョクラルスキー)法を用いて製
造された半導体基板の表面近傍の結晶欠陥の完全性は、
高温処理(1000℃〜1200℃)を行うことでいく
らか向上するが、完全ではなく、表面にエピタキシャル
成膜したエピタキシャルウェーハと比べると不完全であ
る。
2. Description of the Related Art The integrity of crystal defects near the surface of a semiconductor substrate manufactured by using the CZ (Czochralski) method is as follows.
Although some improvement is achieved by performing high-temperature treatment (1000 ° C. to 1200 ° C.), it is not perfect, and is incomplete compared to an epitaxial wafer formed epitaxially on the surface.

【0003】半導体デバイスを作製するために、半導体
基板にはデバイス特性に影響を及ぼす領域、表面から1
0μm深さ程度の領域に関しては、欠陥が存在しないこ
とが望ましいが、一般にエピタキシャルウェーハを用い
ないかぎり、CZ法で製造された半導体基板で前記領域
を無欠陥とするのは困難であるのが現状である。
[0003] In order to manufacture a semiconductor device, a semiconductor substrate is placed on a semiconductor substrate in an area which affects device characteristics, ie, from a surface.
It is desirable that there is no defect in a region having a depth of about 0 μm. However, it is generally difficult to make the region defect-free in a semiconductor substrate manufactured by the CZ method unless an epitaxial wafer is used. It is.

【0004】しかし、エピタキシャル成膜することで基
板のコストが高くつくことなどから、MOS型LSIプ
ロセス用の基板としては、高温処理を施した基板が広く
用いられている。また、デバイスプロセスにおいても、
500℃〜1200℃の熱処理が予定されていることか
ら、予め高温処理を施さなくても、デバイスプロセス熱
処理で表面近傍の結晶欠陥の完全性は若干向上するが、
高温処理を施した基板同様に完全なものではない。
However, a substrate subjected to high-temperature processing is widely used as a substrate for a MOS type LSI process because the cost of the substrate is increased by epitaxial film formation. Also, in the device process,
Since the heat treatment at 500 ° C. to 1200 ° C. is scheduled, the completeness of the crystal defects near the surface is slightly improved by the device process heat treatment without performing the high temperature treatment in advance.
It is not as complete as a substrate subjected to high temperature processing.

【0005】表面近傍に存在する結晶欠陥の種類に関し
ては、熱処理を行うことで、その温度が高温である程、
基板の表面近傍にはDZ(Deneuded Zon
e)層といわれる無欠陥層が深く形成されるが、実質
は、1)空孔タイプのGrown−in欠陥、2)微小
な酸素析出物が存在しており、無欠陥層でないことは良
く知られている。
[0005] Regarding the type of crystal defects existing near the surface, by performing a heat treatment, the higher the temperature, the more
In the vicinity of the surface of the substrate, a DZ (Deened Zone)
e) Although a defect-free layer called a layer is formed deeply, it is well known that it is not a defect-free layer because 1) vacancy-type grown-in defects and 2) minute oxygen precipitates exist. Have been.

【0006】[0006]

【発明が解決しようとする課題】これら半導体基板の表
面近傍に存在する結晶欠陥の密度を評価する方法として
は、選択エッチング法、IRトモグラフィ法、OPP法
やGrown−inに関してはCOP評価法により計測
されている。詳述すると、選択エッチング法は、主に結
晶欠陥評価法として現在広く用いられており、M.Da
sh ET法、Wright ET法があげられるが、
微小欠陥に対する検出感度は低く、ET後の光学顕微鏡
による観察時に欠陥と判断するのが極めて困難であり、
Grown−in欠陥を検出することは不可能である。
As a method of evaluating the density of crystal defects existing near the surface of the semiconductor substrate, a selective etching method, an IR tomography method, an OPP method, and a COP evaluation method for the grown-in method are used. Has been measured. More specifically, the selective etching method is currently widely used mainly as a crystal defect evaluation method. Da
The sh ET method and the Right ET method can be mentioned.
The detection sensitivity for microdefects is low, and it is extremely difficult to judge it as a defect during observation with an optical microscope after ET.
It is impossible to detect a grown-in defect.

【0007】Grown−in欠陥を検出するためのE
T法としては、Secco ET法が上げられ、この方
法で検出された欠陥をFPD(Flow Patter
nDefect)、SPD(Secco Pit De
fect)とよばれ、応用物理学会等で報告されている
が、ET時にパーティクルが付着してピットの密度を光
学顕微鏡により正確に検出することが困難である。
E for detecting a grown-in defect
As the T method, a Secco ET method is used, and a defect detected by this method is detected by using an FPD (Flow Pattern).
nDefect), SPD (Secco Pit De
This is called a “fact” and reported by the Japan Society of Applied Physics, but it is difficult to accurately detect the density of pits with an optical microscope during ET due to particles adhering.

【0008】IRトモグラフィ法やOPP法は、評価基
板の全面を広範囲に評価するには数十時間を要し、表面
からある領域の深さのみを評価しようとした場合、レー
ザー径の問題で5μm、10μmステップでの広い範囲
での評価しかできず、狭い特定領域の評価には不適であ
る。また、微小欠陥に対する検出感度は評価基板の表裏
面の状態に大きく影響される場合があり、その際に堅守
される欠陥密度が異常に高い値を示し、欠陥のみの密度
を区別することが困難である。また、この評価法は熱処
理を行っていない基板のGrown−in欠陥の評価と
熱処理を行った基板の表面近傍及び内部の欠陥情報を比
較的広い範囲で評価するのには適しているが、1〜2μ
mの狭い範囲での評価はできない。
In the IR tomography method and the OPP method, it takes several tens of hours to evaluate the entire surface of the evaluation substrate over a wide area, and if only the depth of a certain region from the surface is to be evaluated, there is a problem with the laser diameter. It can be evaluated only in a wide range in 5 μm and 10 μm steps, and is not suitable for evaluation of a narrow specific region. In addition, the detection sensitivity for minute defects may be greatly affected by the state of the front and back surfaces of the evaluation substrate, and the defect density adhered to at that time shows an abnormally high value, making it difficult to distinguish the density of only defects. It is. This evaluation method is suitable for evaluating a grown-in defect of a substrate that has not been heat-treated and for evaluating defect information near and inside the surface of a substrate that has been heat-treated in a relatively wide range. ~ 2μ
It is not possible to evaluate in a narrow range of m.

【0009】COP評価法は、アルカリ洗浄を繰り返し
て行うことにより、基板のGrown−in欠陥の密度
を基板全面の広範囲に評価することが可能であり、レー
ザー面検機を用いて欠陥密度を計測する方法であるが、
種々の評価熱処理を行った際には、COPが酸化膜に埋
めこまれて欠陥の凹凸が小さくなるため、レーザー面検
機による欠陥検出が困難になったり、微小酸素析出物に
関してはすでに酸化物であるため、欠陥の凹凸が小さく
アルカリ洗浄のみでは欠陥検出が困難である。
In the COP evaluation method, the density of the grown-in defects on the substrate can be evaluated over a wide area over the entire surface of the substrate by repeatedly performing alkali cleaning, and the defect density is measured using a laser surface inspection machine. Is to do
When various evaluation heat treatments are performed, COPs are buried in the oxide film to reduce the unevenness of the defects, which makes it difficult to detect defects by a laser surface inspection machine, and that oxides with respect to minute oxygen precipitates Therefore, the irregularities of the defect are small and it is difficult to detect the defect only by alkali cleaning.

【0010】要するに、IRトモグラフィ法やOPP法
では計測領域が狭く、微小酸素析出物について半導体基
板の全面の広範囲を高感度に評価するのは非常に困難で
あった。また、表面近傍のある領域のみの情報を得よう
とした場合、レーザー径の問題で5μm、10μm間隔
での広い領域での計測結果となるため、細かなステップ
での計測が困難であった。
[0010] In short, in the IR tomography method or the OPP method, the measurement area is narrow, and it is very difficult to evaluate a wide range over the entire surface of the semiconductor substrate with respect to minute oxygen precipitates with high sensitivity. Further, when trying to obtain information only in a certain area near the surface, the measurement results are obtained in a wide area at intervals of 5 μm and 10 μm due to the problem of the laser diameter, so that it is difficult to perform measurement in fine steps.

【0011】この発明は、CZ法を用いて製造された半
導体基板に、例えば、高温処理を施したものや、デバイ
スプロセスを想定した熱処理(500℃〜1200℃)
などを行った半導体基板に関して、従来、半導体基板の
表面近傍に存在する微小酸素析出物を基板全面の広範囲
にかつ高感度に簡便に計測する方法がなかったことに鑑
み提案するもので、一般的なレーザー異物検出装置にて
基板全面の広範囲にかつ高感度に所定の深さを観察、評
価可能にした半導体基板の評価方法の提供を目的とす
る。
According to the present invention, for example, a semiconductor substrate manufactured by using the CZ method is subjected to a high-temperature treatment or a heat treatment (500 ° C. to 1200 ° C.) assuming a device process.
Conventionally, regarding a semiconductor substrate subjected to, for example, a proposal is made in view of the fact that there is no method for easily and easily measuring a minute oxygen precipitate present near the surface of the semiconductor substrate over a wide area of the substrate with high sensitivity. It is an object of the present invention to provide a method for evaluating a semiconductor substrate in which a predetermined depth can be observed and evaluated over a wide area of the entire surface of the substrate with high sensitivity using a simple laser foreign matter detection device.

【0012】[0012]

【課題を解決するための手段】発明者は、熱処理された
半導体基板の極表面近傍のバルク中に存在する微小酸素
析出物の密度を広範囲にかつ高感度に観察可能な評価方
法を目的に種々検討した結果、HF濃度20〜50%の
水溶液でHF洗浄を行い、酸化物を除去し凹状のピット
形状にした後、アルカリ洗浄を行いシリコン基板をエッ
チングすることで、レーザー異物検出装置にて検出可能
なピットサイズに変化させ、基板全面に存在する微小酸
素析出物を広範囲にかつ高感度に評価可能であることを
知見し、この発明を完成した。
Means for Solving the Problems The inventors of the present invention have developed various methods for evaluating the density of minute oxygen precipitates present in the bulk near the very surface of a heat-treated semiconductor substrate in a wide range and with high sensitivity. As a result of the examination, after performing HF cleaning with an aqueous solution having a HF concentration of 20 to 50%, removing oxides to form concave pits, and then performing alkali cleaning and etching the silicon substrate, detection with a laser foreign substance detection device is performed. By changing the pit size to a possible pit size, it was found that a minute oxygen precipitate existing on the entire surface of the substrate could be evaluated over a wide range and with high sensitivity, and the present invention was completed.

【0013】すなわち、この発明は、所要の熱処理を施
した半導体基板に対して、該熱処理により形成された熱
酸化膜を除去し、表面から評価予定領域まで鏡面研磨を
行ってからHF洗浄で基板表面の酸化析出物を除去して
ピットを露出させ、さらにアルカリ洗浄で基板表面をエ
ッチングして露出させたピットのサイズを拡大し、レー
ザー異物検出装置にてピット密度を計測する半導体基板
の評価方法である。
That is, according to the present invention, a semiconductor substrate subjected to a required heat treatment is subjected to a mirror polishing from the surface to a region to be evaluated after removing a thermal oxide film formed by the heat treatment, and then the substrate is subjected to HF cleaning. A method of evaluating a semiconductor substrate in which pits are exposed by removing oxide precipitates on the surface, and the size of the exposed pits is further enlarged by etching the substrate surface by alkali cleaning, and the pit density is measured by a laser foreign matter detection device. It is.

【0014】[0014]

【発明の実施の形態】この発明による評価方法は、図1
に示す工程から構成される。 工程1: 半導体基板に結晶欠陥評価のための、例え
ば、500℃〜1200℃のの熱処理を施す、 工程2: 熱処理により形成された熱酸化膜を除去す
る、 工程3: 基板の表面近傍に存在する微小酸素析出物
密度を計測するために、表面から狙いの領域(〜50μ
m)まで鏡面研磨を行う、 工程4: HF洗浄により、半導体基板の表面に露出し
た析出物を溶解する、 工程5: HF洗浄時に付着したパーティクルを除去す
る、 工程6: アルカリ洗浄を行い、HF洗浄により溶解
された凹状の微小ピットを拡大させる、 工程7: レーザー異物検査装置を用いてピット密度を
計測する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The evaluation method according to the present invention is shown in FIG.
The steps are as follows. Step 1: subjecting the semiconductor substrate to a heat treatment at, for example, 500 ° C. to 1200 ° C. for evaluating crystal defects. Step 2: removing a thermal oxide film formed by the heat treatment. Step 3: existing near the surface of the substrate. In order to measure the density of minute oxygen precipitates, the target area (~ 50μ)
m) mirror polishing is performed, Step 4: dissolving the precipitates exposed on the surface of the semiconductor substrate by HF cleaning, Step 5: removing particles adhered during HF cleaning, Step 6: performing alkali cleaning and HF Enlarging the concave minute pits dissolved by the washing. Step 7: Measure the pit density using a laser foreign matter inspection device.

【0015】この発明において、結晶欠陥密度を計測し
ようとする半導体基板としては、CZ法で引き上げて鏡
面加工されたウェーハに高温熱処理やIG処理を施した
ものや、それらとウェーハ加工されたままの状態のもの
に、デバイスプロセスを想定した結晶欠陥評価熱処理
(500℃〜1200℃)を施したものを対象とする。
In the present invention, as a semiconductor substrate whose crystal defect density is to be measured, a wafer which has been subjected to a high-temperature heat treatment or an IG process on a mirror-processed wafer pulled up by the CZ method, or a wafer which has been processed with them. The object in the state is subjected to a crystal defect evaluation heat treatment (500 ° C. to 1200 ° C.) assuming a device process.

【0016】上記熱処理を受ける半導体基板のほとんど
は、酸化性及び非酸化性双方のガス雰囲気で熱処理(5
00℃〜1200℃)を行うため、熱酸化膜が形成され
ている。その酸化膜を除去するためにHF洗浄を行い、
熱酸化膜を除去した後、計測を行う深さまで鏡面研磨を
行う。
Most of the semiconductor substrates subjected to the heat treatment are subjected to heat treatment (5) in both oxidizing and non-oxidizing gas atmospheres.
(00 ° C. to 1200 ° C.), a thermal oxide film is formed. HF cleaning is performed to remove the oxide film,
After removing the thermal oxide film, mirror polishing is performed to a depth at which measurement is performed.

【0017】研磨時点では、図2A)に示すように、基
板表面に露出した酸素析出物1が存在している。次にH
F洗浄をおこなう。HF洗浄は、HF濃度が20〜50
%の水溶液で30分程度洗浄することで、ウェーハ表面
に露出している酸素析出物1を溶解する。その後、HF
洗浄時に付着したパーティクルを除去するが、具体的に
は、この発明で採用するアルカリ洗浄より、シリコンの
エッチング量の少ないアルカリ洗浄液で洗浄を行う。
At the time of polishing, as shown in FIG. 2A), the oxygen precipitate 1 exposed on the substrate surface exists. Then H
Perform F cleaning. The HF cleaning is performed when the HF concentration is 20 to 50.
By washing with an aqueous solution of about 30 minutes for about 30 minutes, the oxygen precipitate 1 exposed on the wafer surface is dissolved. Then, HF
Particles adhering at the time of cleaning are removed. Specifically, the cleaning is performed with an alkali cleaning liquid having a smaller silicon etching amount than the alkali cleaning employed in the present invention.

【0018】HF洗浄の溶解により、ウェーハ表面に図
2B)に示すピット2が形成される。この形成されたピ
ットは、この後にレーザー異物検査装置を用いて密度を
計測するが、現在のレーザー異物検査装置の検出下限サ
イズは110nm程度であるため、これより小さいピッ
トサイズが存在した場合、すべてのピットを計測するこ
とができない。
By dissolving the HF cleaning, pits 2 shown in FIG. 2B) are formed on the wafer surface. The density of the formed pits is subsequently measured using a laser foreign matter inspection device. However, since the current detection lower limit size of the laser foreign matter inspection device is about 110 nm, if a pit size smaller than this exists, all Pit cannot be measured.

【0019】そこで、ピットサイズをレーザー異物検査
装置にて計測可能な大きさまで拡大するため、NH4
H/H22/H2Oから構成されるシリコンエッチング
量の比較的大きいアルカリ洗浄液を用い、10分/サイ
クルで5〜10サイクル洗浄を行うことで、図2C)に
示すごとくピット3の幅が大きく変化する。
Therefore, in order to enlarge the pit size to a size that can be measured by a laser foreign matter inspection apparatus, NH 4 O
As shown in FIG. 2C), the pits 3 were cleaned by using an alkaline cleaning solution composed of H / H 2 O 2 / H 2 O and having a relatively large silicon etching amount and performing cleaning for 5 to 10 cycles at 10 minutes / cycle. The width changes greatly.

【0020】次に、レーザー異物検査装置を用い計測を
行うことで、ウェーハ全面の欠陥分布を、数十nm程度
の非常に小さい酸素析出物の検出も高感度に行うことが
可能である。
Next, by performing measurement using a laser foreign substance inspection apparatus, it is possible to detect a very small oxygen precipitate of several tens of nanometers in the defect distribution over the entire surface of the wafer with high sensitivity.

【0021】[0021]

【実施例】【Example】

実施例1 評価基板として、CZ法で引き上げられた6インチシリ
コンp(100)ウェーハを用いた。初期酸素濃度は1
4×1017atoms/cm3、比抵抗は5Ω・cmで
ある。このサンプルに800℃で2時間の熱処理を非酸
化性ガス雰囲気で行い、バルク中に酸素析出核を形成さ
せ、1000℃で16時間の熱処理を酸化性ガス雰囲気
で施し、形成した酸素析出物を成長させた熱処理ウェー
ハを作製した。
Example 1 As an evaluation substrate, a 6-inch silicon p (100) wafer pulled up by the CZ method was used. Initial oxygen concentration is 1
4 × 10 17 atoms / cm 3 , and specific resistance is 5 Ω · cm. This sample was heat-treated at 800 ° C. for 2 hours in a non-oxidizing gas atmosphere to form oxygen precipitation nuclei in the bulk, and then heat-treated at 1000 ° C. for 16 hours in an oxidizing gas atmosphere to remove the formed oxygen precipitate. A grown heat-treated wafer was produced.

【0022】このウェーハ表面に確実に酸素析出物を露
出させるため、熱酸化膜を除去した後に鏡面研磨を20
μm施した。まず、その状態のウェーハ基板に選択エッ
チング(Wright Etch 1min)を行い、
基板表面に存在するエッチピット密度を計測したところ
75/cm2であった。これは、エッチング法での酸素
析出物密度計測結果である。
To ensure that oxygen precipitates are exposed on the wafer surface, mirror polishing is performed after removing the thermal oxide film.
μm. First, selective etching (Wright Etch 1 min) is performed on the wafer substrate in that state,
When the density of the etch pits present on the substrate surface was measured, it was 75 / cm 2 . This is the result of oxygen precipitate density measurement by the etching method.

【0023】先にエッチング法にて計測を行ったサンプ
ルと同一の熱処理及び20μm研磨を行ったサンプルロ
ットにて酸素析出物が基板表面に露出した状態(工程
3)でのピット密度を、レーザー異物検査装置(Ten
cor Surfscan)の計測マップとして図3
A)に示すごとく、5/cm2であった。
The pit density in the state where the oxygen precipitates were exposed on the substrate surface (Step 3) was measured by using the same heat treatment as that of the sample previously measured by the etching method and the sample lot subjected to 20 μm polishing, and the laser foreign matter was measured. Inspection equipment (Ten
cor Surfscan) as a measurement map in FIG.
As shown in A), it was 5 / cm 2 .

【0024】次に、HF濃度30%の水溶液にて30分
洗浄、及びNH4OH:H22:H2O=1:5:20の
アルカリ洗浄液で10分洗浄し、酸素析出物を溶解した
後(工程5)のピット密度を、レーザー異物検査装置の
計測マップとして図3B)ごとく、90/cm2であっ
た。
Next, washing with an aqueous solution having a HF concentration of 30% for 30 minutes and washing with an alkaline washing solution of NH 4 OH: H 2 O 2 : H 2 O = 1: 5: 20 for 10 minutes were performed to remove oxygen precipitates. The pit density after melting (step 5) was 90 / cm 2 as shown in FIG. 3B) as a measurement map of the laser foreign matter inspection device.

【0025】NH4OH:H22:H2O=1:1:5の
アルカリ洗浄液で10分/サイクルで5サイクル洗浄を
行った後(工程7)のピット密度を、レーザー異物検査
装置の計測マップとして図3C)に示すごとく、188
/cm2であった。
After performing 5 cycles of cleaning at 10 minutes / cycle with an alkaline cleaning solution of NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 5 (step 7), the pit density can be measured by using a laser particle inspection apparatus. As shown in FIG.
/ Cm 2 .

【0026】図3に明らかなように、工程5、すなわち
HF洗浄後にパーティクル除去が完了した後のピット密
度に比べ、工程7、すなわちこの発明の方法完了時では
約2倍のピット密度となっている。また、先の選択エッ
チング法と比べても約2倍の密度を検出できている。
As is apparent from FIG. 3, the pit density is about twice as high as that in the step 5, ie, when the method of the present invention is completed, compared with the pit density after the particle removal is completed after the HF cleaning. I have. Also, the density was detected to be about twice as high as that in the selective etching method.

【0027】次に、サンプルの上記工程5及び工程7の
状態でのピットサイズをAFMにより計測した。計測結
果を図4に示す。工程5では幅50〜120nm、深さ
30〜80nmであるのに対し、工程7では、幅120
〜250nm、深さ50〜120と、幅は約2倍の大き
さに変化している。これは、上記工程5ではレーザー異
物検出装置にて検出できなかった数十nmの微小酸素析
出物が、工程7で検出可能となったことを表している。
Next, the pit size of the sample in the above steps 5 and 7 was measured by AFM. FIG. 4 shows the measurement results. In step 5, the width is 50 to 120 nm and the depth is 30 to 80 nm.
250250 nm, depth 50-120, and width has changed to about twice the size. This means that a few tens of nanometer oxygen precipitates that could not be detected by the laser foreign matter detection device in step 5 can be detected in step 7.

【0028】実施例2 評価基板として、CZ法で引き上げられた6インチのシ
リコンp(100)ウェーハを用いた。初期酸素濃度は
15×1017atoms/cm3、比抵抗は10Ω・c
mである。このサンプルに下記熱処理条件のごとく、D
Z層を形成するための高温熱処理(酸化性及び非酸化性
ガス雰囲気)と、バルク中の内部にIG(酸素析出核)
を形成する熱処理(非酸化性ガス雰囲気)と、その酸素
析出核を成長させるための熱処理(酸化性ガス雰囲気)
を行い、評価基板を作製した。
Example 2 A 6-inch silicon p (100) wafer pulled up by the CZ method was used as an evaluation substrate. Initial oxygen concentration is 15 × 10 17 atoms / cm 3 , specific resistance is 10Ω · c
m. This sample was treated with D under the following heat treatment conditions.
High temperature heat treatment (oxidizing and non-oxidizing gas atmosphere) to form a Z layer, and IG (oxygen precipitation nuclei) inside the bulk
Heat treatment (non-oxidizing gas atmosphere) and heat treatment for growing the oxygen precipitation nuclei (oxidizing gas atmosphere)
Was performed to produce an evaluation substrate.

【0029】評価基板 A) DZ層 10μm 酸素析出物密度 5×105
/cm2 熱処理条件 1100℃×1hr→800℃×3hr→
1000℃×16hr B) DZ層 20μm 酸素析出物密度 4×105
/cm2 熱処理条件 1150℃×1hr→800℃×3.5h
r→1000℃×16hr C) DZ層 30μm 酵素析出物密度 6×105
/cm2 熱処理条件 1200℃×1hr→800℃×4hr→
1000℃×16hr
Evaluation substrate A) DZ layer 10 μm Oxygen precipitate density 5 × 10 5
/ Cm 2 Heat treatment condition 1100 ° C × 1hr → 800 ° C × 3hr →
1000 ° C. × 16 hr B) DZ layer 20 μm Oxygen precipitate density 4 × 10 5
/ Cm 2 Heat treatment condition 1150 ° C × 1hr → 800 ° C × 3.5h
r → 1000 ° C. × 16 hr C) DZ layer 30 μm Enzyme precipitate density 6 × 10 5
/ Cm 2 Heat treatment condition 1200 ° C × 1hr → 800 ° C × 4hr →
1000 ℃ × 16hr

【0030】なお、上記評価基板のDZ層及び酸素析出
物密度は、選択エッチング(Wright Etch
5分)を施した後の光学顕微鏡による基板の断面からの
計測結果であり、この発明による評価にもちいるシリコ
ンウェーハと同一ロットのサンプルである。
The DZ layer and the oxygen precipitate density of the evaluation substrate were determined by selective etching (Wright Etch).
5 minutes) from the cross section of the substrate by the optical microscope after the application, and is a sample of the same lot as the silicon wafer used for the evaluation according to the present invention.

【0031】熱処理を施して準備した評価基板には熱酸
化膜が形成されているため、HF濃度10%の水溶液で
洗浄を行い、熱酸化膜を除去した後、DZ層内の欠陥密
度分布評価を行うため、鏡面研磨にて、表面の0,2,
4,6,10,30μm深さまで研磨を施し、基板表面
に突き出ている酸素析出物を溶解するためにHF濃度3
0%の水溶液で洗浄を行った。
Since a thermal oxide film is formed on the evaluation substrate prepared by performing the heat treatment, the substrate is washed with an aqueous solution having an HF concentration of 10%, and after removing the thermal oxide film, the defect density distribution in the DZ layer is evaluated. To perform 0, 2, 0 on the surface by mirror polishing
Polishing is performed to a depth of 4, 6, 10, and 30 μm, and an HF concentration of 3 is used to dissolve oxygen precipitates protruding from the substrate surface.
Washing was performed with a 0% aqueous solution.

【0032】さらに、ピット形状を大きくするために、
NH4OH:H22:H2O=1:1:5のアルカリ洗浄
液にて10分/サイクルで5サイクル実施した後、レー
ザー異物検査装置により欠陥個数を計測した。その計測
結果を図5(B)に示す。計測密度は、レーザー異物検
出装置より検出した面積あたりの密度をアルカリ洗浄5
サイクル行った時のエッチング量で体積換算した密度で
ある。
Further, in order to enlarge the pit shape,
After 5 cycles of 10 minutes / cycle with an alkaline cleaning solution of NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 5, the number of defects was counted by a laser foreign matter inspection device. The measurement result is shown in FIG. The measured density is the density per area detected by the laser foreign matter detection device, and the alkali cleaning 5
This is a density converted into a volume by an etching amount when a cycle is performed.

【0033】また、同一ロットのサンプルで同一の評価
熱理を行った基板を別に作製し、OPPによる比較評価
を実施し、DZ層内の欠陥密度分布を計測した。計測し
た欠陥密度を図5A)に示す。図に示すごとくOPPに
よる場合は、表面から5μmまでの計測密度は有位差が
みられず、DZ層の位置を振っても極表面近傍の欠陥密
度には差がない結果である。
Further, a substrate of the same lot subjected to the same evaluation thermodynamics was separately manufactured, and a comparative evaluation was performed by OPP to measure a defect density distribution in the DZ layer. The measured defect density is shown in FIG. 5A). As shown in the figure, in the case of OPP, there is no significant difference in the measured density up to 5 μm from the surface, and there is no difference in the defect density near the very surface even if the position of the DZ layer is changed.

【0034】次に、この発明による計測結果は、DZ層
の狭い基板ほど表面の浅い領域の欠陥密度は高く、逆に
DZ層の深い基板ほど表面の浅い領域の欠陥密度は低い
結果が得られ、DZ層が深いほど基板表面近傍の欠陥密
度は少なくなる傾向が明確に計測できている。また、細
かいステップでの計測が可能であるため、所定領域のみ
の計測等に最適であることが分かる。
Next, the measurement results according to the present invention show that a substrate having a narrower DZ layer has a higher defect density in a shallower surface region, and conversely, a substrate having a deeper DZ layer has a lower defect density in a shallower surface region. It can be clearly measured that the deeper the DZ layer, the lower the defect density near the substrate surface. In addition, since measurement can be performed in small steps, it can be seen that the measurement is optimal for measurement of only a predetermined area.

【0035】[0035]

【発明の効果】この発明は、所望の高温処理を施したも
のや、デバイスプロセスを想定した熱処理(500℃〜
1200℃)などを行った半導体基板に関して、半導体
基板の表面近傍に存在する微小酸素析出物を基板全面の
広範囲にかつ高感度に簡便に計測できるもので、特に、
表面から計測を行いたい領域のみの情報を採取すること
も可能であり、高品質半導体基板の開発のための評価手
段としても有効である。
According to the present invention, heat treatment (500 ° C.-
(1200 ° C.) and the like, a micro-oxygen precipitate existing near the surface of the semiconductor substrate can be easily measured with high sensitivity over a wide area over the entire surface of the substrate.
It is also possible to collect information only from the surface in the region where measurement is desired, which is effective as an evaluation means for developing a high-quality semiconductor substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による評価工程を示す工程説明図であ
る。
FIG. 1 is a process explanatory view showing an evaluation process according to the present invention.

【図2】A)〜C)はこの発明による評価工程における
酸素析出物の形状変化を示す説明図である。
FIGS. 2A to 2C are explanatory diagrams showing changes in the shape of oxygen precipitates in an evaluation step according to the present invention.

【図3】A)〜C)はレーザー異物検出装置で検出した
酸素析出物の基板の全面マップを示す説明図である。
FIGS. 3A to 3C are explanatory diagrams showing maps of the entire surface of the substrate of oxygen precipitates detected by the laser foreign matter detection device.

【図4】A)はピットのサイズを示す説明図であり、
B),C)はこの発明による評価工程5,工程7におけ
るAFMによるピットのサイズを示すグラフである。
FIG. 4A is an explanatory diagram showing a pit size,
B) and C) are graphs showing pit sizes by AFM in evaluation step 5 and step 7 according to the present invention.

【図5】A)はOPP法による基板評価結果を示す深さ
とピット密度とのグラフ、B)はこの発明による基板評
価結果を示す深さとピット密度とのグラフである。
FIG. 5A is a graph of the depth and the pit density showing the result of the substrate evaluation by the OPP method, and FIG. 5B is a graph of the depth and the pit density showing the result of the substrate evaluation by the present invention.

【符号の説明】[Explanation of symbols]

1 酸素析出物 2,3 ピット 1 Oxygen precipitate 2, 3 pits

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所要の熱処理を施した半導体基板に対し
て、該熱処理により形成された熱酸化膜を除去し、表面
から評価予定領域まで鏡面研磨を行ってからHF洗浄で
基板表面の酸化析出物を除去してピットを露出させ、さ
らにアルカリ洗浄で基板表面をエッチングして露出させ
たピットのサイズを拡大し、レーザー異物検出装置にて
ピット数を計測する半導体基板の評価方法。
1. A semiconductor substrate that has been subjected to a required heat treatment, a thermal oxide film formed by the heat treatment is removed, mirror polishing is performed from the surface to a region to be evaluated, and oxidative deposition on the substrate surface is performed by HF cleaning. A method of evaluating a semiconductor substrate, in which a pit is exposed by removing an object, and the size of the exposed pit is enlarged by etching the surface of the substrate by alkali cleaning, and the number of pits is measured by a laser foreign matter detector.
JP22083097A 1997-07-31 1997-07-31 Evaluation of semiconductor substrate Pending JPH1154579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22083097A JPH1154579A (en) 1997-07-31 1997-07-31 Evaluation of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22083097A JPH1154579A (en) 1997-07-31 1997-07-31 Evaluation of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH1154579A true JPH1154579A (en) 1999-02-26

Family

ID=16757221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22083097A Pending JPH1154579A (en) 1997-07-31 1997-07-31 Evaluation of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH1154579A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314766B2 (en) 2002-11-14 2008-01-01 Kabushiki Kaisha Toshiba Semiconductor wafer treatment method, semiconductor wafer inspection method, semiconductor device development method and semiconductor wafer treatment apparatus
JP2008218739A (en) * 2007-03-05 2008-09-18 Sumco Corp Evaluation method for laminated wafer
KR100939768B1 (en) * 2006-09-22 2010-01-29 주식회사 하이닉스반도체 Detection method for defect of wafer
CN104616973A (en) * 2014-12-26 2015-05-13 上海华虹宏力半导体制造有限公司 Silicon wafer indenture defect strengthening method and semiconductor manufacturing method
CN114289912A (en) * 2017-03-13 2022-04-08 住友重机械工业株式会社 Laser processing apparatus and method for determining abnormality in laser processing
JP2022118721A (en) * 2021-02-02 2022-08-15 Jx金属株式会社 Indium phosphide substrate and semiconductor epitaxial wafer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314766B2 (en) 2002-11-14 2008-01-01 Kabushiki Kaisha Toshiba Semiconductor wafer treatment method, semiconductor wafer inspection method, semiconductor device development method and semiconductor wafer treatment apparatus
KR100939768B1 (en) * 2006-09-22 2010-01-29 주식회사 하이닉스반도체 Detection method for defect of wafer
JP2008218739A (en) * 2007-03-05 2008-09-18 Sumco Corp Evaluation method for laminated wafer
CN104616973A (en) * 2014-12-26 2015-05-13 上海华虹宏力半导体制造有限公司 Silicon wafer indenture defect strengthening method and semiconductor manufacturing method
CN114289912A (en) * 2017-03-13 2022-04-08 住友重机械工业株式会社 Laser processing apparatus and method for determining abnormality in laser processing
JP2022118721A (en) * 2021-02-02 2022-08-15 Jx金属株式会社 Indium phosphide substrate and semiconductor epitaxial wafer
US11926924B2 (en) 2021-02-02 2024-03-12 Jx Metals Corporation Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot and method for producing indium phosphide substrate

Similar Documents

Publication Publication Date Title
KR100821765B1 (en) Methods of inspecting and manufacturing silicon wafer, method of manufacturing semiconductor device, and silicon wafer
JP5998225B2 (en) Method for indicating the location of crystal related defects
JP5268314B2 (en) Classification method of crystal defect region of single crystal silicon using metal contamination and heat treatment
JPH08298233A (en) Manufacture of wafer for calibration with flawless layer of depth determined correctly and wafer for calibration
US5418172A (en) Method for detecting sources of contamination in silicon using a contamination monitor wafer
JP6388058B2 (en) Silicon wafer manufacturing method
JPH10335402A (en) Method of evaluating semiconductor wafer, manufacturing semiconductor device and semiconductor device manufactured thereby
JP2001081000A (en) Method of evaluating crystal defect in silicon single crystal
JP2680482B2 (en) Semiconductor substrate, semiconductor substrate and semiconductor device manufacturing method, and semiconductor substrate inspection / evaluation method
JP2936916B2 (en) Quality evaluation method of silicon single crystal
JPH1154579A (en) Evaluation of semiconductor substrate
US20230118491A1 (en) Method for evaluating of defect area of wafer
JP5521775B2 (en) Single crystal silicon wafer evaluation method
JP3717691B2 (en) Silicon wafer evaluation method
JPH11145088A (en) Conformity evaluating method of semiconductor wafer polishing process using silicon wafer
JP2004119446A (en) Annealed wafer and method for manufacturing the same
JPH1174493A (en) Inspecting method for defect of soi wafer
JPH10197423A (en) Preparation of sample for observation of crystal defect in semiconductor single crystal and method for observing crystal defect
KR100384680B1 (en) A Method for detecting micro defects
JP3784300B2 (en) Evaluation method of micro-defects in silicon wafer
JP4003943B2 (en) Evaluation method of octahedral voids in silicon wafer
JPH04330760A (en) Film thickness measuring method of epitaxially grown layer
JP2002246429A (en) Method of evaluating silicon wafer and nitrogen-doped annealed wafer
TW202325927A (en) Silicon wafer defect detection method
JP3874254B2 (en) Evaluation method of BMD density in silicon wafer