JP2000251883A - Sealed alkaline zinc storage battery - Google Patents

Sealed alkaline zinc storage battery

Info

Publication number
JP2000251883A
JP2000251883A JP11050881A JP5088199A JP2000251883A JP 2000251883 A JP2000251883 A JP 2000251883A JP 11050881 A JP11050881 A JP 11050881A JP 5088199 A JP5088199 A JP 5088199A JP 2000251883 A JP2000251883 A JP 2000251883A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
manganese
powder
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11050881A
Other languages
Japanese (ja)
Other versions
JP3663071B2 (en
Inventor
Mutsumi Yano
睦 矢野
Mitsunori Tokuda
光紀 徳田
Mamoru Kimoto
衛 木本
Yasuhiko Ito
靖彦 伊藤
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05088199A priority Critical patent/JP3663071B2/en
Publication of JP2000251883A publication Critical patent/JP2000251883A/en
Application granted granted Critical
Publication of JP3663071B2 publication Critical patent/JP3663071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce decrease of a discharge capacity in a charge-discharge cycle, cause of battery internal pressure increased and leakage of an alkaline electrolyte hardly generated, and carry out manufacture of high yield. SOLUTION: This battery is a sealed alkaline zinc storage battery, wherein a negative electrode using zinc as an active material is arranged inside a cylinder of a cylindrical positive electrode via a separator, and of which the power generating element body comprising the positive electrode, the negative electrode, an alkaline electrolyte, the separator and a negative electrode current collecting body occupies 75% of a battery can inner volume. A positive active material is a solid solution powder in which 5-50 atom % of manganese based on total amount of the manganese and nickel is solid-dissolved in γ-nickel oxyhydroxide, powder of specified manganese oxide is added to the solid solution powder, and a positive electrode is a molding formed by pressing a mixture containing the solid-solution powder, the powder of the manganese oxide and a conductive agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、γ型オキシ水酸化
ニッケルを活物質とする筒状の正極の筒内に、セパレー
タを介して、負極が配されており、且つ前記正極と、前
記負極と、アルカリ電解液と、前記セパレータと、負極
集電体とからなる発電要素体が電池缶内容積の75%以
上を占める、放電スタートの密閉型アルカリ亜鉛蓄電池
に係わり、詳しくは、充放電サイクルにおける放電容量
の減少が小さく、電池内圧の上昇乃至アルカリ電解液の
漏出が起こりにくく、しかも歩留り良く製造することが
可能な密閉型アルカリ亜鉛蓄電池を提供することを目的
とした、正極の改良に関する。ここに、放電スタートの
電池とは、予め充電することなく初回の放電を行うこと
が可能な電池をいう。
[0001] The present invention relates to a negative electrode having a gamma-type nickel oxyhydroxide as an active material, in which a negative electrode is disposed via a separator in a cylindrical positive electrode. , An alkaline electrolyte, the separator, and a negative electrode current collector. The power generation element body occupies 75% or more of the internal volume of the battery can. The present invention relates to improvement of a positive electrode for the purpose of providing a sealed alkaline zinc storage battery in which a decrease in discharge capacity is small, a rise in battery internal pressure or leakage of an alkaline electrolyte does not easily occur, and which can be manufactured with good yield. Here, the discharge-started battery refers to a battery that can be discharged for the first time without being charged in advance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
亜鉛を活物質とする密閉型アルカリ亜鉛蓄電池の正極活
物質として、二酸化マンガンが提案されている(特公昭
45−3570号公報参照)。また、亜鉛を負極活物質
とするニッケル・亜鉛一次電池の正極活物質として、酸
化ニッケルと二酸化マンガンとの混合物が提案されてい
る(特開昭49−114741号公報参照)。
2. Description of the Related Art
Manganese dioxide has been proposed as a positive electrode active material of a sealed alkaline zinc storage battery using zinc as an active material (see Japanese Patent Publication No. 45-3570). Also, a mixture of nickel oxide and manganese dioxide has been proposed as a positive electrode active material of a nickel-zinc primary battery using zinc as a negative electrode active material (see JP-A-49-114741).

【0003】しかしながら、二酸化マンガンを正極活物
質とするアルカリ蓄電池においては、二酸化マンガンの
充放電サイクルにおける可逆性が悪く、放電したのち充
電しても放電前の二酸化マンガンには戻らないので、放
電容量が急激に減少する。また、二酸化マンガンは、酸
素過電圧が小さいので、充電時に正極側で水の電気分解
に因り酸素が発生して電池内圧が上昇し(4OH- ⇒O
2 +2H2 O+4e-)、それに伴い電池外装部材の接
合部の密着性が低下するため、アルカリ電解液が漏出し
易い。
However, in an alkaline storage battery using manganese dioxide as a positive electrode active material, the reversibility of the manganese dioxide in the charge / discharge cycle is poor. Decreases sharply. Since manganese dioxide has a small oxygen overvoltage, oxygen is generated due to electrolysis of water on the positive electrode side during charging, and the internal pressure of the battery increases (4OH ⇒O
2 + 2H 2 O + 4e ), and the adhesion at the joint of the battery exterior member is reduced accordingly, so that the alkaline electrolyte easily leaks.

【0004】また、酸化ニッケルも二酸化マンガンと同
様に酸素過電圧が小さいので、酸化ニッケルと二酸化マ
ンガンとの混合物を蓄電池の正極活物質として用いた場
合は、充電時に、電池内圧が上昇して、アルカリ電解液
が漏出し易い。
Also, nickel oxide has a small oxygen overpotential like manganese dioxide. Therefore, when a mixture of nickel oxide and manganese dioxide is used as a positive electrode active material of a storage battery, the internal pressure of the battery rises during charging and the alkaline The electrolyte is easy to leak.

【0005】このように、いずれの正極活物質も密閉型
アルカリ亜鉛蓄電池の正極活物質としては問題があっ
た。斯かる充電時の電池内圧の上昇及びそれに伴う漏液
は、電池缶内の空間部分の割合が小さい密閉型アルカリ
亜鉛蓄電池において、特に問題となる。
[0005] As described above, any of the positive electrode active materials has a problem as a positive electrode active material for a sealed alkaline zinc storage battery. Such an increase in the internal pressure of the battery at the time of charging and the associated liquid leakage are particularly problematic in a sealed alkaline zinc storage battery in which the ratio of the space in the battery can is small.

【0006】最近、筒状の正極(成型体)の筒内に、セ
パレータを介して、負極を配した密閉型アルカリ亜鉛蓄
電池(以下、この構造の密閉型アルカリ亜鉛蓄電池を、
「インサイドアウト型電池」と記す。)の正極活物質と
して、γ型オキシ水酸化ニッケルが提案されている。こ
のインサイドアウト型電池では、筒状の正極の外周面を
電池缶の内周面に密着させる必要があるので、電池缶の
内寸より少し大きめの外寸を有する筒状の正極を作製
し、正極の電池缶内への挿入を、正極の外周面を圧縮し
てすぼめながら行うが、正極活物質にγ型オキシ水酸化
ニッケルを使用した場合、挿入時に、成型体にクラック
が発生して破損し易い。すなわち、インサイドアウト型
電池には、電池製造の歩留りが良くないという問題があ
った。
Recently, a sealed alkaline zinc storage battery having a negative electrode arranged in a cylindrical positive electrode (molded body) via a separator (hereinafter, a sealed alkaline zinc storage battery of this structure,
This is referred to as "inside-out type battery". Γ-type nickel oxyhydroxide has been proposed as the positive electrode active material of (1). In this inside-out type battery, since it is necessary to make the outer peripheral surface of the cylindrical positive electrode adhere to the inner peripheral surface of the battery can, a cylindrical positive electrode having an outer size slightly larger than the inner size of the battery can is produced. The positive electrode is inserted into the battery can while compressing and shrinking the outer peripheral surface of the positive electrode.When γ-type nickel oxyhydroxide is used as the positive electrode active material, cracks occur in the molded body during insertion, causing damage. Easy to do. That is, the inside-out type battery has a problem that the yield of battery manufacturing is not good.

【0007】したがって、本発明は、充放電サイクルに
おける放電容量の減少が小さく、電池内圧の上昇乃至ア
ルカリ電解液の漏出が起こりにくく、しかも歩留り良く
製造することが可能な、放電スタートのインサイドアウ
ト型電池を提供することを目的とする。
Accordingly, the present invention provides an inside-out type discharge start which can be manufactured with good yield with a small decrease in discharge capacity in a charge / discharge cycle, a small increase in the internal pressure of the battery and no leakage of the alkaline electrolyte. It is intended to provide a battery.

【0008】[0008]

【課題を解決するための手段】本発明に係る密閉型アル
カリ亜鉛蓄電池(本発明電池)は、筒状の正極の筒内
に、セパレータを介して、亜鉛を活物質とする負極が配
されており、且つγ型オキシ水酸化ニッケルを活物質と
する筒状の正極の筒内に、セパレータを介して、負極が
配されており、且つ前記正極と、前記負極と、アルカリ
電解液と、前記セパレータと、負極集電体とからなる発
電要素体が電池缶内容積の75%以上を占める密閉型ア
ルカリ亜鉛蓄電池において、前記正極の活物質が、γ型
オキシ水酸化ニッケルに、マンガンが、マンガンとニッ
ケルとの総量に基づいて、5〜50原子%固溶した固溶
体粉末であり、当該固溶体粉末に、一酸化マンガン、四
酸化三マンガン、三酸化二マンガン及びγ型二酸化マン
ガンよりなる群から選ばれた少なくとも1種のマンガン
酸化物の粉末が添加されており、且つ前記正極が、前記
固溶体粉末と、前記マンガン酸化物の粉末と、導電剤と
を含む混合物を、加圧成型してなる成型体であることを
特徴とする。
In a sealed alkaline zinc storage battery according to the present invention (battery of the present invention), a negative electrode containing zinc as an active material is disposed in a cylindrical positive electrode via a separator. And a negative electrode is disposed via a separator in a cylindrical positive electrode tube using γ-type nickel oxyhydroxide as an active material, and the positive electrode, the negative electrode, an alkaline electrolyte, In a sealed alkaline zinc storage battery in which a power generating element composed of a separator and a negative electrode current collector occupies 75% or more of the internal volume of the battery can, the active material of the positive electrode is γ-type nickel oxyhydroxide, manganese is manganese, Is a solid solution powder having a solid solution of 5 to 50 at% based on the total amount of nickel and nickel, and the solid solution powder is selected from the group consisting of manganese monoxide, trimanganese tetroxide, dimanganese trioxide and γ-type manganese dioxide. Wherein at least one manganese oxide powder is added, and the positive electrode is formed by pressure molding a mixture containing the solid solution powder, the manganese oxide powder, and a conductive agent. It is characterized by being a body.

【0009】正極活物質は、γ型オキシ水酸化ニッケル
にマンガンが固溶した固溶体粉末である。γ型オキシ水
酸化ニッケルにマンガンが固溶することにより、正極の
酸素過電圧が増大する。マンガンの固溶量(以下、「マ
ンガン固溶率」と記す。)は、マンガンとニッケル(γ
型オキシ水酸化ニッケル中のニッケル)との総量に基づ
いて、5〜50原子%に規制される。この理由は、マン
ガン固溶率が、5原子%未満の場合は、正極の酸素過電
圧が充分に大きくならないために、漏液が起こり易くな
り、一方マンガン固溶率が、50原子%を越えた場合
は、正極活物質たるγ型オキシ水酸化ニッケルの充填量
が減少するために、充分な電池容量が得られないからで
ある。
The positive electrode active material is a solid solution powder in which manganese is dissolved in γ-type nickel oxyhydroxide. Oxygen overvoltage of the positive electrode increases due to solid solution of manganese in γ-type nickel oxyhydroxide. The amount of solid solution of manganese (hereinafter referred to as “manganese solid solution rate”) is determined by manganese and nickel (γ
(Nickel in type nickel oxyhydroxide) based on the total amount. The reason for this is that if the manganese solid solution rate is less than 5 atomic%, the oxygen overvoltage of the positive electrode does not become sufficiently large, so that liquid leakage easily occurs, while the manganese solid solution rate exceeds 50 atomic%. In this case, the filling amount of the γ-type nickel oxyhydroxide, which is the positive electrode active material, is reduced, so that a sufficient battery capacity cannot be obtained.

【0010】γ型オキシ水酸化ニッケルとしては、満充
電状態でのニッケルの価数が3.4〜3.8のものが好
ましい。満充電状態でのニッケルの価数が3.4未満の
β型オキシ水酸化ニッケルでは、十分な電池容量が得ら
れない。また、β型オキシ水酸化ニッケルは、酸素過電
圧が小さいので、充電時に漏液が起こり易くなる。な
お、γ型オキシ水酸化ニッケルには、満充電状態でのニ
ッケルの価数が3.8を越えるものは存在しない。満充
電後さらに充電、すなわち過充電しても、水が分解して
酸素が発生するだけであり、ニッケルの価数が3.8を
越えることはない。
As the γ-type nickel oxyhydroxide, those having a valence of nickel in a fully charged state of 3.4 to 3.8 are preferable. With a β-type nickel oxyhydroxide having a valence of nickel of less than 3.4 in a fully charged state, a sufficient battery capacity cannot be obtained. Further, since β-nickel oxyhydroxide has a small oxygen overvoltage, liquid leakage easily occurs during charging. It should be noted that there is no γ-type nickel oxyhydroxide in which the valence of nickel in a fully charged state exceeds 3.8. Even if the battery is further charged after being fully charged, that is, overcharged, only water is decomposed and oxygen is generated, and the valence of nickel does not exceed 3.8.

【0011】γ型オキシ水酸化ニッケルは、例えば、水
酸化ニッケルを次亜塩素酸ナトリウム(NaClO)等
の酸化剤にて酸化することにより得られる。γ型オキシ
水酸化ニッケルのニッケルの価数は、酸化剤の量を調節
することにより調整することができる。固溶体粉末は、
水酸化ニッケルに代えて、マンガンが固溶した水酸化ニ
ッケルを使用することにより得られる。マンガンが固溶
した水酸化ニッケルは、マンガン塩とニッケル塩とを含
む水溶液に、アルカリを添加してpHを9〜12に調整
した後、所定時間混合することにより(アルカリ共沈
法)、得られる。
[0011] The γ-type nickel oxyhydroxide is obtained, for example, by oxidizing nickel hydroxide with an oxidizing agent such as sodium hypochlorite (NaClO). The valence of nickel of the γ-type nickel oxyhydroxide can be adjusted by adjusting the amount of the oxidizing agent. The solid solution powder is
It is obtained by using nickel hydroxide in which manganese is dissolved in place of nickel hydroxide. Nickel hydroxide in which manganese is dissolved is obtained by adjusting the pH to 9 to 12 by adding an alkali to an aqueous solution containing a manganese salt and a nickel salt, and then mixing for a predetermined time (alkali coprecipitation method). Can be

【0012】固溶体粉末として、マンガンの外にさら
に、亜鉛、コバルト、ビスマス、アルミニウム及び希土
類元素(イットリウム、エルビウム、イッテルビウム、
ガドリニウムなど)よりなる群から選ばれた少なくとも
1種の元素を固溶元素として含有するものを使用しても
よい。これらの元素がさらに固溶することにより、正極
の酸素過電圧が一層高められる。
As a solid solution powder, besides manganese, zinc, cobalt, bismuth, aluminum and rare earth elements (yttrium, erbium, ytterbium,
And at least one element selected from the group consisting of gadolinium) as a solid solution element. The solid solution of these elements further increases the oxygen overvoltage of the positive electrode.

【0013】本発明においては、上記の固溶体粉末に、
一酸化マンガン、四酸化三マンガン、三酸化二マンガン
及びγ型二酸化マンガンよりなる群から選ばれた少なく
とも1種のマンガン酸化物の粉末が添加されている。こ
れら特定のマンガン酸化物の粉末を添加することによ
り、得られる正極の強度が増し、正極を電池缶内に挿入
する際のクラックの発生が抑制されて、電池製造の歩留
りが向上する。正極の強度が増す理由は定かでないが、
上記のマンガン酸化物が加圧成型時に結着剤として機能
するためではないかと考えられる。
In the present invention, the above-mentioned solid solution powder is
At least one manganese oxide powder selected from the group consisting of manganese monoxide, trimanganese tetraoxide, dimanganese trioxide and γ-type manganese dioxide is added. The addition of these specific manganese oxide powders increases the strength of the obtained positive electrode, suppresses the occurrence of cracks when the positive electrode is inserted into the battery can, and improves the battery production yield. It is not clear why the strength of the positive electrode increases,
It is considered that the above manganese oxide functions as a binder during pressure molding.

【0014】固溶体粉末に対するマンガン酸化物の粉末
の添加量は、マンガン酸化物の種類によって異なる。γ
型二酸化マンガンを添加する場合は、固溶体粉末とγ型
二酸化マンガン粉末との重量比が、99:1〜65:3
5となるように添加する必要がある。γ型二酸化マンガ
ン粉末の添加割合が上記の範囲より少ない場合は、正極
の強度を充分に向上させることができず、一方γ型二酸
化マンガン粉末の添加割合が上記の範囲より多い場合
は、固溶体粉末の充填量が減少するために、電池容量が
減少する。
The amount of the manganese oxide powder added to the solid solution powder varies depending on the type of the manganese oxide. γ
When manganese dioxide is added, the weight ratio of the solid solution powder to the gamma manganese dioxide powder is 99: 1 to 65: 3.
5 must be added. When the addition ratio of the γ-type manganese dioxide powder is less than the above range, the strength of the positive electrode cannot be sufficiently improved, while when the addition ratio of the γ-type manganese dioxide powder is more than the above range, the solid solution powder , The battery capacity is reduced.

【0015】正極は、上記固溶体粉末と、上記マンガン
酸化物の粉末と、導電剤と、アルカリ電解液とを混合
し、円筒状に加圧成型することにより得られる。導電剤
としては、黒鉛が例示される。
The positive electrode is obtained by mixing the above-mentioned solid solution powder, the above-mentioned manganese oxide powder, a conductive agent, and an alkaline electrolyte, and pressing the mixture into a cylindrical shape. Examples of the conductive agent include graphite.

【0016】本発明が、正極と、負極と、アルカリ電解
液と、セパレータと、負極集電体とからなる発電要素体
が電池缶内容積の75%以上を占める密閉型アルカリ亜
鉛蓄電池を対象とするのは、斯かる高密度充填型の密閉
型アルカリ亜鉛蓄電池において、電池内圧が特に上昇し
易く、充放電を繰り返した際にアルカリ電解液が漏出し
易いからである。
The present invention is directed to a sealed alkaline zinc storage battery in which a power generating element composed of a positive electrode, a negative electrode, an alkaline electrolyte, a separator, and a negative electrode current collector occupies 75% or more of the internal volume of a battery can. This is because, in such a high-density sealed alkaline zinc storage battery, the internal pressure of the battery is particularly likely to increase, and the alkaline electrolyte is likely to leak when charge and discharge are repeated.

【0017】上述したように、本発明電池は、γ型オキ
シ水酸化ニッケルにマンガンが所定量固溶しているの
で、正極の酸素過電圧が大きい。また、正極がマンガン
酸化物を含有しているので、強度が高い。
As described above, in the battery of the present invention, since a predetermined amount of manganese is dissolved in γ-type nickel oxyhydroxide, the oxygen overvoltage of the positive electrode is large. Further, since the positive electrode contains manganese oxide, the strength is high.

【0018】[0018]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples, and can be carried out by appropriately changing the scope without changing the gist. It is something.

【0019】(実験1)本発明電池及び比較電池を作製
し、電池容量(1サイクル目の放電容量)、容量維持
率、漏液電池数及び電池缶内に正極を挿入する際のクラ
ック発生電池数を調べた。
(Experiment 1) A battery of the present invention and a comparative battery were prepared, and a battery capacity (discharge capacity in the first cycle), a capacity retention rate, the number of leaked batteries, and a battery in which a positive electrode was inserted into a battery can were generated. I checked the number.

【0020】(本発明電池(A1)の作製)下記の手順
により本発明電池(A1)を作製した。
(Preparation of Battery (A1) of the Present Invention) A battery (A1) of the present invention was prepared by the following procedure.

【0021】〔正極の作製〕硫酸マンガン(MnS
4 )40.4g及び硫酸ニッケル(NiSO4 )15
4.8gの水溶液を5000mlに、10重量%アンモ
ニア水と10重量%水酸化ナトリウム水溶液との重量比
1:1の混合水溶液を滴下し、pHを9.5±0.3に
調整した。pHが一定になった後、1時間攪拌混合し、
ろ過し、水洗した後、80°Cで乾燥して、マンガンが
固溶した水酸化ニッケル粉末を作製した。作製した水酸
化ニッケル粉末のマンガン固溶率を原子吸光分析により
求めたところ、20%であった。
[Preparation of positive electrode] Manganese sulfate (MnS
O 4 ) 40.4 g and nickel sulfate (NiSO 4 ) 15
To 5,000 ml of the 4.8 g aqueous solution was added dropwise a mixed aqueous solution of 10 wt% aqueous ammonia and 10 wt% aqueous sodium hydroxide at a weight ratio of 1: 1 to adjust the pH to 9.5 ± 0.3. After the pH becomes constant, stir and mix for 1 hour,
After filtration, washing with water and drying at 80 ° C., a nickel hydroxide powder in which manganese was dissolved in solid solution was prepared. The manganese solid solution rate of the produced nickel hydroxide powder was determined by atomic absorption analysis, and was 20%.

【0022】次いで、上記のマンガンが固溶した水酸化
ニッケル粉末100gを、水酸化ナトリウムの10モル
/リットル水溶液500mlと10重量%次亜塩素酸ナ
トリウム水溶液1500mlとの混液に、攪拌しながら
投入し、1時間攪拌混合した後、生成した沈殿物を、ろ
別し、水洗し、60°Cで乾燥して、γ型オキシ水酸化
ニッケル(γ−NiOOH)にマンガンが固溶した固溶
体粉末を得た。この固溶体粉末のマンガン固溶率を原子
吸光分析により求めたところ、20%であった。また、
この固溶体粉末のニッケルの価数を鉄の2価・3価の酸
化還元滴定法により求めたところ、3.6であった。以
下の実験におけるマンガン固溶率及びニッケルの価数も
全て、それぞれ原子吸光分析及び鉄の2価・3価の酸化
還元滴定法により、求めたものである。
Next, 100 g of the above nickel hydroxide powder in which manganese was dissolved in a solid solution was added to a mixed solution of 500 ml of a 10 mol / l aqueous solution of sodium hydroxide and 1500 ml of a 10% by weight aqueous solution of sodium hypochlorite while stirring. After stirring and mixing for 1 hour, the resulting precipitate was filtered off, washed with water, and dried at 60 ° C. to obtain a solid solution powder in which manganese was dissolved in γ-type nickel oxyhydroxide (γ-NiOOH). Was. The manganese solid solution rate of this solid solution powder was 20% as determined by atomic absorption analysis. Also,
The valence of nickel of this solid solution powder was 3.6 as determined by a divalent / trivalent redox titration method of iron. The manganese solid solution rate and the valence of nickel in the following experiments were all determined by atomic absorption spectrometry and divalent / trivalent iron redox titration.

【0023】上記の固溶体粉末とγ型二酸化マンガン
(γ−MnO2 )粉末とを重量比95:5で混合し、得
られた混合粉末100重量部と、導電剤としての黒鉛粉
末10重量部と、30重量%水酸化カリウム水溶液10
重量部とを、らいかい機にて30分間混合し、加圧成型
して、外径1.3cm、内径0.85cm、高さ1.1
5cmの円筒状の成型体を作製した。電池の作製におい
ては、この円筒状の成型体を3個直列に接合して、全体
として1個の円筒状をなす正極として使用した。
The above solid solution powder and γ-type manganese dioxide (γ-MnO 2 ) powder are mixed at a weight ratio of 95: 5, and 100 parts by weight of the obtained mixed powder and 10 parts by weight of graphite powder as a conductive agent are mixed. , 30% by weight aqueous solution of potassium hydroxide 10
Parts by weight and mixed with a grinder for 30 minutes, molded under pressure to form an outer diameter of 1.3 cm, an inner diameter of 0.85 cm, and a height of 1.1.
A cylindrical molded body of 5 cm was produced. In the production of the battery, three cylindrical molded bodies were joined in series and used as one cylindrical positive electrode as a whole.

【0024】〔負極の作製〕負極活物質としての亜鉛粉
末65重量部と、飽和量の酸化亜鉛(ZnO)を含む4
0重量%水酸化カリウム水溶液34重量部と、ゲル化剤
としてのポリアクリル酸(日本純薬社製、商品コード
「ジュンロンPW150」)1重量部とを混合して、ゲ
ル状の負極を作製した。
[Preparation of Negative Electrode] A solution containing 65 parts by weight of zinc powder as a negative electrode active material and a saturated amount of zinc oxide (ZnO)
34 parts by weight of a 0% by weight aqueous solution of potassium hydroxide and 1 part by weight of polyacrylic acid (product code "Junron PW150" manufactured by Nippon Pure Chemical Co., Ltd.) as a gelling agent were mixed to prepare a gelled negative electrode. .

【0025】〔電池の作製〕上記の正極及び負極を用い
て、AAサイズのインサイドアウト型電池(本発明電
池)(A1)を作製した。なお、電池容量が正極容量に
より規制されるようにするために、正極と負極との電気
化学的な容量を1:1.2とした(以下の電池も全てこ
れと同じ容量比にした)。また、正極と、負極と、アル
カリ電解液と、セパレータと、負極集電体とからなる発
電要素体の電池缶内容積(絶縁パッキングの内側部分の
体積)に占める体積比率を、80%とした(以下の電池
についても同比率を全て80%とした。)。
[Preparation of Battery] An AA size inside-out type battery (battery of the present invention) (A1) was prepared using the above positive electrode and negative electrode. In order to control the battery capacity by the positive electrode capacity, the electrochemical capacity between the positive electrode and the negative electrode was set to 1: 1.2 (all of the following batteries had the same capacity ratio). In addition, the volume ratio of the power generating element body including the positive electrode, the negative electrode, the alkaline electrolyte, the separator, and the negative electrode current collector to the internal volume of the battery can (the volume of the inner portion of the insulating packing) was set to 80%. (The same ratio was set to 80% for the following batteries.)

【0026】図1は、作製したインサイドアウト型電池
の断面図である。図示のインサイドアウト型電池(A
1)は、有底円筒状の電池缶(正極外部端子)1、電池
蓋(負極外部端子)2、 絶縁パッキング3、真鍮製の
負極集電棒4、円筒状の正極(ニッケル極)5、ビニロ
ンを主材とする円筒状のセパレータフィルム6、ゲル状
負極(亜鉛極)7などからなる。
FIG. 1 is a sectional view of the manufactured inside-out type battery. The illustrated inside-out type battery (A
1) a cylindrical battery can (bottom external terminal) 1, a battery cover (negative terminal outside) 2, an insulating packing 3, a brass negative electrode current collecting rod 4, a cylindrical positive electrode (nickel electrode) 5, vinylon , A gelled negative electrode (zinc electrode) 7 and the like.

【0027】電池缶1には、円筒の外周面を電池缶1の
内周面に当接させて正極5が収納されており、正極5の
内周面には、外周面を当接させて円筒状のセパレータフ
ィルム6が圧接されており、セパレータフィルム6の内
側には、ゲル状の負極7が充填されている。負極7の円
形断面の中央部には、電池缶1と電池蓋2とを電気的に
絶縁する絶縁パッキング3により一端を支持された負極
集電棒4が挿入されている。電池缶1の開口部は、電池
蓋2により閉蓋されている。電池の密閉は、電池缶1の
開口部に絶縁パッキング3をはめこみ、その上に電池蓋
2を載置した後、電池缶の開口端を内側にかしめること
によりなされている。
The positive electrode 5 is housed in the battery can 1 with the outer peripheral surface of the cylinder in contact with the inner peripheral surface of the battery can 1, and the outer peripheral surface is in contact with the inner peripheral surface of the positive electrode 5. A cylindrical separator film 6 is pressed against the inside, and the inside of the separator film 6 is filled with a gelled negative electrode 7. At the center of the circular cross section of the negative electrode 7, a negative electrode current collector rod 4 whose one end is supported by an insulating packing 3 that electrically insulates the battery can 1 from the battery lid 2 is inserted. The opening of the battery can 1 is closed by a battery cover 2. The battery is hermetically sealed by inserting an insulating packing 3 into the opening of the battery can 1, placing the battery lid 2 thereon, and caulking the open end of the battery can inward.

【0028】(本発明電池(A2)の作製)正極の作製
において、硫酸マンガンの使用量を、40.4gに代え
て、10.2gとしたこと以外は本発明電池(A1)の
作製方法と同様にして、本発明電池(A2)を作製し
た。正極に使用した固溶体粉末のマンガン固溶率は、5
%であった。
(Preparation of Battery (A2) of the Present Invention) The method of preparing the battery (A1) of the present invention was the same as that of the battery (A1) except that the amount of manganese sulfate used was 10.2 g instead of 40.4 g. Similarly, the battery of the present invention (A2) was produced. The manganese solid solution rate of the solid solution powder used for the positive electrode was 5
%Met.

【0029】(本発明電池(A3)の作製)正極の作製
において、硫酸マンガンの使用量を、40.4gに代え
て、20.2gとしたこと以外は本発明電池(A1)の
作製方法と同様にして、本発明電池(A3)を作製し
た。正極に使用した固溶体粉末のマンガン固溶率は、1
0%であった。
(Preparation of Battery (A3) of the Present Invention) The method of preparing the battery (A1) of the present invention was the same as that of the battery (A1) except that the amount of manganese sulfate used was changed to 20.2 g instead of 40.4 g. Similarly, the battery (A3) of the present invention was produced. The manganese solid solution rate of the solid solution powder used for the positive electrode was 1
It was 0%.

【0030】(本発明電池(A4)の作製)正極の作製
において、硫酸マンガンの使用量を、40.4gに代え
て、101gとしたこと以外は本発明電池(A1)の作
製方法と同様にして、本発明電池(A4)を作製した。
正極に使用した固溶体粉末のマンガン固溶率は、50%
であった。
(Preparation of Battery (A4) of the Present Invention) The preparation of the positive electrode was performed in the same manner as in the preparation of the battery (A1) of the present invention except that the amount of manganese sulfate used was changed to 101 g instead of 40.4 g. Thus, a battery (A4) of the present invention was produced.
The manganese solid solution rate of the solid solution powder used for the positive electrode was 50%.
Met.

【0031】(比較電池(B1)の作製)正極の作製に
おいて、硫酸マンガンの使用量を、40.4gに代え
て、5.1gとしたこと以外は本発明電池(A1)の作
製方法と同様にして、比較電池(B1)を作製した。正
極に使用した固溶体粉末のマンガン固溶率は、2.5%
であった。
(Preparation of Comparative Battery (B1)) The preparation of the positive electrode was carried out in the same manner as in the preparation of the battery (A1) of the present invention except that the amount of manganese sulfate used was changed to 5.1 g instead of 40.4 g. Thus, a comparative battery (B1) was produced. The manganese solid solution rate of the solid solution powder used for the positive electrode was 2.5%.
Met.

【0032】(比較電池(B2)の作製)正極の作製に
おいて、硫酸マンガンの使用量を、40.4gに代え
て、121gとしたこと以外は本発明電池(A1)の作
製方法と同様にして、比較電池(B2)を作製した。正
極に使用した固溶体粉末のマンガン固溶率は、60%で
あった。
(Preparation of Comparative Battery (B2)) The preparation of the positive electrode was performed in the same manner as in the preparation of the battery (A1) of the present invention except that the amount of manganese sulfate used was changed to 121 g instead of 40.4 g. A comparative battery (B2) was produced. The manganese solid solution rate of the solid solution powder used for the positive electrode was 60%.

【0033】(比較電池(B3)の作製)正極の作製に
おいて、γ型二酸化マンガン粉末を固溶体粉末に添加し
なかったこと以外は本発明電池(A1)の作製方法と同
様にして、比較電池(B3)を作製した。
(Preparation of Comparative Battery (B3)) A comparative battery (B3) was prepared in the same manner as the battery (A1) of the present invention except that γ-type manganese dioxide powder was not added to the solid solution powder. B3) was prepared.

【0034】(比較電池(B4)の作製)γ型二酸化マ
ンガン粉末100gと、黒鉛粉末15gと、ポリエチレ
ン樹脂5gとを混合し、得られた混合物に水酸化カリウ
ムの7モル/リットル水溶液20mlを混合し、加圧成
型して、円筒状の正極を作製した。円筒状の正極とし
て、この正極を使用したこと以外は本発明電池(A1)
の作製方法と同様にして、比較電池(B4)を作製し
た。
(Preparation of Comparative Battery (B4)) 100 g of γ-type manganese dioxide powder, 15 g of graphite powder and 5 g of polyethylene resin were mixed, and the obtained mixture was mixed with 20 ml of a 7 mol / liter aqueous solution of potassium hydroxide. Then, pressure molding was performed to produce a cylindrical positive electrode. Except that this positive electrode was used as a cylindrical positive electrode, the battery of the present invention (A1)
The comparative battery (B4) was produced in the same manner as in the production method described above.

【0035】(比較電池(B5)の作製)硝酸ニッケル
の2モル/リットル水溶液500mlと、10重量%次
亜塩素酸ナトリウム水溶液1500mlとを、水酸化カ
リウムの14モル/リットル水溶液2000mlに滴下
混合した後、1時間かけて徐冷した。次いで、生成した
沈殿物をろ別し、水洗し、90°Cで乾燥して、正極活
物質としての酸化ニッケル粉末を作製した。作製した酸
化ニッケル粉末50gと、γ型二酸化マンガン粉末30
gと、黒鉛15gとポリエチレン樹脂5gとを混合し、
得られた混合物に水酸化カリウムの7モル/リットル水
溶液20mlを混合し、加圧成型して、円筒状の正極を
作製した。円筒状の正極として、この正極を使用したこ
と以外は本発明電池(A1)の作製方法と同様にして、
比較電池(B5)を作製した。
(Preparation of Comparative Battery (B5)) 500 ml of a 2 mol / l aqueous solution of nickel nitrate and 1500 ml of a 10% by weight aqueous solution of sodium hypochlorite were dropped and mixed into 2000 ml of a 14 mol / l aqueous solution of potassium hydroxide. Thereafter, the mixture was gradually cooled for 1 hour. Next, the formed precipitate was separated by filtration, washed with water, and dried at 90 ° C. to prepare a nickel oxide powder as a positive electrode active material. 50 g of the prepared nickel oxide powder and 30 gamma-type manganese dioxide powder
g, graphite 15g and polyethylene resin 5g,
20 ml of a 7 mol / l aqueous solution of potassium hydroxide was mixed with the obtained mixture, and the mixture was molded under pressure to produce a cylindrical positive electrode. Except for using this positive electrode as a cylindrical positive electrode, the same method as in the method for producing the battery (A1) of the present invention was applied.
A comparative battery (B5) was produced.

【0036】〈正極挿入時のクラック発生電池数〉各電
池10個について、正極を電池缶内に挿入する際のクラ
ックの発生の有無を目視にて観察し、クラック発生電池
数を調べた。結果を表1に示す。表1中のクラック発生
電池数の欄の分数の分子が正極挿入時にクラックが発生
した電池の数である。
<Number of Cells in Which Cracks Occur When Inserting Positive Electrode> With respect to 10 batteries, the presence or absence of cracks when the positive electrode was inserted into the battery can was visually observed to determine the number of cells in which cracks occurred. Table 1 shows the results. The fractional numerator in the column of the number of cracking batteries in Table 1 is the number of batteries in which cracks occurred when the positive electrode was inserted.

【0037】〈放電容量、容量維持率及び漏液電池数〉
各電池10個について、100mAで1Vまで放電した
後、100mAで1.95Vに達するまで充電する充放
電を25サイクル行って、各電池の1サイクル目の放電
容量、25サイクル目の容量維持率及び25サイクル目
の漏液電池数を調べた。結果を表1に示す。表1中の漏
液電池数の欄の分数の分子が漏液した電池の数である。
表1中の1サイクル目の放電容量は、本発明電池(A
1)の1サイクル目の放電容量を100とした指数であ
る。また、容量維持率は、各電池の1サイクル目の放電
容量に対する25サイクル目の放電容量の比率(%)で
あり、且つ電解液が漏出しなかった電池の容量維持率の
平均値である。
<Discharge capacity, capacity retention rate and number of leaked batteries>
After discharging each battery to 10 V at 100 mA to 1 V, charging and discharging at 100 mA until reaching 1.95 V were performed for 25 cycles, and the discharge capacity at the first cycle, the capacity retention rate at the 25th cycle, and The number of leaked batteries at the 25th cycle was examined. Table 1 shows the results. The numerator of the fraction in the column of the number of leaked batteries in Table 1 is the number of batteries that leaked.
The discharge capacity at the first cycle in Table 1 indicates the battery of the present invention (A
This is an index when the discharge capacity in the first cycle of 1) is 100. The capacity retention rate is a ratio (%) of the discharge capacity at the 25th cycle to the discharge capacity at the first cycle of each battery, and is an average value of the capacity retention rates of the batteries in which the electrolyte did not leak.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示すように、正極に使用した固溶体
粉末のマンガン固溶率が5〜50%である本発明電池
(A1)〜(A4)は、容量維持率が高く、漏液電池数
が0(零)であり、クラック発生電池数が0(零)であ
る。これに対して、マンガン固溶率が2.5%である比
較電池(B1)は、容量維持率が80%と低く、25サ
イクル目において10個の電池のうちの5個に漏液が発
生しており、またマンガン固溶率が60%である比較電
池(B2)は、1サイクル目の放電容量が85と小さ
い。比較電池(B1)の容量維持率が低く、漏液電池数
が多いのは、正極に使用した固溶体粉末のマンガン固溶
率が低過ぎたために、正極の酸素過電圧を充分に増大さ
せることができなかったからである。また、比較電池
(B2)の1サイクル目の放電容量が小さいのは、マン
ガンの固溶量が増加した分、正極活物質たるγ−オキシ
水酸化ニッケルの充填量が減少したためである。比較電
池(B3)のクラック発生電池数が多いのは、γ−オキ
シ水酸化ニッケルにγ型二酸化マンガンが添加されてい
ないために、正極の強度が低かったからである。比較電
池(B4)の容量維持率が低いのは、γ型二酸化マンガ
ンのトンネル状の空孔を有する結晶構造が崩壊したから
であり、漏液電池数が10と極めて多いのは、正極の酸
素過電圧が極めて小さいためである。比較電池(B5)
の1サイクル目の放電容量が小さいのは、正極の酸素過
電圧が小さいために、正極側で酸素が発生して、活物質
利用率が低下したからであり、また容量維持率が低く、
漏液電池数が多いのも、正極の酸素過電圧が小さいため
に、充電時に正極側で酸素が発生したためである。
As shown in Table 1, the batteries (A1) to (A4) of the present invention in which the manganese solid solution ratio of the solid solution powder used for the positive electrode was 5 to 50%, had a high capacity retention ratio and the number of leaked batteries Is 0 (zero), and the number of crack generating batteries is 0 (zero). On the other hand, in the comparative battery (B1) having a manganese solid solution rate of 2.5%, the capacity retention rate was as low as 80%, and liquid leakage occurred in 5 of the 10 batteries at the 25th cycle. In the comparative battery (B2) having a manganese solid solution rate of 60%, the discharge capacity in the first cycle was as small as 85. The reason why the capacity retention rate of the comparative battery (B1) is low and the number of the leaky batteries is large is that the solid solution powder used for the positive electrode has a manganese solid solution rate that is too low, so that the oxygen overvoltage of the positive electrode can be sufficiently increased. Because there was no. Further, the reason why the discharge capacity in the first cycle of the comparative battery (B2) is small is that the filling amount of γ-nickel oxyhydroxide, which is a positive electrode active material, is reduced by an increase in the solid solution amount of manganese. The reason why the number of crack generating batteries of the comparative battery (B3) is large is that the strength of the positive electrode was low because γ-type manganese dioxide was not added to γ-nickel oxyhydroxide. The reason why the capacity retention ratio of the comparative battery (B4) is low is that the crystal structure having tunnel-like vacancies of γ-type manganese dioxide has collapsed. This is because the overvoltage is extremely small. Comparative battery (B5)
The reason why the discharge capacity in the first cycle is small is that the oxygen overvoltage of the positive electrode is small, oxygen is generated on the positive electrode side, and the active material utilization rate decreases, and the capacity retention rate is low.
The reason for the large number of leaked batteries is that oxygen was generated on the positive electrode side during charging because the oxygen overvoltage of the positive electrode was small.

【0040】(実験2)固溶体粉末にγ型二酸化マンガ
ン粉末を添加する場合のγ型二酸化マンガン粉末の添加
量について検討した。
(Experiment 2) The amount of the γ-type manganese dioxide powder added when the γ-type manganese dioxide powder was added to the solid solution powder was examined.

【0041】正極の作製において、固溶体粉末とγ型二
酸化マンガン粉末とを、重量比95:5に代えて、重量
比99.5:0.5、99:1、90:10、80:2
0、70:30、65:35及び62.5:37.5
で、それぞれ混合したこと以外は本発明電池(A1)の
作製方法と同様にして、順に、電池(X1)〜(X7)
を作製した。
In the preparation of the positive electrode, the weight ratio of the solid solution powder and the γ-type manganese dioxide powder was 99.5: 0.5, 99: 1, 90:10, 80: 2 instead of 95: 5.
0, 70:30, 65:35 and 62.5: 37.5
The batteries (X1) to (X7) were sequentially manufactured in the same manner as in the method of manufacturing the battery (A1) of the present invention except that they were mixed.
Was prepared.

【0042】各電池10個について実験1で行ったもの
と同じ条件の充放電サイクル試験を行い、各電池の正極
挿入時のクラック発生電池数、1サイクル目の放電容
量、25サイクル目の容量維持率及び25サイクル目の
漏液電池数を調べた。結果を表2に示す。表2には、本
発明電池(A1)の結果も示してある。表2中の1サイ
クル目の放電容量は、本発明電池(A1)の1サイクル
目の放電容量を100とした指数である。また、容量維
持率は、各電池の1サイクル目の放電容量に対する25
サイクル目の放電容量の比率(%)であり、且つ電解液
が漏出しなかった電池の容量維持率の平均値である。
A charge / discharge cycle test was performed on the 10 batteries under the same conditions as those used in Experiment 1, and the number of cracked batteries when each battery was inserted into the positive electrode, the discharge capacity at the first cycle, and the capacity maintenance at the 25th cycle The ratio and the number of leaked batteries at the 25th cycle were examined. Table 2 shows the results. Table 2 also shows the results of the battery (A1) of the present invention. The discharge capacity at the first cycle in Table 2 is an index with the discharge capacity at the first cycle of the battery (A1) of the present invention being 100. Further, the capacity retention rate is 25% of the discharge capacity of the first cycle of each battery.
It is the ratio (%) of the discharge capacity at the cycle and the average value of the capacity retention ratio of the battery in which the electrolyte did not leak.

【0043】[0043]

【表2】 [Table 2]

【0044】表2より、マンガン酸化物の粉末としてγ
型二酸化マンガン粉末を使用する場合は、固溶体粉末と
γ型二酸化マンガン粉末との重量比が、99:1〜6
5:35となるようにγ型二酸化マンガン粉末を添加す
る必要があることが分かる。
As shown in Table 2, manganese oxide powder γ
When the manganese dioxide powder is used, the weight ratio between the solid solution powder and the γ-type manganese dioxide powder is 99: 1 to 6
It is understood that it is necessary to add γ-type manganese dioxide powder so that the ratio becomes 5:35.

【0045】(実験3)固溶体粉末に添加するマンガン
酸化物の粉末の種類について検討した。
(Experiment 3) The type of manganese oxide powder added to the solid solution powder was examined.

【0046】固溶体粉末に添加するマンガン酸化物の粉
末として、γ型二酸化マンガン粉末に代えて、一酸化マ
ンガン、四酸化三マンガン、三酸化二マンガン、β型二
酸化マンガン(β−MnO2 )(γ型二酸化マンガンを
450°Cで焼成して作製したもの)及び炭酸マンガン
(MnCO3)の各粉末を、それぞれ添加したこと以外は
本発明電池(A1)の作製方法と同様にして、順に、電
池(Y1)〜(Y5)を作製した。固溶体粉末と各マン
ガン酸化物の粉末との重量比は、いずれも95:5とし
た。
As the manganese oxide powder to be added to the solid solution powder, instead of γ-type manganese dioxide powder, manganese monoxide, trimanganese tetroxide, dimanganese trioxide, β-type manganese dioxide (β-MnO 2 ) (γ Manganese dioxide was prepared by firing at 450 ° C.) and manganese carbonate (MnCO 3 ) in the same manner as the battery (A1) except that the respective powders were added. (Y1) to (Y5) were produced. The weight ratio between the solid solution powder and each manganese oxide powder was 95: 5.

【0047】各電池10個について実験1で行ったもの
と同じ条件の充放電サイクル試験を行い、各電池の1サ
イクル目の放電容量、25サイクル目の容量維持率、2
5サイクル目の漏液電池数及び正極挿入時のクラック発
生電池数を調べた。結果を表3に示す。表3には、本発
明電池(A1)の結果も示してある。表3中の1サイク
ル目の放電容量は、本発明電池(A1)の1サイクル目
の放電容量を100とした指数である。また、容量維持
率は、各電池の1サイクル目の放電容量に対する25サ
イクル目の放電容量の比率(%)であり、且つ各電池1
0個の容量維持率の平均値である。
A charge / discharge cycle test was performed on the ten batteries, under the same conditions as those used in Experiment 1, and the discharge capacity at the first cycle, the capacity retention at the 25th cycle,
The number of leaked batteries in the fifth cycle and the number of cracked batteries when the positive electrode was inserted were examined. Table 3 shows the results. Table 3 also shows the results of the battery (A1) of the present invention. The discharge capacity at the first cycle in Table 3 is an index with the discharge capacity at the first cycle of the battery (A1) of the present invention being 100. The capacity retention ratio is the ratio (%) of the discharge capacity at the 25th cycle to the discharge capacity at the first cycle of each battery.
This is the average value of the zero capacity retention rates.

【0048】[0048]

【表3】 [Table 3]

【0049】表3より、正極の強度を高めるためには、
マンガン酸化物として、一酸化マンガン、四酸化三マン
ガン、三酸化二マンガン及びγ型二酸化マンガンのいず
れかを使用する必要があり、β型二酸化マンガン及び炭
酸マンガンでは、正極の強度を高めることができないこ
とが分かる。なお、電池(Y4)及び(Y5)について
は、正極挿入時のクラック発生電池数が極めて多かった
ために、漏液電池数については調べなかった。
As shown in Table 3, in order to increase the strength of the positive electrode,
As the manganese oxide, it is necessary to use any one of manganese monoxide, trimanganese tetroxide, dimanganese trioxide and γ-type manganese dioxide, and β-type manganese dioxide and manganese carbonate cannot increase the strength of the positive electrode. You can see that. For the batteries (Y4) and (Y5), the number of crack-producing batteries when the positive electrode was inserted was extremely large.

【0050】(実験4)固溶体粉末のニッケルの価数と
電池特性の関係を調べた。
(Experiment 4) The relationship between the valence of nickel in the solid solution powder and the battery characteristics was examined.

【0051】正極の作製において、水酸化ナトリウム水
溶液500mlと混合する10重量%次亜塩素酸ナトリ
ウム水溶液の量を、1500mlに代えて、それぞれ1
350ml、1400ml及び1600mlとしたこと
以外は本発明電池(A1)の作製方法と同様にして、電
池Z1〜Z3を作製した。各電池に使用した固溶体粉末
のニッケルの価数は、順に、3.3、3.4及び3.8
であった。
In the preparation of the positive electrode, the amount of the 10% by weight aqueous sodium hypochlorite solution to be mixed with 500 ml of the aqueous sodium hydroxide solution was changed to 1500 ml, and
Batteries Z1 to Z3 were produced in the same manner as the method of producing battery (A1) of the present invention except that the amounts were 350 ml, 1400 ml, and 1600 ml. The valence of nickel of the solid solution powder used for each battery was 3.3, 3.4, and 3.8, respectively.
Met.

【0052】各電池10個について実験1で行ったもの
と同じ条件の充放電サイクル試験を行い、各電池の1サ
イクル目の放電容量、25サイクル目の容量維持率、2
5サイクル目の漏液電池数を調べた。結果を表4に示
す。表4には、本発明電池(A1)の結果も示してあ
る。表4中の1サイクル目の放電容量は、本発明電池
(A1)の1サイクル目の放電容量を100とした指数
である。また、容量維持率は、各電池の1サイクル目の
放電容量に対する25サイクル目の放電容量の比率
(%)であり、且つ電解液が漏出しなかった電池の容量
維持率の平均値である。なお正極挿入時のクラック発生
電池数はいずれも0(零)であった。
A charge / discharge cycle test was performed on the ten batteries under the same conditions as those used in Experiment 1, and the discharge capacity at the first cycle, the capacity retention at the 25th cycle,
The number of leaked batteries at the fifth cycle was examined. Table 4 shows the results. Table 4 also shows the results of the battery (A1) of the present invention. The discharge capacity at the first cycle in Table 4 is an index with the discharge capacity at the first cycle of the battery (A1) of the present invention being 100. The capacity retention rate is a ratio (%) of the discharge capacity at the 25th cycle to the discharge capacity at the first cycle of each battery, and is an average value of the capacity retention rates of the batteries in which the electrolyte did not leak. The number of cracking batteries when the positive electrode was inserted was 0 (zero) in each case.

【0053】[0053]

【表4】 [Table 4]

【0054】表4より、1サイクル目の放電容量が大き
い電池を得るためには、正極活物質として満充電状態で
のニッケルの価数が3.4〜3.8である固溶体粉末を
使用することが好ましいことが分かる。なお、電池(Z
1)の漏液電池数が多いのは、固溶体中のオキシ水酸化
ニッケルが、酸素過電圧の小さいβ型オキシ水酸化ニッ
ケルであるためである。
According to Table 4, in order to obtain a battery having a large discharge capacity in the first cycle, a solid solution powder having a valence of nickel in a fully charged state of 3.4 to 3.8 is used as a positive electrode active material. It turns out that it is preferable. The battery (Z
The reason why the number of the liquid leakage batteries in 1) is large is that the nickel oxyhydroxide in the solid solution is a β-type nickel oxyhydroxide having a small oxygen overvoltage.

【0055】[0055]

【発明の効果】充放電サイクルにおける放電容量の減少
が小さく、電池内圧の上昇乃至アルカリ電解液の漏出が
起こりにくく、しかも歩留り良く製造することが可能な
密閉型アルカリ亜鉛蓄電池が提供される。
According to the present invention, there is provided a sealed alkaline zinc storage battery in which a decrease in discharge capacity in a charge / discharge cycle is small, a rise in the internal pressure of the battery or a leakage of an alkaline electrolyte does not easily occur, and which can be manufactured with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製したインサイドアウト型電池の断
面図である。
FIG. 1 is a cross-sectional view of an inside-out type battery manufactured in an example.

【符号の説明】[Explanation of symbols]

A1 インサイドアウト型電池 1 電池缶(正極外部端子) 2 電池蓋(負極外部端子) 3 絶縁パッキング 4 負極集電棒 5 円筒状の正極(ニッケル極) 6 円筒状のセパレータフィルム 7 ゲル状負極(亜鉛極) A1 Inside-out type battery 1 Battery can (external terminal of positive electrode) 2 Battery cover (external terminal of negative electrode) 3 Insulating packing 4 Negative current collector rod 5 Cylindrical positive electrode (nickel electrode) 6 Cylindrical separator film 7 Gelled negative electrode (zinc electrode) )

フロントページの続き (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 伊藤 靖彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H003 AA04 AA08 BA03 BA05 BB02 BB04 BB14 BB15 BC01 BD00 BD03 BD04 5H016 AA02 AA05 AA08 AA10 BB05 EE01 EE04 EE05 HH00 HH01 HH06 5H028 AA05 AA07 BB04 BB06 EE01 EE04 EE05 EE08 HH00 HH01 HH05 Continued on the front page (72) Inventor Mamoru Kimoto 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture Inside Sanyo Electric Co., Ltd. (72) Inventor Yasuhiko Ito 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture No. Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term (reference) 5H003 AA04 AA08 BA03 BA05 BB02 BB04 BB14 BB15 BC01 BD00 BD03 BD04 5H016 AA02 AA05 AA08 AA10 BB05 EE01 EE04 EE05 HH00 HH01 HH06 5H028 AA05 AA07 BB04 BB06 EE01 EE04 EE05 EE08 HH00 HH01 HH05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】筒状の正極の筒内に、セパレータを介し
て、亜鉛を活物質とする負極が配されており、且つ前記
正極と、前記負極と、アルカリ電解液と、前記セパレー
タと、負極集電体とからなる発電要素体が電池缶内容積
の75%以上を占める密閉型アルカリ亜鉛蓄電池におい
て、前記正極の活物質が、γ型オキシ水酸化ニッケル
に、マンガンが、マンガンとニッケルとの総量に基づい
て、5〜50原子%固溶した固溶体粉末であり、当該固
溶体粉末に、一酸化マンガン(MnO)、四酸化三マン
ガン(Mn3 4 )、三酸化二マンガン(Mn2 3
及びγ型二酸化マンガン(γ−MnO2 )よりなる群か
ら選ばれた少なくとも1種のマンガン酸化物の粉末が添
加されており、且つ前記正極が、前記固溶体粉末と、前
記マンガン酸化物の粉末と、導電剤とを含む混合物を、
加圧成型してなる成型体であることを特徴とする密閉型
アルカリ亜鉛蓄電池。
A negative electrode comprising zinc as an active material is disposed in a cylindrical positive electrode via a separator, and said positive electrode, said negative electrode, an alkaline electrolyte, said separator, In a sealed alkaline zinc storage battery in which a power generating element composed of a negative electrode current collector occupies 75% or more of the internal volume of a battery can, the active material of the positive electrode is γ-type nickel oxyhydroxide, manganese is manganese and nickel. based on the total amount, it is from 5 to 50 atomic% solid solution solid solution powder, to the solid-solution powder, manganese monoxide (MnO), trimanganese tetraoxide (Mn 3 O 4), manganese sesquioxide (Mn 2 O 3 )
And at least one manganese oxide powder selected from the group consisting of manganese dioxide (γ-MnO 2 ) and the positive electrode, wherein the positive electrode comprises the solid solution powder and the manganese oxide powder. , A mixture containing a conductive agent,
A sealed alkaline zinc storage battery characterized in that it is a molded body formed by pressure molding.
【請求項2】前記マンガン酸化物がγ型二酸化マンガン
であり、且つ前記固溶体粉末とγ型二酸化マンガン粉末
との重量比が、99:1〜65:35である請求項1記
載の密閉型アルカリ亜鉛蓄電池。
2. The sealed alkali according to claim 1, wherein the manganese oxide is γ-type manganese dioxide, and the weight ratio between the solid solution powder and the γ-type manganese dioxide powder is 99: 1 to 65:35. Zinc battery.
【請求項3】γ型オキシ水酸化ニッケルの満充電状態で
のニッケルの価数が3.4〜3.8である請求項1記載
の密閉型アルカリ亜鉛蓄電池。
3. The sealed alkaline zinc storage battery according to claim 1, wherein the valence of nickel in the fully charged state of the γ-type nickel oxyhydroxide is 3.4 to 3.8.
【請求項4】前記固溶体粉末が、さらに、亜鉛、コバル
ト、ビスマス、アルミニウム及び希土類元素よりなる群
から選ばれた少なくとも1種の元素を固溶元素として含
有している請求項1記載の密閉型アルカリ亜鉛蓄電池。
4. The closed mold according to claim 1, wherein said solid solution powder further contains at least one element selected from the group consisting of zinc, cobalt, bismuth, aluminum and rare earth elements as a solid solution element. Alkaline zinc storage battery.
JP05088199A 1999-02-26 1999-02-26 Sealed alkaline zinc storage battery Expired - Fee Related JP3663071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05088199A JP3663071B2 (en) 1999-02-26 1999-02-26 Sealed alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05088199A JP3663071B2 (en) 1999-02-26 1999-02-26 Sealed alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JP2000251883A true JP2000251883A (en) 2000-09-14
JP3663071B2 JP3663071B2 (en) 2005-06-22

Family

ID=12871082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05088199A Expired - Fee Related JP3663071B2 (en) 1999-02-26 1999-02-26 Sealed alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JP3663071B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323446C (en) * 2004-10-01 2007-06-27 厦门大学 Spherical gamma nickel oxyhydroxide, preparation process and application thereof
CN103996820A (en) * 2014-05-30 2014-08-20 南京安普瑞斯有限公司 Lithium ion battery as well as mixed positive electrode and active material with synergistic effect
CN107863485A (en) * 2017-11-06 2018-03-30 中南大学 A kind of water system Zinc ion battery positive electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323446C (en) * 2004-10-01 2007-06-27 厦门大学 Spherical gamma nickel oxyhydroxide, preparation process and application thereof
CN103996820A (en) * 2014-05-30 2014-08-20 南京安普瑞斯有限公司 Lithium ion battery as well as mixed positive electrode and active material with synergistic effect
CN107863485A (en) * 2017-11-06 2018-03-30 中南大学 A kind of water system Zinc ion battery positive electrode

Also Published As

Publication number Publication date
JP3663071B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP3389252B2 (en) Alkaline storage battery and charging method thereof
JP3568408B2 (en) Positive electrode active material for alkaline secondary batteries and alkaline secondary batteries
JP3663071B2 (en) Sealed alkaline zinc storage battery
JP2000133259A (en) Sealed alkaline storage battery
JP4253172B2 (en) Sealed nickel zinc primary battery
JP2000251924A (en) Sealed alkaline zinc storage battery
JPH09115543A (en) Alkaline storage battery
JP3653410B2 (en) Sealed alkaline zinc storage battery
JP2003017079A (en) Zinc alkaline battery
JP3663072B2 (en) Sealed alkaline zinc storage battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3433035B2 (en) Sealed alkaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3737534B2 (en) Manufacturing method of alkaline secondary battery
JP2000277104A (en) Sealed type alkaline storage battery
JP3902351B2 (en) Sealed alkaline storage battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2000251925A (en) Sealed alkaline zinc storage battery
JP2007035506A (en) Alkaline battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP2001093525A (en) Sealed alkaline battery
JP3547980B2 (en) Nickel-hydrogen storage battery
JP3728143B2 (en) Sealed alkaline storage battery
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees