JP2000245132A - Moving-coil linear motor - Google Patents

Moving-coil linear motor

Info

Publication number
JP2000245132A
JP2000245132A JP11047312A JP4731299A JP2000245132A JP 2000245132 A JP2000245132 A JP 2000245132A JP 11047312 A JP11047312 A JP 11047312A JP 4731299 A JP4731299 A JP 4731299A JP 2000245132 A JP2000245132 A JP 2000245132A
Authority
JP
Japan
Prior art keywords
coil
yoke
linear motor
magnetic space
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11047312A
Other languages
Japanese (ja)
Other versions
JP3838314B2 (en
Inventor
Satoshi Takahashi
聡 高橋
Masaki Taketomi
正喜 武富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neomax Kiko Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Metals Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Metals Kiko Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP04731299A priority Critical patent/JP3838314B2/en
Publication of JP2000245132A publication Critical patent/JP2000245132A/en
Application granted granted Critical
Publication of JP3838314B2 publication Critical patent/JP3838314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a moving-coil linear motor capable of having a simple air-cooling structure and attaining high efficiency. SOLUTION: This moving-coil linear motor is provided with a plurality of permanent magnets 2, so that poles are alternately different from each other in the longitudinal direction of on yoke 8L of yokes which face the permanent magnets, and the heteropoles face each other via a magnetic space 3, a mover 5 which has a polyphase coil and is movably disposed in the magnetic space 3 in the arrangement direction of the permanent magnet 2, and a drive circuit for supplying drive current to the polyphase coil. A passage is formed which consists of a recessed groove 80, which continues in a longitudinal direction on the back face of the other yoke 8R and is closed, and communicating hole 84 is formed which communicates the magnetic space 3 and the recessed groove 80, so that air is supplied to the passage of the recessed groove 80 to blow air against the magnetic space 3 via the communicating hole 84, thus it is possible cool the polyphase coil and reduce the temperature rise in the permanent magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、対向するヨーク間
に形成された磁気空間内を可動子コイルが直線移動する
形式のリニアモータに関し、可動子コイルの最大電流値
の維持および永久磁石の熱減磁抑制により、最大推力を
向上させ得る可動コイル形リニアモータに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor in which a mover coil moves linearly in a magnetic space formed between opposing yokes, and maintains a maximum current value of the mover coil and heats a permanent magnet. The present invention relates to a moving coil linear motor capable of improving the maximum thrust by suppressing demagnetization.

【0002】[0002]

【従来の技術】従来、数10〜100cmといった比較
的長いストロークの範囲内で物体の位置決めを行うため
の駆動装置としては、例えば、特公昭58−49100
号や実開昭63−93783号公報によって開示されて
いるような可動コイル形リニアモータが使用されてい
る。この可動コイル形リニアモータについて図4を参照
して説明する。先ず、1はヨークであり鉄板のような強
磁性材料により、例えばU字あるいは平板を組立てて門
形に形成したものである。2は永久磁石で厚さ方向に着
磁し表面にNS磁極が交互に出現するようにヨーク1の
長手方向に配設固着し、さらに左右ヨーク1の内側対向
面にも磁気空間3を介して永久磁石2の異極同士が対向
するように配設されている。4は支持板で前記ヨーク1
と同様の強磁性材料からなり前記磁気空間3を確保する
ためにヨーク1の長手方向両端部に固着したものであ
る。
2. Description of the Related Art Conventionally, as a driving device for positioning an object within a relatively long stroke range of several tens to 100 cm, for example, Japanese Patent Publication No. 58-49100
And a moving coil type linear motor as disclosed in JP-A-63-93783. This moving coil type linear motor will be described with reference to FIG. First, reference numeral 1 denotes a yoke which is formed in a gate shape by assembling a U-shaped or flat plate using a ferromagnetic material such as an iron plate. Numeral 2 denotes a permanent magnet which is magnetized in the thickness direction and is arranged and fixed in the longitudinal direction of the yoke 1 so that NS magnetic poles appear alternately on the surface. The different poles of the permanent magnet 2 are arranged so as to face each other. 4 is a support plate for the yoke 1
The yoke 1 is made of the same ferromagnetic material and is fixed to both ends in the longitudinal direction of the yoke 1 in order to secure the magnetic space 3.

【0003】次に、5はコイルとホルダ等を一体に備え
た可動子であり前記磁気空間3における磁束と巻線方向
が直交するような扁平の多相コイルによって形成してい
る。これは例えば3相コイルを永久磁石2の配設方向に
若干量ずらして並べ、磁極の方向を磁界検出素子(MR
センサ)等の手段を介して検出するようになし、単相ま
たは3相の正弦波電流を通電して駆動とその方向を切り
替えるように構成されている。尚、可動子には図中点線
で示すテーブル6等が取り付けられることになり、これ
の直線移動を利用することになる。
[0005] Next, reference numeral 5 denotes a mover integrally provided with a coil, a holder, and the like, which is formed of a flat multiphase coil whose winding direction is orthogonal to the magnetic flux in the magnetic space 3. This means, for example, that three-phase coils are arranged with a slight shift in the direction in which the permanent magnets 2 are arranged, and the direction of the magnetic poles is changed to a magnetic field detecting element (MR).
The driving and the direction are switched by applying a single-phase or three-phase sine wave current to the detection. A table 6 and the like indicated by a dotted line in the figure are attached to the mover, and a linear movement of the table 6 is used.

【0004】以上の構成により、コイル5に電流を流す
とコイル5の巻線方向が永久磁石2による磁束と直交し
ているので、コイル5はフレミングの左手の法則によ
り、ヨーク1の長手方向の駆動力を得ることになり、コ
イル5を一体に支持している可動子はヨーク1の長手方
向に移動する。次にコイル5に前記と逆方向の電流を流
すと、コイル5には前記と逆方向の駆動力が作用するか
ら可動子は前記と逆方向に移動する。従って、コイル5
への通電とその方向を選択し、且つその位置をMRセン
サで検知することにより可動子を所定位置に移動制御さ
せることが出来る。
With the above configuration, when a current is applied to the coil 5, the winding direction of the coil 5 is orthogonal to the magnetic flux generated by the permanent magnet 2. Therefore, the coil 5 is moved in the longitudinal direction of the yoke 1 according to Fleming's left-hand rule. A driving force is obtained, and the mover integrally supporting the coil 5 moves in the longitudinal direction of the yoke 1. Next, when a current in the opposite direction is applied to the coil 5, a driving force in the opposite direction acts on the coil 5, so that the mover moves in the opposite direction. Therefore, the coil 5
The movable element can be controlled to move to a predetermined position by selecting the power supply and its direction and detecting the position with an MR sensor.

【0005】この可動コイル形リニアモータによれば、
磁気回路部にセンターヨークがなく、しかも磁気空間内
で磁束が複数個の閉ループを構成し、磁路の一部に磁束
が集中しないようになっているので、長いストロークの
全域に亘って一様な磁束密度を発生させることが出来
る。さらに可動子の質量が小さく、コギングトルクも小
さいことから速応性の良好なリニアモータになるという
特徴を有している。
According to this moving coil type linear motor,
There is no center yoke in the magnetic circuit part, and the magnetic flux forms a plurality of closed loops in the magnetic space, so that the magnetic flux does not concentrate on a part of the magnetic path, so it is uniform throughout the long stroke High magnetic flux density can be generated. Further, the mass of the mover is small and the cogging torque is also small, so that the linear motor has a feature of good responsiveness.

【0006】しかしながら、その反面狭い磁気空間3内
にコイル5が配置されているため自然対流による熱交換
や熱放散の効率が悪く、しかも発熱源であるコイル5が
可動子側に存在するため冷却手段が採りにくいという構
造上の問題がある。さらに、コイル5の発熱によりコイ
ル自体の電気抵抗値が上昇しジュール熱損失が増大する
ことから実効電力が減少する。このためコイル5に対す
る供給電力は、コイル発熱が実用上問題とならない程度
の値以下に制限して使用されている。また一方で、対向
する永久磁石2にもコイル5からの熱が伝達されて永久
磁石2の温度が上昇し熱減磁により発生磁束が減少す
る。以上のことから発生推力が減少するという性能上の
問題がある。
However, since the coil 5 is arranged in the narrow magnetic space 3, the efficiency of heat exchange and heat dissipation by natural convection is low, and the coil 5, which is a heat source, is located on the mover side, so that cooling is not performed. There is a structural problem that it is difficult to take measures. Furthermore, the electric power of the coil itself increases due to the heat generated by the coil 5 and the Joule heat loss increases, so that the effective power decreases. For this reason, the power supplied to the coil 5 is limited to a value at which the heat generation of the coil does not cause a practical problem. On the other hand, the heat from the coil 5 is also transmitted to the opposing permanent magnet 2, the temperature of the permanent magnet 2 rises, and the generated magnetic flux decreases due to thermal demagnetization. From the above, there is a performance problem that the generated thrust is reduced.

【0007】そこで、コイルを冷却することが望まれ
る、例えば実開平4−34878号によれば固定ヨーク
の側面部に複数個の軸流ファンを設けてコイルを冷却す
ることが提案されている。
Therefore, it is desired to cool the coil. For example, Japanese Utility Model Laid-Open No. 4-34878 proposes providing a plurality of axial fans on a side surface of a fixed yoke to cool the coil.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記し
た実開平4−34878号の冷却手段では、軸流ファン
を設けることによってリニアモータの大型化と構造の複
雑化を招来する結果となる。通常、可動磁石形リニアモ
ータの場合はコイル側は動かないので、これを冷却する
手段は水冷または空冷でも比較的効率良く実施可能であ
るが、可動コイル形リニアモータの場合はコイル側が動
くことから効率的な冷却構造をとることは困難であっ
た。従って、可動コイル形リニアモータにあっては冷却
手段を備えていないのが実状である。
However, in the cooling means disclosed in Japanese Utility Model Laid-Open No. 4-34878, the provision of an axial fan results in an increase in the size and the structure of the linear motor. Usually, in the case of a moving magnet type linear motor, the coil side does not move, so the means for cooling this can be implemented relatively efficiently with water cooling or air cooling, but in the case of a moving coil type linear motor, the coil side moves, It was difficult to take an efficient cooling structure. Therefore, the actual situation is that the moving coil linear motor does not include the cooling means.

【0009】そこで本発明は、上記した後者の従来技術
に関与しその問題点を解消するもので、コイルの空冷構
造を安価で簡易なものとすると共に効率的な効果が得ら
れるような空冷手段を備えた可動コイル形リニアモータ
を提供することを目的とする。
Accordingly, the present invention is concerned with the latter conventional technique described above and solves the problem. An air cooling means which makes the air cooling structure of the coil inexpensive and simple and which can obtain an efficient effect. It is an object of the present invention to provide a moving coil type linear motor provided with:

【0010】[0010]

【課題を解決するための手段】本発明は、ヨークの長手
方向に複数個の永久磁石を交互に磁極が異なるように配
設し、磁石の表面に沿って形成された磁気空間内にコイ
ルを備えた可動子を前記永久磁石の配設方向に移動可能
に設けるようにした可動コイル形リニアモータにおい
て、一方のヨークのみに前記永久磁石を配設し、他方の
ヨークには長手方向に連続して密閉された通路を設け、
前記磁気空間と前記通路とを連絡する連通孔を形成し、
前記通路にエアーを供給することによって前記連通孔を
介してエアーを磁気空間内に吹き付け、前記コイルを冷
却するようにした可動コイル形リニアモータである。
According to the present invention, a plurality of permanent magnets are alternately arranged in the longitudinal direction of a yoke so that magnetic poles are different from each other, and a coil is placed in a magnetic space formed along the surface of the magnet. In the moving coil linear motor in which the provided mover is provided so as to be movable in the direction in which the permanent magnet is provided, the permanent magnet is provided only in one yoke, and the other yoke is continuous in the longitudinal direction. To provide a closed passage,
Forming a communication hole connecting the magnetic space and the passage,
A moving coil linear motor configured to cool the coil by supplying air to the passage to blow air into the magnetic space through the communication hole.

【0011】ここで、上記通路は長手方向に連続した凹
溝を形成し、この凹溝を密封閉鎖することによって設け
たり、また長手方向に連続した凹形の部材を密閉するよ
うにして固着したり、また配管状のものによって設けた
りすることができる。冷却用エアーの通路となるエアー
通路は、適宜上下に複数本設けることができる。尚、上
記においてエアーはコイルを冷却すると記しているが、
これは少なくともコイルを冷却することを意味し、間接
的に永久磁石他をも冷却することを妨げないものであ
る。
Here, the passage is formed by forming a continuous groove in the longitudinal direction and sealingly closing the groove, or is fixed by sealing the concave member continuous in the longitudinal direction. Alternatively, it can be provided by a pipe-like material. A plurality of air passages serving as cooling air passages can be provided up and down as appropriate. In the above description, air cools the coil,
This means that at least the coil is cooled, and it does not prevent indirectly cooling the permanent magnet and the like.

【0012】以上によって、対向するヨークのうち永久
磁石を配設していない側のヨークから磁気空間内にエア
ーを吹き付けてコイルを効率的に空冷できる。そして、
エアー供給通路を密閉した凹溝として形成しているの
で、長尺のヨークであっても加工が極めて簡単にできヨ
ーク長さに制約を受けない。よって、駆動距離が10c
m以上のヨークを有するリニアモータなど、特に長尺の
リニアモータに適している。このように、可動コイル形
リニアモータであっても簡単かつ安価な冷却手段を備え
ることができ、コイル側の熱損失と磁石側の熱減磁を共
に減少させてリニアモータの高推力を達成し、これを保
持することができる。
As described above, the coil can be efficiently cooled by blowing air into the magnetic space from the yoke on which the permanent magnet is not disposed among the opposing yokes. And
Since the air supply passage is formed as a closed concave groove, even a long yoke can be processed extremely easily, and the length of the yoke is not restricted. Therefore, the driving distance is 10c
It is particularly suitable for a long linear motor such as a linear motor having a yoke of m or more. In this way, even a moving coil type linear motor can be provided with a simple and inexpensive cooling means, reducing both the heat loss on the coil side and the heat demagnetization on the magnet side to achieve a high thrust of the linear motor. , Which can be kept.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施例を図面を
参照して説明する。図1は第1の実施例を示すリニアモ
ータの一部上面図、図2は図1のA−A断面図である。
図3は他の実施例を示すリニアモータの横断面図であ
る。尚、これらの図は構造の概略を示す簡略的な図であ
り実際の構造は示していない。また、従来と同様の構成
については同一符号を付してその説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a partial top view of a linear motor showing a first embodiment, and FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a cross-sectional view of a linear motor showing another embodiment. These drawings are simplified diagrams showing the outline of the structure, and do not show the actual structure. The same reference numerals are given to the same components as those in the related art, and the description thereof will be omitted.

【0014】図1、図2において、ヨーク8は軟鋼のよ
うな強磁性材料の平板8R、8Lを左右に対向配置し、
同じく平板状の底部ヨーク83とから構成されており、
対向するヨーク間で磁石の表面に沿って磁気空間3を構
成している。尚、底部ヨーク83は一体ものでもまた別
体を組み立てたものでも良い。そして、左ヨーク8Lの
長手方向の磁石配設面81には永久磁石、例えばNd―
Fe―B系異方性焼結磁石2をその極性が交互に異なる
ように隣り合って配設固着している。磁気空間3内には
上述の従来技術と同様多相コイルからなる可動子5が装
置されており、この多相コイルに駆動回路(図示せず)
からの正弦波駆動電流を供給して直線移動(紙面上下方
向)させるようにした可動コイル形リニアモータであ
る。尚、永久磁石2と可動子5との間隔は実際は0.0
2〜2mm程度の隙間を保って設けられている。また、
永久磁石や可動子の実施態様は上記に限るものではな
い。
In FIGS. 1 and 2, a yoke 8 has flat plates 8R and 8L made of a ferromagnetic material such as mild steel opposed to each other on the left and right sides.
It is also composed of a flat bottom yoke 83,
The magnetic space 3 is formed along the surface of the magnet between the opposing yokes. It should be noted that the bottom yoke 83 may be integrated or assembled separately. A permanent magnet, for example, Nd-
The Fe—B based anisotropic sintered magnets 2 are arranged and fixed adjacent to each other so that their polarities are alternately different. A mover 5 composed of a multi-phase coil is provided in the magnetic space 3 in the same manner as in the related art described above, and a drive circuit (not shown) is provided in the multi-phase coil.
This is a moving coil type linear motor that is supplied with a sine wave drive current from the controller and is moved linearly (vertically in the drawing). The distance between the permanent magnet 2 and the mover 5 is actually 0.0
It is provided with a gap of about 2 to 2 mm. Also,
Embodiments of the permanent magnet and the mover are not limited to the above.

【0015】次に、右ヨーク8Rの背面86側に凹溝8
0を設け、これにふた部材85をシール部材を介して密
封的に閉鎖してエアー供給通路を構成している。そし
て、密閉された凹溝状の通路80と磁気空間3との間を
連通孔84で連絡している。尚、連通孔84は凹溝がヨ
ークを貫通するように設けて兼用した構成としても良
い。また、通路の他の実施例としては例えば図3に示す
ものでも良い。この例では断面凹状で長さのある箱形部
材88を溶接などの手段でヨーク8Rに密封固着したも
のである。また他にはパイプ状の配管を付設するような
構造も考えられる。ヨーク8Lの磁石配設面81には永
久磁石2の交番磁界がより完全な正弦波に近づくように
永久磁石2を直接固着するのであるが、磁気回路的には
弱いのでコイルの巻き方、ヨーク形状、永久磁石の磁力
や形状について最適になるように考慮して設定する。
Next, a groove 8 is formed on the back surface 86 side of the right yoke 8R.
0, and the lid member 85 is hermetically closed via a seal member to form an air supply passage. A communication hole 84 communicates between the closed groove-shaped passage 80 and the magnetic space 3. Note that the communication hole 84 may be configured so that the concave groove is provided so as to penetrate the yoke, and is also used. Further, as another embodiment of the passage, for example, the one shown in FIG. 3 may be used. In this example, a box-shaped member 88 having a concave cross section and a length is hermetically fixed to the yoke 8R by means such as welding. In addition, a structure in which a pipe-shaped pipe is additionally provided is also conceivable. The permanent magnet 2 is directly fixed to the magnet mounting surface 81 of the yoke 8L so that the alternating magnetic field of the permanent magnet 2 approaches a more complete sine wave. The shape and the magnetic force and shape of the permanent magnet are set in consideration of the optimum.

【0016】以上によって、ヨーク8Rのエアー供給通
路80の一端から装置の空圧駆動源やエアコンプレッサ
等によって冷却用エアーを供給すると、密封された凹溝
80のエアー通路と連通孔84を通って磁気空間3内に
冷却エアーが吹き出し可動子5のコイルを直接冷却する
ことができる。このとき貫通孔より真横から冷却エアー
を可動子に吹き付けるので、長手方向に沿った空気の流
れやファンによるものよりも冷却の効率がより向上す
る。
As described above, when cooling air is supplied from one end of the air supply passage 80 of the yoke 8R by a pneumatic drive source or an air compressor of the device, the air passes through the air passage of the sealed groove 80 and the communication hole 84. Cooling air is blown into the magnetic space 3 to directly cool the coil of the mover 5. At this time, since the cooling air is blown to the mover from right beside the through-hole, the cooling efficiency is further improved as compared with the air flow along the longitudinal direction and the fan.

【0017】また、冷却の効率は落ちるが他の実施例と
しては、底部ベース83の底面87に凹溝を設け、同様
にこの凹溝をふた部材などによって閉塞すると共に、磁
気空間に連通する連通孔を長手方向に形成し、冷却エア
ーを下部から吹き出させて可動子コイルを冷却するよう
にしてもよい。以上の各実施例によれば、コイルの発熱
と永久磁石の温度上昇を共に抑えることができるので、
大電流を流すことも可能となりリニアモータの高推力化
を達成できる。
Further, although the cooling efficiency is reduced, as another embodiment, a concave groove is provided in the bottom surface 87 of the bottom base 83, and the concave groove is similarly closed by a lid member and the like, and the communication is established with the magnetic space. A hole may be formed in the longitudinal direction, and cooling air may be blown out from below to cool the mover coil. According to each of the above embodiments, both heat generation of the coil and temperature rise of the permanent magnet can be suppressed.
A large current can be passed, and the thrust of the linear motor can be increased.

【0018】[0018]

【発明の効果】本発明によれば、凹溝をヨークの背面等
に形成しこの凹溝を塞いで通路となし、さらに連通孔を
形成したので冷却用エアーが磁気空間内に供給され可動
コイルを直接冷却すると共に永久磁石の温度上昇を抑え
ることが出来る。このとき長尺ヨークであってもエアー
供給通路の加工が極めて容易かつ安価にできるので効果
的である。以上によって、コイル側の熱損失と磁石側の
熱減磁を共に減少させてリニアモータに供給する電流に
制限を加えることなく高推力を出すことができる。また
リニアモータの適用範囲の拡大が可能となる。
According to the present invention, a groove is formed on the back surface of the yoke and the like, and the groove is closed to form a passage. Further, since a communication hole is formed, cooling air is supplied into the magnetic space so that the movable coil is formed. And the temperature rise of the permanent magnet can be suppressed. At this time, the processing of the air supply passage can be made extremely easy and inexpensive even with a long yoke, which is effective. As described above, both the heat loss on the coil side and the heat demagnetization on the magnet side are reduced, and a high thrust can be obtained without limiting the current supplied to the linear motor. Further, the application range of the linear motor can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すリニアモータの一部上
面図である。
FIG. 1 is a partial top view of a linear motor showing one embodiment of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明のエアー通路の他の実施例を示すリニア
モータの横断面図である。
FIG. 3 is a cross-sectional view of a linear motor showing another embodiment of the air passage of the present invention.

【図4】従来の可動コイル形リニアモータの一例を示す
上面図である。
FIG. 4 is a top view showing an example of a conventional moving coil type linear motor.

【符号の説明】[Explanation of symbols]

1:ヨーク 2:永久磁
石 3:磁気空間 4:支持板 5:可動子 6:テーブ
ル等 8(8R、8L):ヨーク 80:凹溝 81:ヨークの磁石配設面 83:底部ヨーク 84:連通
孔 85:ふた部材 86:ヨー
ク背面 87:ヨーク底面 88:凹箱
部材
1: yoke 2: permanent magnet 3: magnetic space 4: support plate 5: mover 6: table etc. 8 (8R, 8L): yoke 80: concave groove 81: yoke magnet arrangement surface 83: bottom yoke 84: communication Hole 85: Lid member 86: Yoke back surface 87: Yoke bottom surface 88: Recessed box member

フロントページの続き Fターム(参考) 5H609 BB03 BB08 PP02 PP08 PP09 QQ02 QQ16 QQ20 RR01 RR33 RR37 RR46 RR68 RR70 RR71 5H641 BB06 BB18 GG03 GG05 GG07 GG11 GG12 GG26 GG28 HH02 HH05 HH06 HH13 HH14 JB04Continued on the front page F-term (reference)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ヨークの長手方向に複数個の永久磁石を
交互に磁極が異なるように配設し、磁石の表面に沿って
形成された磁気空間内にコイルを備えた可動子を前記永
久磁石の配設方向に移動可能に設けるようにした可動コ
イル形リニアモータにおいて、一方のヨークのみに前記
永久磁石を配設し、他方のヨークには長手方向に連続し
て密閉された通路を設け、前記磁気空間と前記通路とを
連絡する連通孔を形成し、前記通路にエアーを供給する
ことによって前記連通孔を介してエアーを磁気空間内に
吹き付け、前記コイルを冷却するようにしたことを特徴
とする可動コイル形リニアモータ。
1. A movable element having a coil provided in a magnetic space formed along a surface of a magnet, wherein a plurality of permanent magnets are alternately arranged in a longitudinal direction of a yoke so that magnetic poles are different from each other. In the moving coil type linear motor that is provided so as to be movable in the disposing direction, the permanent magnet is disposed only in one yoke, and the other yoke is provided with a continuously closed passage in the longitudinal direction, A communication hole that connects the magnetic space and the passage is formed, and air is blown into the magnetic space through the communication hole by supplying air to the passage to cool the coil. Moving coil linear motor.
【請求項2】 前記通路はヨークの背面に長手方向に連
続した凹溝を形成し、該凹溝を密封閉鎖することによっ
て設けたことを特徴とする請求項1記載の可動コイル形
リニアモータ。
2. The moving coil linear motor according to claim 1, wherein the passage is formed by forming a groove continuous in the longitudinal direction on the back surface of the yoke and sealingly closing the groove.
JP04731299A 1999-02-25 1999-02-25 Moving coil linear motor Expired - Lifetime JP3838314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04731299A JP3838314B2 (en) 1999-02-25 1999-02-25 Moving coil linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04731299A JP3838314B2 (en) 1999-02-25 1999-02-25 Moving coil linear motor

Publications (2)

Publication Number Publication Date
JP2000245132A true JP2000245132A (en) 2000-09-08
JP3838314B2 JP3838314B2 (en) 2006-10-25

Family

ID=12771788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04731299A Expired - Lifetime JP3838314B2 (en) 1999-02-25 1999-02-25 Moving coil linear motor

Country Status (1)

Country Link
JP (1) JP3838314B2 (en)

Also Published As

Publication number Publication date
JP3838314B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP5292707B2 (en) Moving magnet type linear motor
JP2009218017A (en) Movable iron core induction heating furnace
JP2014192959A (en) Linear motor
JP5072064B2 (en) Cylindrical linear motor
JP4556229B2 (en) Coreless linear motor
JP2003309963A (en) Cooling apparatus for linear slider
JP2005117856A (en) Moving magnet linear actuator
JP3835946B2 (en) Moving coil linear motor
JP2002027730A (en) Canned linear motor and armature thereof
JP2000245131A (en) Moving-coil linear motor
JP3878939B2 (en) Air-cooled coil unit of linear motor
JP2008228545A (en) Moving magnet type linear motor
JP2000245132A (en) Moving-coil linear motor
JP2010148233A (en) Linear motor driving and feeding device
JP2000228860A (en) Cooler for linear motor
JPH11243677A (en) Coaxial linear motor
JP2008220020A (en) Movable magnet type linear motor
JP3582072B2 (en) Linear motor stator
JP2585818Y2 (en) Stator for canned linear motor
JP3446563B2 (en) Linear motor
JP2002247831A (en) Linear motor
JPH1118407A (en) Table feeder of machine tool
JPH0641381U (en) Canned / Synchronous linear motor
JP2008245491A (en) Movable coil type linear motor
JP6677048B2 (en) Moving coil type linear motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

EXPY Cancellation because of completion of term