JP5072064B2 - Cylindrical linear motor - Google Patents

Cylindrical linear motor Download PDF

Info

Publication number
JP5072064B2
JP5072064B2 JP2006238011A JP2006238011A JP5072064B2 JP 5072064 B2 JP5072064 B2 JP 5072064B2 JP 2006238011 A JP2006238011 A JP 2006238011A JP 2006238011 A JP2006238011 A JP 2006238011A JP 5072064 B2 JP5072064 B2 JP 5072064B2
Authority
JP
Japan
Prior art keywords
cylindrical
armature core
mover
linear motor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006238011A
Other languages
Japanese (ja)
Other versions
JP2008061458A (en
Inventor
圭史 永坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2006238011A priority Critical patent/JP5072064B2/en
Publication of JP2008061458A publication Critical patent/JP2008061458A/en
Application granted granted Critical
Publication of JP5072064B2 publication Critical patent/JP5072064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電機子コアを持つ円筒型リニアモータに関する発明である。   The present invention relates to a cylindrical linear motor having an armature core.

近年、直線往復駆動用のアクチュエータとして円筒型リニアモータが注目されている。この円筒型リニアモータは、「シャフトモータ」とも呼ばれ、N極とS極の磁束を交互に発生するシャフト状の固定子の外側に、複数のコイルを内蔵した可動子を該シャフト状の固定子と同心状に配置し、該可動子に設けた磁気センサ(ホール素子)で固定子の磁極の位置を検出してコイルへの通電を切り換えることで、可動子を固定子に沿って直線駆動するように構成したものが多い。   In recent years, a cylindrical linear motor has attracted attention as an actuator for linear reciprocating drive. This cylindrical linear motor is also referred to as a “shaft motor”, and a mover having a plurality of coils is fixed outside the shaft-like stator that alternately generates N-pole and S-pole magnetic fluxes. The mover is linearly driven along the stator by arranging it concentrically with the child, detecting the position of the magnetic pole of the stator with a magnetic sensor (Hall element) provided on the mover, and switching the current to the coil. Many are configured to do so.

この円筒型リニアモータは、特許文献1(特開2002−354780号公報)に示すように、電機子コアを持つコア付きタイプのものと、特許文献2(WO2006/011614号公報)に示すように、電機子コアの無いコアレスタイプのものがある。いずれのタイプにおいても、可動子のコイルへの通電による発熱が問題となる場合は、コイルの温度が許容温度を越えないように冷却対策を施す必要がある。   As shown in Patent Document 1 (Japanese Patent Laid-Open No. 2002-354780), this cylindrical linear motor has a core type with an armature core, and Patent Document 2 (WO 2006/011614). There are coreless types without armature cores. In any type, when heat generation due to energization of the coil of the mover becomes a problem, it is necessary to take cooling measures so that the temperature of the coil does not exceed the allowable temperature.

そこで、特許文献1のコア付きタイプの円筒型リニアモータでは、電機子コアを収納する外フレームの4隅に冷媒流路を形成し、この冷媒流路に冷媒を流すことで可動子を冷却するようにしている。   Therefore, in the cylindrical linear motor with a core of Patent Document 1, a coolant channel is formed at the four corners of the outer frame that houses the armature core, and the mover is cooled by flowing the coolant through the coolant channel. I am doing so.

また、特許文献2のコアレスタイプの円筒型リニアモータでは、可動子のコイルの外周面にプレート状ヒートパイプを密着させるように装着してコイルを直接冷却するようにしている。
特開2002−354780号公報 WO2006/011614号公報
Further, in the coreless type cylindrical linear motor of Patent Document 2, a plate-like heat pipe is attached so as to be in close contact with the outer peripheral surface of the coil of the mover so that the coil is directly cooled.
JP 2002-354780 A WO2006 / 011614

上記特許文献1のコア付きタイプの円筒型リニアモータの冷却構造では、電機子コアを収納する外フレームの冷媒流路に冷媒を流すことで、外フレームを冷却し、その冷却効果で電機子コアを冷却して、更にその冷却効果でコイルを冷却することになるため、外フレームや電機子コアをコイルの許容温度よりもある程度低い温度に冷却し続ける必要がある。このため、外フレームや電機子コアは、本来的にはコイルよりも高温になっても問題がないにも拘らず、これらをコイルの許容温度よりもある程度低い温度に冷却し続ける必要があり、しかも、外フレームと電機子コアを介する間接的なコイルの冷却であるため(更に積層鋼板で形成した電機子コアは熱伝導性が悪いため)、コイルの冷却効率が悪いという欠点がある。しかも、外フレームの冷媒流路に冷媒を循環させるシステムが必要となり、構成が複雑化してコスト高になるという欠点もある。   In the cooling structure of the cored cylindrical linear motor of Patent Document 1, the outer frame is cooled by flowing a refrigerant through the refrigerant flow path of the outer frame that houses the armature core, and the cooling effect results in the armature core. Since the coil is cooled by the cooling effect, it is necessary to continue cooling the outer frame and the armature core to a temperature somewhat lower than the allowable temperature of the coil. For this reason, the outer frame and the armature core need to continue to be cooled to a temperature somewhat lower than the allowable temperature of the coil, even though there is no problem even if the temperature is higher than that of the coil. Moreover, since the coil is indirectly cooled via the outer frame and the armature core (further, the armature core formed of the laminated steel sheet has poor thermal conductivity), there is a disadvantage that the cooling efficiency of the coil is poor. In addition, a system for circulating the refrigerant in the refrigerant flow path of the outer frame is required, and there is a disadvantage that the configuration is complicated and the cost is increased.

一方、特許文献2のコアレスタイプの円筒型リニアモータの冷却構造では、コイルの外周面にプレート状ヒートパイプを密着させてコイルを直接冷却する構成であるため、コイルの冷却効率が高いという利点がある。しかし、コアレスタイプは、コア付きタイプと比較して、モータ効率が悪く、消費電力が多くなるという欠点がある。   On the other hand, the cooling structure of the coreless type cylindrical linear motor of Patent Document 2 has a configuration in which a plate-like heat pipe is brought into close contact with the outer peripheral surface of the coil to directly cool the coil, and thus has an advantage of high coil cooling efficiency. is there. However, the coreless type has the disadvantages that the motor efficiency is lower and the power consumption is larger than the coreless type.

上記特許文献2のプレート状ヒートパイプによる冷却技術をコア付きの円筒型リニアモータに適用する場合、外フレームや電機子コアの外周面にプレート状ヒートパイプを密着させて冷却する構成が考えられる。しかし、この構成でも、外フレームや電機子コアを介してコイルを間接的に冷却することになるため、コイルの冷却効率が悪いという欠点がある。   When the cooling technology using the plate-shaped heat pipe of Patent Document 2 is applied to a cylindrical linear motor with a core, a configuration in which the plate-shaped heat pipe is brought into close contact with the outer peripheral surface of the outer frame or the armature core can be considered. However, even in this configuration, since the coil is indirectly cooled through the outer frame and the armature core, there is a drawback that the cooling efficiency of the coil is poor.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、コア付きタイプの円筒型リニアモータにおいて、簡単な構成でコイルを効率良く冷却できるようにすることである。   The present invention has been made in view of such circumstances. Accordingly, an object of the present invention is to enable a coil to be efficiently cooled with a simple configuration in a cylindrical linear motor with a core.

上記目的を達成するために、請求項1に係る発明は、N極とS極の磁束を交互に発生するシャフト状の固定子と、電機子コアの内周側に複数のコイルを装着した可動子とを備え、前記固定子の外周側に前記可動子を軸方向に移動可能に配置し、前記可動子の移動位置に応じて前記複数のコイルへの通電を切り換えることで前記可動子を前記固定子に沿って直線駆動する円筒型リニアモータにおいて、前記電機子コアを、一対の半円筒コアをその軸方向両端で円環状ホルダにより連結して構成し、前記電機子コアと前記コイルとの間に、冷却手段として、該電機子コアよりも熱伝導率の高い高熱伝導部材を、該電機子コア内部の磁束の流れを妨げないように配設し、前記一対の半円筒コア間には、前記高熱伝導部材の放熱部を前記可動子の外部に突出させるための2本の隙間を軸方向に延びるように設けた構成としたものである。 In order to achieve the above object, the invention according to claim 1 is a movable body in which a shaft-shaped stator that alternately generates N-pole and S-pole magnetic fluxes and a plurality of coils mounted on the inner peripheral side of the armature core. The movable element is arranged on the outer peripheral side of the stator so as to be movable in the axial direction, and switching the energization to the plurality of coils according to the movement position of the movable element, the movable element is In a cylindrical linear motor that linearly drives along a stator, the armature core is configured by connecting a pair of semi-cylindrical cores with annular holders at both axial ends thereof, and the armature core and the coil In between, as a cooling means, a high thermal conductivity member having a higher thermal conductivity than the armature core is disposed so as not to hinder the flow of magnetic flux inside the armature core, and between the pair of semi-cylindrical cores. , The heat dissipating part of the high thermal conductive member Two gaps for projecting is obtained by a structure provided so as to extend in the axial direction.

本発明のコア付きタイプの円筒型リニアモータによれば、電機子コアとコイルとの間に、冷却手段を配設しているため、冷却手段によってコイルを直接冷却でき、簡単な構成でコイルを効率良く冷却することができると共に、冷却手段によって電機子コア内部の磁束の流れを妨げることがなく、モータ効率を低下させずに済む。 According to a cylindrical linear motor of cored type of the present invention, between the armature core and the coil, because it provided a cooling means, can the coil directly cooled by the cooling means, the coil with a simple structure Can be efficiently cooled, and the cooling means does not hinder the flow of magnetic flux inside the armature core, so that the motor efficiency does not need to be reduced.

しかも、電機子コアとコイルとの間に、該電機子コア(鉄)よりも熱伝導率の高い高熱伝導部材を冷却手段として配設し、この高熱伝導部材の一部を可動子の外部に露出させて放熱部を形成しているため、コイルの発熱を高熱伝導部材の高い熱伝導作用によって放熱部から効率良く放熱させることができる。
本発明のコア付きタイプの円筒型リニアモータでは、電機子コアを構成する一対の半円筒コア間には、高熱伝導部材の放熱部を可動子の外部に突出させるための2本の隙間が軸方向に延びるように設けられているが、電機子コア内部の磁束の流れは、電機子コアの円周方向(外周方向)の流れではなく、軸方向と径方向(放射方向)に沿って循環する流れとなるため、軸方向に延びる隙間によって電機子コア内部の磁束の流れが分断されることがなく、モータ効率を低下させずに高熱伝導部材の放熱部を可動子の外部に突出させることができる。
この場合、請求項2のように、一対の半円筒コアのうちの一方の半円筒コアとコイルとの間と、他方の半円筒コアと該コイルとの間に、それぞれ別の高熱伝導部材の吸熱部を挟み込み、各高熱伝導部材の放熱部を互いに反対側の隙間から可動子の外部に突出させた構成としても良い。
In addition , a high heat conductive member having a higher thermal conductivity than the armature core (iron) is disposed as a cooling means between the armature core and the coil, and a part of the high heat conductive member is disposed outside the mover. Since the heat radiating portion is formed by being exposed, the heat generated by the coil can be efficiently radiated from the heat radiating portion by the high heat conduction action of the high heat conducting member.
In the cylindrical linear motor of the present invention, two gaps are provided between the pair of semi-cylindrical cores constituting the armature core so that the heat radiating portion of the high thermal conductive member protrudes outside the mover. The flow of magnetic flux inside the armature core circulates along the axial direction and the radial direction (radial direction), not in the circumferential direction (outer circumferential direction) of the armature core. Therefore, the flow of magnetic flux inside the armature core is not interrupted by the gap extending in the axial direction, and the heat radiating part of the high heat conduction member is projected outside the mover without reducing the motor efficiency. Can do.
In this case, as in claim 2, another high thermal conductive member is provided between one half cylindrical core and the coil of the pair of semicylindrical cores and between the other half cylindrical core and the coil. It is good also as a structure which pinched | interposed the heat absorption part and protruded the thermal radiation part of each high heat conductive member to the exterior of a needle | mover from the clearance gap on the opposite side.

ここで、高熱伝導部材は、例えば、アルミニウム、銅、銀等の高熱伝導率の金属材料を用いても良いし(銅の熱伝導率は鉄の約5倍である)、或は、高熱伝導化された特殊金属材料を用いても良い。   Here, the high thermal conductivity member may be a metal material having a high thermal conductivity such as aluminum, copper, silver or the like (the thermal conductivity of copper is about five times that of iron) or high thermal conductivity. Specialized metal materials may be used.

或は、請求項3のように、高熱伝導部材としてヒートパイプを用いても良い。ヒートパイプを用いれば、極めて高い冷却効率を実現できる。   Or you may use a heat pipe as a highly heat-conductive member like Claim 3. If a heat pipe is used, extremely high cooling efficiency can be realized.

また、請求項4のように、冷却手段(高熱伝導部材)は、電機子コアに形成されたコイル装着用のスロット毎に分断して該スロット内に装着するようにすれば良い。このようにすれば、電機子コアのスロット内に装着するコイルとスロット内周面との間に冷却手段(高熱伝導部材)を挟み付けて、コイルとスロット内周面とを冷却手段(高熱伝導部材)に密着させた状態に組み付けることが可能となり、電機子コアへの冷却手段(高熱伝導部材)の組付作業が簡単であると共に、コイルと冷却手段(高熱伝導部材)と電機子コアとの間の熱伝達性ひいては冷却性を高めることができる。   According to another aspect of the present invention, the cooling means (high heat conduction member) may be divided into each coil mounting slot formed in the armature core and mounted in the slot. In this way, the cooling means (high heat conduction member) is sandwiched between the coil mounted in the slot of the armature core and the inner peripheral surface of the slot, and the cooling means (high heat conduction) is established between the coil and the inner peripheral surface of the slot. It is possible to assemble in close contact with the member), the assembly work of the cooling means (high heat conduction member) to the armature core is simple, the coil, the cooling means (high heat conduction member), the armature core, It is possible to improve the heat transferability between them and thus the cooling performance.

以下、本発明を実施するための最良の形態を具体化した2つの実施例1,2を説明する。   Hereinafter, two Examples 1 and 2, which embody the best mode for carrying out the present invention, will be described.

本発明の実施例1を図1乃至図4に基づいて説明する。ここで、図1は円筒型リニアモータの可動子と固定子の一部を破断して示す正面図、図2は円筒型リニアモータの磁気回路と冷却手段の構成を説明する縦断正面図、図3は円筒型リニアモータの可動子と固定子の縦断側面図、図4は円筒型リニアモータの可動子と固定子の一部を示す平面図である。   A first embodiment of the present invention will be described with reference to FIGS. Here, FIG. 1 is a front view showing a part of a mover and a stator of a cylindrical linear motor in a broken state, and FIG. 2 is a longitudinal front view for explaining the configuration of a magnetic circuit and cooling means of the cylindrical linear motor. 3 is a longitudinal side view of the movable element and the stator of the cylindrical linear motor, and FIG.

図1及び図2に示すように、円筒型リニアモータの固定子11は、鉄等の磁性材料で形成された円筒状のシャフト12の外周面に、その軸方向に多数の円環状の永久磁石13を等間隔に配置して接着等により固定して構成されている。各永久磁石13は、それぞれ複数の円弧状磁石片を組み合わせて円環状に構成され(図3参照)、図2に示すように、外周面側がN極に着磁された永久磁石13と、外周面側がS極に着磁された永久磁石13とが交互に配置されている。なお、図1においては、永久磁石13の外周面側の磁極のみが「N」、「S」で表示されている。   As shown in FIGS. 1 and 2, a stator 11 of a cylindrical linear motor includes a plurality of annular permanent magnets in the axial direction on an outer peripheral surface of a cylindrical shaft 12 formed of a magnetic material such as iron. 13 are arranged at equal intervals and fixed by bonding or the like. Each permanent magnet 13 is formed in an annular shape by combining a plurality of arc-shaped magnet pieces (see FIG. 3), and as shown in FIG. 2, the permanent magnet 13 whose outer peripheral surface is magnetized to N pole, Permanent magnets 13 whose surface side is magnetized to S poles are alternately arranged. In FIG. 1, only the magnetic poles on the outer peripheral surface side of the permanent magnet 13 are indicated by “N” and “S”.

このシャフト状の固定子11に対して、円筒型の可動子14が軸方向に移動自在に設けられている。この円筒型の可動子14は、円筒型の電機子コア15の内周部に軸方向に等間隔に形成した円形溝状の複数のスロット16にそれぞれコイル17を装着して構成され、該可動子14の内周面(電機子コア15の内周面及びコイル17の内周面)と固定子11の外周面(永久磁石13の外周面)との間には、両者の衝突を避けるための空隙(エアギャップ)が設けられている。円筒型の電機子コア15は、鉄等の磁性材料で形成した一対の半円筒コア15a,15bをその軸方向両端で円環状ホルダ18により連結して構成され、一対の半円筒コア15a,15b間には、後述するプレート状のヒートパイプ19の放熱部19bを可動子14の外部に突出させるための2本の隙間20が軸方向に延びるように設けられている。   A cylindrical movable element 14 is provided on the shaft-shaped stator 11 so as to be movable in the axial direction. The cylindrical mover 14 is configured by attaching coils 17 to a plurality of circular groove-like slots 16 formed at equal intervals in the axial direction on the inner peripheral portion of a cylindrical armature core 15. In order to avoid collision between the inner peripheral surface of the child 14 (the inner peripheral surface of the armature core 15 and the inner peripheral surface of the coil 17) and the outer peripheral surface of the stator 11 (the outer peripheral surface of the permanent magnet 13). The air gap (air gap) is provided. The cylindrical armature core 15 is configured by connecting a pair of semi-cylindrical cores 15a and 15b formed of a magnetic material such as iron by an annular holder 18 at both axial ends thereof, and the pair of semi-cylindrical cores 15a and 15b. In between, two gaps 20 are provided so as to extend in the axial direction for projecting a heat radiating portion 19b of a plate-shaped heat pipe 19 to be described later to the outside of the mover.

この電機子コア15の各スロット16の奥部には、それぞれプレート状のヒートパイプ19(高熱伝導部材)が嵌め込まれ、各ヒートパイプ19がコイル17と電機子コア15との間に挟み込まれて両者に密着した状態となっている。各ヒートパイプ19は、パイプ部がアルミニウムやマグネシウム等の高熱伝導率の金属材料で形成され、その内部に形成された細孔内にブタン、水、フレオン、アンモニア等の作動液(熱交換媒体)を封入して構成されている。   A plate-like heat pipe 19 (high heat conduction member) is fitted into the back of each slot 16 of the armature core 15, and each heat pipe 19 is sandwiched between the coil 17 and the armature core 15. They are in close contact with both. Each heat pipe 19 has a pipe portion made of a metal material having high thermal conductivity such as aluminum or magnesium, and a working fluid (heat exchange medium) such as butane, water, freon, ammonia in the pores formed therein. It is configured to enclose.

図3に示すように、各コイル17毎にヒートパイプ19が2本ずつ設けられ、各ヒートパイプ19のうちのコイル17に密着する部分が吸熱部19aとなり、その反対側に延びる放熱部19bが電機子コア15の隙間20から外部に突出している。本実施例では、図3に示すように、一対の半円筒コア15a,15bのうちの一方の半円筒コア15aとコイル17との間と、他方の半円筒コア15bと該コイル17との間にそれぞれ別のヒートパイプ19の吸熱部19aが挟み込まれ、各ヒートパイプ19の放熱部19bが互いに反対側の隙間20から可動子14の外部に突出した構成となっている。更に、放熱効果を高めるために、各ヒートパイプ19の放熱部19bには、高熱伝導率の金属材料で形成された放熱フィン21が溶接、ろう付け等により装着されている。尚、放熱フィン21に代えて、ヒートシンクを装着しても良く、また、冷却ファンを取り付けても良い。
As shown in FIG. 3, two heat pipes 19 are provided for each coil 17, and a portion of each heat pipe 19 that is in close contact with the coil 17 becomes a heat absorbing portion 19 a, and a heat radiating portion 19 b that extends on the opposite side is provided. The armature core 15 projects outward from the gap 20. In the present embodiment, as shown in FIG. 3, between one semi-cylindrical core 15 a and the coil 17 of the pair of semi-cylindrical cores 15 a and 15 b, and between the other semi-cylindrical core 15 b and the coil 17. The heat absorbing portions 19a of the different heat pipes 19 are sandwiched between them, and the heat radiating portions 19b of the heat pipes 19 protrude from the gaps 20 on the opposite sides to the outside of the mover 14. Furthermore, in order to enhance the heat dissipation effect, heat dissipation fins 21 made of a metal material with high thermal conductivity are attached to the heat dissipation portion 19b of each heat pipe 19 by welding, brazing or the like. Note that a heat sink may be attached instead of the heat radiating fins 21 or a cooling fan may be attached.

以上説明した本実施例1では、コイル17を冷却する冷却手段となるプレート状のヒートパイプ19は、電機子コア15内部の磁束の流れ(図2参照)を妨げないように各スロット16毎に分断されて電機子コア15のスロット16内に装着され、コイル17と電機子コア15との間に該ヒートパイプ19が挟み込まれて両者に密着した状態となっている。この構成では、電機子コア15へのヒートパイプ19の組付作業が簡単であると共に、前記特許文献2とは異なり、ヒートパイプ19によってコイル17を直接冷却することができ、簡単な構成でコイル17を効率良く冷却することができると共に、電機子コア15もヒートパイプ19によって効率良く冷却することができる。しかも、ヒートパイプ19を各スロット16毎に分断して装着しているため、ヒートパイプ19によって電機子コア15内部の磁束の流れ(図2参照)を妨げることがなく、モータ効率を低下させずに済む。   In the first embodiment described above, the plate-like heat pipe 19 serving as a cooling means for cooling the coil 17 is provided for each slot 16 so as not to disturb the flow of magnetic flux inside the armature core 15 (see FIG. 2). The heat pipe 19 is divided and mounted in the slot 16 of the armature core 15, and the heat pipe 19 is sandwiched between the coil 17 and the armature core 15 so as to be in close contact with both. In this configuration, the assembly of the heat pipe 19 to the armature core 15 is simple, and unlike the Patent Document 2, the coil 17 can be directly cooled by the heat pipe 19, and the coil can be configured with a simple configuration. 17 can be efficiently cooled, and the armature core 15 can also be efficiently cooled by the heat pipe 19. In addition, since the heat pipe 19 is divided and attached to each slot 16, the heat pipe 19 does not block the flow of magnetic flux inside the armature core 15 (see FIG. 2), and the motor efficiency is not lowered. It will end.

尚、本実施例1では、円筒型の電機子コア15を構成する一対の半円筒コア15a,15b間には、ヒートパイプ19の放熱部19bを可動子14の外部に突出させるための2本の隙間20が軸方向に延びるように設けられているが、図2に示すように、電機子コア15内部の磁束の流れは、電機子コア15の円周方向(外周方向)の流れではなく、軸方向と径方向(放射方向)に沿って循環する流れとなるため、軸方向に延びる隙間20によって電機子コア15内部の磁束の流れが分断されることがなく、モータ効率を低下させずに済む。   In the first embodiment, between the pair of semi-cylindrical cores 15 a and 15 b constituting the cylindrical armature core 15, two heat-radiating portions 19 b of the heat pipe 19 are projected to the outside of the mover 14. However, as shown in FIG. 2, the flow of magnetic flux inside the armature core 15 is not the flow in the circumferential direction (outer peripheral direction) of the armature core 15. Since the flow circulates along the axial direction and the radial direction (radial direction), the magnetic flux flow inside the armature core 15 is not divided by the gap 20 extending in the axial direction, and the motor efficiency is not lowered. It will end.

前記実施例1では、電機子コア15を構成する一対の半円筒コア15a,15bをそれぞれ一体物として形成したが、図5に示す本発明の実施例2では、電機子コア25を構成する一対の半円筒コア25a,25bをそれぞれ内周側と外周側とに分割して形成し、その外周側の半円筒部25a1,25b1の内周側に、スロット26を形成するための半円環部25a2,25b2を溶接、ろう付け、ねじ止め等により固着することで、スロット26を有する一対の半円筒コア25a,25bを構成し、この一対の半円筒コア25a,25bをその軸方向両端で円環状ホルダ18により連結して円筒型の電機子コア25を構成している。その他の構成は、前記実施例1と同じである。
以上のように構成した本実施例2でも、前記実施例1と同様の効果を得ることができる。
In the first embodiment, the pair of semi-cylindrical cores 15a and 15b constituting the armature core 15 are formed as one body, but in the second embodiment of the present invention shown in FIG. The semi-cylindrical cores 25a and 25b are divided into an inner peripheral side and an outer peripheral side, respectively, and a semi-annular portion for forming a slot 26 on the inner peripheral side of the semi-cylindrical portions 25a1 and 25b1 on the outer peripheral side. A pair of semi-cylindrical cores 25a and 25b having slots 26 are formed by fixing 25a2 and 25b2 by welding, brazing, screwing or the like, and the pair of semi-cylindrical cores 25a and 25b is circular at both axial ends thereof. A cylindrical armature core 25 is configured by being connected by an annular holder 18. Other configurations are the same as those of the first embodiment.
Even in the second embodiment configured as described above, the same effects as in the first embodiment can be obtained.

尚、上記実施例1,2では、コイル17を冷却する冷却手段としてプレート状のヒートパイプ19を用いたが、本発明はこれに限定されず、電機子コア15を形成する鉄等の磁性材料よりも熱伝導率の高い高熱伝導部材であれば、例えば、アルミニウム、銅、銀等の高熱伝導率の金属材料を用いても良いし(銅の熱伝導率は鉄の約5倍である)、或は、高熱伝導化された特殊金属材料を用いても良い。   In the first and second embodiments, the plate-like heat pipe 19 is used as a cooling means for cooling the coil 17, but the present invention is not limited to this, and a magnetic material such as iron forming the armature core 15. For example, a metal material having a high thermal conductivity such as aluminum, copper, or silver may be used as long as it has a higher thermal conductivity than copper (the thermal conductivity of copper is about five times that of iron). Alternatively, a special metal material with high thermal conductivity may be used.

また、上記実施例1,2では、電機子コア15の各スロット16,26の奥部にヒートパイプ19を密着させるようにしたが、各スロット16,26の両側面部又は片方の側面部にヒートパイプ19を密着させるようにしても良く、勿論、各スロット16,26の奥部と側面部の両方にヒートパイプ19を密着させるようにしても良い。   In the first and second embodiments, the heat pipe 19 is brought into close contact with the inner portions of the slots 16 and 26 of the armature core 15, but heat is applied to both side portions or one side portion of the slots 16 and 26. The pipe 19 may be in close contact, and of course, the heat pipe 19 may be in close contact with both the back and side portions of the slots 16 and 26.

その他、本発明は、永久磁石13間に非磁性のスペーサを介在させて永久磁石13の間隔を規制するようにしたり、電機子コア15,25を積層鋼板で形成しても良い等、固定子11や可動子14の構成を適宜変更しても良い。   In addition, according to the present invention, the non-magnetic spacer is interposed between the permanent magnets 13 to regulate the interval between the permanent magnets 13, or the armature cores 15 and 25 may be formed of laminated steel plates. 11 and the structure of the mover 14 may be changed as appropriate.

本発明の実施例1の円筒型リニアモータの可動子と固定子の一部を破断して示す正面図である。It is a front view which fractures | ruptures and shows a part of mover and stator of the cylindrical linear motor of Example 1 of this invention. 実施例1の円筒型リニアモータの磁気回路と冷却手段の構成を説明する縦断正面図である。It is a vertical front view explaining the structure of the magnetic circuit of the cylindrical linear motor of Example 1, and a cooling means. 実施例1の円筒型リニアモータの可動子と固定子の縦断側面図である。It is a vertical side view of the movable element and stator of the cylindrical linear motor of Example 1. 実施例1の円筒型リニアモータの可動子と固定子の一部を示す平面図である。FIG. 3 is a plan view illustrating a part of a mover and a stator of the cylindrical linear motor according to the first embodiment. 実施例2の円筒型リニアモータの可動子と固定子の一部を破断して示す正面図である。It is a front view which fractures | ruptures and shows a part of needle | mover of a cylindrical linear motor of Example 2, and a stator.

符号の説明Explanation of symbols

11…固定子、12…シャフト、13…永久磁石、14…可動子、15…電機子コア、15a,15b…半円筒コア、16…スロット、17…コイル、19…プレート状のヒートパイプ(冷却手段,高熱伝導部材)、19a…吸熱部、19b…放熱部、21…放熱フィン、25…電機子コア、25a,25b…半円筒コア、26…スロット   DESCRIPTION OF SYMBOLS 11 ... Stator, 12 ... Shaft, 13 ... Permanent magnet, 14 ... Movable element, 15 ... Armature core, 15a, 15b ... Semi-cylindrical core, 16 ... Slot, 17 ... Coil, 19 ... Plate-shaped heat pipe (cooling) Means, high heat conduction member), 19a ... heat absorption part, 19b ... heat radiation part, 21 ... heat radiation fin, 25 ... armature core, 25a, 25b ... semi-cylindrical core, 26 ... slot

Claims (4)

N極とS極の磁束を交互に発生するシャフト状の固定子と、電機子コアの内周側に複数のコイルを装着した可動子とを備え、前記固定子の外周側に前記可動子を軸方向に移動可能に配置し、前記可動子の移動位置に応じて前記複数のコイルへの通電を切り換えることで前記可動子を前記固定子に沿って直線駆動する円筒型リニアモータにおいて、
前記電機子コアは、一対の半円筒コアをその軸方向両端で円環状ホルダにより連結して構成され、
前記電機子コアと前記コイルとの間に、冷却手段として、該電機子コアよりも熱伝導率の高い高熱伝導部材が、該電機子コア内部の磁束の流れを妨げないように配設され、
前記一対の半円筒コア間には、前記高熱伝導部材の放熱部を前記可動子の外部に突出させるための2本の隙間が軸方向に延びるように設けられていることを特徴とする円筒型リニアモータ。
A shaft-like stator that alternately generates N-pole and S-pole magnetic flux; and a mover having a plurality of coils mounted on the inner peripheral side of the armature core; and the mover on the outer peripheral side of the stator In a cylindrical linear motor that is arranged so as to be movable in the axial direction and linearly drives the mover along the stator by switching energization to the plurality of coils according to the moving position of the mover.
The armature core is configured by connecting a pair of semi-cylindrical cores with an annular holder at both axial ends thereof,
Between the armature core and the coil, as a cooling means, a high thermal conductivity member having a higher thermal conductivity than the armature core is disposed so as not to disturb the flow of magnetic flux inside the armature core ,
Between the pair of semi-cylindrical cores, there is provided a cylindrical shape in which two gaps for projecting the heat radiating portion of the high heat conducting member to the outside of the mover extend in the axial direction. Linear motor.
前記一対の半円筒コアのうちの一方の半円筒コアと前記コイルとの間と、他方の半円筒コアと該コイルとの間に、それぞれ別の高熱伝導部材の吸熱部が挟み込まれ、各高熱伝導部材の放熱部が互いに反対側の前記隙間から前記可動子の外部に突出されていることを特徴とする請求項1に記載の円筒型リニアモータ。 A heat absorbing portion of another high heat conductive member is sandwiched between one half cylindrical core of the pair of semicylindrical cores and the coil, and between the other semicylindrical core and the coil. 2. The cylindrical linear motor according to claim 1, wherein a heat radiating portion of the conductive member protrudes from the gaps on opposite sides to the outside of the mover . 前記高熱伝導部材は、ヒートパイプにより構成されていることを特徴とする請求項2に記載の円筒型リニアモータ。   The cylindrical linear motor according to claim 2, wherein the high heat conductive member is configured by a heat pipe. 前記高熱伝導部材は、前記電機子コアに形成されたコイル装着用のスロット毎に分断されて該スロット内に装着されていることを特徴とする請求項1乃至3のいずれかに記載の円筒型リニアモータ。 4. The cylindrical type according to claim 1, wherein the high heat conductive member is divided into slots for mounting coils formed in the armature core and mounted in the slots. 5. Linear motor.
JP2006238011A 2006-09-01 2006-09-01 Cylindrical linear motor Active JP5072064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238011A JP5072064B2 (en) 2006-09-01 2006-09-01 Cylindrical linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238011A JP5072064B2 (en) 2006-09-01 2006-09-01 Cylindrical linear motor

Publications (2)

Publication Number Publication Date
JP2008061458A JP2008061458A (en) 2008-03-13
JP5072064B2 true JP5072064B2 (en) 2012-11-14

Family

ID=39243570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238011A Active JP5072064B2 (en) 2006-09-01 2006-09-01 Cylindrical linear motor

Country Status (1)

Country Link
JP (1) JP5072064B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105213A1 (en) * 2012-01-10 2013-07-18 富士機械製造株式会社 Linear motor
CN104067493A (en) * 2012-01-10 2014-09-24 富士机械制造株式会社 Linear motor
JP5909247B2 (en) * 2012-01-10 2016-04-26 富士機械製造株式会社 Linear motor
WO2015145717A1 (en) 2014-03-28 2015-10-01 富士機械製造株式会社 Linear motor heat release structure
CN104333193B (en) * 2014-09-28 2017-07-07 大族激光科技产业集团股份有限公司 Moving-magnetic type linear motor with cooling
CN108418367A (en) * 2018-02-26 2018-08-17 东南大学 A kind of Halbach drum type brake camber line magnetoes for large-scale astronomical telescope
JP7252834B2 (en) * 2019-06-04 2023-04-05 Kyb株式会社 Cylindrical linear motor
CN114665645B (en) * 2022-04-06 2024-01-23 上海交通大学 Slotless cylindrical linear motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680664U (en) * 1979-11-28 1981-06-30
JPS60118039A (en) * 1983-11-26 1985-06-25 Sumitomo Electric Ind Ltd Linear motor with cooler
JPH11225468A (en) * 1998-02-05 1999-08-17 Minolta Co Ltd Shaft linear motor
JP4488929B2 (en) * 2004-03-03 2010-06-23 Thk株式会社 Linear motor actuator
JP2005295677A (en) * 2004-03-31 2005-10-20 Sanyo Denki Co Ltd Armature for linear motor and its manufacturing process
JP4963966B2 (en) * 2004-10-14 2012-06-27 富士機械製造株式会社 Linear motor cooling device

Also Published As

Publication number Publication date
JP2008061458A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5072064B2 (en) Cylindrical linear motor
JP5292707B2 (en) Moving magnet type linear motor
KR100726533B1 (en) Linear motor
JP4884221B2 (en) Linear or curved moving motor
JP6029189B2 (en) Linear motor device for component mounting machine
JP2008220003A (en) Linear motor
JP2001327152A (en) Linear motor
JP2015012620A (en) Permanent magnet type rotary electric machine
JP5135984B2 (en) Linear motor
JP2008306836A (en) Linear actuator
JP2008228545A (en) Moving magnet type linear motor
JP2008220020A (en) Movable magnet type linear motor
JP3661978B2 (en) Moving coil linear motor
JP3750793B2 (en) Linear motor
JP4811550B2 (en) Linear motor armature and linear motor
JP2012060756A (en) Linear motor
JP3835946B2 (en) Moving coil linear motor
JP2003230264A (en) Linear motor
JP4721211B2 (en) Coreless linear motor
JP2002247831A (en) Linear motor
JP2006033909A (en) Linear motor and stage arrangement employing it
JP2005094902A (en) Shifter
JP4092550B2 (en) Voice coil linear motor with cooling function
JP3838314B2 (en) Moving coil linear motor
JP6764797B2 (en) Linear motor and cooling method for linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5072064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250