JP2009218017A - Movable iron core induction heating furnace - Google Patents

Movable iron core induction heating furnace Download PDF

Info

Publication number
JP2009218017A
JP2009218017A JP2008058769A JP2008058769A JP2009218017A JP 2009218017 A JP2009218017 A JP 2009218017A JP 2008058769 A JP2008058769 A JP 2008058769A JP 2008058769 A JP2008058769 A JP 2008058769A JP 2009218017 A JP2009218017 A JP 2009218017A
Authority
JP
Japan
Prior art keywords
iron core
movable iron
fixed
heated
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008058769A
Other languages
Japanese (ja)
Inventor
Toru Okazaki
徹 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008058769A priority Critical patent/JP2009218017A/en
Publication of JP2009218017A publication Critical patent/JP2009218017A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating furnace can minimize heat generation of a magnetic circuit. <P>SOLUTION: The induction heating furnace includes a superconductive fixed body connected with a DC power source, a movable iron core arranged on a space formed by dividing a DC current path of the fixed body, and a rotary drive source for rotating the movable iron core. A mounting section of an object to be heated is formed between one movable iron core arranged in the space and the fixed body, between a pair of movable iron cores arranged in the space in the series direction, or between the other dividing sections of the fixed body. Magnetic resistance generated between the movable iron core and a fixed iron core becomes small when the movable iron core is directed in the consecutive direction with the fixed iron core by rotating the movable iron core, magnetic resistance generated between the movable iron core and the fixed iron core becomes large when the movable iron core is directed in the non-consecutive direction wherein a gap is generated between the movable iron core and the fixed iron core, and the object to be heated is heated in this structure by generating a variable magnetic field in the vicinity of the object to be heated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、可動鉄心誘導加熱炉に関し、バーナー、ヒーター等を用いて被加熱物を直接加熱するのではなく、誘導加熱するものである。   The present invention relates to a movable iron core induction heating furnace, in which an object to be heated is not directly heated using a burner, a heater or the like, but is induction heated.

熱間鍛造等において金属材を加熱する場合、バーナーやヒーター等を用いて金属材を直接加熱している場合が多い。
このバーナー等を用いた金属材の直接加熱方式に代えて、交流電流に接続されたコイル中に金属棒を非接触で挿入し、コイルに流れる交流電流によって金属棒の表面付近に密度の渦電流を生じさせ、この渦電流により金属棒の表面を非接触で自己発熱させて加熱する高周波誘導加熱方式が提供されている。
しかしながら、前記高周波誘導加熱方式では、コイルに大電流の交流電流を流して渦電流を発生させるため、コイル自体も発熱する問題がある。そのため、冷却水を内部に流通させた銅管をコイルの導体として用いることになり、加熱効率が悪くなり、高効率で加熱できない問題がある。
When a metal material is heated in hot forging or the like, the metal material is often directly heated using a burner or a heater.
Instead of the direct heating method of the metal material using this burner or the like, a metal rod is inserted in a coil connected to an alternating current in a non-contact manner, and an eddy current having a density near the surface of the metal rod is caused by the alternating current flowing in the coil. There is provided a high-frequency induction heating method in which the surface of a metal rod is heated in a non-contact manner by this eddy current.
However, the high-frequency induction heating method has a problem in that the coil itself generates heat because a large alternating current flows through the coil to generate eddy current. For this reason, a copper tube in which cooling water is circulated is used as a coil conductor, so that there is a problem that heating efficiency is deteriorated and heating cannot be performed with high efficiency.

また、特開昭60−10581号公報(特許文献1)で提供されている移動中の金属製品の誘導加熱では、被加熱製品を水平方向に移動する搬送ローラと、搬送路に沿って連続して配置された積層構造の磁気回路と、磁気回路の溝に収容した誘導コイルとを備え、誘導コイルが加熱磁束を発生して被加熱製品を加熱し、加熱磁束は時間的に変化すると記載されている。
この特許文献1では誘導コイルは常電導線からなり、有効な加熱力を得るには相当大きな起磁力(電流)が必要で、電流値を大きくすると発熱が激しくなり、特許文献1のように冷却水が必要となる。よって、搬送ローラには冷却が必要なため水等の冷却用流体を循環させる水路が設けられている。即ち、特許文献1においても、磁性体の透磁率を低下させないために冷却水路を必要とし、加熱効率が悪くなり、高効率で加熱できない問題がある。
In addition, in the induction heating of a moving metal product provided in Japanese Patent Application Laid-Open No. 60-10581 (Patent Document 1), a conveyance roller that moves the product to be heated in a horizontal direction and a conveyance path are continuously provided. It is described that the laminated magnetic circuit and the induction coil housed in the groove of the magnetic circuit, the induction coil generates a heating magnetic flux to heat the product to be heated, and the heating magnetic flux changes with time. ing.
In this Patent Document 1, the induction coil is composed of a normal conducting wire, and a considerably large magnetomotive force (current) is necessary to obtain an effective heating force. When the current value is increased, heat generation becomes intense, and cooling is performed as in Patent Document 1. Water is needed. Therefore, since the conveyance roller needs to be cooled, a water channel for circulating a cooling fluid such as water is provided. That is, even in Patent Document 1, there is a problem that a cooling water channel is required in order not to lower the magnetic permeability of the magnetic material, heating efficiency is deteriorated, and heating cannot be performed with high efficiency.

特開昭60−10581号公報JP-A-60-10581

本発明は、誘導加熱方式を採用しながら、該誘導加熱方式における問題点である大電流の通電時において、磁気回路を構成するコイルの発熱を無くし、その結果、加熱効率を高めて、高効率で加熱できるようにすることを課題としている。   The present invention eliminates the heat generation of the coils constituting the magnetic circuit when energizing a large current, which is a problem in the induction heating method, while adopting the induction heating method. The problem is to be able to heat with the.

前記課題を解決するため、本発明は、
直流電源と接続した超電導の固定体と、
前記固定体の直流電流路を分断して形成した空間に配置する可動鉄心と、
前記可動鉄心を回転させる回転駆動源を備え、
前記空間に配置する1つの可動鉄心と固定体の間、前記空間に直列方向に配置する一対の可動鉄心の間、または前記固定体の他の分断部の間を被加熱物の配置部とし、
前記可動鉄心が回転して、固定鉄心と連続方向になると該可動鉄心と固定鉄心間に生じる磁気抵抗を小とし、該可動鉄心が固定鉄心との間に空隙が生じる非連続方向となると該可動鉄心と固定鉄心間に生じる磁気抵抗を大として変動磁場を発生させ、前記被加熱物周辺に交番磁界を生成させて該被加熱物を加熱させる構成としていることを特徴とする可動鉄心誘導加熱炉を提供している。
In order to solve the above problems, the present invention provides:
A superconducting fixed body connected to a DC power source;
A movable iron core disposed in a space formed by dividing the DC current path of the stationary body;
A rotation drive source for rotating the movable iron core;
Between one movable iron core and a fixed body arranged in the space, between a pair of movable iron cores arranged in series in the space, or between other divided parts of the fixed body as an arrangement part of the object to be heated,
When the movable iron core rotates and becomes a continuous direction with the fixed iron core, the magnetic resistance generated between the movable iron core and the fixed iron core is reduced, and when the movable iron core becomes a non-continuous direction in which a gap is formed between the fixed iron core and the movable iron core. A movable core induction heating furnace characterized in that a variable magnetic field is generated with a large magnetic resistance generated between an iron core and a fixed iron core, an alternating magnetic field is generated around the object to be heated, and the object to be heated is heated. Is provided.

前記固定体は、直流電源と接続した超電導コイルを固定鉄心に巻き付けて形成している。
なお、バルク超電導材からなる永久磁石の対向するN極とS極とを固定鉄心に結合して形成しても良いし、該バルク超電導材からなる永久磁石で固定鉄心を形成してもよい。
該固定鉄心は鉄損による渦電流の発生を抑制するために、珪素鋼鉄の積層体とすることが好ましい。
また、前記可動鉄心は棒状または長方形の平板状とした珪素鋼板等の磁性材で形成し、長さ方向の中心をモータからなる前記回転駆動源で回転される回転軸に固定していることが好ましい。
The fixed body is formed by winding a superconducting coil connected to a DC power source around a fixed iron core.
Note that the opposing N pole and S pole of a permanent magnet made of a bulk superconducting material may be coupled to a fixed iron core, or the fixed iron core may be made of a permanent magnet made of the bulk superconducting material.
The fixed iron core is preferably a laminated body of silicon steel in order to suppress generation of eddy current due to iron loss.
Further, the movable iron core is formed of a magnetic material such as a silicon steel plate having a rod shape or a rectangular flat plate shape, and the center in the length direction is fixed to a rotating shaft rotated by the rotation driving source including a motor. preferable.

本発明では、前記のように、超電導コイルを直流電源を接続して直流の大電流を流し、回転駆動させる可動鉄心と組み併せて磁気抵抗を増減することにより、加熱用として超電導材を用いていることを特徴としている。即ち、超電導コイルは極低温の超電導温度に保持して使用するため、加熱用の導体としては用いられていなかったが、本発明では、大電流を流すことができる超電導コイル(または超電導磁石)を加熱用として用い、かつ、超電導コイルに交流の大電流を流すと発熱が生じるが、直流の大電流を通電した場合には発熱が生じない特性を利用し、従来の問題点である通電時の発熱を抑制し、加熱効率を高め、高効率で被加熱物を加熱することができるものとしている。
また、交流電流とした場合に被加熱物の付近に交番磁界を発生させて加熱することはできるが、本発明では直流電流としているため、前記のように、超電導コイルを巻き付けた固定鉄心を分断して空間を形成し、該空間に回転駆動手段で回転させる可動鉄心を配置し、該可動鉄心と固定鉄心の空隙を周期的に増減して磁気抵抗を周期的に増減させ、直流電流を流しながら変動磁場を形成している。その結果、交流電流を用いた場合と同様に、被加熱物周辺に変動磁場が生成し、被加熱物を加熱することができる。
しかも、可動鉄心の回転駆動手段としてモータを用いると、可動鉄心の回転速度を任意に制御でき、それに応じて、磁場の振幅および周波数も調節でき、加熱温度を容易に調節することができる。
In the present invention, as described above, a superconducting coil is connected to a DC power source, a large DC current is passed, and the magnetic resistance is increased or decreased in combination with a movable iron core that is driven to rotate, thereby using a superconducting material for heating. It is characterized by being. That is, since the superconducting coil is used while being held at a superconducting temperature of extremely low temperature, it has not been used as a heating conductor. However, in the present invention, a superconducting coil (or superconducting magnet) capable of flowing a large current is used. Heat generation occurs when an AC large current is applied to the superconducting coil when used for heating, but when a large DC current is applied, the heat generation does not occur. Heat generation is suppressed, heating efficiency is increased, and an object to be heated can be heated with high efficiency.
In addition, when an alternating current is used, an alternating magnetic field can be generated in the vicinity of the object to be heated, but the present invention uses a direct current. Therefore, as described above, the fixed core around which the superconducting coil is wound is divided. A space is formed, and a movable iron core that is rotated by rotation driving means is disposed in the space, and the gap between the movable iron core and the fixed iron core is periodically increased or decreased to increase or decrease the magnetic resistance periodically, and a direct current is passed. However, a fluctuating magnetic field is formed. As a result, similarly to the case where an alternating current is used, a varying magnetic field is generated around the object to be heated, and the object to be heated can be heated.
In addition, when a motor is used as the rotation driving means for the movable iron core, the rotation speed of the movable iron core can be arbitrarily controlled, and the magnetic field amplitude and frequency can be adjusted accordingly, and the heating temperature can be easily adjusted.

具体的な第一の形態では、前記固定鉄心はC型として両端間に前記空間を形成し、
前記空間には、固定鉄心の一端側に1つの前記可動鉄心を配置し、該可動鉄心と前記固定鉄心の他端側との間を前記被加熱物の配置部としている。
前記可動鉄心は回転に応じて、その一端が固定鉄心の先端と微小な隙間をあけて連続すると共に、他端は被加熱物と微小な空隙をあけて連続する場合には、前記空隙に発生する磁気抵抗は小さくなる。この状態から90度回転すると、可動鉄心の一端と固定鉄心、他端と被加熱物との間の空隙は最大となり、該空隙に発生する磁気抵抗が大となる、このように、可動鉄心の回転に応じて、磁気抵抗を小→大→小→大に周期的に変化させることができる。
In a specific first form, the fixed iron core is C-shaped to form the space between both ends,
One said movable iron core is arrange | positioned in the said space at the one end side of a fixed iron core, and it is the arrangement | positioning part of the said to-be-heated object between this movable iron core and the other end side of the said fixed iron core.
When the movable core is rotated, one end of the movable core is continuous with the tip of the fixed core with a minute gap, and the other end is continuous with the object to be heated with a minute gap. The reluctance is reduced. When rotated 90 degrees from this state, the gap between one end of the movable core and the fixed core, the gap between the other end and the object to be heated is maximized, and the magnetic resistance generated in the gap is increased. According to the rotation, the magnetic resistance can be periodically changed from small to large to small to large.

具体的な第二の形態では、前記固定鉄心はC型として両端間に前記空間を形成し、
前記空間には、固定鉄心の両端側に一対の前記可動鉄心を配置し、これら可動鉄心の間を前記被加熱物の配置部とし、前記一対の可動鉄心を同期回転している。
第二の形態において、固定鉄心の分断により形成した空間が第一の形態と同一長さであるとすると、一対の可動鉄心の長さを短くでき、これら一対の可動鉄心を高速回転させることができ、磁気抵抗の増減の切り替え時間を短縮でき、第一の実施形態より高周波とすることができる。
In a specific second form, the fixed iron core is C-shaped to form the space between both ends,
In the space, a pair of the movable iron cores are arranged on both ends of the fixed iron core, and the space between the movable iron cores serves as an arrangement portion for the object to be heated, and the pair of movable iron cores are synchronously rotated.
In the second form, if the space formed by dividing the fixed core is the same length as the first form, the length of the pair of movable cores can be shortened, and the pair of movable cores can be rotated at high speed. In addition, the switching time for increasing / decreasing the magnetic resistance can be shortened, and the frequency can be made higher than in the first embodiment.

具体的な第三の形態では、前記固定鉄心は平行配置される左右一対の棒状の固定鉄心とし、
前記一対の固定鉄心に挟まれた中央部に、被加熱物の配置部をあけて上下両側にバルク超電導体からなる永久磁石の上下一対の棒状の固定鉄心を配置し、
前記左側の固定鉄心と前記中央の上下固定鉄心との上下両端間に形成する空間に上下一対の左側可動鉄心を配置すると共に、前記右側の固定鉄心と前記中央の上下固定鉄心との上下両端間に形成する空間に上下一対の右側可動鉄心を配置し、
前記回転駆動源により前記右側可動鉄心と左側可動鉄心の回転を90度位相させて回転している。
前記構成では、可動鉄心が左右上下の4個が必要となり、これら可動鉄心を夫々回転させるモータが必要となるが、90度位相して回転する左右可動鉄心の回転に応じて、高周波且つ高出力の変動磁場を発生させることができる。
In a specific third form, the fixed core is a pair of left and right rod-shaped fixed cores arranged in parallel,
In the central portion sandwiched between the pair of fixed iron cores, a pair of upper and lower rod-shaped fixed iron cores of a permanent magnet made of a bulk superconductor is disposed on both upper and lower sides by placing an arrangement portion of an object to be heated,
A pair of upper and lower left movable iron cores are disposed in a space formed between upper and lower ends of the left fixed iron core and the central upper and lower fixed iron core, and between the upper and lower ends of the right upper iron core and the central upper and lower fixed iron core. A pair of upper and lower right movable iron cores are arranged in the space formed in
The rotation drive source rotates the right movable iron core and the left movable iron core 90 degrees in phase.
In the above configuration, four movable iron cores are required on the left, right, top, and bottom, and a motor that rotates each of these movable iron cores is required. However, high-frequency and high-power output according to the rotation of the left and right movable iron cores that rotate 90 degrees in phase. A variable magnetic field can be generated.

具体的な第四の形態では、前記固定鉄心はL型と倒L型の2個の固定鉄心とし、
前記2個の固定鉄心の一端間の空間に1つの前記可動鉄心を配置すると共に、該2個の固定鉄心の他端間の空間を前記被加熱物の配置部としている。
In a specific fourth embodiment, the fixed iron core is two fixed iron cores of L type and inverted L type,
One movable iron core is arranged in a space between one ends of the two fixed iron cores, and a space between the other ends of the two fixed iron cores is used as an arrangement portion for the object to be heated.

具体的な第五の形態では、前記固定鉄心は、円筒枠からなり、その左右両端では上下内面から一対の突出片を突設し、上下突出片に挟まれた中央の空間にそれぞれモータで回転駆動される磁性回転軸を配置し、該磁性回転軸に前記可動鉄心の中心を固定し、かつ、左右の磁性回転軸を固定鉄心で囲まれた円筒枠内に前記被加熱物の配置部をあけて対向して突設している。   In a specific fifth form, the fixed iron core is formed of a cylindrical frame, and a pair of projecting pieces project from the upper and lower inner surfaces at both left and right ends, and each is rotated by a motor in a central space between the upper and lower projecting pieces. A magnetic rotating shaft to be driven is arranged, the center of the movable iron core is fixed to the magnetic rotating shaft, and the arrangement portion of the object to be heated is disposed in a cylindrical frame surrounded by the fixed iron core on the left and right magnetic rotating shafts. Open and project in opposition.

本発明の誘導加熱炉で加熱する前記被加熱物は、金属材でも良いと、被加熱材が絶縁材である場合には、磁性容器に収容した状態で被加熱物の配置部に配置すると加熱することができる。
さらに、前記被加熱物の配置部は、被加熱物の全体または一部を着脱自在に載置できる配置部、または、該被加熱物を移動させる配置部のいずれもよい。
The object to be heated to be heated in the induction heating furnace of the present invention may be a metal material. When the material to be heated is an insulating material, the object to be heated is disposed in the arrangement portion of the object to be heated while being accommodated in a magnetic container. can do.
Furthermore, the arrangement part of the object to be heated may be either an arrangement part that can detachably mount the whole or a part of the object to be heated, or an arrangement part that moves the object to be heated.

本発明では、直流の超電導コイルを用いているため、大電流を流してもコイルの発熱を最小とでき、かつ、回転駆動させる可動鉄心と組み併せて磁気抵抗を増減することにより、被加熱物周縁に変動磁場を発生させていることで、被加熱物を効率よく加熱することができる。
特に、可動鉄心をモータで回転させているため、高速回転が可能で高周波、高出力の変動磁場を生成させることができ、投入エネルギーはモータの回転力となり、モータの効率が加熱効率となり、高効率で加熱することができる。かつ、可動鉄心の回転速度をモータで任意に制御でき、それに応じて、磁場の振幅および周波数も調節でき、加熱温度を容易に調節することができる。
In the present invention, since a DC superconducting coil is used, the heat generation of the coil can be minimized even when a large current flows, and the magnetic resistance is increased / decreased in combination with the movable iron core to be rotationally driven. By generating a variable magnetic field at the periphery, the object to be heated can be efficiently heated.
In particular, since the movable iron core is rotated by a motor, high-speed rotation is possible and a high-frequency, high-output variable magnetic field can be generated. The input energy becomes the rotational force of the motor, and the motor efficiency becomes the heating efficiency. It can be heated with efficiency. And the rotational speed of a movable iron core can be arbitrarily controlled with a motor, and according to it, the amplitude and frequency of a magnetic field can also be adjusted and heating temperature can be adjusted easily.

以下、本発明の実施形態を図面を参照して説明する。
図1乃至図3に第1実施形態の可動鉄心誘導加熱炉10−1を示す。
該可動鉄心誘導加熱炉10−1は、図2で一点鎖線で示すハウジング20内に、略C型とした固定鉄心11の垂直壁11aに超電導コイル12を巻き付けて形成した固定体を配置している。超電導コイル12を直流電源13と接続している。また、固定鉄心11は鋼板の積層体から形成している。
前記超電導コイル12を巻回した固定鉄心11の垂直壁11aには、超電導コイル12を密閉する冷却用ジャケット14を取り付け、該冷却用ジャケット14内に液体窒素等の超電導温度に超電導コイル12を保持する冷却液を充填している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a movable core induction heating furnace 10-1 of the first embodiment.
The movable core induction heating furnace 10-1 has a fixed body formed by winding a superconducting coil 12 around a vertical wall 11a of a substantially C-shaped fixed core 11 in a housing 20 indicated by a one-dot chain line in FIG. Yes. Superconducting coil 12 is connected to DC power supply 13. The fixed iron core 11 is formed from a laminate of steel plates.
A cooling jacket 14 that seals the superconducting coil 12 is attached to the vertical wall 11a of the fixed iron core 11 around which the superconducting coil 12 is wound, and the superconducting coil 12 is held in the cooling jacket 14 at a superconducting temperature such as liquid nitrogen. Filled with coolant.

固定鉄心11は垂直壁11aの上下両端より上下水平壁11b、11cが突出し、これら上下水平壁11b、11cの先端より下向き突出部11d、上向き突出部11eを突出させ、これら突出部11dと11eの間を分断した空間S1としている。   The fixed iron core 11 has upper and lower horizontal walls 11b and 11c projecting from upper and lower ends of the vertical wall 11a, and projecting downward projecting portions 11d and upward projecting portions 11e from the tips of the upper and lower horizontal walls 11b and 11c. The space S1 is divided.

前記空間S1には、下向き突出部11dの先端面側に1つの可動鉄心15を配置し、該可動鉄心15と上向き突出部11eとの間を被加熱物16の配置部とし、突出部11dと11eの間の空間S1を直列に配置する可動鉄心15と被加熱物16で連続させるようにしている。被加熱物16は本実施形態では鉄棒としている。該鉄棒は上向き突出部11eの上面に設けた配置枠部17上に載置している。   In the space S1, one movable iron core 15 is arranged on the tip surface side of the downward projecting portion 11d, and the space between the movable iron core 15 and the upward projecting portion 11e serves as an arrangement portion of the object to be heated 16, and the projecting portion 11d The space S <b> 1 between 11 e is made continuous with the movable iron core 15 and the object to be heated 16 arranged in series. The object to be heated 16 is a bar in this embodiment. The iron bar is placed on an arrangement frame portion 17 provided on the upper surface of the upward projecting portion 11e.

前記可動鉄心15は珪素鋼板製の略長方形板からなり、その長さ方向両端15a、15bは円弧状としている。該可動鉄心15の中心に軸穴15cを設け、該軸穴15cにモータ18で回転駆動される回転軸19を貫通固定している。該可動鉄心15を支持する回転軸19をハウジング20の軸受(図示せず)で支持して、可動鉄心15が図1(A)に示す垂直方向に位置した時に、一端15aは突出部11dの先端面に微小空隙をあけてほぼ連続した位置となり、他端15bは被加熱物16と微小空間をあけてほぼ連続した位置となるように設定している。よって、図1(B)に示すように可動鉄心15が90度回転して、突出部11dと11eとを結ぶ線に対して直交方向となると、一端15aは突出部11dの先端面と大きな空隙C1をあけた非連続位置となり、他端15bも被加熱物16と大きな空隙C2をあけた非連続位置となる。   The movable iron core 15 is made of a substantially rectangular plate made of silicon steel plate, and both lengthwise ends 15a and 15b are arcuate. A shaft hole 15c is provided at the center of the movable iron core 15, and a rotary shaft 19 that is rotationally driven by a motor 18 is passed through and fixed to the shaft hole 15c. When the rotary shaft 19 that supports the movable core 15 is supported by a bearing (not shown) of the housing 20, and the movable core 15 is positioned in the vertical direction shown in FIG. The tip end surface is set to be a substantially continuous position with a minute gap, and the other end 15b is set to be a substantially continuous position with the heated object 16 and a minute space. Therefore, as shown in FIG. 1 (B), when the movable iron core 15 rotates 90 degrees and is in a direction perpendicular to the line connecting the protruding portions 11d and 11e, the one end 15a is larger than the front end surface of the protruding portion 11d. The discontinuous position with C1 is opened, and the other end 15b is also a discontinuous position with the object 16 to be heated and a large gap C2.

上記構成からなる可動鉄心誘導加熱炉10−1においては、超電導コイル12に直流電流を流して、誘電子15をモータ18で矢印で示す反時計方向に回転させている。
図1(A)に示すように、可動鉄心15の上端15aが固定鉄心11の突出部11dの先端面、下端15bが被加熱物16の上端面と略連続した位置になると、これら連続位置に発生する抵抗磁場は最小となる。可動鉄心15が回転すると、両端15a、15bはそれぞれ突出部11dの先端面、被加熱物16から離れていき、その間の空隙は次第に増大でいて磁気抵抗は増大していく。図1(B)に示す位置に達すると、空隙C1、C2は最大となり磁気抵抗は最大となる。さらに、図1(A)に示す方向に回転すると、磁気抵抗は次第に減少していく。
In the movable core induction heating furnace 10-1 having the above-described configuration, a direct current is passed through the superconducting coil 12, and the dielectric 15 is rotated by the motor 18 in the counterclockwise direction indicated by the arrow.
As shown in FIG. 1 (A), when the upper end 15a of the movable iron core 15 is located at the front end surface of the protruding portion 11d of the fixed iron core 11 and the lower end 15b is substantially continuous with the upper end surface of the article to be heated 16, these continuous positions are obtained. The generated resistance magnetic field is minimized. When the movable iron core 15 rotates, both ends 15a and 15b move away from the tip surface of the projecting portion 11d and the object to be heated 16, and the gap between them gradually increases and the magnetic resistance increases. When the position shown in FIG. 1B is reached, the gaps C1 and C2 are maximized and the magnetic resistance is maximized. Further, when rotating in the direction shown in FIG. 1 (A), the magnetic resistance gradually decreases.

即ち、図3に示すように、磁場は周期的に増減を繰り返して、被加熱物16の周辺に変動磁場を生成し、渦電流が発生して被加熱物16を加熱することができる。
特に、大電流を流すことができる超電導コイル12を用い、かつ、該超電導コイル12に直流電流を流しているため発熱を生じさせず、あるいは発熱を最小限とすることができる。被加熱物16の加熱に投入するエネルギーは、可動鉄心15を回転するモータの回転駆動エネルギーとなり、モータの効率が加熱効率となり、高効率で被加熱物16を加熱することができる。
That is, as shown in FIG. 3, the magnetic field repeatedly increases and decreases periodically to generate a fluctuating magnetic field around the object to be heated 16, and an eddy current can be generated to heat the object to be heated 16.
In particular, since the superconducting coil 12 capable of flowing a large current is used and a direct current is passed through the superconducting coil 12, no heat is generated or the heat generation can be minimized. The energy input for heating the object to be heated 16 becomes rotational driving energy of the motor that rotates the movable iron core 15, the efficiency of the motor becomes the heating efficiency, and the object to be heated 16 can be heated with high efficiency.

図4乃至図6に第2実施形態を示す。
第2実施形態の可動鉄心誘導加熱炉10−2では、C型の固定鉄心11の突出部11dと11eとの間の空間S1に2個の可動鉄心15−1、15−2を配置し、これら2個の可動鉄心15−1と15−2との間を被加熱物16の配置部としている。
前記空間S1の距離は第1実施形態と同一としているため、2個の可動鉄心15−1、15−2は第1実施形態の可動鉄心15より短尺としている。
これら2個の可動鉄心15−1と15−2とそれぞれモータ(図示せず)により回転駆動される回転軸19−1、19−2で図4中に矢印で示すように、同期して回転している。
また、可動鉄心15−1、15−2の間に配置する被加熱物16は図5に示すハウジング20の左右両側壁に設けた支持部21で支持している。
他の構成は第1実施形態と同一であるため、同一符号を付して説明を省略する。
4 to 6 show a second embodiment.
In the movable core induction heating furnace 10-2 of the second embodiment, the two movable iron cores 15-1 and 15-2 are arranged in the space S1 between the protruding portions 11d and 11e of the C-type fixed iron core 11, A portion between the two movable iron cores 15-1 and 15-2 is an arrangement portion of the object to be heated 16.
Since the distance of the space S1 is the same as that of the first embodiment, the two movable iron cores 15-1 and 15-2 are shorter than the movable iron core 15 of the first embodiment.
These two movable iron cores 15-1 and 15-2 are rotated synchronously as indicated by the arrows in FIG. 4 on the rotating shafts 19-1 and 19-2 which are driven to rotate by a motor (not shown). is doing.
Moreover, the to-be-heated object 16 arrange | positioned between the movable iron cores 15-1 and 15-2 is supported by the support part 21 provided in the right-and-left both sides wall of the housing 20 shown in FIG.
Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.

第2実施形態では2個の短尺な可動鉄心15−1、15−2を用いているため、第1実施形態の可動鉄心15より高速回転させることができる。その結果、図6に示すように、磁場が増減間隔を短くでき、周波数を多くして、第1実施形態よりも高周波とすることができる。   In the second embodiment, since two short movable cores 15-1 and 15-2 are used, the movable core 15 can be rotated at a higher speed than the movable core 15 of the first embodiment. As a result, as shown in FIG. 6, the increase / decrease interval of the magnetic field can be shortened, the frequency can be increased, and the frequency can be made higher than that of the first embodiment.

図7および図8に第3実施形態を示す。
第3実施形態の可動鉄心誘導加熱炉10−3では、固定鉄心は平行配置される左右一対の棒状の固定鉄心11−1、11−2とし、これら固定鉄心11−1、11−2にそれぞれ直流電源(図示せず)と接続した超電導コイル12−1、12−2を巻き付けている。
前記左右の固定鉄心11−1、11−2に挟まれた中央位置に棒状の超電導永久磁石からなる上下一対の固定鉄心22−1、22−2を配置している。該上下一対の固定鉄心22−1と22−2の間は空間をあけて被加熱物16の配置部としている。
他の構成は第1実施形態と同様であるため、説明を省略する。
7 and 8 show a third embodiment.
In the movable core induction heating furnace 10-3 of the third embodiment, the fixed iron core is a pair of left and right rod-like fixed iron cores 11-1 and 11-2 arranged in parallel, and the fixed iron cores 11-1 and 11-2 respectively. Superconducting coils 12-1 and 12-2 connected to a DC power source (not shown) are wound.
A pair of upper and lower fixed iron cores 22-1 and 22-2 made of rod-shaped superconducting permanent magnets are arranged at a central position between the left and right fixed iron cores 11-1 and 11-2. A space is provided between the pair of upper and lower fixed iron cores 22-1 and 22-2 as an arrangement part of the object to be heated 16.
Since other configurations are the same as those of the first embodiment, description thereof is omitted.

前記左側の固定鉄心11−1の上端と中央の上側固定鉄心22−1との間の上側空間に第1可動鉄心15−3、固定鉄心11−1と中央の下側固定鉄心22−2との間の下側空間に第2可動鉄心15−4を配置している。また、右側の固定鉄心11−2の上端と中央の上側固定鉄心22−1との間の上側空間に第3可動鉄心15−5、固定鉄心11−2と中央の下側固定鉄心22−2との間の下側空間に第4可動鉄心15−6を配置している。
第1〜第4可動鉄心15−3〜15−6は夫々モータ(図示せず)の回転駆動軸19−3〜19−6に固定している。左側の第1、第2可動鉄心15−3、15−4は同期して反時計方向に回転させ、右側の第3、第4可動鉄心15−5、15−6も同期して反時計方向に回転させ、かつ、左側の第1、第2可動鉄心15−3、15−4と、右側の第3、第4可動鉄心15−5、15−6とは90度位相させ、ずらせて回転している。
In the upper space between the upper end of the left fixed iron core 11-1 and the central upper fixed iron core 22-1, the first movable iron core 15-3, the fixed iron core 11-1, and the lower fixed iron core 22-2 in the center, The second movable iron core 15-4 is arranged in the lower space between the two. Further, in the upper space between the upper end of the right fixed iron core 11-2 and the central upper fixed iron core 22-1, the third movable iron core 15-5, the fixed iron core 11-2 and the central lower fixed iron core 22-2. The fourth movable iron core 15-6 is arranged in the lower space between the two.
The first to fourth movable iron cores 15-3 to 15-6 are fixed to rotational drive shafts 19-3 to 19-6 of motors (not shown), respectively. The first and second movable iron cores 15-3 and 15-4 on the left side are rotated counterclockwise in synchronization, and the third and fourth movable iron cores 15-5 and 15-6 on the right side are also synchronized counterclockwise. And the left first and second movable iron cores 15-3 and 15-4 and the right third and fourth movable iron cores 15-5 and 15-6 are rotated by 90 degrees and shifted. is doing.

前記第3実施形態では、図7(A)(B)(C)に示すように作動し、図7(A)では、左側の第1、第2可動鉄心15−3、15−4は両側の固定鉄心11−1と22−1、11−1と22−2と連続する位置にあり、磁気抵抗は最小となる。この時、右側の第3、第4可動鉄心15−5、15−6は両側の固定鉄心11−2と22−1、11−2と22−2とは最も空隙があく非連続位置にあり、磁気抵抗は最大となる。   In the said 3rd Embodiment, it operate | moves as shown to FIG. 7 (A) (B) (C), In FIG. 7 (A), the 1st, 2nd movable iron cores 15-3 and 15-4 on the left are both sides. The fixed iron cores 11-1 and 22-1, and 11-1 and 22-2 are in continuous positions, and the magnetic resistance is minimized. At this time, the third and fourth movable cores 15-5 and 15-6 on the right side are in the discontinuous positions where the fixed cores 11-2 and 22-1 and 11-2 and 22-2 on the both sides are the most spaced. The magnetoresistance is maximized.

第1〜第4可動鉄心15−3〜15−6が45度回転して図7(B)の位置となると、第1可動鉄心15−3と左側の固定鉄心11−1の上端および中央の上側固定鉄心と22−1の上端の間で空隙が増大し、第2可動鉄心15−4と固定鉄心11−1の下端および22−2の下端の間の空隙が増大する。
同様に、右側の第3、第4可動鉄心15−4、15−5の両側も固定鉄心11−2と22−1、22−2との間の空隙が増大する。
このように、4つの可動鉄心15−3〜15−6の両側で空隙が大となることにより4カ所で磁気抵抗が大となる。
When the first to fourth movable iron cores 15-3 to 15-6 rotate 45 degrees to the position shown in FIG. 7B, the upper ends and the center of the first movable iron core 15-3 and the left fixed iron core 11-1 are arranged. An air gap increases between the upper fixed iron core and the upper end of 22-1 and the air gap between the second movable iron core 15-4 and the lower end of the fixed iron core 11-1 and the lower end of 22-2 increases.
Similarly, the space | gap between the fixed iron cores 11-2 and 22-1 and 22-2 also increases on both sides of the third and fourth movable iron cores 15-4 and 15-5 on the right side.
Thus, the magnetic resistance becomes large at four locations due to the large gaps on both sides of the four movable iron cores 15-3 to 15-6.

第1〜第4可動鉄心15−3〜15−6が更に45度回転して図7(C)の位置となると、図7(A)と逆になり、右側の第1、第2可動鉄心15−3、15−4の両側の空隙が最大となり磁気抵抗が最大となる。一方、右側の第3、第4可動鉄心15−5、15−6は両側の固定鉄心11−2、22−1、22−2と連続した位置となり磁気抵抗が最小となる。   When the first to fourth movable iron cores 15-3 to 15-6 are further rotated 45 degrees to the position shown in FIG. 7C, the first and second movable iron cores on the right side are reversed. The gap on both sides of 15-3 and 15-4 is maximized and the magnetic resistance is maximized. On the other hand, the third and fourth movable iron cores 15-5 and 15-6 on the right side are continuous with the fixed iron cores 11-2, 22-1, and 22-2 on both sides, and the magnetic resistance is minimized.

前記図7(A)(B)(C)に示すように、第1〜第4可動鉄心15−3〜15−6が回転することにより、図8に示すように磁場が発生する。図8において、A点が図7(A)の位置、B点が図7(B)の位置、C点が図7(C)の位置で発生する磁場を示す。このように、磁場の振幅が大となることにより、被加熱物16の周縁に発生する変動磁場を大きくでき、高出力で被加熱物16を加熱することができる。かつ、4つの第1〜第4可動鉄心15−3〜15−6は小型であるため高速回転が可能であり、第2実施形態と同様に高周波で加熱することができる。
即ち、第1実施形態の加熱炉を低周波誘導加熱、第2実施形態の加熱炉を高周波誘導加熱とすると、第3実施形態の加熱炉は高周波・高出力で誘導加熱することができる。
As shown in FIGS. 7A, 7B and 7C, when the first to fourth movable iron cores 15-3 to 15-6 rotate, a magnetic field is generated as shown in FIG. In FIG. 8, point A shows the magnetic field generated at the position shown in FIG. 7A, point B shows the position shown in FIG. 7B, and point C shows the magnetic field generated at the position shown in FIG. Thus, by increasing the amplitude of the magnetic field, the variable magnetic field generated at the periphery of the object to be heated 16 can be increased, and the object to be heated 16 can be heated with high output. And since the four 1st-4th movable iron cores 15-3 to 15-6 are small, they can be rotated at high speed, and can be heated at a high frequency as in the second embodiment.
That is, when the heating furnace of the first embodiment is low-frequency induction heating and the heating furnace of the second embodiment is high-frequency induction heating, the heating furnace of the third embodiment can be induction-heated with high frequency and high output.

図9に第4実施形態を示す。
第4実施形態の可動鉄心誘導加熱炉10−4では、L型として固定鉄心11−3と、倒L型とした固定鉄心11−4との2個の固定鉄心を用いている。これらの固定鉄心11−3と11−4とは両端間にそれぞれ空間をあけて四角枠を構成するように配置し、一方の空間に1つの可動鉄心15を配置し、他方の空間を被加熱物16の配置部としている。
前記2個の固定鉄心11−3、11−4には夫々直流電源(図示せず)と接続した超電導コイル12−1、12−2を巻き付け、かつ、可動鉄心15はモータ(図示せず)の回転軸に固定している。
FIG. 9 shows a fourth embodiment.
In the movable core induction heating furnace 10-4 of the fourth embodiment, two fixed iron cores, that is, a fixed iron core 11-3 as an L shape and a fixed iron core 11-4 as an inverted L shape are used. These fixed iron cores 11-3 and 11-4 are arranged so as to form a rectangular frame with a space between both ends, one movable iron core 15 is arranged in one space, and the other space is heated. The arrangement part of the object 16 is used.
The two fixed iron cores 11-3 and 11-4 are respectively wound with superconducting coils 12-1 and 12-2 connected to a DC power source (not shown), and the movable iron core 15 is a motor (not shown). It is fixed to the rotation axis.

第4実施形態においても、可動鉄心15が回転し、図9(A)の位置では、固定鉄心11−3、11−4と可動鉄心15とが連続位置となり、磁気抵抗が減少する。また、図9(B)の90度回転した位置では非連続位置となり磁気抵抗が増大する。このように、磁気抵抗が増減することにより、被加熱物16の周辺に変動磁場を発生させて、加熱することができる。   Also in the fourth embodiment, the movable iron core 15 rotates, and at the position shown in FIG. 9A, the fixed iron cores 11-3 and 11-4 and the movable iron core 15 become continuous positions, and the magnetic resistance decreases. Further, the position rotated 90 degrees in FIG. 9B becomes a discontinuous position, and the magnetic resistance increases. Thus, by increasing or decreasing the magnetic resistance, a variable magnetic field can be generated around the object to be heated 16 and heated.

図10乃至図12に第5実施形態を示す。
第5実施形態の可動鉄心誘電加熱炉10−5では、固定鉄心11−5は円筒枠からなり、その内周面に超電導コイル12を巻き付けている。前記固定鉄心11−5は左右両端では上下内面から一対の突出片11−5aと11−5b、11−5cと11−5dとを突設している。左右の上下突出片11−5aと11−5b、11−5cと11−5dにそれぞれ挟まれた中央の空間に、モータ(図示せず)で回転駆動される鉄製の回転軸19−7、19−8に中心を固定した第1可動鉄心15−7、第2可動鉄心15−8を配置し、第1、第2可動鉄心15−7、15−8を同期して同一方向に回転している。また、左右の前記回転軸19−7、19−8を固定鉄心となる円筒枠11−5内に突出させ、その間の空間は被加熱物16の配置部としている。
10 to 12 show a fifth embodiment.
In the movable core dielectric heating furnace 10-5 of the fifth embodiment, the fixed core 11-5 is formed of a cylindrical frame, and the superconducting coil 12 is wound around the inner peripheral surface thereof. The fixed iron core 11-5 has a pair of protruding pieces 11-5a and 11-5b, 11-5c and 11-5d protruding from the upper and lower inner surfaces at both left and right ends. Iron rotating shafts 19-7, 19 that are rotationally driven by a motor (not shown) in central spaces sandwiched between left and right upper and lower protruding pieces 11-5a and 11-5b, 11-5c and 11-5d, respectively. The first movable iron core 15-7 and the second movable iron core 15-8, whose centers are fixed to -8, are arranged, and the first and second movable iron cores 15-7 and 15-8 are rotated in the same direction in synchronization. Yes. Further, the left and right rotating shafts 19-7 and 19-8 are protruded into a cylindrical frame 11-5 serving as a fixed iron core, and the space between them serves as an arrangement portion for the object 16 to be heated.

第5実施形態では、第1、第2可動鉄心15−7、15−8の回転軸19−7、19−8を磁気回路として利用している。第1、第2可動鉄心15−7、15−8の回転に応じて図11(A)(B)に示すように磁気抵抗が増減し、図12に示すように変動磁場が発生し、回転軸19−7と19−8に挟まれた空間の配置する被加熱物16の周辺に交番磁界を発生させて加熱することができる。   In the fifth embodiment, the rotating shafts 19-7 and 19-8 of the first and second movable iron cores 15-7 and 15-8 are used as a magnetic circuit. In accordance with the rotation of the first and second movable iron cores 15-7 and 15-8, the magnetic resistance increases and decreases as shown in FIGS. 11A and 11B, and a variable magnetic field is generated and rotated as shown in FIG. An alternating magnetic field can be generated and heated around the object to be heated 16 disposed in the space between the shafts 19-7 and 19-8.

図13に第6実施形態を示す。
第6実施形態の可動鉄心誘導加熱炉10−6では、超電導コイルを用いず、U形状としたバルク超電導体からなる永久磁石を固定鉄心11−6として用い、該固定鉄心11−6の両端に上下対向する突起部11−6a、11−6bを設けている。該突起部11−6a、11−6bとに挟まれた空間にモータで回転駆動される可動鉄心15と被加熱物16の配置部を設けている。
該第6実施形態は、第1実施例に対してバルク超電導体からなる永久磁石を用いている点が相違するだけで、加熱作用は同様である。
FIG. 13 shows a sixth embodiment.
In the movable iron core induction heating furnace 10-6 of the sixth embodiment, a permanent magnet made of a U-shaped bulk superconductor is used as the fixed iron core 11-6 without using a superconducting coil, and both ends of the fixed iron core 11-6 are used. Protruding portions 11-6a and 11-6b that are vertically opposed to each other are provided. In the space between the protrusions 11-6a and 11-6b, there is provided an arrangement portion for the movable iron core 15 and the object to be heated 16 that are rotationally driven by a motor.
The sixth embodiment is similar to the first embodiment only in that a permanent magnet made of a bulk superconductor is used, and the heating action is the same.

なお、前記いずれの実施形態においても、被加熱物16を配置部に搭載して、被加熱物16の全体を加熱する構成としているが、被加熱物16の一部を前記配置部に搭載して部分的に加熱する構成としてもよい。
また、被加熱物16の配置部に連続搬送材を配置して、被加熱物16を連続的に移動させながら加熱する構成としてもよい。
さらに、被加熱物16が絶縁材である場合には、磁性容器内に絶縁材を収容して加熱している。
In any of the above-described embodiments, the object to be heated 16 is mounted on the arrangement part and the entire object to be heated 16 is heated. However, a part of the object to be heated 16 is mounted on the arrangement part. It is also possible to use a configuration in which heating is partially performed.
Moreover, it is good also as a structure which arrange | positions a continuous conveyance material in the arrangement | positioning part of the to-be-heated material 16, and heats the to-be-heated material 16 moving continuously.
Further, when the object to be heated 16 is an insulating material, the insulating material is accommodated in the magnetic container and heated.

本発明の可動鉄心誘導加熱炉は、熱間鍛造やアルミ型材の押し出し成形など、種々の産業上の加熱用途に用いることができる。   The movable core induction heating furnace of the present invention can be used for various industrial heating applications such as hot forging and extrusion molding of aluminum molds.

(A)(B)は第1実施形態の磁気回路を示す概略図である。(A) (B) is the schematic which shows the magnetic circuit of 1st Embodiment. (A)は第1実施形態の加熱炉の概略斜視図、(B)は要部断面図である。(A) is a schematic perspective view of the heating furnace of 1st Embodiment, (B) is principal part sectional drawing. 第1実施形態の低周波で発生する磁場を示す線図である。It is a diagram which shows the magnetic field which generate | occur | produces at the low frequency of 1st Embodiment. (A)(B)は第2実施形態の磁気回路を示す概略図である。(A) (B) is the schematic which shows the magnetic circuit of 2nd Embodiment. 第2実施形態における被加熱物の配置部を示す概略図である。It is the schematic which shows the arrangement | positioning part of the to-be-heated material in 2nd Embodiment. 第2実施形態の高周波で発生する磁場を示す線図である。It is a diagram which shows the magnetic field which generate | occur | produces at the high frequency of 2nd Embodiment. (A)(B)(C)は第3実施形態の磁気回路を示す概略図である。(A), (B), and (C) are schematic views showing a magnetic circuit of a third embodiment. 第2実施形態の高周波・高出力で発生する磁場を示す線図である。It is a diagram which shows the magnetic field generate | occur | produced with the high frequency and high output of 2nd Embodiment. (A)(B)は第4実施形態の磁気回路を示す概略図である。(A) (B) is the schematic which shows the magnetic circuit of 4th Embodiment. 第5実施形態を示し、(A)は概略断面図、(B)は側面図である。A 5th embodiment is shown, (A) is a schematic sectional view and (B) is a side view. (A)(B)は第5実施形態の磁気回路を示す概略図である。(A) (B) is the schematic which shows the magnetic circuit of 5th Embodiment. 第5実施形態の磁場を示す図面である。It is drawing which shows the magnetic field of 5th Embodiment. 第6実施形態を示す概略図である。It is the schematic which shows 6th Embodiment.

符号の説明Explanation of symbols

10ー1〜10−6 可動鉄心誘導加熱炉
11(11−1〜11−6) 固定鉄心
12 超電導コイル
13 直流電源
15(15−1〜15−8) 可動鉄心
16 被加熱物
18 モータ
19(19−1〜19−8) 回転軸
10-1 to 10-6 Movable iron core induction heating furnace 11 (11-1 to 11-6) Fixed iron core 12 Superconducting coil 13 DC power source 15 (15-1 to 15-8) Movable iron core 16 Heated object 18 Motor 19 ( 19-1 to 19-8) Rotating shaft

Claims (8)

直流電源と接続した超電導の固定体と、
前記固定体の直流電流路を分断して形成した空間に配置する可動鉄心と、
前記可動鉄心を回転させる回転駆動源を備え、
前記空間に配置する1つの可動鉄心と固定体の間、前記空間に直列方向に配置する一対の可動鉄心の間、または前記固定体の他の分断部の間を被加熱物の配置部とし、
前記可動鉄心が回転して、固定鉄心と連続方向になると該可動鉄心と固定鉄心間に生じる磁気抵抗を小とし、該可動鉄心が固定鉄心との間に空隙が生じる非連続方向となると該可動鉄心と固定鉄心間に生じる磁気抵抗を大とし、前記被加熱物周辺に変動磁場を生成させて該被加熱物を加熱させる構成としていることを特徴とする可動鉄心誘導加熱炉。
A superconducting fixed body connected to a DC power source;
A movable iron core disposed in a space formed by dividing the DC current path of the stationary body;
A rotation drive source for rotating the movable iron core;
Between one movable iron core and a fixed body arranged in the space, between a pair of movable iron cores arranged in series in the space, or between other divided parts of the fixed body as an arrangement part of the object to be heated,
When the movable iron core rotates and becomes a continuous direction with the fixed iron core, the magnetic resistance generated between the movable iron core and the fixed iron core is reduced, and when the movable iron core becomes a non-continuous direction in which a gap is formed between the fixed iron core and the movable iron core. A movable core induction heating furnace having a configuration in which a magnetic resistance generated between an iron core and a fixed iron core is increased, and a variable magnetic field is generated around the object to be heated to heat the object to be heated.
前記固定体は、直流電源と接続した超電導コイルを固定鉄心に巻き付けて形成し、
または、バルク超電導体からなる永久磁石を固定鉄心の中に入れて形成し、かつ、
前記可動鉄心は棒状または長方形の平板状とした珪素鋼板で形成し、長さ方向の中心をモータからなる前記回転駆動源で回転される回転軸に固定している請求項1に記載の可動鉄心誘導加熱炉。
The fixed body is formed by winding a superconducting coil connected to a DC power source around a fixed iron core,
Alternatively, a permanent magnet made of a bulk superconductor is formed in a fixed iron core, and
The movable iron core according to claim 1, wherein the movable iron core is formed of a silicon steel plate having a rod shape or a rectangular flat plate shape, and a center in a length direction is fixed to a rotating shaft that is rotated by the rotation driving source including a motor. Induction furnace.
前記固定鉄心はC型として両端間に前記空間を形成し、
前記空間には、固定鉄心の一端側に1つの前記可動鉄心を配置し、該可動鉄心と前記固定鉄心の他端側との間を前記被加熱物の配置部としている請求項1または請求項2に記載の可動鉄心誘導加熱炉。
The fixed iron core is C-shaped to form the space between both ends,
One or more said movable iron cores are arrange | positioned in the said space at the one end side of a fixed iron core, The space | interval between this movable iron core and the other end side of the said fixed iron core is used as the arrangement | positioning part of the said to-be-heated material. 2. A movable iron core induction heating furnace according to 2.
前記固定鉄心はC型として両端間に前記空間を形成し、
前記空間には、固定鉄心の両端側に一対の前記可動鉄心を配置し、これら可動鉄心の間を前記被加熱物の配置部とし、前記一対の可動鉄心を同期回転している請求項1または請求項2に記載の可動鉄心誘導加熱炉。
The fixed iron core is C-shaped to form the space between both ends,
A pair of said movable iron cores are arrange | positioned in the said space at the both ends of a fixed iron core, Between these movable iron cores is an arrangement | positioning part of the said to-be-heated material, The said pair of movable iron cores rotate synchronously. The movable core induction heating furnace according to claim 2.
前記固定鉄心は平行配置される左右一対の棒状の固定鉄心とし、
前記一対の固定鉄心に挟まれた中央部に、被加熱物の配置部をあけて上下両側にバルク超電導材からなる永久磁石からなる上下一対の棒状の固定鉄心を配置し、
前記左側の固定鉄心と前記中央の上下固定鉄心との上下両端間に形成する空間に上下一対の左側可動鉄心を配置すると共に、前記右側の固定鉄心と前記中央の上下固定鉄心との上下両端間に形成する空間に上下一対の右側可動鉄心を配置し、
前記回転駆動源により前記右側可動鉄心と左側可動鉄心の回転を90度位相をずらせて回転している請求項1または請求項2に記載の可動鉄心誘導加熱炉。
The fixed core is a pair of left and right rod-shaped fixed cores arranged in parallel,
In the central part sandwiched between the pair of fixed iron cores, a pair of upper and lower rod-shaped fixed iron cores made of permanent magnets made of bulk superconducting material are arranged on both upper and lower sides by placing an arrangement part of the object to be heated,
A pair of upper and lower left movable iron cores are disposed in a space formed between upper and lower ends of the left fixed iron core and the central upper and lower fixed iron core, and between the upper and lower ends of the right upper iron core and the central upper and lower fixed iron core. A pair of upper and lower right movable iron cores are arranged in the space formed in
3. The movable core induction heating furnace according to claim 1, wherein rotation of the right movable core and the left movable core is rotated 90 degrees out of phase by the rotation drive source.
前記固定鉄心はL型と倒L型の2個の固定鉄心とし、
前記2個の固定鉄心の一端間の空間に1つの前記可動鉄心を配置すると共に、該2個の固定鉄心の他端間の空間を前記被加熱物の配置部としている請求項1または請求項2に記載の可動鉄心誘導加熱炉。
The fixed iron core is made up of two fixed iron cores, an L type and an inverted L type,
One or more said movable iron cores are arrange | positioned in the space between the one ends of the said two fixed iron cores, The space between the other ends of these two fixed iron cores is used as the arrangement | positioning part of the said to-be-heated material. 2. A movable iron core induction heating furnace according to 2.
前記固定鉄心は、円筒枠からなり、その左右両端では上下内面から一対の突出片を突設し、上下突出片に挟まれた中央の空間にそれぞれモータで回転駆動される磁性回転軸を配置し、該磁性回転軸に前記可動鉄心の中心を固定し、かつ、左右の磁性回転軸を固定鉄心で囲まれた円筒枠内に前記被加熱物の配置部をあけて対向して突設している請求項1または請求項2に記載の可動鉄心誘導加熱炉。   The fixed iron core is formed of a cylindrical frame, with a pair of projecting pieces projecting from the upper and lower inner surfaces at both left and right ends, and a magnetic rotating shaft that is driven to rotate by a motor in each central space between the upper and lower projecting pieces. The center of the movable iron core is fixed to the magnetic rotating shaft, and the left and right magnetic rotating shafts are provided in a cylindrical frame surrounded by the fixed iron core so as to be opposed to each other with an arrangement portion of the object to be heated. The movable iron core induction heating furnace according to claim 1 or 2. 前記被加熱物は導電性材または導電性容器に収容した絶縁材からなり、該被加熱物の配置部は、該被加熱物の全体または一部を着脱自在に載置できる配置部、または、該被加熱物を移動させる配置部としている請求項1乃至請求項7のいずれか1項に記載の可動鉄心誘導加熱炉。   The object to be heated is made of a conductive material or an insulating material accommodated in a conductive container, and the arrangement part of the object to be heated is an arrangement part in which the whole or a part of the object to be heated can be detachably mounted, or The movable iron core induction heating furnace according to any one of claims 1 to 7, wherein the moving object is an arrangement portion for moving the object to be heated.
JP2008058769A 2008-03-07 2008-03-07 Movable iron core induction heating furnace Withdrawn JP2009218017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058769A JP2009218017A (en) 2008-03-07 2008-03-07 Movable iron core induction heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058769A JP2009218017A (en) 2008-03-07 2008-03-07 Movable iron core induction heating furnace

Publications (1)

Publication Number Publication Date
JP2009218017A true JP2009218017A (en) 2009-09-24

Family

ID=41189680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058769A Withdrawn JP2009218017A (en) 2008-03-07 2008-03-07 Movable iron core induction heating furnace

Country Status (1)

Country Link
JP (1) JP2009218017A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093192A1 (en) * 2010-01-29 2011-08-04 住友電気工業株式会社 Power generation system
JP2011159468A (en) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd Induction heating device, and power generation system equipped with the same
JP2011159595A (en) * 2010-02-03 2011-08-18 Sumitomo Electric Ind Ltd Power generation system
JP2011179383A (en) * 2010-02-26 2011-09-15 Sumitomo Electric Ind Ltd Power generation system
JP2011216325A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Induction heating device and power generation system equipped with it
WO2016143975A1 (en) * 2015-03-11 2016-09-15 창원대학교 산학협력단 Superconducting magnet apparatus using movable iron core, and induction heating apparatus thereof
KR101823763B1 (en) * 2016-06-02 2018-03-14 창원대학교 산학협력단 Single structure type superconducting dc induction heating apparatus
CN111225465A (en) * 2020-02-17 2020-06-02 中国科学院电工研究所 Superconducting induction heating device with mixed magnetic circuit
CN111315054A (en) * 2020-02-17 2020-06-19 中国科学院电工研究所 Superconductive induction heating device capable of simultaneously heating multiple workpieces based on split iron core
KR102307323B1 (en) * 2021-07-08 2021-09-30 박영창 Limestone Electric Calciner
CN113727482A (en) * 2021-08-31 2021-11-30 南京邮电大学 Superconducting linear induction heating device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159468A (en) * 2010-01-29 2011-08-18 Sumitomo Electric Ind Ltd Induction heating device, and power generation system equipped with the same
WO2011093192A1 (en) * 2010-01-29 2011-08-04 住友電気工業株式会社 Power generation system
JP2011159595A (en) * 2010-02-03 2011-08-18 Sumitomo Electric Ind Ltd Power generation system
JP2011179383A (en) * 2010-02-26 2011-09-15 Sumitomo Electric Ind Ltd Power generation system
JP2011216325A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Induction heating device and power generation system equipped with it
US10986701B2 (en) 2015-03-11 2021-04-20 Industry-Academic Cooperation Foundation Changwon National University Movable core induction heating apparatus
WO2016143975A1 (en) * 2015-03-11 2016-09-15 창원대학교 산학협력단 Superconducting magnet apparatus using movable iron core, and induction heating apparatus thereof
KR101658727B1 (en) * 2015-03-11 2016-09-21 창원대학교 산학협력단 Superconducting magnet apparatus using movement and Induction heating apparatus thereof
US20180014364A1 (en) * 2015-03-11 2018-01-11 Industry-Academic Cooperation Foundation Changwon National University Superconducting magnet apparatus using movable iron core and induction heating apparatus thereof
KR101823763B1 (en) * 2016-06-02 2018-03-14 창원대학교 산학협력단 Single structure type superconducting dc induction heating apparatus
CN111315054A (en) * 2020-02-17 2020-06-19 中国科学院电工研究所 Superconductive induction heating device capable of simultaneously heating multiple workpieces based on split iron core
CN111225465A (en) * 2020-02-17 2020-06-02 中国科学院电工研究所 Superconducting induction heating device with mixed magnetic circuit
CN111225465B (en) * 2020-02-17 2022-02-01 中国科学院电工研究所 Superconducting induction heating device with mixed magnetic circuit
CN111315054B (en) * 2020-02-17 2022-02-01 中国科学院电工研究所 Superconductive induction heating device capable of simultaneously heating multiple workpieces based on split iron core
KR102307323B1 (en) * 2021-07-08 2021-09-30 박영창 Limestone Electric Calciner
CN113727482A (en) * 2021-08-31 2021-11-30 南京邮电大学 Superconducting linear induction heating device

Similar Documents

Publication Publication Date Title
JP2009218017A (en) Movable iron core induction heating furnace
AU2006338053B2 (en) Method for inductive heating of a workpiece
JP5025797B2 (en) Induction heating method
JP5552605B2 (en) Heat flux generator with magnetocaloric material
KR20010098646A (en) Transverse flux induction heating device with magnetic circuit of variable width
JP3771543B2 (en) Linear motor drive device
JP2002218729A (en) System combined with permanent magnet excited synchronous motor and noncontact power supply
CN104467268A (en) Linear motor unit
JP2005065488A (en) Electric motor, lift having movable cage by the electric motor, and lift having electric motor for moving cage and guide element for the cage
US20120021916A1 (en) Method and apparatus for heating sheet material
CN113825269A (en) Superconducting induction heating system for production line
JP2009065755A (en) Vibrating-type motor and vibrating-type compressor using the same
CN102447375B (en) Linear motor and stage device
JP2010015695A (en) Induction heating device of rotary roll, and heating processing device
US8575878B2 (en) Energy converter
JP2010148233A (en) Linear motor driving and feeding device
EP1909374A1 (en) Axial motor
JP2007082352A (en) Linear actuator
JP3661978B2 (en) Moving coil linear motor
JP2001006861A (en) Electromagnetic induction heating device
KR101184133B1 (en) Induction heating unit
JP3835946B2 (en) Moving coil linear motor
JP2010020998A (en) Induction heating device
JP2010055814A (en) Induction heating furnace and heating method
CN219644140U (en) Direct-current magnetic field induction heating device and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120112