JPH0641381U - Canned / Synchronous linear motor - Google Patents
Canned / Synchronous linear motorInfo
- Publication number
- JPH0641381U JPH0641381U JP284193U JP284193U JPH0641381U JP H0641381 U JPH0641381 U JP H0641381U JP 284193 U JP284193 U JP 284193U JP 284193 U JP284193 U JP 284193U JP H0641381 U JPH0641381 U JP H0641381U
- Authority
- JP
- Japan
- Prior art keywords
- linear motor
- fixing frame
- synchronous linear
- strip
- canned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Linear Motors (AREA)
Abstract
(57)【要約】
【目的】半導体製造装置等クリーンルームや真空中での
搬送装置に用いる、高精度・高頻度・微細送り駆動に適
する、磁束貫通形のギャップワインディング形同期リニ
アモータの固定子コイルの冷却を発塵や発ガスなく行え
る、キャンド・同期リニアモータを提供することを目的
とする。
【構成】良熱伝導・非磁性材よりなる巻線固定枠4の両
面に平滑な帯状コイル5、5を貼付した固定子12と、
この固定子12の両面に、空隙を介し、対向させて設け
た永久磁石よりなる磁極13をもつ移動子16よりなる
同期リニアモータにおいて、前記固定子12の帯状コイ
ル5、5の両側面と間隙を持ち、巻線固定枠4の上下部
を嵌合・固定した薄肉・長方形のキャン3と、このキャ
ン3と帯状コイル5、5間にできる冷媒通路6と、前記
キャン3の長手方向の両端部に設けた鏡板8、8と、鏡
板8、8に設けた冷媒供給口9A、冷媒排出口9Bによ
りキャンド・同期リニアモータを構成する。
(57) [Abstract] [Purpose] Stator coil of magnetic flux penetrating gap winding type synchronous linear motor, suitable for high precision, high frequency and fine feed drive, which is used for transporting equipment in clean room such as semiconductor manufacturing equipment or in vacuum. It is an object of the present invention to provide a canned / synchronous linear motor that can cool an engine without generating dust or gas. [Structure] A stator 12 in which smooth strip-shaped coils 5 and 5 are attached to both surfaces of a winding fixing frame 4 made of a good heat conducting / non-magnetic material,
In a synchronous linear motor including a mover 16 having magnetic poles 13 made of permanent magnets provided on both sides of the stator 12 so as to face each other with a gap therebetween, a gap is formed between both side surfaces of the strip coils 5, 5 of the stator 12. A can 3 having a thin wall and a rectangular shape, in which the upper and lower parts of the winding fixing frame 4 are fitted and fixed, a refrigerant passage 6 formed between the can 3 and the strip coils 5 and 5, and both ends of the can 3 in the longitudinal direction. A canned / synchronous linear motor is configured by the end plates 8 and 8 provided in the section, and the coolant supply port 9A and the coolant discharge port 9B provided in the end plates 8 and 8.
Description
【001】[001]
本考案は、ギャップワインディング形同期リニアモータに関し、特に、半導体 製造装置等クリーンルームや真空中での搬送装置に用いる、高精度・高頻度・微 細送り駆動に適する。 The present invention relates to a gap winding type synchronous linear motor, and is particularly suitable for high precision, high frequency and fine feed drive used in a clean room such as a semiconductor manufacturing device or a transfer device in a vacuum.
【002】[002]
ギャップワインディング形のリニアモータとして、非磁性材よりなる固定子枠 の両面に平滑な帯状コイルを貼付した固定子の両面に、ギャップを介し、ムービ ング・マグネットを配置した磁束貫通形の同期リニアモータがある(例えば、実 願平3− 70570号公報)。 また、誘導電機形リニアモータのコイル端を非磁性体ダクトで包絡し、ダクト 内に冷却媒体を流通させるものがある(例えば、実開平3− 11380号公報 、第7図)。 As a gap winding type linear motor, a magnetic flux penetrating synchronous linear motor in which a moving magnet is placed on both sides of a stator with a smooth strip coil attached to both sides of a non-magnetic stator frame. (For example, Japanese Patent Application Laid-Open No. 3-70570). In addition, there is one in which the coil end of an induction electric motor type linear motor is enveloped by a non-magnetic duct, and a cooling medium is circulated in the duct (for example, Japanese Utility Model Publication No. 3-11380, FIG. 7).
【003】[003]
ところが、前者は固定子巻線の冷却が自然対流であるため冷却能力が低く、ま た、固定子巻線が直接外気に接触するのでクリーンルーム内や真空中で用いる場 合、発塵や発ガスの可能性がある。 また、後者は、通常の誘導電機形リニアモータであり高精度・高頻度・微細送 り駆動には適さず、コイルエンド部の冷却はできるが、コア内部までは十分に冷 却できない可能性が高い。 そこで、本考案は磁束貫通形のギャップワインディング形同期リニアモータの 固定子コイルの冷却を発塵や発ガスなく行える、キャンド・同期リニアモータを 提供することを目的とする。 However, the former has a low cooling capacity because the stator windings are cooled by natural convection, and the stator windings are in direct contact with the outside air, so when used in a clean room or in a vacuum, dust and gas are generated. There is a possibility of The latter is a normal induction electric motor type linear motor, which is not suitable for high-precision, high-frequency, fine feed drive, and can cool the coil end, but may not be able to cool the inside of the core sufficiently. high. Therefore, an object of the present invention is to provide a canned / synchronous linear motor that can cool a stator coil of a flux winding type gap winding type synchronous linear motor without generating dust or gas.
【004】[004]
非磁性体よりなる巻線固定枠4の両面に平滑な帯状コイル5、5を貼付した固 定子12と、この固定子12の両面に、空隙を介し、対向させて設けた永久磁石 よりなる磁極13をもつ移動子16よりなる同期リニアモータにおいて、 前記固定子12の帯状コイル5、5の両側面と間隙を持ち、巻線固定枠4の上 下部を嵌合・固定した薄肉・長方形のキャン3と、このキャン3と帯状コイル5 、5間にできる冷媒通路6と、前記キャン3の長手方向の両端部に設けた鏡板8 、8と、鏡板8、8に設けた冷媒供給口9A、冷媒排出口9Bによりキャンド・ 同期リニアモータを構成する。 上記のキャンド・同期リニアモータの冷媒供給口9Aから冷媒19を供給し、 冷媒通路6を流動させ、帯状コイル5、5の側面を直接冷却する。 A stator 12 in which smooth strip-shaped coils 5 and 5 are attached to both sides of a winding fixing frame 4 made of a non-magnetic material, and a magnetic pole made of a permanent magnet provided on both sides of the stator 12 so as to face each other with a gap. A synchronous linear motor including a moving element 16 having a thin-walled, rectangular can having a gap with both side surfaces of the strip-shaped coils 5 and 5 of the stator 12 and having upper and lower portions of the winding fixing frame 4 fitted and fixed. 3, the can 3 and the strip-shaped coils 5, 5, a refrigerant passage 6 formed between the cans 3, the end plates 8 1 and 8 provided at both ends of the can 3 in the longitudinal direction, and the refrigerant supply ports 9A provided on the end plates 8 and 8. The coolant discharge port 9B constitutes a canned / synchronous linear motor. The refrigerant 19 is supplied from the refrigerant supply port 9A of the canned / synchronous linear motor, the refrigerant passage 6 is caused to flow, and the side surfaces of the strip coils 5, 5 are directly cooled.
【005】[0095]
上記手段により、冷却媒体の流通により、コイルが冷却される。キャンにより コイルからの発塵・発ガスを防止する。 By the above means, the coil is cooled by the circulation of the cooling medium. The can prevents dust and gas from the coil.
【006】[0096]
以下、本考案の実施例を図に基づいて説明する。図1(a)、(b)は本考案 の一実施例を示す断面図および部分側断面図である。 固定ベース1の中央部には、長手方向の溝2を設けてある。溝2には、非磁性 体よりなる角パイプ状の気密な薄肉のキャン3の下端を埋設・固定してある。 キャン3内には、アルミニウム、ステンレスや銅等の良熱伝導性・非磁性材よ りなるH形の巻線固定枠4の上下端を固定してある。巻線固定枠4の両側面には 、対称の平滑な帯状コイル5、5を、各相・各極を合わせて、貼付してある。 なお、帯状コイル5、5の上下端部を樹脂20により、巻線固定枠4に固定す ると、固定がさらに強固になる。 キャン3内壁と帯状コイル5、5の間には、空間を設けてあり、冷媒通路6を 形成してある。 キャン3の長手方向の両端部には、冷媒供給・排出パイプ(図示せず)を接続 する冷媒供給口9A、冷媒排出口9Bを備えた鏡板8、8を液密に設けてある。 キャン3の長手方向の一端部の底部には、端子板10を液密に固定してあり、端 子板10には端子11を設けリード線12を介し、帯状コイル5、5に多相交流 を給電する。 上記の、固定ベース1、キャン3、巻線固定枠4、帯状コイル5、5、冷媒通 路6、鏡板8、8および端子板10で固定子12を構成する。 キャン3の両側面には、空隙を介し、永久磁石よりなる複数の磁極13を対向 させてある。磁極13は、強磁性体材よりなる垂直ヨーク14、14の長手方向 に、所定のピッチで固定してある。垂直ヨーク14、14の頂部は、ワークの搬 送用テーブルとなる強磁性体材よりなる水平ヨーク15で架橋してある。 上記の、磁極13、垂直ヨーク14、14および水平ヨーク15で移動子16 を構成する。 図2に固定子12の第2の実施例の断面図を示す。 実施例の巻線固定枠4を良熱伝導性材として、その上下のリップ部を、方形も しくは長方形のヒートシンク17にしてある。 キャン3の上下部に方形もしくは長方形のバルジ部18を形成し、その外側は 移動子16の磁極13、垂直ヨーク14、14と水平ヨーク15のなす空間内に 間隙をもって移動自在に収納する。前記バルジ部18の内側には、ヒートシンク 17を嵌合し、ヒートシンク17とバルジ部18によりキャン3の上下に冷媒通 路6、6を形成する。 冷媒の供給は、実施例と同様に、上下の冷媒通路6、6の長手方向端部に設け た鏡板(図示せず)に設けた冷媒供給口(図示せず)から行い、排出は冷媒供給 口と反対側に設けた冷媒排出口(図示せず)から行う。この場合、帯状コイル5 の熱のほとんどは巻線固定枠4を介し、ヒートシンク17部から冷却される。さ らに、キャン3の両側面を帯状コイル5、5の側面に密着させるようにしてある 。 このようにすると、実施例に比べギャップを小さくでき、ギャップの磁気抵抗 が減少し、効率が上がる。 図3に第3の実施例の断面図を示す。 実施例の巻線固定枠4を、アルミニウム、ステンレスや銅等の良熱伝導性・非 磁性材の薄板を逆V字状に折り曲げて形成してある。巻線固定枠4の逆V字状外 側・両側面には帯状コイル5、5を接着剤等により貼付してあり、帯状コイル5 、5の上下端部は、樹脂20により固定してある。巻線固定枠4の底部41と頂 部42をキャン3の内壁に、弾性をもって緊密に嵌合してある。 図4に第4の実施例の断面図を示す。 この例は、第3の実施例の巻線固定枠4のV字状の内側・両側面にも帯状コイ ル5、5を貼付してある。この場合、冷媒通路6は帯状コイル5、5とキャン3 の成す隙間およびV溝内となる。 図5に第5の実施例の断面図を示す。 実施例の巻線固定枠4を、アルミニウム、ステンレスや銅等よりなる良熱伝導 性・非磁性材の薄板をX字状に形成してあり、頂部42をキャン3の内壁に緊密 に嵌合してある。帯状コイル5、5は、浅いV字状に折り曲げ、巻線固定枠4の X字状の外側・両側面に沿わせ、接着剤等により貼付してある。帯状コイル5、 5の上下端部は、巻線固定枠4に樹脂20により固定してある。 この場合、冷媒通路6は帯状コイル5、5とキャン3の成す隙間およびX字状 の内部の三角状の空間となる。 なお、第3ないし第5の実施例においては、帯状コイル5、5の側面と磁極7 の側面は、傾斜をもって対向し、ギャップが不均一になるが、鎖交磁束は長手方 向に一様であるため、磁束の大きさが高さ方向で不均一であっても、推力特性に 影響しない。また、コアレスであるため、ギャップが不均一による磁気吸引力の 不平衡も生じない。 An embodiment of the present invention will be described below with reference to the drawings. 1 (a) and 1 (b) are a sectional view and a partial side sectional view showing an embodiment of the present invention. A longitudinal groove 2 is provided in the center of the fixed base 1. In the groove 2, the lower end of a square pipe-shaped airtight thin can 3 made of a non-magnetic material is embedded and fixed. Inside the can 3, the upper and lower ends of the H-shaped winding fixing frame 4 made of a non-magnetic material having good thermal conductivity such as aluminum, stainless steel or copper are fixed. Symmetrical smooth strip-shaped coils 5 and 5 are attached to both sides of the winding fixing frame 4 with each phase and each pole aligned. If the upper and lower ends of the strip-shaped coils 5 and 5 are fixed to the winding fixing frame 4 with the resin 20, the fixation becomes stronger. A space is provided between the inner wall of the can 3 and the strip coils 5 and 5, and a refrigerant passage 6 is formed. At both ends of the can 3 in the longitudinal direction, end plates 8 having a coolant supply port 9A and a coolant discharge port 9B for connecting a coolant supply / discharge pipe (not shown) are liquid-tightly provided. A terminal plate 10 is liquid-tightly fixed to the bottom of one end of the can 3 in the longitudinal direction. A terminal 11 is provided on the terminal plate 10 and a multi-phase AC is applied to the strip-shaped coils 5 and 5 via lead wires 12. Power. The fixed base 1, the can 3, the winding fixing frame 4, the strip-shaped coils 5, 5, the refrigerant passage 6, the end plates 8 and 8 and the terminal plate 10 form a stator 12. A plurality of magnetic poles 13 made of permanent magnets are opposed to both sides of the can 3 with a gap therebetween. The magnetic poles 13 are fixed at a predetermined pitch in the longitudinal direction of the vertical yokes 14, 14 made of a ferromagnetic material. The top portions of the vertical yokes 14 and 14 are bridged by a horizontal yoke 15 made of a ferromagnetic material that serves as a table for carrying the work. The magnetic pole 13, the vertical yokes 14 and 14, and the horizontal yoke 15 constitute the moving element 16 2. FIG. 2 shows a sectional view of a second embodiment of the stator 12. The winding fixing frame 4 of the embodiment is made of a material having good thermal conductivity, and the upper and lower lip portions thereof are heat sinks 17 having a rectangular or rectangular shape. A square or rectangular bulge portion 18 is formed in the upper and lower portions of the can 3, and the outside thereof is movably housed in a space formed by the magnetic pole 13, the vertical yokes 14 and 14 of the moving element 16 and the horizontal yoke 15 with a gap. A heat sink 17 is fitted inside the bulge portion 18, and the heat sink 17 and the bulge portion 18 form refrigerant passages 6 and 6 above and below the can 3. The refrigerant is supplied from the refrigerant supply port (not shown) provided in the end plates (not shown) provided at the longitudinal ends of the upper and lower refrigerant passages 6 as in the case of the embodiment, and is discharged through the refrigerant supply. It is performed from a refrigerant discharge port (not shown) provided on the side opposite to the port. In this case, most of the heat of the strip coil 5 is cooled from the heat sink 17 through the winding fixing frame 4. Furthermore, both side surfaces of the can 3 are brought into close contact with the side surfaces of the strip coils 5, 5. By doing so, the gap can be made smaller than in the embodiment, the magnetic resistance of the gap is reduced, and the efficiency is improved. FIG. 3 shows a sectional view of the third embodiment. The winding fixing frame 4 of the embodiment is formed by bending a thin plate of non-magnetic material having good thermal conductivity such as aluminum, stainless steel or copper into an inverted V shape. Band-shaped coils 5 and 5 are attached to the outer and opposite side surfaces of the winding fixing frame 4 with an adhesive or the like, and the upper and lower ends of the band-shaped coils 5 and 5 are fixed with a resin 20. . The bottom 41 and the top 42 of the winding fixing frame 4 are elastically and tightly fitted to the inner wall of the can 3. FIG. 4 shows a sectional view of the fourth embodiment. In this example, band-shaped coils 5 and 5 are also attached to the V-shaped inside and both side surfaces of the winding fixing frame 4 of the third embodiment. In this case, the refrigerant passage 6 is in the gap formed by the strip coils 5 and 5 and the can 3 and in the V groove. FIG. 5 shows a sectional view of the fifth embodiment. The winding fixing frame 4 of the embodiment is formed of a thin plate made of aluminum, stainless steel, copper or the like having good heat conductivity and non-magnetic material into an X shape, and the top portion 42 is tightly fitted to the inner wall of the can 3. I am doing it. The strip-shaped coils 5 and 5 are bent in a shallow V shape, and are attached to the X-shaped outer side and both side surfaces of the winding fixing frame 4 and attached with an adhesive or the like. The upper and lower ends of the strip coils 5, 5 are fixed to the winding fixing frame 4 with resin 20. In this case, the coolant passage 6 becomes a gap formed by the strip-shaped coils 5 and 5 and the can 3 and a triangular space inside the X-shape. In the third to fifth embodiments, the side surfaces of the strip-shaped coils 5 and 5 and the side surface of the magnetic pole 7 face each other with an inclination and the gap becomes non-uniform, but the interlinkage magnetic flux is uniform in the longitudinal direction. Therefore, even if the magnitude of the magnetic flux is non-uniform in the height direction, it does not affect the thrust characteristics. Further, since it is coreless, the magnetic attraction force is not imbalanced due to the non-uniform gap.
【007】 以下に、動作を説明する。 帯状コイル5、5に多相交流を供給すると、磁極7との間の磁気作用により移 動子14が長手方向に移動する。このとき、移動子14側には損失は生じないが 、固定子11の帯状コイル5、5には銅損が生じる。 特に、起動・停止頻度が激しい微小送りの場合は、冷却を効率よく行う必要が ある。通常、効率よく冷却するため、冷却媒体を直接発熱部に接触させるのが好 ましい。 鏡板8に設けた冷媒供給口9Aから、水、フロリナート等の冷媒19を圧力を 掛けて供給すると、冷媒19は、冷媒通路6内を冷媒供給口9Aから冷媒排出口 9Bに向かって流通し、直接的に帯状コイル5、5から、又間接的に巻線固定枠 4を介し熱を奪う。 冷媒19は、循環パイプ(図示せず)を介し、途中に設けた放熱器(図示せず )により冷却されクローズに循環する。The operation will be described below. When a multi-phase alternating current is supplied to the strip coils 5 and 5, the magnetic action between the strip coils 5 and 5 causes the slider 14 to move in the longitudinal direction. At this time, no loss occurs on the mover 14 side, but copper loss occurs on the strip coils 5 and 5 of the stator 11. Especially in the case of minute feeds where the start / stop frequency is high, it is necessary to perform cooling efficiently. Usually, in order to cool efficiently, it is preferable to bring the cooling medium into direct contact with the heat generating portion. When the refrigerant 19 such as water or Fluorinert is supplied under pressure from the refrigerant supply port 9A provided in the end plate 8, the refrigerant 19 flows through the refrigerant passage 6 from the refrigerant supply port 9A toward the refrigerant discharge port 9B. Heat is taken from the strip coils 5 and 5 directly and indirectly via the winding fixing frame 4. The refrigerant 19 is cooled by a radiator (not shown) provided on the way through a circulation pipe (not shown) and circulates in a closed state.
【008】[0085]
以上述べたように、本考案によれば、コイルを気密なキャン内に収納し、冷媒 により直接冷却するので、コイルからの発塵や発ガスが室内に漏れることなく、 効率よく冷却できる。また、巻線固定枠を介しコイルを剛性をもって支持できる 。特に、第3ないし第5の実施例においては、巻線固定枠内にも冷媒通路を形成 出来るとともに、実施例よりさらに剛性を向上出来る。 As described above, according to the present invention, the coil is housed in the airtight can and is directly cooled by the refrigerant, so that dust and gas from the coil do not leak into the room and can be cooled efficiently. In addition, the coil can be rigidly supported via the winding fixing frame. Particularly, in the third to fifth embodiments, the refrigerant passage can be formed in the winding fixing frame, and the rigidity can be further improved as compared with the embodiments.
【009】[0109]
【図1】本考案の実施例を示す断面図および側断面図。FIG. 1 is a sectional view and a side sectional view showing an embodiment of the present invention.
【図2】本考案の第2の実施例を示す断面図。FIG. 2 is a sectional view showing a second embodiment of the present invention.
【図3】本考案の第3の実施例を示す断面図。FIG. 3 is a sectional view showing a third embodiment of the present invention.
【図4】本考案の第4の実施例を示す断面図。FIG. 4 is a sectional view showing a fourth embodiment of the present invention.
【図5】本考案の第5の実施例を示す断面図。FIG. 5 is a sectional view showing a fifth embodiment of the present invention.
1 固定ベース 2 溝 3 キャン 4 巻線固定枠 41 底部 42 頂部 5 帯状コイル 6 冷媒通路 7 磁極 8 鏡板 9A 冷媒供給口 9B 冷媒排出口 10 端子板 11 端子 12 固定子 13 磁極 14 垂直ヨーク 15 水平ヨーク 16 移動子 17 ヒートシンク 18 バルジ部 19 冷媒 20 樹脂 1 Fixed Base 2 Groove 3 Can 4 Winding Fixed Frame 41 Bottom 42 Top 5 Band-shaped Coil 6 Refrigerant Passage 7 Magnetic Pole 8 End Plate 9A Refrigerant Supply Port 9B Refrigerant Discharge Port 10 Terminal Plate 11 Terminal 12 Stator 13 Magnetic Pole 14 Vertical Yoke 15 Horizontal Yoke 16 Moving Element 17 Heat Sink 18 Bulge Section 19 Refrigerant 20 Resin
Claims (6)
面に平滑な帯状コイル(5)、(5)を貼付した固定子
(12)と、この固定子(12)の両面に、空隙を介
し、対向させて設けた永久磁石の磁極(13)をもつ移
動子(16)よりなる同期リニアモータにおいて、 前記帯状コイル(5)、(5)の両側面と間隙を保ち、
巻線固定枠(4)の上下部を嵌合・固定した、薄肉・長
方形のキャン(3)と、このキャン(3)と帯状コイル
(5)、(5)間にできる冷媒通路(6)と、前記キャ
ン(3)の長手方向の両端部に設けた鏡板(8)、
(8)と、この鏡板(8)、(8)に設けた冷媒供給口
(9A)と冷媒排出口(9B)を備えたことを特徴とす
るキャンド・同期リニアモータ。1. A stator (12) in which smooth strip coils (5), (5) are attached to both sides of a winding fixing frame (4) made of a non-magnetic material, and both sides of this stator (12). In a synchronous linear motor comprising a moving element (16) having permanent magnet magnetic poles (13) provided facing each other through a gap, a gap is maintained between both side surfaces of the strip coils (5), (5),
A thin and rectangular can (3) in which the upper and lower parts of the winding fixing frame (4) are fitted and fixed, and a refrigerant passage (6) formed between the can (3) and the strip coils (5) and (5). And an end plate (8) provided at both ends of the can (3) in the longitudinal direction,
A canned / synchronous linear motor comprising (8) and a coolant supply port (9A) and a coolant discharge port (9B) provided in the end plates (8) and (8).
材とし、上下のリップ部を、前記キャン(3)の上下部
の内壁に緊密に嵌合した請求項1記載のキャンド・同期
リニアモータ。2. The winding fixing frame (4) is made of an H-shaped good heat conductive material, and the upper and lower lip portions are tightly fitted to the inner walls of the upper and lower portions of the can (3). Canned and synchronous linear motor.
その頂部と底部にヒートシンク(17、17)部を形成
し、前記キャン(3)の上下部にバルジ部(18、1
8)を設け、このバルジ部(18、18)に上記ヒート
シンク(17、17)部を嵌合した請求項1記載のキャ
ンド・同期リニアモータ。3. The winding fixing frame (4) is made of a good heat conducting material, and heat sinks (17, 17) are formed on the top and bottom of the winding fixing frame (4), and bulge parts (18, 1) are formed on the top and bottom of the can (3).
8. The canned synchronous linear motor according to claim 1, further comprising: 8), wherein the bulge portion (18, 18) is fitted with the heat sink (17, 17) portion.
ル(5)、(5)の側面に密着させた請求項3記載のキ
ャンド・同期リニアモータ。4. The canned / synchronous linear motor according to claim 3, wherein the side surface of the can (3) is brought into close contact with the side surfaces of the strip coils (5), (5).
げた良熱伝導材の薄板とし、V字状の外側・両側面に前
記帯状コイル(5)、(5)もしくはV字状の外側・両
側面および内側・両側面に前記帯状コイル(5)、
(5)、(5)、(5)を貼付した請求項1記載のキャ
ンド・同期リニアモータ。5. The winding fixing frame (4) is a V-shaped thin plate made of a good heat conductive material, and the strip-shaped coils (5), (5) or V-shaped on the outer and side surfaces of the V-shaped structure. The strip-shaped coil (5) on the outer side and both side surfaces and the inner side and both side surfaces
The canned / synchronous linear motor according to claim 1, wherein (5), (5) and (5) are attached.
げた良熱伝導材の薄板とし、X字状の外側・両側面に、
帯状コイル(5)、(5)をX字の側面に合わせ折り曲
げ、貼付した請求項1記載のキャンド・同期リニアモー
タ。6. The winding fixing frame (4) is bent in an X shape to be a thin plate of a good heat conducting material, and the X shape is formed on the outer side and both side surfaces.
The canned / synchronous linear motor according to claim 1, wherein the strip-shaped coils (5) and (5) are bent and attached to the X-shaped side surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP284193U JPH0641381U (en) | 1992-09-09 | 1993-01-08 | Canned / Synchronous linear motor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6981192 | 1992-09-09 | ||
JP4-69811 | 1992-09-09 | ||
JP284193U JPH0641381U (en) | 1992-09-09 | 1993-01-08 | Canned / Synchronous linear motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0641381U true JPH0641381U (en) | 1994-05-31 |
Family
ID=26336315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP284193U Pending JPH0641381U (en) | 1992-09-09 | 1993-01-08 | Canned / Synchronous linear motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0641381U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004004100A1 (en) * | 2002-07-01 | 2004-01-08 | Thk Co., Ltd. | Drive guide device |
US7345384B2 (en) | 2001-11-30 | 2008-03-18 | Kabushiki Kaisha Yaskawa Denki | Linear motor armature and linear motor |
US7946024B2 (en) | 2003-07-28 | 2011-05-24 | Sodick Co., Ltd. | Method of manufacturing a can assembly of an enhanced coreless alternating current linear motor |
KR20230064888A (en) * | 2021-11-04 | 2023-05-11 | 세메스 주식회사 | Linear drive |
-
1993
- 1993-01-08 JP JP284193U patent/JPH0641381U/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7345384B2 (en) | 2001-11-30 | 2008-03-18 | Kabushiki Kaisha Yaskawa Denki | Linear motor armature and linear motor |
WO2004004100A1 (en) * | 2002-07-01 | 2004-01-08 | Thk Co., Ltd. | Drive guide device |
US7946024B2 (en) | 2003-07-28 | 2011-05-24 | Sodick Co., Ltd. | Method of manufacturing a can assembly of an enhanced coreless alternating current linear motor |
KR20230064888A (en) * | 2021-11-04 | 2023-05-11 | 세메스 주식회사 | Linear drive |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5292707B2 (en) | Moving magnet type linear motor | |
US20220045578A1 (en) | Rotating electrical machine | |
US7176593B2 (en) | Actuator coil cooling system | |
TWI271019B (en) | Can type linear motor armature and can type linear motor | |
JP3478084B2 (en) | Linear motor | |
JPH0641381U (en) | Canned / Synchronous linear motor | |
CN111934461B (en) | Double-layer full-pitch winding coreless linear permanent magnet synchronous motor | |
JP2003309963A (en) | Cooling apparatus for linear slider | |
JP2585818Y2 (en) | Stator for canned linear motor | |
JP2004312877A (en) | Canned linear motor armature and canned linear motor | |
JPH11243677A (en) | Coaxial linear motor | |
JPH10323012A (en) | Linear motor | |
JP2008220020A (en) | Movable magnet type linear motor | |
JP2505857B2 (en) | Movable magnet type multi-phase linear motor | |
JP2524103Y2 (en) | Synchronous linear motor | |
US6927506B2 (en) | Low loss reciprocating electromagnetic device | |
JP3661978B2 (en) | Moving coil linear motor | |
JPH0662786U (en) | Synchronous linear motor | |
JP6677048B2 (en) | Moving coil type linear motor | |
JPH11127569A (en) | Linear motor | |
CN215528729U (en) | Spiral warped sheet type multi-turn winding cooling device | |
JP2000245130A (en) | Moving-coil linear motor | |
JP3838314B2 (en) | Moving coil linear motor | |
JP2004312869A (en) | Linear motor | |
JP4380192B2 (en) | Permanent magnet array for linear motor and linear motor using the same |