JP2000244114A - Manufacture of build-up multilayer wiring board - Google Patents

Manufacture of build-up multilayer wiring board

Info

Publication number
JP2000244114A
JP2000244114A JP4480599A JP4480599A JP2000244114A JP 2000244114 A JP2000244114 A JP 2000244114A JP 4480599 A JP4480599 A JP 4480599A JP 4480599 A JP4480599 A JP 4480599A JP 2000244114 A JP2000244114 A JP 2000244114A
Authority
JP
Japan
Prior art keywords
insulating resin
resin layer
cured
semi
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4480599A
Other languages
Japanese (ja)
Inventor
Takeshi Koizumi
健 小泉
Hiroaki Fujiwara
弘明 藤原
Shoichi Fujimori
正一 藤森
Yoshiaki Ezaki
義昭 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4480599A priority Critical patent/JP2000244114A/en
Publication of JP2000244114A publication Critical patent/JP2000244114A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement a method of manufacturing a build-up multilayer wiring board, which facilitates the formation of fine circuits, owing not only to the good filling property of an insulating resin into spaces between the fine circuits but also to the fact that an insulating resin layer can be formed uniformly and with a high degree of surface smoothness. SOLUTION: A liquid insulating resin is applied to the surface of a circuit board 2 on which circuits 1 are formed and is heated to thereby form a half- cured insulating resin layer 3, whose minimum melting viscosity is 100-30,000 ps at 130 deg.C. Then, a sheet material 4 is superposed on the layer 3, and the resulting board 2 is molded by thermal compression. When the liquid insulating resin is applied, spaces between the circuits 1 can easily be mode to fill with the insulating resin, and the spaces between the circuits 1 can be easily filled with the insulating resin also by taking advantage of the flow of the resin, when the half-cured layer 3 is molded by thermal compression. Moreover, the thermal compression molding via the material 4 allows the layer 3 to be formed uniformly and with high degree of surface smoothness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビルドアップ工法
による多層配線板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer wiring board by a build-up method.

【0002】[0002]

【従来の技術】電子機器、電気機器は、携帯電話や携帯
端末(PDA)などに代表されるように、小型化や軽量
化が進んでいる。そしてこれらに用いられる多層配線板
としては、ビルドアップ多層配線板によって高密度化、
小型化、薄型化が進められてきた。
2. Description of the Related Art Electronic devices and electric devices have been reduced in size and weight as represented by mobile phones and personal digital assistants (PDAs). And as the multilayer wiring board used for these, the density is increased by the build-up multilayer wiring board,
Miniaturization and thinning have been promoted.

【0003】ビルドアップ多層配線板を製造する方法と
しては、各種の方法が開発されている。例えば、銅箔な
どの金属箔の片面に半硬化状態の熱硬化性樹脂を設けて
形成した樹脂付き金属箔を用い、表面に回路が形成され
た回路基板の表面にこの樹脂付き金属箔を樹脂の側で重
ね、これを加熱加圧成形することによって積層した後
に、金属箔をエッチング加工して回路を形成し、必要に
応じてこれを繰り返してさらに多重回路を形成する方法
がある。また、特開平9−260841号公報等にみら
れるような、表面に回路が形成された回路基板の表面に
熱硬化性の液状絶縁樹脂を塗工し、これを加熱・硬化さ
せて絶縁樹脂層を形成した後に、この硬化した絶縁樹脂
層の上に無電解メッキ及び電解メッキによって回路を形
成し、必要に応じてこれを繰り返してさらに多重回路を
形成する方法がある。
Various methods have been developed for producing a build-up multilayer wiring board. For example, using a resin-coated metal foil formed by providing a semi-cured thermosetting resin on one side of a metal foil such as a copper foil, and applying the resin-coated metal foil to the surface of a circuit board having a circuit formed on the surface. Then, after laminating by heating and pressing, the metal foil is etched to form a circuit, and this is repeated as necessary to further form a multiplex circuit. Further, a thermosetting liquid insulating resin is applied to the surface of a circuit board having a circuit formed on the surface as described in Japanese Patent Application Laid-Open No. 9-260841, and this is heated and cured to form an insulating resin layer. Is formed, a circuit is formed on the cured insulating resin layer by electroless plating and electrolytic plating, and this is repeated as necessary to further form a multiple circuit.

【0004】[0004]

【発明が解決しようとする課題】しかし、前者の樹脂付
き金属箔を用いる方法では、金属箔に設けられた樹脂は
半硬化状態であるので、加熱加圧成形の際の流動性が低
く、微細回路間への充填性が悪いという問題があり、ま
た金属箔に設けられた樹脂は厚みが一定であるために、
この樹脂で回路基板の表面に形成される絶縁樹脂層は回
路基板の表面の回路によって膜厚を一定に調整すること
が困難であり、この結果、絶縁樹脂層の表面に凹凸が生
じて金属箔による微細回路の形成が困難になるという問
題がある。また、後者の回路基板の表面に液状絶縁樹脂
を塗工して硬化させる方法では、回路基板の表面の回路
によって塗工される厚みに凹凸が生じ、形成される絶縁
樹脂層の表面に凹凸が形成されて、絶縁樹脂層の表面に
メッキによる微細回路を形成することが困難になるとい
う問題がある。
However, in the former method using a metal foil with a resin, since the resin provided on the metal foil is in a semi-cured state, the fluidity at the time of heat and pressure molding is low, and the fineness is small. There is a problem that the filling between circuits is poor, and the resin provided on the metal foil has a constant thickness,
It is difficult to adjust the film thickness of the insulating resin layer formed on the surface of the circuit board with the resin by a circuit on the surface of the circuit board. However, there is a problem that it is difficult to form a fine circuit by the above method. In the latter method of applying and curing a liquid insulating resin on the surface of a circuit board, unevenness occurs in the thickness applied by the circuit on the surface of the circuit board, and the unevenness occurs on the surface of the formed insulating resin layer. Thus, there is a problem that it is difficult to form a fine circuit by plating on the surface of the insulating resin layer.

【0005】本発明は上記の点に鑑みてなされたもので
あり、微細回路間への絶縁樹脂の充填性が高く、しかも
絶縁樹脂層を均一に且つ表面平滑性高く形成することが
できて微細回路の形成が容易になるビルドアップ多層配
線板の製造方法を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a high filling property of insulating resin between fine circuits, and can form an insulating resin layer uniformly and with high surface smoothness. It is an object of the present invention to provide a method for manufacturing a build-up multilayer wiring board in which a circuit can be easily formed.

【0006】[0006]

【課題を解決するための手段】本発明に係るビルドアッ
プ多層配線板の製造方法は、表面に回路1が形成された
回路基板2の表面に液状絶縁樹脂を塗工すると共に加熱
して130℃における最低溶融粘度が100ps〜30
000psの半硬化状態の絶縁樹脂層3を形成し、次い
でこの絶縁樹脂層3上にシート材4を重ねて加熱加圧成
形することを特徴とするものである。
According to a method of manufacturing a build-up multilayer wiring board according to the present invention, a liquid insulating resin is applied to the surface of a circuit board 2 having a circuit 1 formed on the surface and heated to 130.degree. The minimum melt viscosity at 100ps-30
It is characterized in that a semi-hardened insulating resin layer 3 of 000 ps is formed, and then a sheet material 4 is superimposed on the insulating resin layer 3 and is subjected to heat and pressure molding.

【0007】また請求項2の発明は、液状絶縁樹脂とし
て粘度が10cps〜1000psのものを用いること
を特徴とするものである。
According to a second aspect of the present invention, a liquid insulating resin having a viscosity of 10 cps to 1000 ps is used.

【0008】また請求項3の発明は、絶縁樹脂層3の半
硬化状態が、170℃における硬化時間が1分00秒〜
10分00秒であることを特徴とするものである。
According to a third aspect of the present invention, in the semi-cured state of the insulating resin layer 3, the curing time at 170 ° C. is from 1 minute and 00 seconds.
10 minutes and 00 seconds.

【0009】また請求項4の発明は、液状絶縁樹脂の塗
工方法が、カーテンコーター、ダイコーター、ディッ
プ、ロールコーター、スクリーン印刷による方法から選
ばれることを特徴とするものである。
According to a fourth aspect of the present invention, the method for applying the liquid insulating resin is selected from a curtain coater, a die coater, a dip, a roll coater, and a screen printing method.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0011】回路基板2としては、ガラス布基材エポキ
シ樹脂積層板など、電気絶縁性の樹脂積層板を基板5と
するものを用いることができるものであり、回路基板2
の表面には積層した銅箔などの金属箔のエッチング加工
や、無電解銅メッキ・電解銅メッキなど金属メッキによ
って、図1(a)に示すように回路1が形成してある。
As the circuit board 2, a board having an electrically insulating resin laminate such as a glass cloth base epoxy resin laminate as the board 5 can be used.
As shown in FIG. 1 (a), a circuit 1 is formed on the surface by etching metal foils such as laminated copper foils and metal plating such as electroless copper plating and electrolytic copper plating.

【0012】そしてまず、この回路基板2の回路1を形
成した表面に液状の絶縁樹脂3aを図1(b)のように
塗工する。この液状絶縁樹脂3aとしては、特に限定さ
れるものではないが、エポキシ樹脂など熱硬化性樹脂の
ワニスを用いることができる。液状絶縁樹脂3aの塗工
方法としては、塗工膜厚の均一性が良好な方法が好まし
く、フローコーターを用いた方法、ダイコーターを用い
た方法、ディップ法、ロールコーターを用いた方法、ス
クリーン印刷法を採用することができる。これらの方法
で液状絶縁樹脂3aを塗工することによって、液状絶縁
樹脂3aの均一な塗布が容易になると共に、液状絶縁樹
脂3aによって形成される絶縁樹脂層3の膜厚の細かな
調整が容易になるものである。
First, a liquid insulating resin 3a is applied to the surface of the circuit board 2 on which the circuit 1 is formed, as shown in FIG. 1 (b). The liquid insulating resin 3a is not particularly limited, but a varnish of a thermosetting resin such as an epoxy resin can be used. As a method for applying the liquid insulating resin 3a, a method having good uniformity of the coating film thickness is preferable, and a method using a flow coater, a method using a die coater, a dip method, a method using a roll coater, a screen, Printing methods can be employed. By applying the liquid insulating resin 3a by these methods, uniform application of the liquid insulating resin 3a is facilitated and fine adjustment of the film thickness of the insulating resin layer 3 formed by the liquid insulating resin 3a is also facilitated. It becomes something.

【0013】液状絶縁樹脂3aはその流動性によって回
路1の微細な隙間にも容易に流れ込むので、微細回路間
への充填性が高いものである。ここで、液状絶縁樹脂3
aは塗工時の粘度が10cps〜1000psのものを
用いるのが好ましい。液状絶縁樹脂3aの粘度が10c
ps未満であると、微細回路1間への充填性は高いが、
流れが大きくなり過ぎて形成される絶縁樹脂層3の膜厚
の調整が困難になる。逆に液状絶縁樹脂3aの粘度が1
000psを超えると、流動性が悪くなって微細回路1
間への充填性が低下し、液状絶縁樹脂3aによって形成
される絶縁樹脂層3と回路1との間に空間が生じてボイ
ドが発生し易くなる。尚、液状絶縁樹脂3aをスクリー
ン印刷で塗工する場合には、液状絶縁樹脂3aの粘度は
50ps〜1000psの範囲であることが好ましい。
The liquid insulating resin 3a easily flows into the minute gaps of the circuit 1 due to its fluidity, so that the filling property between the fine circuits is high. Here, the liquid insulating resin 3
It is preferable to use a having a viscosity of 10 cps to 1000 ps during coating. The viscosity of the liquid insulating resin 3a is 10c
If it is less than ps, the filling property between the fine circuits 1 is high,
The flow becomes too large and it becomes difficult to adjust the thickness of the insulating resin layer 3 formed. Conversely, the viscosity of the liquid insulating resin 3a is 1
If the flow rate exceeds 000 ps, the fluidity becomes poor and the fine circuit 1
The space filling property is reduced, and a space is generated between the insulating resin layer 3 formed by the liquid insulating resin 3a and the circuit 1, and voids are easily generated. When the liquid insulating resin 3a is applied by screen printing, the viscosity of the liquid insulating resin 3a is preferably in the range of 50 ps to 1000 ps.

【0014】上記のように回路基板2の表面に液状絶縁
樹脂3aを塗布した後、加熱してこの液状絶縁樹脂3a
を半硬化させ、回路基板2の表面に絶縁樹脂層3を形成
する。この半硬化の状態は、加熱温度や加熱時間を調整
することによって、130℃における最低溶融粘度が1
00ps〜30000psになるように設定されるもの
である。ここで、130℃における最低溶融粘度とは、
樹脂を130℃で加熱することによって溶融粘度は時間
と共に変化するが、その溶融粘度のうち最も低い数値の
溶融粘度をいう。そして絶縁樹脂層3の半硬化状態が、
130℃における最低溶融粘度が30000psを超え
るものであると、後述の加熱加圧成形の際の樹脂の流動
性が悪くなって、微細回路1間への充填性が低下し、液
状絶縁樹脂3aによって形成される絶縁樹脂層3と回路
1との間に空間が生じてボイドが発生し易くなり、また
加熱加圧成形後の硬化した絶縁樹脂層3の表面の平坦度
が低くなる。さらに130℃における最低溶融粘度が3
0000psを超えるときには、絶縁樹脂層3の半硬化
が進みすぎており、後述のようにシート材4として銅箔
などの金属箔を用いて金属箔4aを絶縁樹脂層3で積層
する際に、金属箔4aと絶縁樹脂層3との密着性が低下
するおそれがある。また絶縁樹脂層3の半硬化状態が、
130℃における最低溶融粘度が100ps未満である
と、半硬化の進行が不十分であり、後述の加熱加圧成形
の際に樹脂流れが大きくなり過ぎ、絶縁樹脂層3の膜厚
の調整が困難になる。
After the liquid insulating resin 3a is applied to the surface of the circuit board 2 as described above, the liquid insulating resin 3a is heated and heated.
Is semi-cured to form an insulating resin layer 3 on the surface of the circuit board 2. By adjusting the heating temperature and the heating time, the semi-cured state is such that the minimum melt viscosity at 130 ° C. is 1
It is set to be 00 ps to 30000 ps. Here, the minimum melt viscosity at 130 ° C.
When the resin is heated at 130 ° C., the melt viscosity changes with time. The melt viscosity is the lowest value among the melt viscosities. And the semi-cured state of the insulating resin layer 3 is
If the minimum melt viscosity at 130 ° C. exceeds 30,000 ps, the fluidity of the resin at the time of hot press molding described below deteriorates, the filling property between the fine circuits 1 decreases, and the liquid insulating resin 3a causes A space is formed between the formed insulating resin layer 3 and the circuit 1 to easily cause voids, and the surface flatness of the cured insulating resin layer 3 after the heat and pressure molding is reduced. Furthermore, the minimum melt viscosity at 130 ° C. is 3
When the thickness exceeds 0000 ps, the semi-curing of the insulating resin layer 3 is excessively advanced, and when the metal foil 4a is laminated on the insulating resin layer 3 using a metal foil such as a copper foil as the sheet material 4 as described later, There is a possibility that the adhesion between the foil 4a and the insulating resin layer 3 may be reduced. The semi-cured state of the insulating resin layer 3 is
If the minimum melt viscosity at 130 ° C. is less than 100 ps, the progress of semi-curing is insufficient, and the resin flow becomes too large during the heat-press molding described below, making it difficult to adjust the thickness of the insulating resin layer 3. become.

【0015】また絶縁樹脂層3の半硬化の状態は、17
0℃における硬化時間が1分00秒〜10分00秒であ
ることが好ましい。ここで170℃における硬化時間
は、JIS C 6521に基づいて測定されるもので
ある。そして絶縁樹脂層3の半硬化状態が、170℃に
おける硬化時間が1分00秒未満であると、絶縁樹脂層
3の半硬化が進みすぎており、加熱加圧成形の際の樹脂
の流動性が悪くなって、微細回路1間への充填性が低下
し、液状絶縁樹脂3aによって形成される絶縁樹脂層3
と回路1との間に空間が生じてボイドが発生し易くな
り、また加熱加圧成形後の硬化した絶縁樹脂層3の表面
の平坦度が低くなる。さらに後述のようにシート材4と
して銅箔などの金属箔を用いて金属箔4aを絶縁樹脂層
3で積層する際に、金属箔4aと絶縁樹脂層3との密着
性が低下するおそれがある。また絶縁樹脂層3の半硬化
状態が、170℃における硬化時間が10分00秒を超
えるものであると、半硬化の進行が不十分であり、後述
の加熱加圧成形の際に樹脂流れが大きくなり過ぎ、絶縁
樹脂層3の膜厚の調整が困難になる。
The semi-cured state of the insulating resin layer 3 is 17
The curing time at 0 ° C. is preferably from 1 minute 00 seconds to 10 minutes 00 seconds. Here, the curing time at 170 ° C. is measured based on JIS C 6521. When the semi-cured state of the insulating resin layer 3 is less than 1 minute 00 seconds at 170 ° C., the semi-cured state of the insulating resin layer 3 is excessively advanced, and the fluidity of the resin at the time of heat and pressure molding is increased. Of the insulating resin layer 3 formed by the liquid insulating resin 3a
A space is formed between the circuit board 1 and the circuit 1 so that voids are easily generated, and the flatness of the surface of the cured insulating resin layer 3 after the heat and pressure molding is lowered. Further, when the metal foil 4a is laminated on the insulating resin layer 3 using a metal foil such as a copper foil as the sheet material 4 as described later, the adhesion between the metal foil 4a and the insulating resin layer 3 may be reduced. . Further, when the semi-cured state of the insulating resin layer 3 is such that the curing time at 170 ° C. exceeds 10 minutes 00 seconds, the progress of the semi-curing is insufficient, and the resin flow during the heating / pressing molding described below may be reduced. It becomes too large, and it becomes difficult to adjust the thickness of the insulating resin layer 3.

【0016】上記のように絶縁樹脂液3aを塗工すると
共に加熱して、回路基板2の表面に半硬化状態の絶縁樹
脂層3を形成した後、図1(c)のように絶縁樹脂層3
の表面にシート材4を重ね、平板プレスなどを用いて加
熱加圧成形を行なう(加圧状態を矢印で示す)。加熱加
圧成形の条件は特に限定されるものではないが、圧力2
0〜50kgf/cm2、温度150〜200℃、時間
1.5〜3時間の範囲に設定するのが好ましい。このよ
うに加熱加圧成形することによって、半硬化状態の絶縁
樹脂層3が溶融・硬化して、この硬化した絶縁樹脂層3
で図1(d)のように回路基板2の表面にシート材4を
積層することができるものである。ここで、回路基板2
に液状絶縁樹脂3aを塗工すると共に加熱して半硬化状
態の絶縁樹脂層3を形成した段階では、回路1の存在す
る箇所で盛り上がって、絶縁樹脂層3の膜厚(基板5の
表面からの厚み)は図1(b)(c)のように均一では
ないが、このように加熱加圧成形することによって、図
1(d)に示すように、膜厚は均一になって表面が平滑
な硬化した絶縁樹脂層3を得ることができるものであ
る。
As described above, the insulating resin liquid 3a is applied and heated to form a semi-cured insulating resin layer 3 on the surface of the circuit board 2. Then, as shown in FIG. 3
The sheet material 4 is overlaid on the surface of the sheet, and is heated and pressed using a flat plate press or the like (the pressed state is indicated by an arrow). The conditions for the heat and pressure molding are not particularly limited.
It is preferable to set the temperature in the range of 0 to 50 kgf / cm 2 , the temperature of 150 to 200 ° C., and the time of 1.5 to 3 hours. By performing the heat and pressure molding in this manner, the semi-cured insulating resin layer 3 is melted and cured, and the cured insulating resin layer 3 is cured.
The sheet material 4 can be laminated on the surface of the circuit board 2 as shown in FIG. Here, the circuit board 2
When the insulating resin layer 3 in a semi-cured state is formed by coating and heating the liquid insulating resin 3a on the surface of the substrate, the insulating resin layer 3 swells at a portion where the circuit 1 exists, and the thickness of the insulating resin layer 3 (from the surface of the substrate 5). Is not uniform as shown in FIGS. 1 (b) and 1 (c), but by performing the heat and pressure molding in this way, as shown in FIG. 1 (d), the film thickness becomes uniform and the surface becomes uniform. A smooth cured insulating resin layer 3 can be obtained.

【0017】ここで、シート材4として銅箔などの金属
箔4aを用いる場合には、金属箔4aを硬化した絶縁樹
脂層3を介して回路基板2の表面に積層することができ
るものであり、この金属箔4aをエッチング等してパタ
ーンニング加工することによって、絶縁樹脂層3の表面
に回路を形成することができ、多層に回路を設けたビル
ドアップ多層配線板を得ることができるものである。ま
た上記の操作を繰り返すことによって、更に多重回路構
成にしたビルドアップ多層配線板を得ることができるも
のである。
When a metal foil 4a such as a copper foil is used as the sheet material 4, the metal foil 4a can be laminated on the surface of the circuit board 2 via the cured insulating resin layer 3. By performing patterning by etching or the like of the metal foil 4a, a circuit can be formed on the surface of the insulating resin layer 3 and a build-up multilayer wiring board provided with multilayer circuits can be obtained. is there. Further, by repeating the above operation, it is possible to obtain a build-up multilayer wiring board having a further multiplex circuit configuration.

【0018】また、シート材4として離型シートを用い
る場合には、加熱加圧成形の後に離型シートを硬化した
絶縁樹脂層3の表面から剥離し、この硬化した絶縁樹脂
層3の表面に無電解銅メッキや電解銅メッキなどを施す
ことによって、絶縁樹脂層3の表面に回路を形成するこ
とができ、多層に回路を設けたビルドアップ多層配線板
を得ることができるものである。また上記の操作を繰り
返すことによって、更に多重回路構成にしたビルドアッ
プ多層配線板を得ることができるものである。
In the case where a release sheet is used as the sheet material 4, the release sheet is peeled off from the cured surface of the insulating resin layer 3 after the heat and pressure molding, and the surface of the cured insulating resin layer 3 is removed. By applying electroless copper plating, electrolytic copper plating, or the like, a circuit can be formed on the surface of the insulating resin layer 3 and a build-up multilayer wiring board having multiple circuits can be obtained. Further, by repeating the above operation, it is possible to obtain a build-up multilayer wiring board having a further multiplex circuit configuration.

【0019】そして上記のように絶縁樹脂層3の表面に
回路を形成するにあたって、絶縁樹脂層3は膜厚が均一
であると共に表面が平滑であるので、微細なファインパ
ターンで回路を形成することが容易になるものである。
In forming a circuit on the surface of the insulating resin layer 3 as described above, the insulating resin layer 3 has a uniform film thickness and a smooth surface. Is easier.

【0020】[0020]

【実施例】以下本発明を実施例によって具体的に説明す
る。
The present invention will be described below in detail with reference to examples.

【0021】(実施例1)厚み12μmの銅箔を両面に
張ったエポキシ樹脂ガラス基材積層板(松下電工株式会
社製「R1766T」)を用い、両面の銅箔を全面エッ
チングした後に、セミアディティブ法で厚み35μmの
銅めっきによる回路1を両面に設けて回路基板2を作製
した。回路1の形状は導体幅500μm、導体間隔50
0μmのくし型に形成した。そしてまず、この回路基板
2を有機酸系エッチング液(メック株式会社製「CZ−
5452」)で処理し、回路1の表面を2μmエッチン
グするソフトエッチングを施して回路1の表面を粗面化
処理した。
(Example 1) Using an epoxy resin glass substrate laminate ("R1766T" manufactured by Matsushita Electric Works Co., Ltd.) having a copper foil having a thickness of 12 µm on both sides, the copper foils on both sides were entirely etched and then semi-additive. A circuit board 2 was prepared by providing a circuit 1 of copper plating with a thickness of 35 μm on both sides by the method. The circuit 1 has a conductor width of 500 μm and a conductor interval of 50 μm.
It was formed into a 0 μm comb. First, this circuit board 2 is coated with an organic acid-based etching solution (“CZ-
5452 "), and the surface of the circuit 1 was roughened by performing soft etching for etching the surface of the circuit 1 by 2 μm.

【0022】次に、回路基板1の片側の表面に液状絶縁
樹脂3aをダイコーターから80μmの厚みで押し出し
て塗工した(図1(b)参照)。ここで、液状絶縁樹脂
3aとしては、多官能エポキシ樹脂(三井化学株式会社
製「VG3101M80」)50重量部、臭素化エポキ
シ樹脂(三井化学株式会社製「VF2803M80」)
150重量部、臭素化ビスフェノールA型エポキシ樹脂
(東都化成株式会社製「YDB400」)40重量部、
硬化剤(イハラケミカル工業株式会社製「キュアハード
MED」)40重量部、硬化促進剤(四国化成株式会社
製「2E4MZ−CN」)0.5重量部、フッ素系界面
活性剤(住友スリーエム株式会社製「FC430」)
0.5重量部及び、溶剤としてN,N−ジメチルホルム
アミド70重量部、1,2−メトキシプロパノール20
重量部の配合のエポキシ樹脂ワニスを用いた。この液状
絶縁樹脂3aの粘度は150cpsであった。このよう
に回路基板1の片側の表面に液状絶縁樹脂3aをダイコ
ーターで塗工して110℃で20分間乾燥した後、さら
に回路基板1の他方の片側の表面にも液状絶縁樹脂3a
を同様に塗工・乾燥した。そして回路基板1を140℃
で21分間加熱することによって、回路基板1の表面に
半硬化状態の絶縁樹脂層3を形成した。この絶縁樹脂層
3の半硬化状態は、130℃における最低溶融粘度が1
000psであり、また170℃での硬化時間が4分0
0秒であった。
Next, a liquid insulating resin 3a was applied to one surface of the circuit board 1 by extrusion from a die coater to a thickness of 80 μm (see FIG. 1B). Here, as the liquid insulating resin 3a, 50 parts by weight of a polyfunctional epoxy resin (“VG3101M80” manufactured by Mitsui Chemicals, Inc.) and a brominated epoxy resin (“VF2803M80” manufactured by Mitsui Chemicals, Inc.)
150 parts by weight, 40 parts by weight of a brominated bisphenol A type epoxy resin (“YDB400” manufactured by Toto Kasei Co., Ltd.)
40 parts by weight of a curing agent (“Cure Hard MED” manufactured by Ihara Chemical Industry Co., Ltd.), 0.5 parts by weight of a curing accelerator (“2E4MZ-CN” manufactured by Shikoku Chemicals Co., Ltd.), a fluorine-based surfactant (Sumitomo 3M Limited) "FC430"
0.5 parts by weight, 70 parts by weight of N, N-dimethylformamide as a solvent, 1,2-methoxypropanol 20
An epoxy resin varnish in a weight part mixture was used. The viscosity of the liquid insulating resin 3a was 150 cps. After the liquid insulating resin 3a is coated on one surface of the circuit board 1 by a die coater and dried at 110 ° C. for 20 minutes, the liquid insulating resin 3a is further coated on the other surface of the circuit board 1.
Was similarly coated and dried. Then, the circuit board 1 is heated to 140 ° C
For 21 minutes to form a semi-cured insulating resin layer 3 on the surface of the circuit board 1. The semi-cured state of the insulating resin layer 3 has a minimum melt viscosity at 130 ° C. of 1
000 ps and a curing time at 170 ° C. of 4 minutes 0
It was 0 seconds.

【0023】次に、この半硬化状態の絶縁樹脂層3の表
面に厚み12μmの銅箔3a(古河サーキットフォイル
株式会社製「GT−S」)を重ね、170℃、30kg
/cm2、90分の条件で真空プレス機によって加熱加
圧成形し、絶縁樹脂層3を硬化させると共に銅箔3aを
積層した(図1(d)参照)。成形終了後、更に絶縁樹
脂層3を完全に硬化させるために、200℃の乾燥機で
120分間加熱した。
Next, a copper foil 3a having a thickness of 12 μm (“GT-S” manufactured by Furukawa Circuit Foil Co., Ltd.) is overlaid on the surface of the semi-cured insulating resin layer 3 at 170 ° C. and 30 kg.
The resin was molded under heat and pressure by a vacuum press under the conditions of 90 cm / cm 2 and 90 minutes to cure the insulating resin layer 3 and laminate the copper foil 3a (see FIG. 1D). After completion of the molding, in order to further completely cure the insulating resin layer 3, the insulating resin layer 3 was heated for 120 minutes by a drier at 200 ° C.

【0024】(実施例2)液状絶縁樹脂3aの塗工後の
加熱温度と加熱時間を調整することによって、130℃
における最低溶融粘度が100psの半硬化状態になる
ようにして、半硬化状態の絶縁樹脂層3を形成した。こ
の絶縁樹脂層3は170℃での硬化時間が7分30秒で
あった。その他は、実施例1と同様にした。
(Example 2) By adjusting the heating temperature and the heating time after the application of the liquid insulating resin 3a,
The semi-cured insulating resin layer 3 was formed in such a manner that the minimum melt viscosity in the above was in a semi-cured state of 100 ps. This insulating resin layer 3 had a curing time at 170 ° C. of 7 minutes and 30 seconds. Others were the same as Example 1.

【0025】(実施例3)液状絶縁樹脂3aの塗工後の
加熱温度と加熱時間を調整することによって、130℃
における最低溶融粘度が10000psの半硬化状態に
なるようにして、半硬化状態の絶縁樹脂層3を形成し
た。この絶縁樹脂層3は170℃での硬化時間が2分0
0秒であった。その他は、実施例1と同様にした。
Example 3 The heating temperature and the heating time after the application of the liquid insulating resin 3a were adjusted to 130 ° C.
The semi-cured insulating resin layer 3 was formed in such a manner that the minimum melt viscosity in Example 1 was in a semi-cured state of 10,000 ps. This insulating resin layer 3 has a hardening time at 170 ° C. of 2 minutes 0 minutes.
It was 0 seconds. Others were the same as Example 1.

【0026】(実施例4)液状絶縁樹脂3aの塗工後の
加熱温度と加熱時間を調整することによって、130℃
における最低溶融粘度が30000psの半硬化状態に
なるようにして、半硬化状態の絶縁樹脂層3を形成し
た。この絶縁樹脂層3は170℃での硬化時間が1分1
5秒であった。その他は、実施例1と同様にした。
Example 4 The heating temperature and the heating time after the application of the liquid insulating resin 3a were adjusted to 130 ° C.
The semi-cured insulating resin layer 3 was formed in such a manner that the minimum melt viscosity in the semi-cured state was 30,000 ps. This insulating resin layer 3 has a curing time at 170 ° C. of 1 minute 1 minute.
5 seconds. Others were the same as Example 1.

【0027】(実施例5)銅箔3aの代わりに厚み25
μmの離型シート(東洋メタライジング株式会社製「セ
ラピールQ−1」)を用いるようにした他は、実施例1
と同様にした。
(Embodiment 5) Instead of the copper foil 3a, a thickness of 25
Example 1 except that a μm release sheet (“Therapy Q-1” manufactured by Toyo Metallizing Co., Ltd.) was used.
Same as.

【0028】(比較例1)実施例1と同じ回路基板2を
用い、この回路基板2に実施例1と同じ液状絶縁樹脂3
aを実施例1と同様にしてダイコーターで塗工した。そ
してこれを150℃で50分間加熱して半硬化状態に
し、さらに170℃で120分間加熱することによっ
て、完全に硬化させた絶縁樹脂層を形成した。
(Comparative Example 1) The same circuit board 2 as in Example 1 was used.
a was applied using a die coater in the same manner as in Example 1. This was heated at 150 ° C. for 50 minutes to be in a semi-cured state, and further heated at 170 ° C. for 120 minutes to form a completely cured insulating resin layer.

【0029】(比較例2)実施例1と同じ回路基板2を
用い、また厚み12μmの銅箔の片面に厚み80μmの
エポキシ樹脂の半硬化樹脂層を設けて形成した樹脂付き
銅箔(松下電工株式会社製「R−0880」)を用い
た。そして回路基板2の表面に樹脂付き銅箔を樹脂の側
で重ね、これを170℃、30kg/cm2、90分の
条件で加熱加圧成形し、回路基板2に銅箔を積層した。
(Comparative Example 2) A resin-coated copper foil (Matsushita Electric Works) using the same circuit board 2 as in Example 1 and providing a semi-cured resin layer of 80 μm thick epoxy resin on one side of a 12 μm thick copper foil “R-0880” manufactured by Co., Ltd.) was used. Then, a copper foil with resin was laminated on the surface of the circuit board 2 on the resin side, and this was heated and pressed under the conditions of 170 ° C., 30 kg / cm 2 and 90 minutes, and the copper foil was laminated on the circuit board 2.

【0030】(比較例3)液状絶縁樹脂3aの塗工後の
加熱温度と加熱時間を調整することによって、130℃
における最低溶融粘度が50psの半硬化状態になるよ
うにして、半硬化状態の絶縁樹脂層3を形成した。この
絶縁樹脂層3は170℃での硬化時間が11分00秒で
あった。その他は、実施例1と同様にした。
(Comparative Example 3) The heating temperature and the heating time after the application of the liquid insulating resin 3a were adjusted to 130 ° C.
The semi-cured insulating resin layer 3 was formed such that the minimum melt viscosity in the above was in a semi-cured state of 50 ps. The curing time of this insulating resin layer 3 at 170 ° C. was 11 minutes and 00 seconds. Others were the same as Example 1.

【0031】(比較例4)液状絶縁樹脂3aの塗工後の
加熱温度と加熱時間を調整することによって、130℃
における最低溶融粘度が50000psの半硬化状態に
なるようにして、半硬化状態の絶縁樹脂層3を形成し
た。この絶縁樹脂層3は170℃での硬化時間が0分4
5秒であった。その他は、実施例1と同様にした。
(Comparative Example 4) The heating temperature and the heating time after application of the liquid insulating resin 3a were adjusted to 130 ° C.
The semi-cured insulating resin layer 3 was formed in such a manner that the minimum melt viscosity in the above was in a semi-cured state of 50,000 ps. This insulating resin layer 3 has a curing time at 170 ° C. of 0 minutes 4
5 seconds. Others were the same as Example 1.

【0032】上記のように実施例1〜5及び比較例1〜
4で得たビルドアップ多層配線板について、「充填
性」、「平坦度」、「最低樹脂厚」を測定した。これら
の測定は、実施例1〜4及び比較例2〜4のものについ
ては、表面の銅箔をエッチングして除去することによっ
て絶縁樹脂層を露出させ、実施例5のものについては、
離型シートを剥離して絶縁樹脂層を露出させて行ない、
絶縁樹脂層が露出している比較例1のものについてはそ
のまま行なった。そして「充填性」は、回路間への樹脂
の充填性を評価するものであり、回路部分での絶縁樹脂
層の断面をSEM顕微鏡で目視観察し、ボイドがないも
のを「○」、ボイドがあるものを「×」と判定した。
「平坦度」は絶縁樹脂層の表面の平滑性を評価するもの
であり、表面に半径15μm以上の凹凸がないものを
「○」、半径15μm以上の凹凸があるものを「×」と
判定した。「最低樹脂厚」は、加熱加圧成形の際の樹脂
の流れ性を評価するものであり、回路上で絶縁樹脂層が
電気絶縁性を保つのに必要な40μm以上の厚みで存在
するものを「○」、40μm未満のものを「×」と判定
した。これらの結果を表1に示す。
As described above, Examples 1 to 5 and Comparative Examples 1 to
With respect to the build-up multilayer wiring board obtained in 4, the “filling property”, “flatness”, and “minimum resin thickness” were measured. For these measurements, the insulating resin layer was exposed by etching and removing the copper foil on the surface for Examples 1 to 4 and Comparative Examples 2 to 4, and for Example 5,
Remove the release sheet to expose the insulating resin layer
Comparative Example 1 in which the insulating resin layer was exposed was performed as it was. The “filling property” is used to evaluate the filling property of the resin between the circuits. The cross section of the insulating resin layer at the circuit portion is visually observed with a SEM microscope, and those without voids are marked with “○”, Some were judged as "x".
"Flatness" is to evaluate the smoothness of the surface of the insulating resin layer, and those having no irregularities with a radius of 15 μm or more on the surface were judged as “○”, and those having irregularities with a radius of 15 μm or more were judged as “X”. . The “minimum resin thickness” is used to evaluate the flowability of the resin at the time of heat and pressure molding, and it is assumed that the insulating resin layer on the circuit has a thickness of 40 μm or more necessary to maintain electrical insulation. "O", those less than 40 m were judged as "x". Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】表1にみられるように、半硬化の絶縁樹脂
層をその130℃での最低溶融粘度が1000〜300
00psになるように設定した各実施例のものは、「充
填性」、「平坦度」、「最低樹脂厚」のいずれもが良好
であったが、最低溶融粘度が低い比較例3では「最低樹
脂厚」に問題が生じ、最低溶融粘度が高い比較例4では
「充填性」や「平坦度」に問題が生じるものであった。
また液状絶縁樹脂を塗工して完全硬化させる比較例1で
は「平坦度」に問題が生じ、樹脂付き銅箔を用いる比較
例2では「充填性」や「平坦度」に問題が生じるもので
あった。
As shown in Table 1, the semi-cured insulating resin layer had a minimum melt viscosity at 130 ° C. of 1000 to 300.
In each of the examples set to be 00 ps, the “filling property”, the “flatness”, and the “minimum resin thickness” were all good. In Comparative Example 4 having a high minimum melt viscosity, there was a problem in "resin thickness", and there was a problem in "fillability" and "flatness".
In Comparative Example 1 in which a liquid insulating resin is applied and completely cured, a problem occurs in “flatness”, and in Comparative Example 2 using a copper foil with a resin, problems occur in “filling property” and “flatness”. there were.

【0035】[0035]

【発明の効果】上記のように本発明は、表面に回路が形
成された回路基板の表面に液状絶縁樹脂を塗工すると共
に加熱して130℃における最低溶融粘度が100ps
〜30000psの半硬化状態の絶縁樹脂層を形成し、
次いでこの絶縁樹脂層の上にシート材を重ねて加熱加圧
成形するようにしたので、液状絶縁樹脂を塗工する際に
微細回路間に絶縁樹脂を容易に充填させることができる
共に半硬化状態の絶縁樹脂層を加熱加圧成形する際の樹
脂の流動で微細回路間に絶縁樹脂を容易に充填させるこ
とができ、微細回路間への絶縁樹脂の充填性が高いもの
であり、しかもシート材を介した加熱加圧成形によって
絶縁樹脂層を均一に且つ表面平滑性高く形成することが
でき、絶縁樹脂層の表面への微細回路の形成が容易にな
るものである。
As described above, according to the present invention, a liquid insulating resin is applied to the surface of a circuit board having a circuit formed on the surface and heated to obtain a minimum melt viscosity at 130 ° C. of 100 ps.
Form a semi-cured insulating resin layer of ~ 30000ps,
Next, since the sheet material is stacked on this insulating resin layer and heated and pressed, the insulating resin can be easily filled between the fine circuits when applying the liquid insulating resin, and it is in a semi-cured state. The insulating resin layer can be easily filled between the fine circuits by the flow of the resin when the insulating resin layer is heated and pressed, and the filling property of the insulating resin between the fine circuits is high. The insulating resin layer can be formed uniformly and with high surface smoothness by the heat and pressure molding through the substrate, and the formation of a fine circuit on the surface of the insulating resin layer becomes easy.

【0036】また請求項2の発明は、液状絶縁樹脂とし
て粘度が10cps〜1000psのものを用いるよう
にしたので、絶縁樹脂層の膜厚の調整が困難になること
なく回路間に液状絶縁樹脂を容易に充填することができ
るものである。
According to the second aspect of the present invention, since the liquid insulating resin having a viscosity of 10 cps to 1000 ps is used, the liquid insulating resin can be used between the circuits without difficulty in adjusting the thickness of the insulating resin layer. It can be easily filled.

【0037】また請求項3の発明は、絶縁樹脂層の半硬
化状態が、170℃における硬化時間が1分00秒〜1
0分00秒であるので、絶縁樹脂層の膜厚の調整が困難
になることなく加熱加圧成形時に樹脂を良好に流動させ
て回路間に容易に充填することができるものである。
According to a third aspect of the present invention, in the semi-cured state of the insulating resin layer, the curing time at 170 ° C. is from 1 minute 00 seconds to 1 minute.
Since the time is 0 minutes and 00 seconds, the resin can be satisfactorily flowed at the time of the heating and pressing molding without difficulty in adjusting the thickness of the insulating resin layer, and can be easily filled between the circuits.

【0038】また請求項4の発明は、液状絶縁樹脂の塗
工方法が、カーテンコーター、ダイコーター、ディッ
プ、ロールコーター、スクリーン印刷による方法である
ので、均一な膜厚で塗工することができるものである。
According to the fourth aspect of the present invention, since the method of applying the liquid insulating resin is a method using a curtain coater, a die coater, a dip, a roll coater, and screen printing, coating can be performed with a uniform film thickness. Things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示すものであり、
(a)〜(d)はそれぞれ断面図である。
FIG. 1 shows an example of an embodiment of the present invention,
(A)-(d) are sectional views, respectively.

【符号の説明】[Explanation of symbols]

1 回路 2 回路基板 3 絶縁樹脂層 4 シート材 Reference Signs List 1 circuit 2 circuit board 3 insulating resin layer 4 sheet material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤森 正一 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 江崎 義昭 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 5E346 AA06 AA12 AA15 AA38 BB01 CC08 DD02 DD03 EE31 EE35 GG27 GG28 HH11 HH26  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shoichi Fujimori 1048 Kazuma Kadoma, Kadoma, Osaka Prefecture Inside the Matsushita Electric Works Co., Ltd. (72) Inventor Yoshiaki Ezaki 1048 Kadoma Kadoma, Kadoma City, Osaka Pref. F-term (reference) 5E346 AA06 AA12 AA15 AA38 BB01 CC08 DD02 DD03 EE31 EE35 GG27 GG28 HH11 HH26

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面に回路が形成された回路基板の表面
に液状絶縁樹脂を塗工すると共に加熱して130℃にお
ける最低溶融粘度が100ps〜30000psの半硬
化状態の絶縁樹脂層を形成し、次いでこの絶縁樹脂層の
上にシート材を重ねて加熱加圧成形することを特徴とす
るビルドアップ多層配線板の製造方法。
1. A semi-cured insulating resin layer having a minimum melt viscosity at 130 ° C. of 100 ps to 30000 ps is formed by coating a liquid insulating resin on a surface of a circuit board having a circuit formed on the surface and heating the liquid insulating resin. Next, a sheet material is superimposed on the insulating resin layer and heated and pressed to form a multi-layer wiring board.
【請求項2】 液状絶縁樹脂として粘度が10cps〜
1000psのものを用いることを特徴とする請求項1
に記載のビルドアップ多層配線板の製造方法。
2. A liquid insulating resin having a viscosity of 10 cps or more.
2. The method according to claim 1, wherein said one of 1000 ps is used.
3. The method for producing a build-up multilayer wiring board according to 1.).
【請求項3】 絶縁樹脂層の半硬化状態が、170℃に
おける硬化時間が1分00秒〜10分00秒であること
を特徴とする請求項1又は2に記載のビルドアップ多層
配線板の製造方法。
3. The build-up multilayer wiring board according to claim 1, wherein the semi-cured state of the insulating resin layer is a curing time at 170 ° C. of 1 minute to 10 minutes. Production method.
【請求項4】 液状絶縁樹脂の塗工方法が、カーテンコ
ーター、ダイコーター、ディップ、ロールコーター、ス
クリーン印刷による方法から選ばれることを特徴とする
請求項1乃至3のいずれかに記載のビルドアップ多層配
線板の製造方法。
4. The build-up according to claim 1, wherein the method of applying the liquid insulating resin is selected from a method using a curtain coater, a die coater, a dip, a roll coater, and screen printing. A method for manufacturing a multilayer wiring board.
JP4480599A 1999-02-23 1999-02-23 Manufacture of build-up multilayer wiring board Withdrawn JP2000244114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4480599A JP2000244114A (en) 1999-02-23 1999-02-23 Manufacture of build-up multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4480599A JP2000244114A (en) 1999-02-23 1999-02-23 Manufacture of build-up multilayer wiring board

Publications (1)

Publication Number Publication Date
JP2000244114A true JP2000244114A (en) 2000-09-08

Family

ID=12701654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4480599A Withdrawn JP2000244114A (en) 1999-02-23 1999-02-23 Manufacture of build-up multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2000244114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271019A (en) * 2001-03-08 2002-09-20 Ibiden Co Ltd Manufacturing method for laminated wiring board
JP2005268543A (en) * 2004-03-18 2005-09-29 Hitachi Chem Co Ltd Insulating layer and material for forming the same
WO2008099596A1 (en) 2007-02-14 2008-08-21 Sumitomo Bakelite Co., Ltd. Interlayer insulating film having carrier material, and multilayer printed circuit board using the interlayer insulating film
WO2009107357A1 (en) * 2008-02-29 2009-09-03 住友ベークライト株式会社 Solder connecting method, electronic device and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271019A (en) * 2001-03-08 2002-09-20 Ibiden Co Ltd Manufacturing method for laminated wiring board
JP2005268543A (en) * 2004-03-18 2005-09-29 Hitachi Chem Co Ltd Insulating layer and material for forming the same
WO2008099596A1 (en) 2007-02-14 2008-08-21 Sumitomo Bakelite Co., Ltd. Interlayer insulating film having carrier material, and multilayer printed circuit board using the interlayer insulating film
US8637151B2 (en) 2007-02-14 2014-01-28 Sumitomo Bakelite Co., Ltd. Interlayer dielectric film with carrier material and multilayer printed circuit board therewith
WO2009107357A1 (en) * 2008-02-29 2009-09-03 住友ベークライト株式会社 Solder connecting method, electronic device and method for manufacturing same
JPWO2009107357A1 (en) * 2008-02-29 2011-06-30 住友ベークライト株式会社 Solder connection method, electronic device and manufacturing method thereof
US8079141B2 (en) 2008-02-29 2011-12-20 Sumitomo Bakelite Co., Ltd. Electrical connection and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US20040126547A1 (en) Methods for performing substrate imprinting using thermoset resin varnishes and products formed therefrom
JP2006168365A (en) Manufacturing device and method for copper-clad laminate having improved adhesive strength
JP2000244114A (en) Manufacture of build-up multilayer wiring board
JP3674662B2 (en) Wiring board manufacturing method
JPH1154938A (en) Multilayered wiring board
TWI376178B (en) Method for manufacturing printed circuit board
JP2000277875A (en) Smooth surface wiring board and manufacture thereof
JPH1168267A (en) Production of resin sheet and multilayer printed wiring board
JPH0823165A (en) Manufacture of metal cored wiring board using copper foil with insulating bonding agent
JP4012307B2 (en) Manufacturing method of multilayer printed wiring board
JP2002353597A (en) Metal transfer sheet, producing method and wiring circuit board thereof
JP4021501B2 (en) Manufacturing method of multilayer wiring board
JP2000049440A (en) Manufacture of printed wiring multilayer board
JPH1110791A (en) Joining material for manufacture of single metal-applied laminated plate
JPH11214844A (en) Production of multilayer board
JPH10335834A (en) Multilayered wiring board
KR100704917B1 (en) Printed circuit board and the manufacturing method thereof
JPH11274720A (en) Manufacture of multilayer-laminated board
JP2002232137A (en) Manufacturing method of multilayer wiring board
JP2000196234A (en) Multi-layer wiring board
JP2004071827A (en) Method for manufacturing multilayer printed wiring board
JP2000244118A (en) Manufacture of build-up multilayer wiring board
JP2004119734A (en) Circuit transferring insulating sheet and method of manufacturing multilayer wiring substrate using the same
JP2002290036A (en) Method of manufacturing wiring board
JP2000022330A (en) Multilayer interconnection board and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509