JP2000234461A - Electric lock system - Google Patents

Electric lock system

Info

Publication number
JP2000234461A
JP2000234461A JP11037962A JP3796299A JP2000234461A JP 2000234461 A JP2000234461 A JP 2000234461A JP 11037962 A JP11037962 A JP 11037962A JP 3796299 A JP3796299 A JP 3796299A JP 2000234461 A JP2000234461 A JP 2000234461A
Authority
JP
Japan
Prior art keywords
key
magnetic core
magnetic
coil
lock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11037962A
Other languages
Japanese (ja)
Inventor
Osamu Ikemoto
治 池本
Toshihiko Tanaka
俊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11037962A priority Critical patent/JP2000234461A/en
Publication of JP2000234461A publication Critical patent/JP2000234461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electronic lock system which is satisfactorily adaptable to changes of ambient temperature by a method wherein magnetic cores at coil portions of a key and a lock are constructed respectively by winding round or laminating an Fe group soft magnetic alloy sheet in a microcrystalline structure and by applying resin impregnation thereafter. SOLUTION: A key 1 is constructed of a magnetic core, a coil and the like and a lock 11 is constructed of a magnetic core 12, a coil 14, a control element 15 and an actuator 16. A gap 13 is provided at the magnetic core 12 and the key 1 is inserted therein and locking and unlocking are operated with signals transmitted and received by means of magnetic coupling. The magnetic core 12 and the like are made of an Fe group soft magnetic alloy in a microcrystalline structure composed of Fe75.8, Cu1, Si13.5, B7.2 and Nb2.5. The magnetic core 12 is formed by winding round a sheet and with resin impregnation applied by heat treatment and with a gap formed by processing, while the magnetic core of the key 1 is formed by processing into a specified form with sheets laminated and impregnated with resin by heat treatment. The magnetic core made of an Fe group soft magnetic alloy in the microcrystalline structure may be used for both of or one of the key and the lock. Thereby, locking and unlocking can be made stably in any environmental change between an extreme cold and an extreme hot.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気信号によって
施解錠が行われる電気錠システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric lock system in which locking and unlocking are performed by electric signals.

【0002】[0002]

【従来の技術】オフィスビルや雑居ビル等の複数のテナ
ントがある集合ビルや、マンション、ホテル等におい
て、各出入り口に使用される施解錠システムとしては、
一般に、機械的に駆動するシリンダー錠が用いられてい
る。この場合、鍵の紛失、使用者が入れ替わる等の際、
錠及び鍵の交換が必要になるが、錠の交換が煩雑である
とともに、交換に多大な費用が生じ、また交換に時間が
かかるといった問題があった。また、管理者等がスペア
キーやマスターキーを所有し管理する場合においても、
煩雑さが生じていた。
2. Description of the Related Art In an apartment building, a condominium, a hotel, or the like having a plurality of tenants such as an office building and a multi-tenant building, a locking / unlocking system used at each doorway includes:
Generally, a mechanically driven cylinder lock is used. In this case, when the key is lost or the user is replaced,
The exchange of the lock and the key is required, but the exchange of the lock is complicated, the exchange requires a large cost, and the exchange takes time. Also, when an administrator or the like owns and manages a spare key or a master key,
There was complication.

【0003】この機械式の施解錠システムに対し、電気
式の施解錠システムも提案されている。この場合、鍵I
Dを管理することにより、鍵の交換、スペアキー、マス
ターキーの管理は容易である。
[0003] In contrast to this mechanical locking and unlocking system, an electric locking and unlocking system has also been proposed. In this case, the key I
By managing D, key exchange, spare key, and master key management are easy.

【0004】[0004]

【発明が解決しようとする課題】この電気式の施解錠シ
ステムにおいて、鍵と錠との間で信号を伝達させるため
の手段として、電磁結合を用いたものがある。この電磁
結合を行うためには、鍵側にあるコイルと錠側にあるコ
イルとが高効率で結合する必要がある。そのため、コイ
ル用の磁心としては、高透磁率の材料が望まれている。
また、この施解錠システムが使用される環境としては、
室内に限らないため、周囲温度が例えばマイナス20℃
であるとか、プラス40度であるとかというように、使
用される周囲温度幅が広く、その温度範囲で特性が一定
であることが望まれている。
In this electric locking / unlocking system, there is a system using electromagnetic coupling as a means for transmitting a signal between a key and a lock. In order to perform this electromagnetic coupling, it is necessary to couple the coil on the key side and the coil on the lock side with high efficiency. Therefore, a material having high magnetic permeability is desired for a magnetic core for a coil.
In addition, as an environment where this locking and unlocking system is used,
Because it is not limited to indoors, the ambient temperature is, for example, -20 ° C
It is desired that the ambient temperature range to be used is wide and the characteristics are constant in the temperature range, for example, +40 degrees.

【0005】従来の電気式の施解錠システムにおいて
は、コイル用の磁心としてはMnZn系フェライト磁心
が用いられていた。しかし、このMnZn系フェライト
磁心は、これらの要求を必ずしも満足するものではなか
った。
In a conventional electric locking / unlocking system, an MnZn ferrite core has been used as a coil core. However, this MnZn-based ferrite core has not always satisfied these requirements.

【0006】本発明は、上記のことを鑑みて、周囲温度
の変化に対しても良好な特性を有する電気錠システムを
提供することを目的とする。
SUMMARY OF THE INVENTION [0006] In view of the above, an object of the present invention is to provide an electric lock system having good characteristics even when the ambient temperature changes.

【0007】[0007]

【課題を解決するための手段】本発明は、鍵と錠とはそ
れぞれにコイルを有し、該コイルの電磁結合により電気
信号を伝え、施解錠を行う電子錠システムにおいて、前
記鍵及び/又は錠のコイル部分に用いる磁心として、微
結晶構造のFe基軟磁性合金を用いたことを特徴とする
電子錠システムである。
According to the present invention, there is provided an electronic lock system in which a key and a lock each have a coil, and an electric signal is transmitted by electromagnetic coupling of the coil to perform locking and unlocking. An electronic lock system characterized in that an Fe-based soft magnetic alloy having a microcrystalline structure is used as a magnetic core used for a coil portion of the lock.

【0008】[0008]

【発明の実施の形態】本発明によれば、鍵及び/又は錠
のコイル部分に用いる磁心として、微結晶構造のFe基
軟磁性合金を用いることにより、周囲温度の変化に対し
ても良好な特性を有する電子錠システムを構成すること
ができる。
According to the present invention, an Fe-based soft magnetic alloy having a microcrystalline structure is used as a magnetic core for a coil portion of a key and / or a lock, so that the magnetic core has good resistance to changes in ambient temperature. An electronic lock system having characteristics can be configured.

【0009】この微結晶構造のFe基軟磁性合金として
は、 一般式:(Fe1−a
100−x−y−z−α−β−γCuSiM′
αM″βγ(原子%) (ただし、MはCo及び/又はNiであり、M′はN
b,W,Ta,Zr,Hf,Ti及びMoからなる群か
ら選ばれた少なくとも1種の元素,M″はV,Cr,M
n,Al,白金属元素、Sc,Y,希土類元素,Au,
Zn,Sn,Reからなる群から選ばれた少なくとも1
種の元素,XはC,Ge,P,Ga,Sb,In,B
e,Asからなる群から選ばれた少なくとも1種の元素
であり、a,x,y,z,α,β及びγはそれぞれ0≦
a≦0.5,0.1≦x≦3,0≦y≦30,0≦z≦
25,0≦y+z≦35,0.1≦α≦30,0≦β≦
10及び0≦γ≦10を満たす)により表される組成を
有し、組織の少なくとも50%が最大寸法で測定した粒
径の平均が500Å以下の結晶粒で占められ、残部が実
質的に非晶質からなるFe基軟磁性合金を用いることが
できる。このFe基軟磁性合金については、例えば特許
第2573606号公報に開示されている。
The Fe-based soft magnetic alloy having the microcrystalline structure has a general formula: (Fe 1−a M a )
100-xy-z-α-β-γ Cu x Si y B z M ′
α M ″ β X γ (atomic%) (where M is Co and / or Ni, and M ′ is N
b, W, Ta, Zr, Hf, Ti, and at least one element selected from the group consisting of Mo, M ″ is V, Cr, M
n, Al, white metal element, Sc, Y, rare earth element, Au,
At least one selected from the group consisting of Zn, Sn, and Re
X is C, Ge, P, Ga, Sb, In, B
e, at least one element selected from the group consisting of As, and a, x, y, z, α, β, and γ are each 0 ≦
a ≦ 0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦
25, 0 ≦ y + z ≦ 35, 0.1 ≦ α ≦ 30, 0 ≦ β ≦
10 and 0 ≦ γ ≦ 10), wherein at least 50% of the structure is occupied by grains having an average grain size measured at the largest dimension of 500 ° or less, with the balance being substantially non-crystalline. A crystalline Fe-based soft magnetic alloy can be used. This Fe-based soft magnetic alloy is disclosed in, for example, Japanese Patent No. 2573606.

【0010】また、このFe基軟磁性合金は、通常上記
組成となる溶湯を急冷して非晶質合金を得て、これを加
熱し微細な結晶粒を形成する熱処理工程を経て得られ
る。その微結晶構造のFe基軟磁性合金は、既に多くの
報告がなされており、優れた磁気特性を有している。
又、通常薄板状に形成され、それを巻回又は積層した
後、樹脂含浸して磁心を形成すれば良い。又、微結晶構
造のFe基軟磁性合金の粉末を作製し、これを樹脂と合
せ磁心を構成しても良い。
[0010] This Fe-based soft magnetic alloy is usually obtained through a heat treatment step of rapidly cooling a molten metal having the above-mentioned composition to obtain an amorphous alloy and heating it to form fine crystal grains. Many reports have been made on Fe-based soft magnetic alloys having the microcrystalline structure, and they have excellent magnetic properties.
Further, the magnetic core is usually formed in a thin plate shape, wound or laminated, and then impregnated with a resin to form a magnetic core. Alternatively, a powder of an Fe-based soft magnetic alloy having a microcrystalline structure may be prepared and combined with a resin to form a magnetic core.

【0011】本発明は、この微結晶構造のFe基軟磁性
合金のもつ、高透磁率であって、しかも温度変化に対す
る透磁率の変化が小さいという高い温度安定性に着目し
てなされたものであり、これにより、優れた電気錠シス
テムを構成することができるものである。
The present invention has been made by paying attention to the high temperature stability of the Fe-based soft magnetic alloy having a microcrystalline structure, which has a high magnetic permeability and a small change in the magnetic permeability with a change in temperature. Yes, this makes it possible to configure an excellent electric lock system.

【0012】本発明に係る一実施例のFe基微結晶軟磁
性合金のリング状コア(外径104mm、内径76m
m、高さ25mm)と、従来のMnZn系フェライトコ
ア(外径127mm、内径103mm、高さ34mm)
との特性比較を図4に示す。この図4は、23℃のとき
の透磁率に対する各温度の透磁率の変化率を示したもの
である。また、各試料とも100kHzと500kHz
の場合を示す。また、表1に変化率のデータを示す。表
1において、23℃の欄にその時の透磁率の値を示し、
他の温度の欄は、23℃に対するその温度での透磁率の
変化率(%)を示している。
In one embodiment according to the present invention, an Fe-based microcrystalline soft magnetic alloy ring core (outer diameter 104 mm, inner diameter 76 m
m, height 25mm) and conventional MnZn ferrite core (outer diameter 127mm, inner diameter 103mm, height 34mm)
FIG. 4 shows a comparison of the characteristics with FIG. FIG. 4 shows the rate of change of the magnetic permeability at each temperature with respect to the magnetic permeability at 23 ° C. In addition, each sample has 100 kHz and 500 kHz.
The case of is shown. Table 1 shows data on the rate of change. In Table 1, the value of the magnetic permeability at that time is shown in the column of 23 ° C.,
The other temperature column shows the rate of change (%) of the magnetic permeability at that temperature with respect to 23 ° C.

【0013】[0013]

【表1】 [Table 1]

【0014】この図4、表1に示すとおり、Fe基微結
晶軟磁性合金は、高透磁率で、しかも温度変化に対して
透磁率の変化率が極めて小さく、環境温度に対して極め
て安定していることがわかる。
As shown in FIG. 4 and Table 1, the Fe-based microcrystalline soft magnetic alloy has a high magnetic permeability, a very small change rate of the magnetic permeability with a temperature change, and is extremely stable with respect to the environmental temperature. You can see that it is.

【0015】図1、2に本発明に係る一実施例の簡易説
明図を示す。図1が平面図、図2が側面図である。この
実施例は鍵1と錠11からなる。鍵1は、磁心2と、そ
の磁心2に巻回されたコイル3と、コイル3につながる
制御素子4と、電池5とから構成されている。錠11
は、磁心12と、磁心に巻回されたコイル14と、コイ
ルにつながる制御素子15と、制御素子により制御され
る施解錠用のアクチュエータ16とから構成されてい
る。このアクチュエータにより施解錠される構造は適宜
設計できるので省略する。また、錠11側の磁心12に
は、ギャップ13が設けられ、このギャップ部分12に
鍵1が挿入され、鍵1の磁心2の磁路と錠11の磁心1
2の磁路を結合させ、電磁結合により、錠と鍵とで信号
を伝授し、施解錠を行うものである。
FIGS. 1 and 2 are simplified explanatory views of an embodiment according to the present invention. 1 is a plan view and FIG. 2 is a side view. This embodiment comprises a key 1 and a lock 11. The key 1 includes a magnetic core 2, a coil 3 wound around the magnetic core 2, a control element 4 connected to the coil 3, and a battery 5. Lock 11
Is composed of a magnetic core 12, a coil 14 wound around the magnetic core, a control element 15 connected to the coil, and an unlocking actuator 16 controlled by the control element. The structure to be locked and unlocked by the actuator can be appropriately designed, and therefore will be omitted. A gap 13 is provided in the magnetic core 12 on the lock 11 side. The key 1 is inserted into the gap portion 12, and the magnetic path of the magnetic core 2 of the key 1 and the magnetic core 1 of the lock 11 are formed.
The two magnetic paths are coupled, and signals are transmitted between the lock and the key by electromagnetic coupling to perform locking and unlocking.

【0016】この磁心2、12の斜視図を図3に示す。
この磁心2、12は、Fe75.8CuSi13.5
7.2Nb2.5の組成を有し、微結晶構造のFe基
軟磁性合金からなる。磁心12は、幅5mm、厚さ18
μmの薄板を、厚さ3mmに巻いた後、熱処理(530
〜550℃)を行い、樹脂含浸(真空、エポキシ樹脂又
はアクリル樹脂)し、ギャップ加工を施して形成した。
また磁心2は、同様の薄板を積層し、熱処理後、樹脂含
浸し、所定形状に加工して形成した。磁心2は、磁心1
2と同じ磁路断面積を有し、所定の間隔で挿入できる大
きさとした。
FIG. 3 is a perspective view of the magnetic cores 2 and 12.
The magnetic cores 2 and 12 are made of Fe 75.8 Cu 1 Si 13.5
It is composed of a Fe-based soft magnetic alloy having a composition of B 7.2 Nb 2.5 and a microcrystalline structure. The magnetic core 12 has a width of 5 mm and a thickness of 18
After winding a 3 μm thin plate to a thickness of 3 mm, heat treatment (530
To 550 ° C.), resin impregnation (vacuum, epoxy resin or acrylic resin), and gap formation.
The magnetic core 2 was formed by laminating similar thin plates, heat-treating the resin, impregnating the resin, and processing the resin into a predetermined shape. The magnetic core 2 is the magnetic core 1
It has the same magnetic path cross-sectional area as that of No. 2 and has a size that can be inserted at a predetermined interval.

【0017】この実施例によれば、−50℃〜+100
℃において、透磁率の変化が極めて小さく、安定した特
性を得ることができる。これにより、例えば零下40度
といった極寒時、又摂氏60度といった灼熱時であって
も、安定した施解錠を行うことができる。この微結晶F
e基軟磁性合金の磁心は、鍵及び錠の両方に用いること
が好ましいが、いずれか一方のみを微結晶Fe基軟磁性
合金の磁心としても良い。
According to this embodiment, -50.degree. C. to +100
At ℃, the change in magnetic permeability is extremely small, and stable characteristics can be obtained. Thus, stable locking and unlocking can be performed even in extreme cold, for example, at a temperature below 40 degrees Celsius, or even during a burning time, such as 60 degrees Celsius. This microcrystal F
The magnetic core of the e-based soft magnetic alloy is preferably used for both a key and a lock, but only one of them may be a magnetic core of a microcrystalline Fe-based soft magnetic alloy.

【0018】[0018]

【発明の効果】本発明によれば、極寒時から灼熱時にい
たる環境変化の中で、安定した施解錠が可能な電気錠シ
ステムを提供することができるものである。
According to the present invention, it is possible to provide an electric lock system capable of performing stable locking and unlocking in an environmental change from extreme cold to burning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る一実施例を説明する平面図であ
る。
FIG. 1 is a plan view illustrating an embodiment according to the present invention.

【図2】本発明に係る一実施例を説明する側面図であ
る。
FIG. 2 is a side view illustrating an embodiment according to the present invention.

【図3】本発明に係る一実施例の磁心の斜視図である。FIG. 3 is a perspective view of a magnetic core of one embodiment according to the present invention.

【図4】本発明に係るFe基軟磁性合金とフェライトと
の透磁率の温度特性図である。
FIG. 4 is a temperature characteristic diagram of the magnetic permeability between the Fe-based soft magnetic alloy and ferrite according to the present invention.

【符号の説明】[Explanation of symbols]

1 鍵 2、12 磁心 3、14 コイル 4、15 制御素子 5 電池 11 錠 13 ギャップ 16 アクチュエータ DESCRIPTION OF SYMBOLS 1 Key 2, 12 Magnetic core 3, 14 Coil 4, 15 Control element 5 Battery 11 lock 13 Gap 16 Actuator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鍵と錠とはそれぞれにコイルを有し、該
コイルの電磁結合により電気信号を伝え、施解錠を行う
電気錠システムにおいて、前記鍵及び/又は錠のコイル
部分に用いる磁心として、微結晶構造のFe基軟磁性合
金を用いたことを特徴とする電気錠システム。
A key and a lock each have a coil, an electric signal is transmitted by electromagnetic coupling of the coil, and the key is locked and unlocked in an electric lock system for use in a coil portion of the key and / or the lock. An electric lock system using an Fe-based soft magnetic alloy having a microcrystalline structure.
【請求項2】 前記微結晶構造のFe基軟磁性合金が、 一般式:(Fe1−a
100−x−y−z−α−β−γCuSiM′
αM″βγ(原子%) (ただし、MはCo及び/又はNiであり、M′はN
b,W,Ta,Zr,Hf,Ti及びMoからなる群か
ら選ばれた少なくとも1種の元素,M″はV,Cr,M
n,Al,白金属元素、Sc,Y,希土類元素,Au,
Zn,Sn,Reからなる群から選ばれた少なくとも1
種の元素,XはC,Ge,P,Ga,Sb,In,B
e,Asからなる群から選ばれた少なくとも1種の元素
であり、a,x,y,z,α,β及びγはそれぞれ0≦
a≦0.5,0.1≦x≦3,0≦y≦30,0≦z≦
25,0≦y+z≦35,0.1≦α≦30,0≦β≦
10及び0≦γ≦10を満たす)により表される組成を
有し、組織の少なくとも50%が最大寸法で測定した粒
径の平均が500Å以下の結晶粒で占められ、残部が実
質的に非晶質からなるFe基軟磁性合金であることを特
徴とする請求項1記載の電気錠システム。
2. The Fe-based soft magnetic alloy having a microcrystalline structure has a general formula: (Fe 1−a M a )
100-xy-z-α-β-γ Cu x Si y B z M ′
α M ″ β X γ (atomic%) (where M is Co and / or Ni, and M ′ is N
b, W, Ta, Zr, Hf, Ti, and at least one element selected from the group consisting of Mo, M ″ is V, Cr, M
n, Al, white metal element, Sc, Y, rare earth element, Au,
At least one selected from the group consisting of Zn, Sn, and Re
X is C, Ge, P, Ga, Sb, In, B
e, at least one element selected from the group consisting of As, and a, x, y, z, α, β, and γ are each 0 ≦
a ≦ 0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, 0 ≦ z ≦
25, 0 ≦ y + z ≦ 35, 0.1 ≦ α ≦ 30, 0 ≦ β ≦
10 and 0 ≦ γ ≦ 10), wherein at least 50% of the structure is occupied by grains having an average grain size measured at the largest dimension of 500 ° or less, with the balance being substantially non-crystalline. 2. The electric lock system according to claim 1, wherein the electric lock system is made of a crystalline Fe-based soft magnetic alloy.
【請求項3】 前記磁心は、前記Fe基軟磁性合金の薄
板を巻回、又は積層した後、樹脂含浸して構成されてい
ることを特徴とする請求項1又は2に記載の電気錠シス
テム。
3. The electric lock system according to claim 1, wherein the magnetic core is formed by winding or laminating a thin plate of the Fe-based soft magnetic alloy and then impregnating the resin. .
JP11037962A 1999-02-17 1999-02-17 Electric lock system Pending JP2000234461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11037962A JP2000234461A (en) 1999-02-17 1999-02-17 Electric lock system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11037962A JP2000234461A (en) 1999-02-17 1999-02-17 Electric lock system

Publications (1)

Publication Number Publication Date
JP2000234461A true JP2000234461A (en) 2000-08-29

Family

ID=12512200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11037962A Pending JP2000234461A (en) 1999-02-17 1999-02-17 Electric lock system

Country Status (1)

Country Link
JP (1) JP2000234461A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069000A2 (en) * 2002-02-11 2003-08-21 University Of Virginia Patent Foundation Bulk-solidifying high manganese non-ferromagnetic amorphous steel alloys and related method of using and making the same
US7517415B2 (en) 2003-06-02 2009-04-14 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
US7763125B2 (en) 2003-06-02 2010-07-27 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
US9051630B2 (en) 2005-02-24 2015-06-09 University Of Virginia Patent Foundation Amorphous steel composites with enhanced strengths, elastic properties and ductilities
WO2015143799A1 (en) * 2014-03-24 2015-10-01 佛山市川东磁电股份有限公司 Safety anti-theft magnetic lock
USRE47863E1 (en) 2003-06-02 2020-02-18 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069000A2 (en) * 2002-02-11 2003-08-21 University Of Virginia Patent Foundation Bulk-solidifying high manganese non-ferromagnetic amorphous steel alloys and related method of using and making the same
WO2003069000A3 (en) * 2002-02-11 2003-12-24 Univ Virginia Bulk-solidifying high manganese non-ferromagnetic amorphous steel alloys and related method of using and making the same
US7517415B2 (en) 2003-06-02 2009-04-14 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
US7763125B2 (en) 2003-06-02 2010-07-27 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
USRE47863E1 (en) 2003-06-02 2020-02-18 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
US9051630B2 (en) 2005-02-24 2015-06-09 University Of Virginia Patent Foundation Amorphous steel composites with enhanced strengths, elastic properties and ductilities
WO2015143799A1 (en) * 2014-03-24 2015-10-01 佛山市川东磁电股份有限公司 Safety anti-theft magnetic lock

Similar Documents

Publication Publication Date Title
US4268325A (en) Magnetic glassy metal alloy sheets with improved soft magnetic properties
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP2016136605A (en) Permanent magnet and manufacturing method thereof
JPH0734207A (en) Nano-crystal alloy excellent in pulse decay characteristic, choking coil, noise filter using same, and their production
KR102214392B1 (en) Soft magnetic alloy and magnetic device
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JPH0219179B2 (en)
KR20170045995A (en) Soft magnetic alloy
EP0887811A1 (en) Amorphous magnetic material and magnetic core using the same
JPH1171659A (en) Amorphous magnetic material and magnetic core using the same
US5358576A (en) Amorphous materials with improved properties
JP2894561B2 (en) Soft magnetic alloy
JP2000234461A (en) Electric lock system
KR100698606B1 (en) Magnetic glassy alloys for high frequency applications
JP2907271B2 (en) Vitreous alloy with perminbar properties
JPH079057B2 (en) Amorphous alloy magnetic core manufacturing method
WO1991018404A1 (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
JP2000503481A (en) Pulse transformer for U interface based on echo compensation principle
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
JPH08153614A (en) Magnetic core
JP2704157B2 (en) Magnetic parts
US4938267A (en) Glassy metal alloys with perminvar characteristics
JP4851640B2 (en) Amorphous core for accelerator and accelerator using the same