JP2000223772A - Manufacture of optical semiconductor device - Google Patents

Manufacture of optical semiconductor device

Info

Publication number
JP2000223772A
JP2000223772A JP1943899A JP1943899A JP2000223772A JP 2000223772 A JP2000223772 A JP 2000223772A JP 1943899 A JP1943899 A JP 1943899A JP 1943899 A JP1943899 A JP 1943899A JP 2000223772 A JP2000223772 A JP 2000223772A
Authority
JP
Japan
Prior art keywords
diffraction grating
layer
inp
semiconductor layer
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1943899A
Other languages
Japanese (ja)
Other versions
JP4022794B2 (en
JP2000223772A5 (en
Inventor
Mitsuru Egawa
満 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1943899A priority Critical patent/JP4022794B2/en
Publication of JP2000223772A publication Critical patent/JP2000223772A/en
Publication of JP2000223772A5 publication Critical patent/JP2000223772A5/ja
Application granted granted Critical
Publication of JP4022794B2 publication Critical patent/JP4022794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a technique for depositing a semiconductor layer of high quality with excellent reproducibility on a diffraction grating part array, and enable to array a coolerless DFB semiconductor lasers which are different in oscillation wavelength and operated at a high temperature. SOLUTION: A semiconductor layer 2 is deposited on a substrate 1. A diffraction grating part of a plurality of stripes is formed in a local part of the semiconductor layer 2. A spacer layer 3 which fills the diffraction grating part and covers the layer 2 is deposited at a growth temperature of 470 deg.C, and continuously deposited at 470-630 deg.C. In the first deposition of the spacer layer 3, an MOVPE method, wherein In material is organic metal, P material is PH3 or organic P, and the carrier gas is H2, is applied and executed under the condition that the growth speed in the diffraction grating part of the semiconductor layer 2 is DRg (μm/h), the flow rate ratio of the P material to the total flow rate of the carrier gas H2 is FR(%), and a relation of log10FR>=4.4DRg-1.3 is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回折格子を要素の
一つとして構成される分布帰還型(distribut
ed feedback:DFB)半導体レーザのよう
な光半導体装置を製造するのに好適な方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed feedback type in which a diffraction grating is used as one of elements.
The present invention relates to a method suitable for manufacturing an optical semiconductor device such as a semiconductor laser (ed feedback (DFB)).

【0002】[0002]

【従来の技術】通常、DFB半導体レーザは、動作中、
高温になる為、ペルチェ素子を用いてクーリングを行っ
ているが、低コスト化の為、高温で動作するクーラーレ
スDFB半導体レーザの実現が期待されている。
2. Description of the Related Art Normally, a DFB semiconductor laser operates during operation.
Cooling is performed using a Peltier element to increase the temperature, but a coolerless DFB semiconductor laser that operates at a high temperature is expected to reduce the cost.

【0003】その為には、光と回折格子との結合効率を
大きくして、動作電流を低減させなければならないが、
結合効率を大きくするには、基本的に回折格子の深さを
深くする必要がある。
For this purpose, it is necessary to increase the coupling efficiency between the light and the diffraction grating to reduce the operating current.
To increase the coupling efficiency, it is basically necessary to increase the depth of the diffraction grating.

【0004】然しながら、InP基板に形成した回折格
子に於いては、深い回折格子上に良好なInGaAsP
結晶を成長することは難しく、従って、クーラーレスD
FB半導体レーザの実現は極めて困難である。
However, a diffraction grating formed on an InP substrate has a good InGaAsP on a deep diffraction grating.
It is difficult to grow crystals, and therefore, coolerless D
It is extremely difficult to realize an FB semiconductor laser.

【0005】然しながら、本出願人に於いて開発された
先行技術に依れば、回折格子が比較的深くても、InG
aAsP結晶の成長は容易であることが示されている
(要すれば、「特願平10−130771号」、を参
照)。
However, according to the prior art developed by the present applicant, even if the diffraction grating is relatively deep, the InG
It has been shown that the growth of aAsP crystal is easy (refer to Japanese Patent Application No. 10-130771 if necessary).

【0006】図3は先行技術を説明する為のDFB半導
体レーザを表す要部切断側面(縦断面)図である。
FIG. 3 is a sectional side view (longitudinal section) of a main part showing a DFB semiconductor laser for explaining the prior art.

【0007】図に於いて、1はn−InP基板、2はn
−InGaAsP回折格子用半導体層、2Gはn−In
GaAsP回折格子(grating)、3はn−In
Pスペーサ層、4はInGaAsPからなるn側SCH
(separate confinement het
erostructure)層、5はInGaAsPM
QW(multiple quantum well
s)活性層、6はInGaAsPからなるp側SCH
層、7はp−InPクラッド層、8はp−InGaAs
Pキャップ層、9はp−InPカバー層、dg は回折格
子用半導体層2の厚さ、ds はスペーサ層3の厚さをそ
れぞれ示し、また、図の左側に記載した温度は、矢印で
示した範囲の結晶を成長させた際の成長温度である。
尚、図に現れているn−InGaAsP回折格子2Gは
1本分の回折格子部の一部をなすものと考えれば良い。
In the drawing, 1 is an n-InP substrate, 2 is n
-InGaAsP diffraction grating semiconductor layer, 2G is n-In
GaAsP diffraction grating (grating), 3 is n-In
The P spacer layer 4 is an n-side SCH made of InGaAsP.
(Separate definition het
5 is InGaAsPM.
QW (multiple quantum well)
s) The active layer 6 is a p-side SCH made of InGaAsP.
Layer, 7 is a p-InP cladding layer, 8 is p-InGaAs
P cap layer, 9 is a p-InP cover layer, d g is the thickness of the semiconductor layer for diffraction grating 2, d s is the thickness of the spacer layer 3, and the temperature described on the left side of the figure is an arrow. Is the growth temperature when the crystal in the range indicated by is grown.
Note that the n-InGaAsP diffraction grating 2G shown in the figure may be considered to form a part of one diffraction grating portion.

【0008】埋め込みn−InGaAsP回折格子部を
形成する際、n−InGaAsP回折格子2Gの熱変形
防止の為、まず500〔℃〕以下の低温InP成長に依
ってn−InGaAsP回折格子2Gを被覆し、その
後、通常の成長温度、即ち、600〔℃〕台に昇温して
MQW活性層5を成長する。
When forming the buried n-InGaAsP diffraction grating portion, first, in order to prevent thermal deformation of the n-InGaAsP diffraction grating 2G, the n-InGaAsP diffraction grating 2G is first coated by low-temperature InP growth at 500 ° C. or less. Thereafter, the MQW active layer 5 is grown by raising the temperature to a normal growth temperature, that is, a level of about 600 ° C.

【0009】埋め込みn−InGaAsP回折格子部上
に積層したMQW活性層5の結晶性は、低温InP成長
時の成長速度と五族原料分圧に強く依存する。
The crystallinity of the MQW active layer 5 laminated on the buried n-InGaAsP diffraction grating part strongly depends on the growth rate during low-temperature InP growth and the partial pressure of the group V source material.

【0010】図4は温度470〔℃〕のInP成長でI
nGaAsP回折格子部を埋め込んだ下地にInGaA
sPMQW活性層を成長した場合の結晶性マッピングを
表す線図であり、横軸には低温InP成長速度=DR
〔μm/h〕を、また、縦軸にはキャリヤ・ガスである
2 の総流量に対するPH3 の流量比、即ち、PH3
2 =FR〔%〕をそれぞれ採ってある。
FIG. 4 shows that IP is grown by InP growth at a temperature of 470 ° C.
InGaAs is embedded under the nGaAsP diffraction grating.
FIG. 3 is a diagram showing crystallinity mapping when an sPMQW active layer is grown, and the horizontal axis indicates a low-temperature InP growth rate = DR
[Μm / h], and the vertical axis represents the flow rate ratio of PH 3 to the total flow rate of H 2 as the carrier gas, ie, PH 3 /
H 2 = FR [%] is taken.

【0011】この場合、InGaAsPMQW活性層の
成長は有機金属気相成長(metalorganic
vapor phase epitaxy:MOVP
E)法で行ない、原料には、トリメチルインジウム(T
MIn:In(CH3 3 )とトリエチルガリウム(T
EGa:Ga(C2 5 3 )とホスフィン(PH3
とアルシン(AsH3 )を用いている。
In this case, the growth of the InGaAs PMQW active layer is performed by metal organic vapor deposition (metalorganic).
vapor phase epitaxy: MOVP
E) method, and the raw material is trimethylindium (T
MIn: In (CH 3 ) 3 ) and triethylgallium (T
EGa: Ga (C 2 H 5 ) 3 ) and phosphine (PH 3 )
And arsine (AsH 3 ).

【0012】図4内に見られる数値は、フォトルミネセ
ンス(photoluminescence:PL)強
度を電圧値として示したものであり、また、○や×はP
L強度と表面モホロジ(morphology)から判
定したInGaAsPMQW活性層の結晶性であって、
○は良好、×は不良を示している。
Numerical values shown in FIG. 4 indicate photoluminescence (PL) intensity as a voltage value, and ○ and × indicate P values.
The crystallinity of the InGaAs PMQW active layer determined from L intensity and surface morphology,
○ indicates good, and × indicates bad.

【0013】さて、面指数が(100)である平坦な基
板上に於ける低温InP成長の成長速度をDR〔μm/
h〕、H2 キャリヤ・ガスの総流量に対するPH3 の流
量比をFR〔%〕とした場合、 log10FR≧4.4DR−1.3 ・・・・ (1) なる式を満足させるようにInGaAsP回折格子部を
InPで埋め込めば、その上に成長させるInGaAs
PMQW活性層は良好なものになるとされ、概して低成
長速度及び高PH3 供給なる条件で良好な結晶が得られ
ている。
The growth rate of low-temperature InP growth on a flat substrate having a plane index of (100) is DR [μm /
h], assuming that the flow rate ratio of PH 3 to the total flow rate of the H 2 carrier gas is FR [%], the following expression is satisfied: log 10 FR ≧ 4.4 DR-1.3 (1) If the InGaAsP diffraction grating part is buried with InP, InGaAs grown on it
The PMQW active layer is said to be good, and good crystals are generally obtained under the conditions of low growth rate and high PH 3 supply.

【0014】ところで、近年、波長分割多重(wave
length divisionmultiplexi
ng:WDM)通信用光源として、発振波長を異にする
半導体レーザをアレイ化する集積化成長技術の開発が希
求されている。
In recent years, wavelength division multiplexing (wave)
length divisionomultiplexi
(ng: WDM) As a communication light source, there is a demand for the development of an integrated growth technique for arraying semiconductor lasers having different oscillation wavelengths.

【0015】それを具現化する手段としては、選択成長
法を利用した集積化成長技術の他、平坦基板上に周期を
異にする回折格子部をアレイ状に配置したもの(以下、
回折格子部アレイとする)を利用する方法がある。
As means for realizing this, in addition to an integrated growth technique using a selective growth method, diffraction grating portions having different periods are arranged in an array on a flat substrate.
(Referred to as a diffraction grating array).

【0016】図5及び図6は回折格子部アレイを表す要
部説明図であり、何れの図に於いても(A)は平面を、
(B)は(A)に見られる線X−Xで切断した横断面を
それぞれ表している。因みに、図3は図5或いは図6の
(A)に見られる線Y−Yで切断した縦断面を表してい
る。
FIG. 5 and FIG. 6 are explanatory views of a principal part showing a diffraction grating array. In each of FIGS.
(B) represents a cross section taken along line XX seen in (A). Incidentally, FIG. 3 shows a vertical cross section taken along line YY shown in FIG. 5 or FIG.

【0017】図5に見られる回折格子部アレイと図6に
見られる回折格子部アレイとの相違は、回折格子部が凹
型、即ち、回折格子部の周囲に回折格子用半導体層が存
在する構成になっているか、或いは、回折格子部が凸
型、即ち、回折格子部の周囲から回折格子用半導体層を
除去した構成になっているかの相違だけである。
The difference between the diffraction grating array shown in FIG. 5 and the diffraction grating array shown in FIG. 6 is that the diffraction grating is concave, that is, the diffraction grating semiconductor layer exists around the diffraction grating. Or the diffraction grating portion has a convex shape, that is, a configuration in which the diffraction grating semiconductor layer is removed from the periphery of the diffraction grating portion.

【0018】図に於いて、11は面指数が(100)の
InP基板、12はInGaAsP回折格子用半導体
層、12A1 ,12A2 ,12A3 ,12A4 は回折格
子部、12Bは平坦部、W1 は回折格子部の幅、W2
回折格子部のピッチをそれぞれ示している。尚、図5に
於ける平坦部12Bとして、InGaAsP回折格子用
半導体層12が表出され、図6に於ける平坦部12Bと
して、InP基板11が表出されている。
In the figure, 11 is an InP substrate having a plane index of (100), 12 is a semiconductor layer for InGaAsP diffraction grating, 12A 1 , 12A 2 , 12A 3 , 12A 4 are diffraction grating portions, 12B is a flat portion, W 1 represents the diffraction grating portion in the width, W 2 is the pitch of the diffraction grating portion, respectively. The semiconductor layer 12 for InGaAsP diffraction grating is exposed as the flat portion 12B in FIG. 5, and the InP substrate 11 is exposed as the flat portion 12B in FIG.

【0019】一例として、回折格子部の幅W1 は20
〔μm〕、回折格子部のピッチW2 は300〔μm〕で
あり、回折格子部12A1 に於ける回折格子の周期はP
1 、回折格子部12A2 に於ける回折格子の周期は
2 、回折格子部12A3 に於ける回折格子の周期はP
3 、回折格子部12A4 に於ける回折格子の周期はP4
であって、この場合、周期P1 乃至周期P4 は、それぞ
れ異なっているものとする。
As an example, the width W 1 of the diffraction grating portion is 20
[Μm], the pitch W 2 of the diffraction grating portion is 300 [μm], the period of in the diffraction grating in the diffraction grating section 12A 1 is P
1, the period is the period of in the diffraction grating P 2, the diffraction grating portion 12A 3 of in the diffraction grating in the diffraction grating section 12A 2 is P
3, the period of in the diffraction grating in the diffraction grating section 12A 4 is P 4
A In this case, the period P 1 to period P 4 are assumed to be different.

【0020】ここで、InGaAsP回折格子がInP
基板11の全面に形成されている場合には、数式(1)
を満たす条件を適用し、InGaAsP回折格子をIn
Pで埋め込めば、その上に形成されるMQW活性層の結
晶性は良好なものとなるのであるが、図示されているよ
うに、回折格子部アレイの場合には、良好な結晶を得る
為のInGaAsP回折格子部の埋め込み条件、従っ
て、数式(1)と異なる式を見出さなければならない筈
である。
Here, the InGaAsP diffraction grating is made of InP.
When formed on the entire surface of the substrate 11, the formula (1)
Is applied, the InGaAsP diffraction grating is changed to In
When embedded with P, the crystallinity of the MQW active layer formed thereon becomes good, but as shown in the figure, in the case of the diffraction grating array, it is necessary to obtain a good crystal. It is necessary to find an embedding condition for the InGaAsP diffraction grating portion, and therefore, an equation different from the equation (1).

【0021】実験に依れば、図4について説明した全面
回折格子で良好な結晶が得られた条件、即ち、成長速度
0.2〔μm/h〕、PH3 /H2 流量比2.4〔%〕
なる条件でInGaAsP回折格子部アレイを470
〔℃〕の低温成長InPで埋め込んだところ、積層欠陥
が発生し、MQW活性層を良好に積層成長することはで
きなかった。
According to the experiment, the condition that a good crystal was obtained by the entire diffraction grating described with reference to FIG. 4, that is, the growth rate was 0.2 [μm / h] and the PH 3 / H 2 flow ratio was 2.4. [%]
Under the following conditions, the InGaAsP diffraction grating array
When buried with low temperature growth InP of [° C.], stacking faults occurred, and the MQW active layer could not be stacked well.

【0022】[0022]

【発明が解決しようとする課題】本発明では、回折格子
部アレイ上に高品質の半導体層を再現性良く堆積する技
術を実現し、発振波長を異にして且つ高温で動作するク
ーラーレスDFB半導体レーザをアレイ化できるように
する。
SUMMARY OF THE INVENTION The present invention realizes a technique for depositing a high-quality semiconductor layer on a diffraction grating array with good reproducibility, and operates a coolerless DFB semiconductor having a different oscillation wavelength and operating at a high temperature. Make lasers arrayable.

【0023】[0023]

【課題を解決するための手段】前記説明した通り、(1
00)InP基板の全面に形成したInGaAsP回折
格子の場合、それを埋め込む低温InP成長時の成長速
度は基板面内の全ての箇所で(100)平坦基板上の成
長速度と同じである。
As described above, (1)
00) In the case of an InGaAsP diffraction grating formed on the entire surface of an InP substrate, the growth rate during low-temperature InP growth in which it is embedded is the same as the growth rate on a (100) flat substrate at all points in the substrate plane.

【0024】これに対して、部分的に形成したInGa
AsP回折格子部の場合、回折格子部(図5及び図6参
照)に於ける成長速度は増加すると考えられる。
On the other hand, the partially formed InGa
In the case of the AsP diffraction grating portion, it is considered that the growth rate in the diffraction grating portion (see FIGS. 5 and 6) increases.

【0025】図1は本発明の原理を解説する為の工程要
所に於ける光半導体装置を表す要部切断側面図である。
FIG. 1 is a cutaway side view of an essential part showing an optical semiconductor device at a key point in a process for explaining the principle of the present invention.

【0026】図に於いて、21は面指数(100)のI
nP基板、22は面指数(100)のInGaAsP回
折格子用半導体層、22Aは回折格子部、22Bは平坦
部をそれぞれ示している。
In the figure, 21 is the I of the plane index (100).
The nP substrate, 22 indicates a semiconductor layer for an InGaAsP diffraction grating having a plane index (100), 22A indicates a diffraction grating portion, and 22B indicates a flat portion.

【0027】低温InP成長時には、回折格子用半導体
層22に回折格子を切って形成した回折格子部22Aの
方が(100)平坦部22Bに比較して成長原料の取り
込み速度が速い為、(100)平坦部22Bから回折格
子部22Aに拡散することで回折格子部22Aの成長速
度が速まるものと考えられている。
At the time of low-temperature InP growth, the diffraction grating portion 22A formed by cutting the diffraction grating in the diffraction grating semiconductor layer 22 has a higher rate of taking in the growth raw material than the (100) flat portion 22B. It is considered that the growth rate of the diffraction grating portion 22A is increased by diffusing from the flat portion 22B to the diffraction grating portion 22A.

【0028】但し、回折格子部22Aが埋め込まれて平
坦になった場合、平坦部22Bからの成長原料拡散はな
くなり、成長速度は平坦部22B及び回折格子部22A
で同じになる。
However, when the diffraction grating portion 22A is buried and flattened, the growth material is not diffused from the flat portion 22B, and the growth rate is reduced to the flat portion 22B and the diffraction grating portion 22A.
Will be the same.

【0029】埋め込み成長当初の回折格子部22Aに於
ける成長速度の増加率は、回折格子部22Aの面内被覆
率にも依るが、大体A倍以上(A=2〜3)である。
The rate of increase in the growth rate of the diffraction grating portion 22A at the beginning of the buried growth depends on the in-plane coverage of the diffraction grating portion 22A, but is about A times or more (A = 2 to 3).

【0030】低温成長時の回折格子部22Aの成長速度
が、結晶性が劣化する臨界成長速度に比較して速くなる
と、回折格子部22Aに欠陥が発生し、その上に積層成
長するエピタキシャル成長層の結晶性を低下させる。
When the growth rate of the diffraction grating portion 22A at the time of low-temperature growth is higher than the critical growth speed at which the crystallinity is deteriorated, a defect occurs in the diffraction grating portion 22A, and the epitaxial growth layer grown on the diffraction grating portion 22A grows. Decreases crystallinity.

【0031】従って、InGaAsP回折格子部アレイ
をもつ基板に良好な半導体層を堆積する為には、H2
ャリヤ・ガスの総流量に対するP原料の流量比をFR
〔%〕としたとき、低温InP成長時に於ける回折格子
部22Aの成長速度DRg 〔μm/h〕(「g 」はgr
atingの意)を log10FR≧4.4DRg −1.3 ・・・・ (2) を満たすように成長条件を設定すれば良いことが実験結
果として得られた。
Therefore, in order to deposit a good semiconductor layer on the substrate having the InGaAsP diffraction grating array, the flow rate ratio of the P source to the total flow rate of the H 2 carrier gas must be FR.
[%], The growth rate DR g [μm / h] of the diffraction grating portion 22A during low-temperature InP growth (“ g ” is gr
As a result of the experiment, it was obtained that the growth conditions should be set so as to satisfy log 10 FR ≧ 4.4 DR g −1.3 (2).

【0032】また、式(2)に依らず、低温InP成長
時の(100)平坦部22Bに於ける成長速度DR
f 〔μm/h〕(「f 」はflatの意)を log10FR≧4.4DRc −1.3 ・・・・ (3) で定義される臨界成長速度DRc の1/A以下に設定し
ても良い。
Further, regardless of the equation (2), the growth rate DR in the (100) flat portion 22B during low-temperature InP growth.
f [μm / h] (“ f ” stands for “flat”) is reduced to 1 / A or less of the critical growth rate DR c defined by log 10 FR ≧ 4.4 DR c −1.3 (3) May be set.

【0033】図2は本発明の原理を解説する為の結晶性
マッピングを表す線図であり、図4と同様、470
〔℃〕のInP成長でInGaAsP回折格子部を埋め
込んだ下地にInGaAsPMQW活性層を成長した場
合を表し、横軸には低温InP成長速度=DR〔μm/
h〕を、また、縦軸にはキャリヤ・ガスであるH2 の総
流量に対するPH3 の流量比、即ち、PH3 /H2 =F
R〔%〕をそれぞれ採ってある。尚、図2に於ける破線
は前記説明した先行技術に於ける式、即ち、 log10FR≧4.4DRf −1.3 ・・・・ (1) に対応する線であり、その破線の左側の領域が先行技術
を適用して良い結果が得られる成長条件の範囲に対応し
ている。
FIG. 2 is a diagram showing crystallinity mapping for explaining the principle of the present invention.
The case where an InGaAsPMQW active layer is grown on a base in which an InGaAsP diffraction grating portion is buried by [P] InP growth is shown, and the horizontal axis represents a low temperature InP growth rate = DR [μm /
h], and the vertical axis represents the flow rate ratio of PH 3 to the total flow rate of H 2 as the carrier gas, that is, PH 3 / H 2 = F
R [%] is each taken. The broken line in FIG. 2 is a line corresponding to the above-described equation in the prior art, that is, log 10 FR ≧ 4.4 DR f −1.3 (1). The area on the left corresponds to the range of growth conditions where good results can be obtained by applying the prior art.

【0034】さて、式(3)から得られる結果を図2に
当てはめ、 log10FR≧4.4A・DRf −1.3 (A=2〜3) ・・・・ (4) を満たす条件を採用し、回折格子部アレイを低温InP
成長で埋め込むと良い結果が得られる。
Now, the result obtained from equation (3) is applied to FIG. 2, and the condition that satisfies the following condition: log 10 FR ≧ 4.4 A · DR f −1.3 (A = 2−3) (4) And the diffraction grating array is low-temperature InP
Good results can be obtained by embedding with growth.

【0035】尚、低温InP成長の成長温度やP原料の
種類に依っては、式(4)の数値が若干変化することが
あるので、低温InP成長の成長速度を0.1〔μm/
h〕以下に設定すると良い。
The value of equation (4) may slightly change depending on the growth temperature of the low-temperature InP growth and the type of the P raw material, so that the growth rate of the low-temperature InP growth is 0.1 [μm /
h].

【0036】何れにせよ、実験結果からすると、式
(4)で定められる範囲、即ち、図2に於いて砂地模様
で施してある範囲に於いては、回折格子部アレイに対し
ては勿論のこと、全面回折格子、その他の如何なる回折
格子に対しても最良の結果を得られることが確認されて
いる。
In any case, according to the experimental results, in the range defined by the equation (4), that is, in the range given by the sand pattern in FIG. It has been confirmed that the best results can be obtained for the entire diffraction grating and any other diffraction grating.

【0037】前記したところから、本発明に依る光半導
体装置の製造方法に於いては、 (1)面指数が(100)であるInP基板(例えばn
−InP基板1:図3参照)にInPと屈折率を異にす
る三族−五族化合物半導体からなる回折格子用半導体層
(例えば回折格子用半導体層2:図3参照)を堆積する
工程と、次いで、該回折格子用半導体層の局所に回折格
子を切って複数条の回折格子部(例えば回折格子部12
1 ,12A2 ,12A3 ,12A4 など:図5又は図
6参照)を形成する工程と、次いで、該複数条の回折格
子部を埋め込むと共に該回折格子用半導体層を被覆する
InPからなる第一の層(例えば温度470〔℃〕で成
長したスペーサ層3:図3参照)を堆積する工程と、次
いで、該第一の層を堆積した際に比較し基板温度を高く
して該第一の層上にInPからなる第二の層(例えば温
度470〔℃〕−630〔℃〕で成長したスペーサ層
3)を堆積する工程とが含まれ、該第一の層を堆積する
工程は、Inの原料を有機金属、Pの原料をPH3 或い
は有機P、キャリヤ・ガスをH2 とする有機金属気相成
長法を適用し、且つ、該回折格子用半導体層の回折格子
部に於ける成長速度をDRg 〔μm/h〕、キャリヤ・
ガスH2 の総流量に対するP原料の流量比をFR〔%〕
としたとき、 log10FR≧4.4DRg −1.3 の条件を満たして実施されることを特徴とするか、又
は、
As described above, in the method for manufacturing an optical semiconductor device according to the present invention, (1) an InP substrate having a plane index of (100) (for example, n
A step of depositing a semiconductor layer for a diffraction grating (for example, a semiconductor layer for diffraction grating 2: see FIG. 3) made of a Group III-V compound semiconductor having a different refractive index from InP on an InP substrate 1: see FIG. Then, the diffraction grating is cut locally at the semiconductor layer for diffraction grating to form a plurality of diffraction grating portions (for example, the diffraction grating portion 12).
Such as A 1, 12A 2, 12A 3 , 12A 4: forming a see FIG. 5 or FIG. 6), then, consists of InP covering the semiconductor layer for the diffraction grating is buried diffraction grating portion of the plurality number Article Depositing a first layer (eg, spacer layer 3 grown at a temperature of 470 ° C .; see FIG. 3), and then increasing the substrate temperature compared to when depositing the first layer. Depositing a second layer of InP (for example, a spacer layer 3 grown at a temperature of 470 ° C.-630 ° C.) on one layer, and depositing the first layer Inorganic metal vapor phase epitaxy is used in which the source material of In is organometallic, the source material of P is PH 3 or organic P, and the carrier gas is H 2 , and at the diffraction grating portion of the semiconductor layer for the diffraction grating. DR g [μm / h]
The ratio of the flow rate of the P raw material to the total flow rate of gas H 2 is FR [%].
Wherein the following conditions are satisfied: log 10 FR ≧ 4.4 DR g −1.3, or

【0038】(2)面指数が(100)であるInP基
板にInPと屈折率を異にする三族−五族化合物半導体
からなる回折格子用半導体層を堆積する工程と、次い
で、該回折格子用半導体層の局所に回折格子を切って複
数条の回折格子部を形成する工程と、次いで、該複数条
の回折格子部を埋め込むと共に該回折格子用半導体層を
被覆するInPからなる第一の層を堆積する工程と、次
いで、該第一の層を堆積した際に比較し基板温度を高く
して該第一の層上にInPからなる第二の層を堆積する
工程とが含まれ、該第一の層を堆積する工程は、Inの
原料を有機金属、Pの原料をPH3 或いは有機P、キャ
リヤ・ガスをH2 とする有機金属気相成長法を適用し、
且つ、該回折格子用半導体層の回折格子部以外の面指数
が(100)の平坦部に於ける成長速度をDRf 〔μm
/h〕、キャリヤ・ガスH2 の総流量に対するP原料の
流量比をFR〔%〕としたとき、 log10FR≧4.4A・DRf −1.3 (A=2〜
3) の条件を満たして実施されることを特徴とするか、或い
は、
(2) a step of depositing a semiconductor layer for a diffraction grating made of a group III-V compound semiconductor having a different refractive index from InP on an InP substrate having a plane index of (100); Forming a plurality of diffraction grating portions by cutting a diffraction grating locally in the semiconductor layer for forming, and then forming a first plurality of InPs for embedding the plurality of diffraction grating portions and covering the semiconductor layer for diffraction grating. Depositing a layer, and then depositing a second layer of InP on the first layer at a higher substrate temperature than when depositing the first layer, In the step of depositing the first layer, a metal organic vapor phase epitaxy method in which the source material of In is an organic metal, the source material of P is PH 3 or organic P, and the carrier gas is H 2 ,
In addition, the growth rate in a flat portion having a plane index of (100) other than the diffraction grating portion of the semiconductor layer for diffraction grating is DR f [μm
/ H], and when the flow rate ratio of the P raw material to the total flow rate of the carrier gas H 2 is FR [%], log 10 FR ≧ 4.4 A · DR f −1.3 (A = 2
3) is carried out under the conditions of, or

【0039】(3)前記(2)に於いて、成長速度DR
f を0.1〔μm/h〕以下とすることを特徴とする。
(3) In the above (2), the growth rate DR
f is set to 0.1 [μm / h] or less.

【0040】前記手段を採ることに依り、回折格子部ア
レイ或いは全面回折格子を問わず、光との結合効率を大
きくする為にそれ等回折格子を深く形成しても埋め込み
を良好に行うことができ、従って、その上に積層成長さ
れる半導体結晶は高品質なものとなり、クーラーレスD
FB半導体レーザをアレイ化してWDM用光源を実現す
る場合などに好結果を得ることができる。
By adopting the above means, regardless of the diffraction grating array or the entire diffraction grating, it is possible to satisfactorily embed even if the diffraction gratings are formed deeply in order to increase the coupling efficiency with light. Therefore, the semiconductor crystal grown thereon can be of high quality, and the coolerless D
Good results can be obtained when an FB semiconductor laser is arrayed to realize a light source for WDM.

【0041】[0041]

【発明の実施の形態】本発明に於ける光半導体装置の構
成は、先行技術に依る光半導体装置として説明した図3
に見られるものと変わりなく、唯、結晶の成長条件が異
なるので、以下の説明は、図3を参照すると良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of an optical semiconductor device according to the present invention is similar to that of FIG.
However, since the conditions for growing the crystal are different, it is better to refer to FIG. 3 for the following description.

【0042】(1) MOVPE法を適用することに依
り、面指数(100)のInP基板1に厚さdg =80
〔nm〕であるInGaAsP(組成波長は1.1〔μ
m〕)回折格子用半導体層2を形成する。
(1) By applying the MOVPE method, a thickness d g = 80 is applied to the InP substrate 1 having a plane index (100).
[Nm] of InGaAsP (composition wavelength is 1.1 [μ
m]) The diffraction grating semiconductor layer 2 is formed.

【0043】(2) EB(electron bea
m)描画及びドライ・エッチングに依って回折格子用半
導体層2に回折格子2Gを切って回折格子部12A1
12A2 、12A3 、12A4 (図5及び図6を参照)
を形成する。
(2) EB (electron bea)
m) The diffraction grating 2G is cut into the diffraction grating semiconductor layer 2 by drawing and dry etching to form a diffraction grating portion 12A 1 ,
12A 2 , 12A 3 , 12A 4 (see FIGS. 5 and 6)
To form

【0044】回折格子部アレイに於ける回折格子部12
1 、12A2 、12A3 、12A4 などの幅は20
〔μm〕、回折格子部間に存在する平坦部12B(図5
及び図6参照)の幅は280〔μm〕、回折格子周期は
200〔nm〕である。
Diffraction grating portion 12 in diffraction grating portion array
A 1, 12A 2, 12A 3 , 12A 4 the width of such 20
[Μm], a flat portion 12B existing between the diffraction grating portions (FIG. 5).
And FIG. 6) have a width of 280 [μm] and a diffraction grating period of 200 [nm].

【0045】(3) 前記回折格子部アレイが形成され
たInP基板1上に該回折格子部アレイを埋め、且つ、
その上に図示のDFB半導体レーザを作成するのに必要
な諸半導体結晶層を成長させる。
(3) The diffraction grating portion array is buried on the InP substrate 1 on which the diffraction grating portion array is formed, and
On this, various semiconductor crystal layers necessary for producing the illustrated DFB semiconductor laser are grown.

【0046】それには、MOVPE法を適用し、原料と
してTMIn、TEGa、PH3 、AsH3 、キャリヤ
・ガスとしてH2 を用いる。尚、H2 の総流量は600
0〔ccm〕である。
For this, the MOVPE method is applied, and TMIn, TEGa, PH 3 and AsH 3 are used as raw materials and H 2 is used as a carrier gas. The total flow rate of H 2 is 600
0 [ccm].

【0047】また、InPスペーサ層3の厚さds は1
50〔nm〕であり、最初の50〔nm〕は470
〔℃〕の低温で成長し、次に、残り100〔nm〕は4
70〔℃〕から630〔℃〕への昇温過程で成長する。
The thickness d s of the InP spacer layer 3 is 1
50 [nm], and the first 50 [nm] is 470
Grown at a low temperature of [° C], and then the remaining 100 [nm] is 4
It grows during the process of raising the temperature from 70 ° C. to 630 ° C.

【0048】因みに、PH3 流量を144〔ccm〕、
即ち、PH3 /H2 流量比を2.4〔%〕として、全面
回折格子の場合に良好な結晶が得られる(100)平坦
基板上の成長速度0.2〔μm/h〕なる条件で、In
GaAsPからなる回折格子部アレイを470〔℃〕の
InP成長で埋め込み、その上にDFB半導体レーザを
構成する諸半導体層を成長したところ、平坦部では良好
な結晶性が得られたが、回折格子部では表面が荒れてM
QW活性層のPL強度もかなり弱かった。
Incidentally, the PH 3 flow rate was set to 144 [ccm],
That is, the PH 3 / H 2 flow rate ratio is set to 2.4 [%], and a good crystal is obtained in the case of a full-surface diffraction grating. , In
A diffraction grating array made of GaAsP was buried by InP growth of 470 ° C., and various semiconductor layers constituting a DFB semiconductor laser were grown thereon. As a result, good crystallinity was obtained in a flat portion. In the part, the surface is rough and M
The PL intensity of the QW active layer was also very weak.

【0049】成長した諸半導体層の断面をSEM(sc
anning electron microscop
y)観察した結果、回折格子部では、InPスペーサ層
から表面まで積層欠陥が存在し、また、InPスペーサ
層の厚さも設計値の約2倍であることが判った。
The cross sections of the grown semiconductor layers were SEM (sc
annealing electron microscoping
y) As a result of observation, it was found that, in the diffraction grating portion, stacking faults existed from the InP spacer layer to the surface, and the thickness of the InP spacer layer was about twice the designed value.

【0050】さて、本発明に依るInPスペーサ層3の
形成に於いて、PH3 /H2流量比を2.4〔%〕一定
とし、470〔℃〕に於けるInP成長速度を平坦基板
上の0.1〔μm/h〕に設定することで式(4)を満
たす条件を整えて、InGaAsP回折格子部アレイを
埋め込み、その上にDFB半導体レーザを構成する諸半
導体層を成長したところ、回折格子部アレイに於ける回
折格子部上では、平坦部上と同等に良好な結晶性が得ら
れた。
In the formation of the InP spacer layer 3 according to the present invention, the flow rate ratio of PH 3 / H 2 is kept constant at 2.4%, and the growth rate of InP at 470 ° C. on the flat substrate. By setting the condition satisfying the expression (4) by setting the value to 0.1 [μm / h], the InGaAsP diffraction grating array is embedded, and various semiconductor layers constituting the DFB semiconductor laser are grown thereon. On the diffraction grating part in the diffraction grating part array, good crystallinity was obtained as well as on the flat part.

【0051】成長した諸半導体層の断面をSEM観察し
た結果、回折格子部上に積層欠陥は存在しなかった。
As a result of SEM observation of the cross sections of the grown semiconductor layers, no stacking fault was found on the diffraction grating portion.

【0052】前記したところから明らかであるが、In
GaAsP回折格子部アレイを低温InP成長で埋め込
む場合には、全面回折格子を埋め込む場合に比較し、更
に成長速度を低下させると有効であることが確認され
た。
As is apparent from the above description, In
It has been confirmed that when the GaAsP diffraction grating array is embedded by low-temperature InP growth, it is effective to further reduce the growth rate as compared with the case where the entire surface diffraction grating is embedded.

【0053】前記実施の形態では、InGaAsP回折
格子部アレイとして、平坦部にInGaAsP回折格子
層が残っている凹型の回折格子部を対象として説明した
が、平坦部のInGaAsP回折格子層を除去した凸型
の回折格子部アレイを用いることも可能である。
In the above-described embodiment, the concave type diffraction grating portion in which the InGaAsP diffraction grating layer remains in the flat portion has been described as the InGaAsP diffraction grating array, but the convex portion obtained by removing the flat portion of the InGaAsP diffraction grating layer. It is also possible to use an array of diffraction grating sections.

【0054】前記実施の形態では、アレイになっている
各回折格子部の周期がそれぞれ異なっているものを例示
して説明したが、本発明は、周期が同じの場合にも、同
様に適用して有効である。
In the above-described embodiment, the diffraction grating portions in the array have different periods. However, the present invention is similarly applied to the case where the periods are the same. Effective.

【0055】[0055]

【発明の効果】本発明に依る光半導体装置の製造方法に
於いては、InP基板にInPと屈折率を異にする三族
−五族化合物半導体からなる回折格子用半導体層を形成
し、回折格子用半導体層の局所に回折格子を切って複数
条の回折格子部を形成し、複数条の回折格子部を埋め込
むと共に該回折格子用半導体層を被覆するInPからな
る第一の層を堆積し、第一の層を堆積した際に比較し基
板温度を高くしてInPからなる第二の層を堆積し、前
記第一の層を堆積する工程は、Inの原料を有機金属、
Pの原料をPH3 或いは有機P、キャリヤ・ガスをH2
とする有機金属気相成長法を適用し、且つ、回折格子部
に於ける成長速度をDRg 〔μm/h〕、キャリヤ・ガ
スH2 の総流量に対するP原料の流量比をFR〔%〕と
したとき、log10FR≧4.4DRg −1.3の条件
を満たして実施される。
According to the method of manufacturing an optical semiconductor device according to the present invention, a semiconductor layer for a diffraction grating made of a group III-V compound semiconductor having a different refractive index from InP is formed on an InP substrate. A plurality of diffraction grating portions are formed by cutting a diffraction grating locally in the grating semiconductor layer, a plurality of diffraction grating portions are buried, and a first layer made of InP that covers the diffraction grating semiconductor layer is deposited. Depositing a second layer of InP at a higher substrate temperature than when depositing the first layer, and depositing the first layer comprises:
The raw material of P is PH 3 or organic P, and the carrier gas is H 2
And the growth rate in the diffraction grating portion is DR g [μm / h], and the flow rate ratio of the P source to the total flow rate of the carrier gas H 2 is FR [%]. Is satisfied, the condition of log 10 FR ≧ 4.4 DR g −1.3 is satisfied.

【0056】前記構成を採ることに依り、回折格子部ア
レイ或いは全面回折格子を問わず、光との結合効率を大
きくする為にそれ等回折格子を深く形成しても埋め込み
を良好に行うことができ、従って、その上に積層成長さ
れる半導体結晶は高品質なものとなり、クーラーレスD
FB半導体レーザをアレイ化してWDM用光源を実現す
る場合などに好結果を得ることができる。
By adopting the above-mentioned structure, regardless of the diffraction grating array or the entire diffraction grating, it is possible to satisfactorily embed even if the diffraction gratings are formed deeply in order to increase the coupling efficiency with light. Therefore, the semiconductor crystal grown thereon can be of high quality, and the coolerless D
Good results can be obtained when an FB semiconductor laser is arrayed to realize a light source for WDM.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を解説する為の工程要所に於ける
光半導体装置を表す要部切断側面図である。
FIG. 1 is a cutaway side view showing a main part of an optical semiconductor device at a key point in a process for explaining the principle of the present invention.

【図2】本発明の原理を解説する為の結晶性マッピング
を表す線図である。
FIG. 2 is a diagram showing crystallinity mapping for explaining the principle of the present invention.

【図3】先行技術を説明する為のDFB半導体レーザを
表す要部切断側面(縦断面)図である。
FIG. 3 is a sectional side view (longitudinal section) of a main part showing a DFB semiconductor laser for explaining the prior art.

【図4】温度470〔℃〕のInP成長でInGaAs
P回折格子部を埋め込んだ下地にInGaAsPMQW
活性層を成長した場合の結晶性マッピングを表す線図で
ある。
FIG. 4 shows InGaAs grown by InP at a temperature of 470 [° C.].
InGaAsPMQW on the substrate with P diffraction grating embedded
FIG. 3 is a diagram illustrating crystallinity mapping when an active layer is grown.

【図5】回折格子部アレイを表す要部説明図である。FIG. 5 is an explanatory diagram of a main part showing a diffraction grating unit array.

【図6】回折格子部アレイを表す要部説明図である。FIG. 6 is an explanatory diagram of a main part showing a diffraction grating unit array.

【符号の説明】[Explanation of symbols]

1 n−InP基板 2 n−InGaAsP回折格子用半導体層 2G n−InGaAsP回折格子(grating) 3 n−InPスペーサ層 4 InGaAsPからなるn側SCH層 5 InGaAsPMQW活性層 6 InGaAsPからなるp側SCH層 7 p−InPクラッド層 8 p−InGaAsPキャップ層 9 p−InPカバー層 11 面指数が(100)のInP基板 12 InGaAsP回折格子用半導体層 12A1 ,12A2 ,12A3 ,12A4 回折格子部 12B 平坦部 dg 回折格子用半導体層2の厚さ ds スペーサ層3の厚さ W1 回折格子部の幅 W2 回折格子部のピッチReference Signs List 1 n-InP substrate 2 semiconductor layer for n-InGaAsP diffraction grating 2G n-InGaAsP diffraction grating (grating) 3 n-InP spacer layer 4 n-side SCH layer made of InGaAsP 5 InGaAsPMQW active layer 6 p-side SCH layer made of InGaAsP 7 p-InP cladding layer 8 p-InGaAsP cap layer 9 p-InP cover layer 11 InP substrate having a plane index of (100) 12 InGaAsP diffraction grating semiconductor layer 12A 1 , 12A 2 , 12A 3 , 12A 4 diffraction grating portion 12B flat part d g diffraction grating semiconductor layer 2 having a thickness of d s pitch width W 2 diffraction grating portion in the thickness W 1 diffraction grating portion of the spacer layer 3

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】面指数が(100)であるInP基板にI
nPと屈折率を異にする三族−五族化合物半導体からな
る回折格子用半導体層を堆積する工程と、 次いで、該回折格子用半導体層の局所に回折格子を切っ
て複数条の回折格子部を形成する工程と、 次いで、該複数条の回折格子部を埋め込むと共に該回折
格子用半導体層を被覆するInPからなる第一の層を堆
積する工程と、 次いで、該第一の層を堆積した際に比較し基板温度を高
くして該第一の層上にInPからなる第二の層を堆積す
る工程とが含まれ、 該第一の層を堆積する工程は、Inの原料を有機金属、
Pの原料をPH3 或いは有機P、キャリヤ・ガスをH2
とする有機金属気相成長法を適用し、且つ、該回折格子
用半導体層の回折格子部に於ける成長速度をDRg 〔μ
m/h〕、キャリヤ・ガスH2 の総流量に対するP原料
の流量比をFR〔%〕としたとき、log10FR≧4.
4DRg −1.3の条件を満たして実施されることを特
徴とする光半導体装置の製造方法。
1. An InP substrate having a plane index of (100) has an I
depositing a semiconductor layer for a diffraction grating made of a group III-V compound semiconductor having a different refractive index from nP; and then, forming a plurality of diffraction grating portions by cutting the diffraction grating locally in the semiconductor layer for the diffraction grating. Forming a first layer of InP that embeds the plurality of diffraction grating portions and covers the semiconductor layer for diffraction grating, and then deposits the first layer. Depositing a second layer made of InP on the first layer by raising the substrate temperature as compared with the case where ,
The raw material of P is PH 3 or organic P, and the carrier gas is H 2
And the growth rate of the semiconductor layer for diffraction grating in the diffraction grating portion is DR g
m / h], and when the flow rate ratio of the P raw material to the total flow rate of the carrier gas H 2 is FR [%], log 10 FR ≧ 4.
A method for manufacturing an optical semiconductor device, wherein the method is performed while satisfying a condition of 4DR g -1.3.
【請求項2】面指数が(100)であるInP基板にI
nPと屈折率を異にする三族−五族化合物半導体からな
る回折格子用半導体層を堆積する工程と、 次いで、該回折格子用半導体層の局所に回折格子を切っ
て複数条の回折格子部を形成する工程と、 次いで、該複数条の回折格子部を埋め込むと共に該回折
格子用半導体層を被覆するInPからなる第一の層を堆
積する工程と、 次いで、該第一の層を堆積した際に比較し基板温度を高
くして該第一の層上にInPからなる第二の層を堆積す
る工程とが含まれ、 該第一の層を堆積する工程は、Inの原料を有機金属、
Pの原料をPH3 或いは有機P、キャリヤ・ガスをH2
とする有機金属気相成長法を適用し、且つ、該回折格子
用半導体層の回折格子部以外の面指数が(100)の平
坦部に於ける成長速度をDRf 〔μm/h〕、キャリヤ
・ガスH2 の総流量に対するP原料の流量比をFR
〔%〕としたとき、 log10FR≧4.4A・DRf −1.3 (A=2〜
3) の条件を満たして実施されることを特徴とする光半導体
装置の製造方法。
2. An InP substrate having a plane index of (100)
depositing a semiconductor layer for a diffraction grating composed of a group III-V compound semiconductor having a different refractive index from nP; Forming a first layer of InP that embeds the plurality of diffraction grating portions and covers the semiconductor layer for diffraction grating, and then deposits the first layer. Depositing a second layer of InP on the first layer by raising the substrate temperature as compared to the first case. The step of depositing the first layer comprises: ,
The raw material of P is PH 3 or organic P, and the carrier gas is H 2
And the growth rate in a flat portion having a (100) plane index other than the diffraction grating portion of the semiconductor layer for the diffraction grating is DR f [μm / h].・ FR is the flow rate ratio of P raw material to the total flow rate of gas H 2
[%], Log 10 FR ≧ 4.4 A · DR f −1.3 (A = 2
3) A method for manufacturing an optical semiconductor device, wherein the method is performed while satisfying the following condition.
【請求項3】成長速度DRf を0.1〔μm/h〕以下
とすることを特徴とする請求項2記載の光半導体装置の
製造方法。
3. The method of manufacturing an optical semiconductor device according to claim 2, wherein the growth rate DR f is set to 0.1 [μm / h] or less.
JP1943899A 1999-01-28 1999-01-28 Manufacturing method of optical semiconductor device Expired - Lifetime JP4022794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1943899A JP4022794B2 (en) 1999-01-28 1999-01-28 Manufacturing method of optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1943899A JP4022794B2 (en) 1999-01-28 1999-01-28 Manufacturing method of optical semiconductor device

Publications (3)

Publication Number Publication Date
JP2000223772A true JP2000223772A (en) 2000-08-11
JP2000223772A5 JP2000223772A5 (en) 2005-06-16
JP4022794B2 JP4022794B2 (en) 2007-12-19

Family

ID=11999309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1943899A Expired - Lifetime JP4022794B2 (en) 1999-01-28 1999-01-28 Manufacturing method of optical semiconductor device

Country Status (1)

Country Link
JP (1) JP4022794B2 (en)

Also Published As

Publication number Publication date
JP4022794B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
KR101131380B1 (en) Semiconductor laser device and method for manufacturing same
JP2007019492A (en) Buried heterostructure device having incorporated waveguide grating produced by single step mocvd
EP3588704A1 (en) Surface-emitting laser and method for manufacturing surface-emitting laser
JP2003069145A (en) Method of manufacturing distributed feedback semiconductor laser element group
JP3977920B2 (en) Manufacturing method of semiconductor device
JP3045115B2 (en) Method for manufacturing optical semiconductor device
JP2008130731A (en) Manufacturing method of semiconductor light emitting device, and semiconductor light emitting device manufactured thereby
JP4022794B2 (en) Manufacturing method of optical semiconductor device
US8846425B2 (en) Diode laser and method for manufacturing a high-efficiency diode laser
US6033926A (en) Method for making multiple wavelength semiconductor lasers on a single wafer
JPH0936487A (en) Fabrication of semiconductor device
JPH077232A (en) Optical semiconductor device
JPH02283084A (en) Manufacture of semiconductor laser
JP4121539B2 (en) Manufacturing method of semiconductor device
JP2546381B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof
JP4325558B2 (en) Semiconductor laser and method of manufacturing the semiconductor laser
JPH06283803A (en) Semiconductor light emitting device
JP3298572B2 (en) Method for manufacturing optical semiconductor device
JP4862749B2 (en) Method for fabricating III-V compound semiconductor optical device
JP2001044571A (en) Semiconductor optical element and manufacture thereof
JP5573819B2 (en) Method for fabricating III-V compound semiconductor optical device
JPH06283802A (en) Semiconductor laser device and fabrication thereof
JPH05343801A (en) Manufacture of multiwavelength laser
JP3787792B2 (en) Manufacturing method of semiconductor device
JPH09186391A (en) Compound semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 19990128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19990602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

EXPY Cancellation because of completion of term