JP2000223054A - Electrostatic deflector of electron beam radiation device - Google Patents

Electrostatic deflector of electron beam radiation device

Info

Publication number
JP2000223054A
JP2000223054A JP11024947A JP2494799A JP2000223054A JP 2000223054 A JP2000223054 A JP 2000223054A JP 11024947 A JP11024947 A JP 11024947A JP 2494799 A JP2494799 A JP 2494799A JP 2000223054 A JP2000223054 A JP 2000223054A
Authority
JP
Japan
Prior art keywords
electron beam
holding member
electrostatic deflector
electrodes
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11024947A
Other languages
Japanese (ja)
Other versions
JP4610029B2 (en
Inventor
Tomohiko Abe
智彦 阿部
Yoshihisa Daikyo
義久 大饗
Ryoji Kato
良二 加藤
Kazuto Ashihara
和人 芦原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP02494799A priority Critical patent/JP4610029B2/en
Priority to KR1019990047929A priority patent/KR100350308B1/en
Priority to US09/431,441 priority patent/US6509568B1/en
Priority to TW088118947A priority patent/TW460756B/en
Priority to EP99121672A priority patent/EP0999572A3/en
Publication of JP2000223054A publication Critical patent/JP2000223054A/en
Priority to US09/886,789 priority patent/US20020020354A1/en
Priority to US09/886,807 priority patent/US20010045528A1/en
Application granted granted Critical
Publication of JP4610029B2 publication Critical patent/JP4610029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the nonconductor charging-up resulting in reduction in the exposure position accuracy and to prevent the exposure position accuracy from being decreased. SOLUTION: This electrostatic deflector is provided with a cylindrical holding member 22 of a nonconductor material and a plurality of electrodes 11 that are separately fixed inside the holding member 22 in the radial direction and a part of the surface thereof is conductive. Openings 30 extending in the direction parallel to the axial direction of the cylinder are opened around the holding member 22 where a space between the adjacent electrodes 11 is shown. In another embodiment, a plurality of electrodes 11 extend from the holding member 22 in the emitting direction of an electron beam. In still another embodiment, the holding member 22 has a plurality of separate holding units 22a and 22b; the total length of the holding units 22a and 22b is much shorter than that of the electrode 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子ビーム露光装
置や電子顕微鏡などの電子ビームを照射する電子ビーム
照射装置で使用される静電偏向器に関する。電子ビーム
は断面を数十nmにまで絞ることができ、電子顕微鏡や
電子ビーム露光装置などの電子ビームを照射する装置が
実用化されている。このような電子ビーム照射装置で
は、試料上に収束される電子ビームの照射位置を変える
ために偏向器が使用される。偏向器としては、偏向範囲
は大きいが比較的応答速度の低い電磁偏向器又は偏向範
囲は狭いが応答速度の高い静電偏向器、又はこれらを組
み合わせたものが使用される。本発明は、この静電偏向
器に係わる。なお、以下の説明では電子ビーム露光装置
の静電偏向器を例として説明するが、本発明はこれに限
定されるものではなく、電子ビーム照射装置で使用され
る静電偏向器であれば、どのようなものにも適用可能で
ある。
[0001] 1. Field of the Invention [0002] The present invention relates to an electrostatic deflector used in an electron beam irradiation apparatus for irradiating an electron beam, such as an electron beam exposure apparatus and an electron microscope. The cross section of the electron beam can be reduced to several tens of nanometers, and devices for irradiating the electron beam such as an electron microscope and an electron beam exposure device have been put to practical use. In such an electron beam irradiation apparatus, a deflector is used to change the irradiation position of the electron beam focused on the sample. As the deflector, an electromagnetic deflector having a large deflection range but a relatively low response speed, an electrostatic deflector having a narrow deflection range but a high response speed, or a combination thereof is used. The present invention relates to this electrostatic deflector. In the following description, an electrostatic deflector of an electron beam exposure apparatus will be described as an example, but the present invention is not limited to this, and any electrostatic deflector used in an electron beam irradiation apparatus may be used. It can be applied to anything.

【0002】[0002]

【従来の技術】近年、集積回路の微細化及び高密度化が
進み、長年微細パターン形成の主流であったフォトリソ
グラフィ技術ではこれ以上の微細化が難しくなってき
た。そこで、フォトリソグラフィ技術に代わって、電子
ビームやイオンビーム等の荷電粒子ビームを用いた露光
法、或いはX線を用いる新しい露光法が検討され、実現
化されてきている。このうち、電子ビームを用いてパタ
ーンを形成する電子ビーム露光は、0.1μm以下の微
細なパターンを形成することが可能なため、脚光を浴び
ている。これに伴い電子ビーム露光装置にも、半導体量
産装置として安定した稼働、高いスループット、更なる
微細加工性が要求されてきている。
2. Description of the Related Art In recent years, miniaturization and densification of integrated circuits have progressed, and it has become difficult to further miniaturize the photolithography technology, which has been the mainstream of forming fine patterns for many years. Therefore, instead of the photolithography technology, an exposure method using a charged particle beam such as an electron beam or an ion beam, or a new exposure method using X-rays has been studied and realized. Among them, electron beam exposure in which a pattern is formed using an electron beam has been spotlighted because a fine pattern of 0.1 μm or less can be formed. Accordingly, stable operation, high throughput, and further fine workability have been required for electron beam exposure apparatuses as semiconductor mass production apparatuses.

【0003】従来の典型的な電子ビーム露光装置では、
電磁偏向器と静電偏向器を組み合わせた偏向手段が使用
され、電磁偏向器は主偏向器と、静電偏向器は副偏向器
と呼ばれる。電磁偏向器の偏向範囲(主偏向範囲)を、
静電偏向器の偏向範囲より少し小さな幾つかの領域(副
偏向範囲)に分割し、電磁偏向器による偏向位置を各副
偏向範囲の中心に位置させた上で、静電偏向器により各
副偏向範囲を偏向するのが一般的である。電子ビーム露
光装置のコラムには、適当に断面が成形された電子ビー
ムをウエハ上に照射するための投影レンズが内蔵されて
いるが、上述した電磁偏向器と静電偏向器はこの投影レ
ンズとほぼ一体的に、具体的には電磁偏向器内に静電偏
向器が収容される形で配置されている。
[0003] In a typical conventional electron beam exposure apparatus,
Deflection means combining an electromagnetic deflector and an electrostatic deflector is used. The electromagnetic deflector is called a main deflector, and the electrostatic deflector is called a sub deflector. The deflection range (main deflection range) of the electromagnetic deflector is
It is divided into several regions (sub-deflection ranges) slightly smaller than the deflection range of the electrostatic deflector, and the deflection position by the electromagnetic deflector is positioned at the center of each sub-deflection range. It is common to deflect the deflection range. The column of the electron beam exposure apparatus has a built-in projection lens for irradiating the wafer with an electron beam having an appropriately shaped cross section. The above-described electromagnetic deflector and electrostatic deflector are provided with the projection lens. The electrostatic deflector is disposed substantially integrally, specifically, in a form in which the electrostatic deflector is accommodated in the electromagnetic deflector.

【0004】従って、静電偏向器(副偏向器)及びその
周辺の部品に、加工性や精度は良好であるが導電性の高
い金属を使用すると、渦電流の影響により電磁偏向器
(主偏向器)の応答速度が遅くなるといった不都合が生
じる。これは、高スループットを要求されている電子ビ
ーム露光装置にとって非常に問題となる。渦電流を小さ
くするため、筒状の不導体材料(例えばアルミナ)の内
側にめっき(例えば下地はNiP、表面はAu)を施し
て静電偏向器を形成することも行われたが、加工精度や
メッキなどの問題があるため、現在は比抵抗の値がほぼ
理想的なAlTiC(アルミナと炭化チタンの化合物)セラミ
ックを研削加工したものに白金めっきを行って静電偏向
電極とし、この電極を絶縁性のアルミナセラミックの中
空円筒に固定して静電偏向器を構成している。
Therefore, if a metal having good workability and accuracy but high conductivity is used for the electrostatic deflector (sub-deflector) and its peripheral parts, the electromagnetic deflector (main deflection) is affected by the eddy current. The response speed of the device becomes slow. This is very problematic for an electron beam exposure apparatus that requires high throughput. In order to reduce the eddy current, plating (for example, NiP for the base and Au for the surface) is applied to the inside of a cylindrical non-conductive material (for example, alumina) to form an electrostatic deflector. At present, AlTiC (alumina-titanium carbide compound) ceramics, whose resistivity is almost ideal, is subjected to platinum plating to form an electrostatic deflection electrode. The electrostatic deflector is fixed to a hollow cylinder made of insulating alumina ceramic.

【0005】図1は、電子ビーム露光装置の静電偏向器
の従来例を示す図であり、(a)は静電偏向器の外観構
成を、(b)は(a)におけるA−A’線から見た上面
図を、(c)は(b)におけるB−B’線に沿った断面
図をそれぞれ示している。図示の静電偏向器10は、主
偏向器(図示せず)として電磁偏向器を用いた電子ビー
ム露光装置において、電磁偏向器の内部に配置され、副
偏向器として用いられる。図示のように、静電偏向器1
0は、電極群11と、電極群11が内部に固定される中
空円筒状の保持部材12とから構成されている。
FIGS. 1A and 1B are views showing a conventional example of an electrostatic deflector of an electron beam exposure apparatus. FIG. 1A shows the external configuration of the electrostatic deflector, and FIG. 1B shows AA 'in FIG. (C) shows a cross-sectional view taken along the line BB ′ in (b). The illustrated electrostatic deflector 10 is disposed inside an electromagnetic deflector and used as a sub deflector in an electron beam exposure apparatus using an electromagnetic deflector as a main deflector (not shown). As shown, the electrostatic deflector 1
Reference numeral 0 denotes an electrode group 11 and a hollow cylindrical holding member 12 in which the electrode group 11 is fixed.

【0006】電極群11は、8個のAlTiC セラミックの
電極材E1 〜E8 によって構成され、各電極材Ei (i
=1〜8)は、外筒12の内部で軸対称に配置固定され
ている(図1(b)参照)。各電極材Ei は、研削加工
によってそれぞれ同一形状に形成され、表面には金属皮
膜が形成されている。この金属皮膜は、例えばルテニウ
ム(Ru)、ロジウム(Rh)、パラジウム(Pd)、
オスミウム(Os)、イリジウム(Ir)及び白金(P
t)などの白金族の金属であり、電解めっきにより各導
電性セラミックの表面に直接形成されている。
The electrode group 11 is composed of eight AlTiC ceramic electrode materials E 1 to E 8 , and each electrode material E i (i
= 1 to 8) are arranged and fixed axially symmetrically inside the outer cylinder 12 (see FIG. 1B). Each electrode material Ei is formed in the same shape by grinding, and a metal film is formed on the surface. This metal film is made of, for example, ruthenium (Ru), rhodium (Rh), palladium (Pd),
Osmium (Os), iridium (Ir) and platinum (P
t) or the like, and is formed directly on the surface of each conductive ceramic by electrolytic plating.

【0007】一方、保持部材12は、各電極材Ei を相
互に絶縁する必要があり、不導体材料で形成されてい
る。この保持部材12には、図示のように開口部31が
設けられている。これら開口部は、電極群11(8個の
電極材E1 〜E8 )を内部に配置固定する際に用いられ
るもので、各電極材Ei 毎に2個(合計16個)の開口
部が設けられる。
On the other hand, the holding member 12 needs to insulate the respective electrode materials Ei from each other, and is formed of a non-conductive material. The holding member 12 is provided with an opening 31 as shown. These openings are used when the electrode group 11 (eight electrode materials E 1 to E 8 ) is arranged and fixed therein, and two (16 in total) openings are provided for each electrode material Ei. Provided.

【0008】各電極材Ei の開口部に対応する部分に
は、接合用金属パッドが形成されており、各電極材Ei
を保持部材12に位置決めした状態ではんだなどの接合
用金属を開口部に注入して各電極材Ei を保持部材12
に固定する。電子ビームは電子の流れであり、不導体材
料に衝突すれば不導体材料の表面に電荷が蓄積される。
蓄積された電荷は周囲の電界に影響を与える。静電偏向
器は、各電極材Ei に電圧を印加して電極群11の内部
に電界を発生させて、入射した電子ビームを電界の力で
偏向するものである。そのため、周囲の保持部材12の
表面に電荷が蓄積して電界を乱すと、所望の偏向量が得
られなくなるという問題が生じる。そこで、図1に示し
た従来例の静電偏向器では、各電極材Ei の横断面をク
ランク状にして筒の中心軸から保持部材12の内側表面
が直接見えないような形状にしている。このような形状
にすることで、筒の内部を通過する電子ビームが散乱し
ても、散乱した電子はいずれかの電極材Ei に衝突し
て、保持部材12の内側表面には到達しないようにして
いる。
[0008] portion corresponding to the opening of the electrode material E i, are joining metal pad formation, the electrode material E i
While the metal is positioned on the holding member 12, a joining metal such as solder is injected into the opening so that each electrode material E i is held in the holding member 12.
Fixed to. An electron beam is a flow of electrons, and when it collides with a non-conductive material, charges are accumulated on the surface of the non-conductive material.
The stored charge affects the surrounding electric field. The electrostatic deflector applies a voltage to each electrode material Ei to generate an electric field inside the electrode group 11, and deflects the incident electron beam by the force of the electric field. Therefore, if electric charges accumulate on the surface of the surrounding holding member 12 and disturb the electric field, there arises a problem that a desired deflection amount cannot be obtained. Therefore, in the conventional electrostatic deflector shown in FIG. 1, the cross section of each electrode material Ei is formed in a crank shape so that the inner surface of the holding member 12 cannot be directly seen from the center axis of the cylinder. With such a shape, even if the electron beam passing through the inside of the cylinder is scattered, the scattered electrons collide with one of the electrode materials Ei and do not reach the inner surface of the holding member 12. ing.

【0009】[0009]

【発明が解決しようとする課題】しかし、実際に使用す
ると、図1のような構造にしているのもかかわらず、保
持部材12の表面に電荷が蓄積(チャージアップ)して
電界を乱すという問題が発生した。この問題を図2を参
照して説明する。電子ビーム露光装置では、静電偏向器
10は、電磁偏向器9の内部に収容され、試料(ウエ
ハ)1にもっとも近い部分に配置される。試料1の表面
にはレジスト層2が形成されており、それに電子ビーム
3が照射される。レジスト層2に照射された電子ビーム
はレジスト層2に吸収されてレジスト層2を感光させる
が、一部はレジスト層2の表面で反射して静電偏向器1
0の方に戻る。また、レジスト層2内で散乱したり、一
旦吸収された後レジスト層2から放出された2次電子の
一部も、やはり静電偏向器10の方に戻る。このような
反射電子や2次電子は、保持部材12の端に近い部分に
蓄積される。また、電子ビーム3は、静電偏向器10や
電磁偏向器9を通過する間に偏向されて試料1に入射す
るが、偏向量が大きいと電極材Ei の表面を延長した面
に近い位置で試料に入射することになる。このような位
置からの反射電子や2次電子は、たとえ電極材Ei が上
記のようなクランク状であっても、より保持部材12の
表面に到達しやすくなる。以上のような理由で、保持部
材12は特に試料1に近い側で電荷が蓄積(チャージア
ップ)しやすく、電子ビームの露光位置に誤差が生じる
という問題が発生していた。
However, when actually used, the electric charge is accumulated (charged up) on the surface of the holding member 12 to disturb the electric field despite the structure shown in FIG. There has occurred. This problem will be described with reference to FIG. In the electron beam exposure apparatus, the electrostatic deflector 10 is housed inside the electromagnetic deflector 9 and is arranged at a portion closest to the sample (wafer) 1. A resist layer 2 is formed on the surface of the sample 1, and an electron beam 3 is irradiated on the resist layer. The electron beam applied to the resist layer 2 is absorbed by the resist layer 2 to expose the resist layer 2, but a part of the electron beam is reflected on the surface of the resist layer 2 and is reflected by the electrostatic deflector 1.
Return to 0. Also, some of the secondary electrons scattered in the resist layer 2 or emitted from the resist layer 2 after being once absorbed also return to the electrostatic deflector 10. Such reflected electrons and secondary electrons are accumulated in a portion near the end of the holding member 12. The electron beam 3 is deflected while passing through the electrostatic deflector 10 and the electromagnetic deflector 9 and is incident on the sample 1. However, when the deflection amount is large, the electron beam 3 is located at a position close to the surface extending the surface of the electrode material Ei. It will be incident on the sample. Reflected electrons and secondary electrons from such a position are more likely to reach the surface of the holding member 12 even if the electrode material Ei is in a crank shape as described above. For the above reasons, the holding member 12 tends to accumulate charges (charge-up) particularly on the side close to the sample 1, and there has been a problem that an error occurs in the electron beam exposure position.

【0010】また、チャージアップは他の原因によって
も発生する。電子ビーム露光装置では、コラムの内部及
び該コラムに結合された露光処理のためのチャンバの内
部は通常高真空状態となっているが、実際には露光する
レジスト等の蒸発などがあり、これに電子ビームが照射
されると、焼きついて炭素等を主成分とする化合物(つ
まり汚れ)が発生する。この汚れは良導体ではないた
め、電極表面にチャージアップが発生し、電界を乱して
電子ビームの露光位置に誤差を生じさせるといった問題
が発生する。特に、レジストが塗布されたウエハの近傍
に位置する静電偏向器(副偏向器)については、この問
題は一層顕著に現れる。
[0010] Charge-up also occurs due to other causes. In an electron beam exposure apparatus, the inside of a column and the inside of a chamber for exposure processing coupled to the column are usually in a high vacuum state, but in actuality evaporation of a resist to be exposed is performed. When irradiated with an electron beam, it is burned to generate a compound containing carbon or the like as a main component (that is, dirt). Since this dirt is not a good conductor, charge-up occurs on the electrode surface, disturbing the electric field and causing an error in the electron beam exposure position. In particular, this problem becomes more prominent in an electrostatic deflector (sub-deflector) located near a wafer on which a resist is applied.

【0011】従来の技術では、チャージアップ量がある
程度以上になると、静電偏向器それ自体を新品と交換し
ていたが、この交換作業を行うためには、コラム及びチ
ャンバの内部の高真空状態をいったん解除する(つまり
大気リークさせる)必要があった。このため、交換作業
を行った後再び露光装置の立ち上げ(例えば各偏向器に
与える偏向データの初期設定等)を行う間、装置は停止
しており、スループットの低下を招いていた。これに対
処するため、コラム及びチャンバの内部を大気リークさ
せることなく汚れを取り去る"in-situ" クリーニング法
と呼ばれる方法が用いられている。これは、酸素を主成
分とするガスを装置内にごく微量導入し、この希薄ガス
雰囲気にて静電偏向電極に高周波電力を印加することに
より酸素プラズマを発生させ、アッシング(灰化処理)
によって汚れを取り去る方法である。しかしながら、こ
の"in-situ" クリーニング法を行うことにより、電極表
面の金属皮膜を形成する導体物質や、電極の表面を汚染
している物質などがスパッタされて、不導体の保持部材
12の表面に付着し、電極間の絶縁抵抗を低下させた
り、予期せぬチャージアップの原因となり、結果的に露
光の位置精度を低下させていた。
In the prior art, when the charge-up amount exceeds a certain level, the electrostatic deflector itself is replaced with a new one. However, in order to perform this replacement work, a high vacuum state inside the column and the chamber is required. Had to be released once (that is, let the air leak). For this reason, the apparatus is stopped during the start-up of the exposure apparatus (for example, the initial setting of the deflection data to be given to each deflector) after the replacement work, and the throughput is reduced. In order to cope with this, a method called an "in-situ" cleaning method for removing dirt without causing the inside of the column and the chamber to leak to the atmosphere is used. In this method, a very small amount of gas containing oxygen as a main component is introduced into an apparatus, and high-frequency power is applied to an electrostatic deflection electrode in this rare gas atmosphere to generate oxygen plasma, thereby performing ashing (ashing treatment).
Is a method of removing dirt. However, by performing this “in-situ” cleaning method, a conductive material that forms a metal film on the electrode surface, a material that contaminates the electrode surface, and the like are sputtered, and the surface of the non-conductive holding member 12 is sputtered. This causes a decrease in insulation resistance between the electrodes and an unexpected charge-up, resulting in a decrease in exposure position accuracy.

【0012】本発明は、このような問題を解決するため
のもので、露光位置精度の低下の原因となる不導体の保
持部材のチャージアップを低減して、露光の位置精度を
低下を防止することを目的とする。
The present invention is intended to solve such a problem, and reduces the charge-up of a non-conductor holding member which causes a decrease in exposure position accuracy, thereby preventing a decrease in exposure position accuracy. The purpose is to:

【0013】[0013]

【課題を解決するための手段】図3は、本発明の電子ビ
ーム照射装置の静電偏向器の基本構成を示す図であり、
(a)が第1の態様の基本構成を、(b)が第2の態様
の基本構成を、(c)が第3の態様の基本構成を示す。
本発明の電子ビーム照射装置の静電偏向器は、不導体材
料で作られた筒状の保持部材22と、保持部材の内側の
周方向に互いに分離して固定される少なくとも表面の一
部が導電性である複数の電極11とを備える静電偏向器
であって、このような静電偏向器において、本発明の第
1の態様では図3の(a)に示すように、保持部材22
が隣接する電極の間に面する部分に筒の軸方向と平行な
方向に延びる開口部30を有し、本発明の第2の態様で
は図3の(b)に示すように、複数の電極11が保持部
材22より電子ビームの出射方向に伸びており、本発明
の第3の態様では図3の(c)に示すように、保持部材
は、独立した複数の保持ユニット22a,22bを備
え、複数の保持ユニットの長さの合計は電極11の長さ
より十分に短いことを特徴とする。
FIG. 3 is a diagram showing a basic configuration of an electrostatic deflector of an electron beam irradiation apparatus according to the present invention.
(A) shows the basic configuration of the first embodiment, (b) shows the basic configuration of the second embodiment, and (c) shows the basic configuration of the third embodiment.
The electrostatic deflector of the electron beam irradiation apparatus of the present invention has a cylindrical holding member 22 made of a non-conductive material, and at least a part of the surface fixed separately from each other in a circumferential direction inside the holding member. An electrostatic deflector provided with a plurality of electrodes 11 which are conductive. In such an electrostatic deflector, in the first embodiment of the present invention, as shown in FIG.
Has an opening 30 extending in a direction parallel to the axial direction of the cylinder in a portion facing between adjacent electrodes, and in the second embodiment of the present invention, as shown in FIG. Reference numeral 11 extends from the holding member 22 in the emission direction of the electron beam. In the third embodiment of the present invention, as shown in FIG. 3C, the holding member includes a plurality of independent holding units 22a and 22b. The sum of the lengths of the plurality of holding units is sufficiently shorter than the length of the electrode 11.

【0014】保持部材の内側には複数の電極11が固定
されており、筒の内側に直接面しているのは隣接する電
極の間であり、この電極の間の部分に電荷が蓄積し筒内
部の電界に影響を与える。また、電極間の絶縁抵抗は保
持部材22の電極の間の部分の表面抵抗に影響される。
本発明の第1の態様によれば、この電極の間の部分に筒
の軸方向と平行な方向に延びる開口部30が設けられて
いるため、保持部材22の電極の間に位置する部分の面
積が少なくなる。従って、従来例に比べて蓄積する電荷
の量も減少するので電界に与える影響も低減される。更
に、保持部材12の電極の間の面積(幅)も小さくなる
ので、表面抵抗は大きくなる。従って、電極間の絶縁抵
抗は増大し、たとえその部分に導体物質や汚染物質が付
着しても、影響を低減できる。
A plurality of electrodes 11 are fixed to the inside of the holding member, and the portion directly facing the inside of the cylinder is between adjacent electrodes. Affects internal electric fields. Further, the insulation resistance between the electrodes is affected by the surface resistance of the portion of the holding member 22 between the electrodes.
According to the first aspect of the present invention, since the opening 30 extending in the direction parallel to the axial direction of the cylinder is provided at the portion between the electrodes, the portion of the holding member 22 located between the electrodes is The area is reduced. Therefore, the amount of electric charge to be stored is reduced as compared with the conventional example, so that the influence on the electric field is also reduced. Furthermore, since the area (width) between the electrodes of the holding member 12 is also reduced, the surface resistance is increased. Therefore, the insulation resistance between the electrodes increases, and even if a conductive substance or a contaminant adheres to that portion, the effect can be reduced.

【0015】前述のように、保持部材のチャージアップ
や保持部材への導体物質や汚染物質の付着が問題になる
のは主として試料に近い側である。本発明の第2の態様
によれば、複数の電極11が保持部材22より電子ビー
ムの出射方向に伸びており、保持部材は試料から離れた
位置にあるので、チャージアップや導体物質や汚染物質
の付着が生じにくくなる。なお、保持部材は試料から電
極の長さの1/3以上離れていることが望ましい。
As described above, charging up of the holding member and adhesion of the conductive substance and the contaminant to the holding member pose a problem mainly on the side close to the sample. According to the second aspect of the present invention, the plurality of electrodes 11 extend from the holding member 22 in the emission direction of the electron beam, and the holding member is located at a position away from the sample. Is less likely to adhere. The holding member is preferably separated from the sample by at least 1/3 of the length of the electrode.

【0016】本発明の第3の態様は、第1の態様と同様
に、保持部材22の電極の間の部分の面積を低減するも
のである。第1及び第2の態様では、保持部材22は所
定の形状を有しており、複数の電極11は保持部材22
に固定することにより所定の位置関係に配置される。こ
れに対して、第3の態様では、保持部材は、独立した複
数の保持ユニットに分かれており、そのままでは相互の
位置関係が決まらない。そこで、第3の態様では、複数
の電極と複数の保持ユニットを位置決めした状態で固定
することにより、複数の電極の位置関係を規定してい
る。すなわち、複数の電極も位置関係を規定する構造体
として働く。
A third aspect of the present invention is to reduce the area of a portion between the electrodes of the holding member 22 as in the first aspect. In the first and second aspects, the holding member 22 has a predetermined shape, and the plurality of electrodes 11
Are arranged in a predetermined positional relationship. On the other hand, in the third embodiment, the holding member is divided into a plurality of independent holding units, and the mutual positional relationship is not determined as it is. Therefore, in the third aspect, the positional relationship between the plurality of electrodes is defined by fixing the plurality of electrodes and the plurality of holding units in a positioned state. That is, the plurality of electrodes also function as a structure that defines the positional relationship.

【0017】なお、以上説明した第1から第3の態様を
組み合わせた構造とすることも可能である。
Incidentally, it is also possible to adopt a structure combining the first to third aspects described above.

【0018】[0018]

【発明の実施の形態】図4は、本発明の第1実施例の静
電偏向器の構成を示す斜視図である。また、図5は電極
群を構成する電極材Ei と電極材Ei を保持部材に固定
した時の断面図を示す。第1実施例の静電偏向器は、第
1及び第2の態様を組み合わせた構成を有する。第1実
施例の静電偏向器は、保持部材22のみが図1に示した
従来例と異なり、8個の電極材で構成される電極群11
は図1の従来例の電極群と同じである。
FIG. 4 is a perspective view showing the structure of an electrostatic deflector according to a first embodiment of the present invention. Further, FIG. 5 shows a sectional view of the fixed electrode member E i and the electrode member E i constituting the electrode group to the holding member. The electrostatic deflector of the first embodiment has a configuration in which the first and second aspects are combined. The electrostatic deflector according to the first embodiment is different from the conventional example shown in FIG. 1 in that only the holding member 22 is different from the conventional example shown in FIG.
Is the same as the electrode group of the conventional example in FIG.

【0019】第1実施例の静電偏向器の電極群11を構
成する電極材Ei は、従来例と同様に、AlTiC セラミッ
クを研削加工し、表面に白金メッキが施されており、同
一形状の電極材が8個使用される。電極材Ei を製作す
るには、まず研削加工により同一形状に加工される。次
に、各電極材Ei には、ドライバから電圧を印加する部
分として、メタライズ法によりチタン(Ti)を主成分
とする導通用金属パッド23を形成する。更に、保持部
材22に固定する部分の任意の2箇所に、メタライズ法
によりTiを主成分とする接合用金属パッド24及び2
5を形成する。なお、各金属パッド23〜25の大きさ
は最小限となるようにする。次に、各電極材Ei の表面
を洗浄した後、白金(Pt)を電解めっきにより各電極
材Ei の表面に直接形成する。この際、めっきの厚さは
2μm以下とした。
The electrode material E i constituting the electrode group 11 of the electrostatic deflector in the first embodiment, as in the conventional example, by grinding the AlTiC ceramic, platinum plating is applied to the surface, the same shape Eight electrode materials are used. To manufacture an electrode material E i is processed into the same shape by first grinding. Next, each electrode member E i, as a portion for applying a voltage from the driver, to form a conductive metal pad 23 mainly comprising titanium (Ti) by metallization method. Furthermore, the metal pads 24 and 2 for bonding are formed at arbitrary two places of the portion fixed to the holding member 22 by metallization.
5 is formed. The size of each of the metal pads 23 to 25 is minimized. Next, after cleaning the surface of the electrode material E i, is directly formed on the surface of the electrode material E i by electrolytic plating of platinum (Pt). At this time, the thickness of the plating was 2 μm or less.

【0020】保持部材22は、不導体材料としてアルミ
ナを使用し、電極材Ei の長さの2/3以下の長さの円
筒形状で、隣接する電極材の隙間に対応する部分に、筒
の軸と平行に延びる8個の長穴30が形成されている。
更に、各電極材Ei を内部に配置固定する際に各電極材
i の接合用金属パッド24及び25がそれぞれ当接す
る位置に16個の穴31が形成され、各穴31の内壁部
分には、メタライズ法によりTi或いはモリブデン−マ
ンガン(Mo−Mn)を主成分とする接合用金属パッド
26及び27が形成される。
The holding member 22 using alumina as a non-conductive material, with cylindrical length less than 2/3 of the length of the electrode member E i, the portion corresponding to the gap between adjacent electrode material, cylinder 8 elongated holes 30 are formed extending parallel to the axis.
Furthermore, each electrode member E i 16 or holes 31 in a position bonding metal pads 24 and 25 abut each of the electrode material E i when placing fixed therein is formed on the inner wall portion of each hole 31 In FIG. 1, bonding metal pads 26 and 27 mainly composed of Ti or molybdenum-manganese (Mo-Mn) are formed by metallization.

【0021】次に、組立治具により、各電極材Ei を高
精度に位置決めした状態で保持部材22内に挿入し、保
持部材22に形成された穴31にろう材又ははんだ材2
8を微量注入し(図5(b)参照)、加熱する。これに
よって、各電極材Ei に形成した接合用金属パッド24
及び25と、保持部材22に形成した接合用金属パッド
26及び27とが互いに固定される。つまり、各電極材
i が保持部材22に所定の位置関係で堅固に固定され
る。
Next, the assembly jig, each electrode member E i is inserted into the holding member 22 in a state of being positioned with high accuracy, the brazing material into the hole 31 formed in the holding member 22 or the solder material 2
A small amount of 8 is injected (see FIG. 5B) and heated. Thereby, the bonding metal pad 24 formed on each electrode material Ei is formed.
And 25 and the bonding metal pads 26 and 27 formed on the holding member 22 are fixed to each other. That is, each electrode material Ei is firmly fixed to the holding member 22 in a predetermined positional relationship.

【0022】以上のようにして、第1実施例の静電偏向
器が実現される。図6は、本発明の第2実施例の静電偏
向器の構成を示す斜視図である。図示のように、第2実
施例の静電偏向器では、保持部材22が2つの短い保持
ユニット22aと22bに分けられている。保持ユニッ
ト22aと22bは、例えば長さが電極材Ei の長さの
1/10以下の円筒で、8個の穴23が設けられてい
る。他は、すべて第1実施例と同じである。言い換えれ
ば、図4の第1実施例の静電偏向器の保持部材22にお
いて、長穴30の長さに相当する部分をすべてなくして
保持部材を2つの部分に分けたものである。従って、下
側の保持ユニット22bは、電極群21の下端から電極
の長さの1/3以上離れた位置に配置されている。
As described above, the electrostatic deflector of the first embodiment is realized. FIG. 6 is a perspective view showing the configuration of the electrostatic deflector according to the second embodiment of the present invention. As shown, in the electrostatic deflector of the second embodiment, the holding member 22 is divided into two short holding units 22a and 22b. Holding units 22a and 22b, for example length at 1/10 of the cylinder of the length of the electrode member E i, is provided with eight holes 23. The rest is the same as the first embodiment. In other words, in the holding member 22 of the electrostatic deflector according to the first embodiment of FIG. 4, the holding member is divided into two parts without any part corresponding to the length of the elongated hole 30. Therefore, the lower holding unit 22b is arranged at a position separated from the lower end of the electrode group 21 by at least 1/3 of the length of the electrode.

【0023】第2実施例の静電偏向器は、保持部材が2
つの保持ユニット22aと22bに分かれているため、
第1実施例と同じようには組み立てられない。組み立て
は、組み立て治具により、8個の電極材Ei と2個の保
持ユニット22aと22bを高精度に位置決めした状態
で、穴31にろう材又ははんだ材を注入して固定する。
In the electrostatic deflector of the second embodiment, the holding member
Divided into two holding units 22a and 22b,
It is not assembled as in the first embodiment. Assembled by the assembling jig in a state of being positioned eight electrode material E i and two holding units 22a and 22b with high accuracy, fixed by injecting braze or solder material into the hole 31.

【0024】[0024]

【発明の効果】以上説明したように、本発明に係る静電
偏向器によれば、電極を保持する保持部材のチャージア
ップ及び汚染物質などの付着が低減され、静電偏向器の
電界の乱れが低減されるので、露光位置精度が向上す
る。
As described above, according to the electrostatic deflector according to the present invention, charge-up of the holding member for holding the electrodes and adhesion of contaminants and the like are reduced, and the electric field of the electrostatic deflector is disturbed. , The exposure position accuracy is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来例の電子ビーム露光装置の静電偏向器の外
観及び内部構成を模式的に示した図である。
FIG. 1 is a diagram schematically showing the appearance and internal configuration of an electrostatic deflector of a conventional electron beam exposure apparatus.

【図2】試料に近い側でチャージアップ及び汚染物質の
付着を説明する図である。
FIG. 2 is a diagram illustrating charge-up and adhesion of contaminants on a side close to a sample.

【図3】本発明の静電偏向器の基本構成を示す図であ
る。
FIG. 3 is a diagram showing a basic configuration of the electrostatic deflector of the present invention.

【図4】第1実施例の静電偏向器の構成を示す斜視図で
ある。
FIG. 4 is a perspective view showing a configuration of the electrostatic deflector of the first embodiment.

【図5】第1実施例の電極材及び電極材を保持部材に固
定した時の状態を示す図である。
FIG. 5 is a diagram showing an electrode material of the first embodiment and a state when the electrode material is fixed to a holding member.

【図6】第2実施例の静電偏向器の構成を示す斜視図で
ある。
FIG. 6 is a perspective view illustrating a configuration of an electrostatic deflector according to a second embodiment.

【符号の説明】[Explanation of symbols]

10…静電偏向器 11…電極群 22…保持部材 23…導通用金属パッド 24〜27…接合用金属パッド 28…接合金属(はんだ等) 30…開口部(長穴) 31…開口部 E1 〜E8 …電極材10 ... electrostatic deflector 11 ... electrode group 22 ... holding member 23 ... conductive metal pads 24 to 27 ... bonding metal pads 28 ... bonding metal (such as solder) 30 ... opening (long hole) 31 ... opening E 1 ~ E 8 … electrode material

フロントページの続き (72)発明者 加藤 良二 東京都練馬区旭町1丁目32番1号 株式会 社アドバンテスト内 (72)発明者 芦原 和人 東京都練馬区旭町1丁目32番1号 株式会 社アドバンテスト内 Fターム(参考) 5C033 EE01 FF01 GG02 Continued on the front page (72) Inventor Ryoji Kato 1-32-1 Asahicho, Nerima-ku, Tokyo Inside Advantest Co., Ltd. (72) Inventor Kazuto Ashihara 1-32-1 Asahicho, Nerima-ku, Tokyo Stock Association Advantest F term (reference) 5C033 EE01 FF01 GG02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 不導体材料で作られた筒状の保持部材
と、該保持部材の内側の周方向に互いに分離して固定さ
れる少なくとも表面の一部が導電性である複数の電極と
を備える電子ビーム照射装置の静電偏向器において、 前記保持部材は、隣接する前記電極の間に面する部分
に、筒の軸方向と平行な方向に延びる開口部を有するこ
とを特徴とする電子ビーム照射装置の静電偏向器。
1. A cylindrical holding member made of a non-conductive material, and a plurality of electrodes, at least part of the surface of which is fixed and separated from each other in a circumferential direction inside the holding member, is provided. In the electrostatic deflector of the electron beam irradiation apparatus provided, the holding member has an opening extending in a direction parallel to the axial direction of the cylinder at a portion facing between the adjacent electrodes. Electrostatic deflector of irradiation device.
【請求項2】 請求項1に記載の電子ビーム照射装置の
静電偏向器であって、 前記複数の電極は、前記保持部材より電子ビームの出射
方向に伸びている電子ビーム照射装置の静電偏向器。
2. The electrostatic deflector for an electron beam irradiation apparatus according to claim 1, wherein said plurality of electrodes extend from said holding member in an emission direction of the electron beam. Deflector.
【請求項3】 請求項2に記載の電子ビーム照射装置の
静電偏向器であって、 前記複数の電極が前記保持部材より電子ビームの出射方
向に伸びている長さは、前記電極の長さの1/3以上で
ある電子ビーム照射装置の静電偏向器。
3. The electrostatic deflector of the electron beam irradiation apparatus according to claim 2, wherein a length of the plurality of electrodes extending from the holding member in an emission direction of the electron beam is equal to a length of the electrodes. The electrostatic deflector of the electron beam irradiation device which is 1/3 or more of the height.
【請求項4】 不導体材料で作られた筒状の保持部材
と、該保持部材の内側の周方向に互いに分離して固定さ
れる少なくとも表面の一部が導電性である複数の電極と
を備える電子ビーム照射装置の静電偏向器において、 前記複数の電極は、前記保持部材より電子ビームの出射
方向に伸びていることを特徴とする電子ビーム照射装置
の静電偏向器。
4. A cylindrical holding member made of a non-conductive material, and a plurality of electrodes whose inside surfaces are at least partially fixed and separated from each other in a circumferential direction of the holding member. An electrostatic deflector for an electron beam irradiation apparatus, wherein the plurality of electrodes extend from the holding member in an emission direction of the electron beam.
【請求項5】 請求項4に記載の電子ビーム照射装置の
静電偏向器であって、 前記複数の電極が前記保持部材より電子ビームの出射方
向に伸びている長さは、前記電極の長さの1/3以上で
ある電子ビーム照射装置の静電偏向器。
5. The electrostatic deflector of the electron beam irradiation apparatus according to claim 4, wherein a length of the plurality of electrodes extending from the holding member in an emission direction of the electron beam is equal to a length of the electrodes. The electrostatic deflector of the electron beam irradiation device which is 1/3 or more of the height.
【請求項6】 不導体材料で作られた筒状の保持部材
と、該保持部材の内側の周方向に互いに分離して固定さ
れる少なくとも表面の一部が導電性である複数の電極と
を備える電子ビーム照射装置の静電偏向器において、 前記保持部材は、独立した複数の保持ユニットを備え、 前記複数の保持ユニットの長さの合計は、前記電極の長
さより十分に短いことを特徴とする電子ビーム照射装置
の静電偏向器。
6. A cylindrical holding member made of a non-conductive material, and a plurality of electrodes at least part of the surface of which is fixed and separated from each other in a circumferential direction inside the holding member. In the electrostatic deflector of the electron beam irradiation apparatus provided, the holding member includes a plurality of independent holding units, and a total length of the plurality of holding units is sufficiently shorter than a length of the electrode. Electron deflector of electron beam irradiation device.
【請求項7】 請求項6に記載の電子ビーム照射装置の
静電偏向器であって、 前記複数の保持ユニットのうちもっとも電子ビームの出
射方向に近い保持ユニットから前記複数の電極の前記電
子ビームの出射方向の端までの長さは、前記電極の長さ
の1/3以上である電子ビーム照射装置の静電偏向器。
7. The electrostatic deflector of the electron beam irradiation apparatus according to claim 6, wherein the electron beam of the plurality of electrodes is arranged from a holding unit closest to an emission direction of the electron beam among the plurality of holding units. The length to the end in the emission direction of the electrostatic deflector of the electron beam irradiating device is at least 1/3 of the length of the electrode.
JP02494799A 1998-11-02 1999-02-02 Electron beam irradiation device electrostatic deflector Expired - Fee Related JP4610029B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP02494799A JP4610029B2 (en) 1999-02-02 1999-02-02 Electron beam irradiation device electrostatic deflector
US09/431,441 US6509568B1 (en) 1998-11-02 1999-11-01 Electrostatic deflector for electron beam exposure apparatus
TW088118947A TW460756B (en) 1998-11-02 1999-11-01 Electrostatic deflector for electron beam exposure apparatus
KR1019990047929A KR100350308B1 (en) 1998-11-02 1999-11-01 Electrostatic deflector for electron beam exposure apparatus
EP99121672A EP0999572A3 (en) 1998-11-02 1999-11-02 Electrostatic deflector for electron beam exposure apparatus
US09/886,789 US20020020354A1 (en) 1998-11-02 2001-06-21 Electrostatic deflector for electron beam exposure apparatus
US09/886,807 US20010045528A1 (en) 1998-11-02 2001-06-21 Electrostatic deflector for electron beam exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02494799A JP4610029B2 (en) 1999-02-02 1999-02-02 Electron beam irradiation device electrostatic deflector

Publications (2)

Publication Number Publication Date
JP2000223054A true JP2000223054A (en) 2000-08-11
JP4610029B2 JP4610029B2 (en) 2011-01-12

Family

ID=12152216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02494799A Expired - Fee Related JP4610029B2 (en) 1998-11-02 1999-02-02 Electron beam irradiation device electrostatic deflector

Country Status (1)

Country Link
JP (1) JP4610029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031008A (en) * 2010-07-30 2012-02-16 Kyocera Corp Ceramic body with conductive layer, and joined body of ceramic and metal

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489135A (en) * 1987-09-30 1989-04-03 Toshiba Corp Multi-electrode deflector
JPH02247969A (en) * 1989-03-18 1990-10-03 Ulvac Corp Ion implanter
JPH02247966A (en) * 1989-03-20 1990-10-03 Fujitsu Ltd Electrostatic deflection apparatus
JPH038857U (en) * 1989-06-13 1991-01-28
JPH0310460U (en) * 1989-06-16 1991-01-31
JPH03276548A (en) * 1990-03-27 1991-12-06 Nikon Corp Electrostatic deflecting device and manufacture thereof
JPH04174510A (en) * 1990-11-07 1992-06-22 Fujitsu Ltd Manufacture of electrostatic deflector for electron beam exposure device
JPH05266847A (en) * 1992-03-18 1993-10-15 Hitachi Ltd Electron beam deflector
JPH09293472A (en) * 1996-04-26 1997-11-11 Fujitsu Ltd Charged particle beam exposure device, its exposure method, and its manufacture

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489135A (en) * 1987-09-30 1989-04-03 Toshiba Corp Multi-electrode deflector
JPH02247969A (en) * 1989-03-18 1990-10-03 Ulvac Corp Ion implanter
JPH02247966A (en) * 1989-03-20 1990-10-03 Fujitsu Ltd Electrostatic deflection apparatus
JPH038857U (en) * 1989-06-13 1991-01-28
JPH0310460U (en) * 1989-06-16 1991-01-31
JPH03276548A (en) * 1990-03-27 1991-12-06 Nikon Corp Electrostatic deflecting device and manufacture thereof
JPH04174510A (en) * 1990-11-07 1992-06-22 Fujitsu Ltd Manufacture of electrostatic deflector for electron beam exposure device
JPH05266847A (en) * 1992-03-18 1993-10-15 Hitachi Ltd Electron beam deflector
JPH09293472A (en) * 1996-04-26 1997-11-11 Fujitsu Ltd Charged particle beam exposure device, its exposure method, and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031008A (en) * 2010-07-30 2012-02-16 Kyocera Corp Ceramic body with conductive layer, and joined body of ceramic and metal

Also Published As

Publication number Publication date
JP4610029B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US6509568B1 (en) Electrostatic deflector for electron beam exposure apparatus
KR100911434B1 (en) The compactive x-ray tube with triode structure using cnt
US7276707B2 (en) Deflector, method of manufacturing deflector, and charged particle beam exposure apparatus
KR100250801B1 (en) A charged particle beam exposure apparatus, and a charged particle beam exposure method, and a manufacturing method for the apparatus
JP2009004366A (en) Pattern definition device having counter-electrode array plate
KR100609001B1 (en) Electrostatic deflector, for electron beam exposure apparatus, with reduced charge-up
JP5102968B2 (en) Conductive needle and method of manufacturing the same
JP3785085B2 (en) Electrostatic deflector and manufacturing method thereof, electrostatic lens and manufacturing method thereof, electron beam irradiation apparatus and cleaning method thereof
JP3568553B2 (en) Charged particle beam exposure apparatus and cleaning method thereof
JP4610029B2 (en) Electron beam irradiation device electrostatic deflector
JP2000106117A (en) Electrostatic deflector for electron beam irradiating device
JP4083768B2 (en) Electron beam irradiation device
JP4439038B2 (en) Electron beam exposure method and apparatus
JP2000138036A (en) Electrostatic deflecting system for electron beam irradiating device
JP2007149655A (en) Electro-optical column and electro-optical multilayer column
JPH05129193A (en) Charged beam exposure device
JP4195632B2 (en) Electrostatic adsorption device and charged particle application device using the same
US11721520B2 (en) Semiconductor device, multi-charged-particle beam writing apparatus, and multi-charged-particle beam exposure apparatus
JP4168822B2 (en) Electrode ring and electron microscope equipped with the same
TW202414488A (en) Charged-particle beam apparatus with fast focus correction and methods thereof
JP2002198005A (en) Manufacturing method of electrostatic device for directing charged particle beam
JP2004152504A (en) Deflector, method for manufacturing deflector, and charged particle beam exposure apparatus
JP2005039144A (en) Electron-beam drewing system and method therefor
JP2001093810A (en) Hollow aperture, method of forming the same, charged particle beam exposure system and method of manufacturing semiconductor device
JP3399008B2 (en) Electron gun

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees