JP2000208313A - Anisotropic exchanging spring magnet power and manufacture therefor - Google Patents

Anisotropic exchanging spring magnet power and manufacture therefor

Info

Publication number
JP2000208313A
JP2000208313A JP11008798A JP879899A JP2000208313A JP 2000208313 A JP2000208313 A JP 2000208313A JP 11008798 A JP11008798 A JP 11008798A JP 879899 A JP879899 A JP 879899A JP 2000208313 A JP2000208313 A JP 2000208313A
Authority
JP
Japan
Prior art keywords
magnet powder
exchange spring
producing
anisotropic exchange
spring magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11008798A
Other languages
Japanese (ja)
Other versions
JP3622550B2 (en
Inventor
Hideaki Ono
秀昭 小野
Munekatsu Shimada
宗勝 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP00879899A priority Critical patent/JP3622550B2/en
Publication of JP2000208313A publication Critical patent/JP2000208313A/en
Application granted granted Critical
Publication of JP3622550B2 publication Critical patent/JP3622550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Abstract

PROBLEM TO BE SOLVED: To arrange a crystallizing direction and to make a crystal particle diameter fine by repeating the step of making amorphous of crystalline magnetic base material and the following step of crystallization more than once. SOLUTION: A base material which contains a magnet compound and a soft magnetic compound as coarse particles caused by high frequency dissolution and the like is made amorphous in the state of fine crystalline particles remaining in an amorphous matrix. Continuously, heat processing at a low temperature is made to maintain the fine crystalline particles which show exchange coupling. In this case the crystals are continuously grown in the direction of the residual fine crystalline particles. A step of making amorphous and a step of heat treatment for crystallization are repeated more than once. The two steps are performed by shutting oxygen off in vacuum, in inert gases, in nitrogen or in organic solvent. Thus insides of powder particles are made fine and crystalline directions are matched.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータ、磁界セン
サ、回転センサ、加速度センサおよびトルクセンサ等に
用いる磁石材料に関する。
The present invention relates to a magnet material used for a motor, a magnetic field sensor, a rotation sensor, an acceleration sensor, a torque sensor and the like.

【0002】[0002]

【従来の技術】従来の永久磁石材料は、化学的に安定で
低コストなフェライト磁石や高性能な希土類系磁石が実
用化されている。これらの材料は、磁石化合物としては
ほぼ単一の化合物で構成されているが、近年、高保磁力
の永久磁石材料と高磁束密度の軟磁性材料を複合化した
交換スプリング磁石が注目されている。交換スプリング
磁石は高い最大エネルギー積が期待されており、理論的
には100MGOe以上の極めて高い磁石特性が可能で
ある。
2. Description of the Related Art Ferrite magnets which are chemically stable and inexpensive and rare earth magnets having high performance have been put to practical use as conventional permanent magnet materials. These materials are composed of almost a single compound as a magnet compound. However, in recent years, exchange spring magnets in which a permanent magnet material having a high coercive force and a soft magnetic material having a high magnetic flux density are combined have attracted attention. Exchange spring magnets are expected to have a high maximum energy product, and can theoretically have extremely high magnet properties of 100 MGOe or more.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、現在開
発されている交換スプリング磁石は等方性磁石であり、
得られる最大エネルギー積も20MGOe程度と低い値
にとどまっている。これは、交換スプリング磁石を構成
する結晶粒の結晶方位が一方向に揃っていないために、
特性向上がなされないことが最大の原因であり、交換結
合を示すような微細で且つ結晶方向が揃った異方性交換
スプリング磁石を実現するために、多くの研究がなされ
ている。
However, the exchange spring magnets currently being developed are isotropic magnets,
The maximum energy product obtained is also as low as about 20 MGOe. This is because the crystal orientation of the crystal grains constituting the exchange spring magnet is not aligned in one direction,
The biggest cause is that the characteristics are not improved, and many studies have been made to realize an anisotropic exchange spring magnet which is fine and shows a uniform crystal direction so as to show exchange coupling.

【0004】本発明は、このような従来の問題点に着目
してなされたものであり、異方性の交換スプリング磁石
を得るために、その原料となる異方性交換スプリング磁
石粉末を実現することを目的とする。
The present invention has been made in view of such a conventional problem. In order to obtain an anisotropic exchange spring magnet, an anisotropic exchange spring magnet powder as a raw material thereof is realized. The purpose is to:

【0005】[0005]

【課題を解決するための手段】このような目的は、結晶
質の磁性母材をアモルファス化する工程と引き続いて行
なう結晶化する工程を1回以上繰り返すことにより得ら
れるものである。
This and other objects are achieved by repeating the step of amorphizing a crystalline magnetic base material and the step of subsequent crystallization one or more times.

【0006】本発明の作用を説明する。本発明の製造方
法によって、結晶粒径が微細で且つ結晶方向が揃った異
方性交換スプリング磁石粉末が得られる。この際に、ア
モルファス化工程と結晶化工程を繰り返すことにより、
より微細で磁石特性に優れた異方性交換スプリング磁石
粉末を得ることができる。
The operation of the present invention will be described. According to the production method of the present invention, an anisotropic exchange spring magnet powder having a fine crystal grain size and a uniform crystal direction can be obtained. At this time, by repeating the amorphization step and the crystallization step,
An anisotropic exchange spring magnet powder which is finer and has excellent magnet properties can be obtained.

【0007】[0007]

【発明の実施の形態】以下、本発明の具体的構成につい
て詳細に説明する。本発明の異方性交換スプリング磁石
粉末の製造方法は、公知の技術、例えば高周波溶解など
により粗大粒として磁石化合物と軟磁性化合物を同時に
含有した母材料に対して、MA,MG等により、アモル
ファスマトリックスの中に微細な結晶粒が残留している
状態にアモルファス化する。このとき、公知の液体急冷
法によるアモルファス化では結晶方向が揃っていないた
め、機械的なエネルギーによるアモルファス化工程が有
効である。引き続き、交換結合を示すような微細な結晶
粒を維持させるために低温での熱処理を施すが、これに
より、在留していた微細結晶粒の方向に連続的に結晶が
成長するために、一つの粉末粒内は微細で且つ結晶方位
が揃った異方性交換スプリング磁石粉末が形成される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific configuration of the present invention will be described in detail. The method for producing the anisotropic exchange spring magnet powder of the present invention uses a known technique, for example, high-frequency dissolution or the like, for a matrix material containing a magnet compound and a soft magnetic compound as coarse particles at the same time, using an MA, MG, etc. The matrix is amorphized into a state in which fine crystal grains remain. At this time, in the amorphization by the known liquid quenching method, since the crystal directions are not uniform, the amorphization step using mechanical energy is effective. Subsequently, a heat treatment at a low temperature is performed to maintain fine crystal grains showing exchange coupling, and thereby, the crystal continuously grows in the direction of the fine crystal grains that have stayed. Fine anisotropic exchange spring magnet powder having a uniform crystal orientation is formed in the powder grains.

【0008】本磁石粉末は、公知の希土類−遷移金属系
磁石化合物、又は、酸化物系磁石化合物の適用が可能で
ある。その際、希土類−遷移金属系磁石化合物を用いる
場合には、アモルファス化する工程において、真空中又
は不活性ガス中又は窒素中又は有機溶媒中で酸素を遮断
した状態で行なうことによって、磁石特性の劣化を防ぐ
ことが望ましい。同様の理由で、結晶化する工程におい
ては、真空中又は不活性ガス中又は窒素中又は有機溶媒
中で酸素を遮断した状態で行なうことが望ましい。
As the present magnet powder, a known rare earth-transition metal magnet compound or oxide magnet compound can be applied. At this time, when using a rare earth-transition metal magnet compound, in the step of amorphization, the magnet properties are improved by performing the operation in a vacuum or in an inert gas or in nitrogen or an organic solvent in a state where oxygen is cut off. It is desirable to prevent degradation. For the same reason, the crystallization step is preferably performed in a vacuum, in an inert gas, in nitrogen, or in an organic solvent while oxygen is cut off.

【0009】また、本磁石粉末内における軟磁性材料体
積比が多すぎると保磁力の極端な低下を招くため80%
以下、一方軟磁性材料体積比が少なすぎると最大エネル
ギー積の既存の磁石材料に対しての向上が小さくなるた
め10%以上であることが望ましい。
If the volume ratio of the soft magnetic material in the present magnet powder is too large, the coercive force is extremely reduced, so that
On the other hand, if the volume ratio of the soft magnetic material is too small, the improvement in the maximum energy product with respect to the existing magnet material will be small.

【0010】異方性交換スプリング磁石粉末およびこれ
を用いた固化磁石においては、結晶粒径は永久磁石粒お
よび軟磁性材料のいずれも150nm以下において良好
な交換結合を示すため、粒径を150nm以下にするこ
とが望ましい。これ以上の粒径では良好な磁気特性が得
られない。
In the anisotropic exchange spring magnet powder and the solidified magnet using the same, the crystal grain size of both the permanent magnet grains and the soft magnetic material shows good exchange coupling at 150 nm or less. Is desirable. If the particle size is larger than this, good magnetic properties cannot be obtained.

【0011】結晶化する工程においては、熱処理温度が
950℃以上では微細な結晶粒の異方性交換スプリング
磁石が得られず、磁気特性の劣化が発生するため、95
0℃以下にすることが望ましく、同様の理由で熱処理時
間は1時間以内が望ましい。
In the crystallization step, if the heat treatment temperature is 950 ° C. or higher, an anisotropic exchange spring magnet having fine crystal grains cannot be obtained, and the magnetic properties deteriorate.
The temperature is desirably set to 0 ° C. or lower, and the heat treatment time is desirably within one hour for the same reason.

【0012】本発明の異方性交換スプリング磁石粉末を
用いて、その後、異方性付与成形工程及び固化工程を行
なうことによって得られた異方性交換スプリング磁石
は、同じ形態の既存の樹脂や低融点金属ボンド磁石又は
フルデンス磁石より大きな最大エネルギー積を示すの
で、モータ、磁界センサ、回転センサ、加速度センサ、
トルクセンサ等に応用した場合、製品の小型軽量化を促
進し、自動車用部品に適用した場合には飛躍的な燃費の
向上が可能となる。
The anisotropic exchange spring magnet obtained by using the anisotropic exchange spring magnet powder of the present invention and then performing an anisotropy imparting molding step and a solidifying step can use an existing resin of the same form or an existing resin. Since it shows a larger maximum energy product than low melting point metal bonded magnets or full density magnets, motors, magnetic field sensors, rotation sensors, acceleration sensors,
When applied to a torque sensor and the like, the product can be reduced in size and weight, and when applied to an automobile part, a drastic improvement in fuel efficiency can be achieved.

【0013】また、これらのバルク磁石は極めて大きな
最大エネルギー積を有するため、上記のモータ、磁界セ
ンサ、回転センサ、加速度センサ、トルクセンサの中で
も、特に電気自動車やハイブリッド電気自動車の駆動用
モータに適用すれば、これまでスペースの確保が困難で
あった場所に駆動用モータを搭載することが可能とな
り、環境問題を一気に解決できる。
Further, since these bulk magnets have an extremely large maximum energy product, they are particularly applicable to the motors for driving electric vehicles and hybrid electric vehicles among the above-mentioned motors, magnetic field sensors, rotation sensors, acceleration sensors and torque sensors. Then, it becomes possible to mount the drive motor in a place where it was difficult to secure space, and it is possible to solve environmental problems at once.

【0014】以下、本発明の具体的実施例を示し、本発
明をさらに詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention.

【0015】(実施例1)高周波誘導溶解したNdx
85-xCo8 Al1 6 組成合金を1mm□以下に粉砕
し、これをステンレス製ポット内にステンレスボールと
ともにAr封入し、ボールミルによりアモルファス化処
理を行ない、その後、真空中熱処理を所定のサイクル実
施して、異方性交換スプリング磁石粉末を作製した。
(Example 1) Nd x F dissolved by high frequency induction melting
e 85-x Co 8 Al 1 B 6 composition alloy is pulverized to 1 mm □ or less, and this is sealed in a stainless steel pot together with Ar with a stainless steel ball, subjected to an amorphization treatment by a ball mill, and then subjected to a predetermined heat treatment in vacuum. The cycle was performed to produce an anisotropic exchange spring magnet powder.

【0016】得られた粉末を25kOeの磁場中でプレ
ス成形した圧粉体を作製し、最大25kOeの直流BH
トレーサにて、プレス時の磁場印加方向とこれに垂直方
向での磁化曲線を測定し、これらの曲線の違いにより、
異方性の有無を確認した。
The obtained powder was pressed in a magnetic field of 25 kOe to produce a green compact, and a DC BH of up to 25 kOe was produced.
Using a tracer, measure the magnetization curve in the direction of application of the magnetic field during pressing and in the direction perpendicular to it, and due to the difference between these curves,
The presence or absence of anisotropy was confirmed.

【0017】図1は、x=9組成において、ボールミル
によるアモルファス化処理とその後の600℃×10m
in真空中熱処理のサイクル回数と異方性の強度(磁場
中成形時の磁場印加方向のBr//とこれに垂直方向のB
r⊥の比)を示したものである。本プロセスの効果は極
めて大きく1回の繰返しにより異方性が付与できること
がわかる。また、1回以上の繰返しにより異方性の大き
さが増大する傾向を示している。
FIG. 1 shows an amorphousizing treatment by a ball mill and a subsequent 600 ° C. × 10 m at x = 9 composition.
The number of heat treatment cycles in vacuum and the anisotropy strength (Br // in the magnetic field application direction during molding in a magnetic field and B in the direction perpendicular thereto)
(r⊥ ratio). It can be seen that the effect of this process is extremely large, and anisotropy can be imparted by one repetition. In addition, the magnitude of the anisotropy tends to increase by one or more repetitions.

【0018】このようなプロセスの繰返し回数による異
方性の増大は、表1に示すような各種の永久磁石材料と
軟磁性材料を組み合わせた交換スプリング希釈粉末にお
いても同様である。
Such an increase in anisotropy due to the number of repetitions of the process is the same in the exchange spring dilution powder in which various permanent magnet materials and soft magnetic materials are combined as shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1のNo.1〜6の希土類−遷移金属系
異方性交換スプリング磁石粉末においては、アモルファ
ス化工程と結晶化工程は実質的に酸素を遮断することが
必要である。
No. 1 in Table 1. In the rare earth-transition metal based anisotropic exchange spring magnet powders of Nos. 1 to 6, it is necessary to substantially cut off oxygen in the amorphization step and the crystallization step.

【0021】(実施例2)Sm−Fe−Co−Cr系組
成合金について、SmとFe−Co−Crの組成比を変
化させた化合物に対して、乾式ボールミルによるアモル
ファス化と真空中熱処理による結晶化を繰り返し、その
後、NH3 +H2 雰囲気で窒化処理を行なったSm−F
e−N系異方性交換スプリング磁石粉末(主な結晶相S
2 Fe143 ,Fe)を実施例1と同様に磁場中でプ
レス成形して、評価を行なった。
(Example 2) In a Sm-Fe-Co-Cr composition alloy, a compound in which the composition ratio of Sm and Fe-Co-Cr was changed was made amorphous by a dry ball mill and crystallized by heat treatment in vacuum. Sm-F which has been subjected to a nitriding treatment in an NH 3 + H 2 atmosphere.
eN anisotropic exchange spring magnet powder (main crystal phase S
m 2 Fe 14 N 3 , Fe) was pressed in a magnetic field in the same manner as in Example 1 and evaluated.

【0022】図2は、TEMで確認した永久磁石材料と
軟磁性材料の体積比と磁気特性を示している。なお、本
発明の異方性交換スプリング磁石粉末のBrは磁場中プ
レス後の残留磁束密度に対して、母合金の密度から換算
した化合物のBrである。
FIG. 2 shows the volume ratio and magnetic properties of the permanent magnet material and the soft magnetic material confirmed by TEM. The Br of the anisotropic exchange spring magnet powder of the present invention is a compound Br converted from the density of the mother alloy with respect to the residual magnetic flux density after pressing in a magnetic field.

【0023】この結果から、異方性交換スプリング磁石
粉末は、軟磁性材料比が10%以上において現在の高性
能Nd−Fe−B系磁石化合物の持つBr(1.5T程
度)を大きく上回る高性能を示していることがわかる。
また、体積比が80%以上では保磁力が低下するため実
用上有効な磁石としては適用できない。
From these results, it can be seen that the anisotropic exchange spring magnet powder has a soft magnetic material ratio of 10% or more, which greatly exceeds the Br (about 1.5 T) of the current high-performance Nd—Fe—B magnet compound. It can be seen that the performance is shown.
On the other hand, if the volume ratio is 80% or more, the coercive force decreases, so that it cannot be applied as a practically effective magnet.

【0024】(実施例3)図3は、Nd10Fe75Co8
Ni1 Al1 5 組成合金を用いた場合の結晶化熱処理
温度と保磁力の関係を示したものである。熱処理温度は
950℃以上においては保磁力が急減に減少を示し、実
用できないことが分かる。
Example 3 FIG. 3 shows Nd 10 Fe 75 Co 8
FIG. 4 shows a relationship between a crystallization heat treatment temperature and a coercive force when a Ni 1 Al 1 B 5 composition alloy is used. When the heat treatment temperature is 950 ° C. or higher, the coercive force rapidly decreases, indicating that it is not practical.

【0025】(実施例4)図4は、Nd6 Fe886
成合金に対して、V,Nb,Zr,Cr,Mn等を添加
し、種々の異方性交換スプリング磁石粉末を作製し、こ
れをTEM観察により結晶粒径を評価して磁気特性との
関係を示したものである。得られた粉末の保磁力は15
0nm以下において大きな値を示しており、この範囲で
有効な交換スプリング磁石粉末が得られる。
Example 4 FIG. 4 shows that various anisotropic exchange spring magnet powders were prepared by adding V, Nb, Zr, Cr, Mn, etc. to an Nd 6 Fe 88 B 6 composition alloy. This shows the relationship with the magnetic properties by evaluating the crystal grain size by TEM observation. The coercive force of the obtained powder is 15
It shows a large value at 0 nm or less, and an effective exchange spring magnet powder can be obtained in this range.

【0026】(実施例5)図5は、Nd4 Fe80Co10
6 組成合金に対して、結晶化熱処理時間を変化させた
場合の保磁力の変化を示したものである。種々の熱処理
温度に対して熱処理時間が1時間以上では保磁力の低下
が大きく、実用上好ましくないことがわかる。
Example 5 FIG. 5 shows Nd 4 Fe 80 Co 10
Against B 6 alloy composition, shows the change in the coercive force in the case of changing the crystallization heat treatment time. When the heat treatment time is 1 hour or more at various heat treatment temperatures, the coercive force is greatly reduced, which is not preferable in practical use.

【0027】(実施例6)表2は、異方性交換スプリン
グ磁石粉末を磁場中にて成形したものを各種の方法で固
化成形した例を示したものである。固化の方法としては
限定されず、公知の樹脂やZn等の金属をバインダとし
た磁石に適用できる。さらに粉末をホットプレスやプラ
ズマ活性化焼結などのプロセスを用いて固化された磁石
は、極めて高性能の磁石特性を示し、実用上有効であ
る。
Example 6 Table 2 shows examples of anisotropic exchange spring magnet powder molded in a magnetic field and solidified by various methods. The method of solidification is not limited, and can be applied to a known resin or a magnet using a metal such as Zn as a binder. Further, a magnet obtained by solidifying a powder using a process such as hot pressing or plasma-activated sintering exhibits extremely high-performance magnet characteristics and is practically effective.

【0028】[0028]

【表2】 [Table 2]

【0029】(実施例7)図6は、実施例6で得られた
バルクの異方性交換スプリング磁石を電気自動車又はハ
イブリッド電気自動車の駆動用モータに応用した例を説
明する図である。
(Embodiment 7) FIG. 6 is a view for explaining an example in which the bulk anisotropic exchange spring magnet obtained in Embodiment 6 is applied to a drive motor of an electric vehicle or a hybrid electric vehicle.

【0030】[0030]

【発明の効果】本発明の製造方法により得られた異方性
交換スプリング磁石粉末は、従来の等方性磁石粉末では
得られなかった高性能なボンド磁石やフルデンス磁石が
実現できるため、磁石を用いたモータ、磁界センサ、回
転センサ、加速度センサ、トルクセンサ等に応用した場
合、製品の小型軽量化を促進し、自動車用部品に適用し
た場合には飛躍的な燃費の向上が可能となる。
The anisotropic exchange spring magnet powder obtained by the production method of the present invention can realize high-performance bonded magnets and full-density magnets that cannot be obtained with conventional isotropic magnet powders. When applied to the used motor, magnetic field sensor, rotation sensor, acceleration sensor, torque sensor, and the like, the product can be reduced in size and weight, and when applied to automotive parts, the fuel efficiency can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のサイクル数と異方性の強度を説明す
る図である。
FIG. 1 is a diagram for explaining the number of cycles and the strength of anisotropy in Example 1.

【図2】実施例2の軟磁性材料の体積比と磁気特性Br
を説明する図である。
FIG. 2 shows the volume ratio and magnetic characteristics Br of the soft magnetic material of Example 2.
FIG.

【図3】実施例3の結晶化熱処理温度と保磁力の関係を
説明する図である。
FIG. 3 is a diagram illustrating a relationship between a crystallization heat treatment temperature and a coercive force in Example 3.

【図4】実施例4の結晶粒径と保磁力を説明する図であ
る。
FIG. 4 is a diagram illustrating a crystal grain size and a coercive force of Example 4.

【図5】実施例5の結晶化熱処理時間と保磁力を説明す
る図である。
FIG. 5 is a diagram illustrating a crystallization heat treatment time and a coercive force in Example 5.

【図6】実施例6で得られた異方性交換スプリング磁石
を電気自動車の駆動モータに応用した例を説明する図で
ある。
FIG. 6 is a diagram illustrating an example in which the anisotropic exchange spring magnet obtained in Example 6 is applied to a drive motor of an electric vehicle.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 AD09 KA46 5E040 AA03 AA04 AA19 AC05 BB01 BB04 BB05 BD00 BD01 HB00 HB03 HB06 HB07 HB11 HB17 NN06 NN17 NN18 5H622 AA03 CA02 CA05 CA14 CB03 CB05 CB06 DD02 PP03 PP10 PP11 QA02 QA04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K018 AD09 KA46 5E040 AA03 AA04 AA19 AC05 BB01 BB04 BB05 BD00 BD01 HB00 HB03 HB06 HB07 HB11 HB17 NN06 NN17 NN18 5H622 AA03 CA02 CA05 CA14 CB03 CB03 Q10 PP04

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 永久磁石材料と軟磁性材料とを同時に有
する異方性交換スプリング磁石粉末の製造方法におい
て、 結晶質磁性材料を用いてこれをアモルファス化する工程
と、続けて結晶化する工程を1回以上繰り返すことを特
徴とする異方性交換スプリング磁石粉末の製造方法。
1. A method for producing an anisotropic exchange spring magnet powder having a permanent magnet material and a soft magnetic material at the same time, comprising the steps of using a crystalline magnetic material to amorphize the same and subsequently crystallizing the same. A method for producing an anisotropic exchange spring magnet powder, wherein the method is repeated at least once.
【請求項2】 請求項1に記載の異方性交換スプリング
磁石粉末の製造方法において、 前記結晶質磁性材料に希土類金属と遷移金属とを含有さ
せることを特徴とする異方性交換スプリング磁石粉末の
製造方法。
2. The method of manufacturing an anisotropic exchange spring magnet powder according to claim 1, wherein the crystalline magnetic material contains a rare earth metal and a transition metal. Manufacturing method.
【請求項3】 請求項1に記載の異方性交換スプリング
磁石粉末の製造方法において、 前記結晶質磁性材料が酸化物であることを特徴とする異
方性交換スプリング磁石粉末の製造方法。
3. The method for producing an anisotropic exchange spring magnet powder according to claim 1, wherein the crystalline magnetic material is an oxide.
【請求項4】 請求項2に記載の異方性交換スプリング
磁石粉末の製造方法において、 前記アモルファス化する工程において、真空中、不活性
ガス中、窒素中および有機溶媒中のいずれかで酸素を遮
断した状態で行うことを特徴とする異方性交換スプリン
グ磁石粉末の製造方法。
4. The method for producing an anisotropic exchange spring magnet powder according to claim 2, wherein in the step of amorphizing, oxygen is added in any of a vacuum, an inert gas, nitrogen, and an organic solvent. A method for producing an anisotropic exchange spring magnet powder, wherein the method is performed in a state of being cut off.
【請求項5】 請求項2に記載の異方性交換スプリング
磁石粉末の製造方法において、 前記結晶化する工程において、真空中、不活性ガス中、
窒素中のいずれかで酸素を遮断した状態で行うことを特
徴とする異方性交換スプリング磁石粉末の製造方法。
5. The method for producing an anisotropic exchange spring magnet powder according to claim 2, wherein in the crystallizing step, a vacuum, an inert gas,
A method for producing an anisotropic exchange spring magnet powder, which is performed in a state where oxygen is cut off in any of nitrogen.
【請求項6】 請求項1に記載の異方性交換スプリング
磁石粉末の製造方法において、 前記軟磁性材料の体積比が10〜80%であることを特
徴とする異方性交換スプリング磁石粉末の製造方法。
6. The method for producing an anisotropic exchange spring magnet powder according to claim 1, wherein a volume ratio of the soft magnetic material is 10 to 80%. Production method.
【請求項7】 請求項1に記載の異方性交換スプリング
磁石粉末の製造方法において、 前記結晶化する工程において、結晶加熱処理温度が95
0℃以下であることを特徴とする異方性交換スプリング
磁石粉末の製造方法。
7. The method for producing an anisotropic exchange spring magnet powder according to claim 1, wherein in the crystallizing step, a crystal heat treatment temperature is 95.
A method for producing an anisotropic exchange spring magnet powder, wherein the temperature is 0 ° C. or lower.
【請求項8】 請求項1に記載の異方性交換スプリング
磁石粉末の製造方法において、 前記永久磁石材料および前記軟磁性材料の結晶粒径が1
50nm以下であることを特徴とする異方性交換スプリ
ング磁石粉末の製造方法。
8. The method for producing an anisotropic exchange spring magnet powder according to claim 1, wherein the permanent magnet material and the soft magnetic material have a crystal grain size of 1
A method for producing an anisotropic exchange spring magnet powder having a particle size of 50 nm or less.
【請求項9】 請求項1に記載の異方性交換スプリング
磁石粉末の製造方法において、 前記結晶化する工程において、結晶加熱処理時間が1時
間以内であることを特徴とする異方性交換スプリング磁
石粉末の製造方法。
9. The method for producing an anisotropic exchange spring magnet according to claim 1, wherein in the crystallization step, a crystal heat treatment time is within one hour. Manufacturing method of magnet powder.
【請求項10】 請求項1に記載の異方性交換スプリン
グ磁石粉末の製造方法にて得られた磁石粉末を用いて、
異方性付与成形工程および固化工程を経由して作製され
たことを特徴とする異方性交換スプリング磁石。
10. Using the magnet powder obtained by the method for producing anisotropic exchange spring magnet powder according to claim 1,
An anisotropic exchange spring magnet produced through an anisotropy imparting molding step and a solidifying step.
【請求項11】 請求項1乃至9のいずれかに記載の異
方性交換スプリング磁石粉末の製造方法で作製された異
方性交換スプリング磁石粉末、または、請求項10に記
載の異方性交換スプリング磁石は、モータ、磁界セン
サ、回転センサ、加速度センサおよびトルクセンサに用
いることを特徴とする磁石。
11. An anisotropic exchange spring magnet powder produced by the method for producing an anisotropic exchange spring magnet powder according to claim 1, or an anisotropic exchange magnet according to claim 10. The spring magnet is a magnet used for a motor, a magnetic field sensor, a rotation sensor, an acceleration sensor, and a torque sensor.
JP00879899A 1999-01-18 1999-01-18 Anisotropic exchange spring magnet powder and method for producing the same Expired - Fee Related JP3622550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00879899A JP3622550B2 (en) 1999-01-18 1999-01-18 Anisotropic exchange spring magnet powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00879899A JP3622550B2 (en) 1999-01-18 1999-01-18 Anisotropic exchange spring magnet powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000208313A true JP2000208313A (en) 2000-07-28
JP3622550B2 JP3622550B2 (en) 2005-02-23

Family

ID=11702892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00879899A Expired - Fee Related JP3622550B2 (en) 1999-01-18 1999-01-18 Anisotropic exchange spring magnet powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3622550B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031947A1 (en) * 2000-10-12 2002-04-18 Matsushita Electric Industrial Co., Ltd. Electric motor
US6736909B2 (en) 2000-09-26 2004-05-18 Nissan Motor Co., Ltd. Bulk exchange-spring magnet, device using the same, and method of producing the same
JP2010212501A (en) * 2009-03-11 2010-09-24 Tdk Corp Exchange spring magnetic powder
US9691545B2 (en) 2012-03-27 2017-06-27 Lawrence Livermore National Security, Llc Developing bulk exchange spring magnets
CN109980863A (en) * 2017-12-08 2019-07-05 丰田自动车株式会社 The manufacturing method of stator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736909B2 (en) 2000-09-26 2004-05-18 Nissan Motor Co., Ltd. Bulk exchange-spring magnet, device using the same, and method of producing the same
WO2002031947A1 (en) * 2000-10-12 2002-04-18 Matsushita Electric Industrial Co., Ltd. Electric motor
US6836045B2 (en) 2000-10-12 2004-12-28 Matsushita Electric Industrial Co., Ltd. Electrical motor
JP2010212501A (en) * 2009-03-11 2010-09-24 Tdk Corp Exchange spring magnetic powder
US9691545B2 (en) 2012-03-27 2017-06-27 Lawrence Livermore National Security, Llc Developing bulk exchange spring magnets
CN109980863A (en) * 2017-12-08 2019-07-05 丰田自动车株式会社 The manufacturing method of stator

Also Published As

Publication number Publication date
JP3622550B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
Croat Current status and future outlook for bonded neodymium permanent magnets
JP2011211106A (en) Magnetic material and motor using the same
US20060096669A1 (en) Exchange spring magnet powder and a method of producing the same
JPH0447024B2 (en)
JP3618648B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
EP1180772B1 (en) Anisotropic magnet and process of producing the same
JP3560387B2 (en) Magnetic material and its manufacturing method
JP2000208313A (en) Anisotropic exchanging spring magnet power and manufacture therefor
JP2005093729A (en) Anisotropic magnet, its manufacturing method, and motor using it
JPH02308512A (en) R-fe-b permanent magnet having biased anisotropy and manufacture thereof
WO2004046409A2 (en) Permanent magnet alloy with improved high temperature performance
JP2000003808A (en) Hard magnetic material
JP3622652B2 (en) Anisotropic bulk exchange spring magnet and manufacturing method thereof
JPH06207204A (en) Production of rare earth permanent magnet
JP3618647B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JP2005093731A (en) Anisotropic magnet, its manufacturing method, and motor using it
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2000235909A (en) Rare earth/iron/boron magnet and manufacture thereof
JPH1132453A (en) Stepping motor and manufacture of hard magnetic alloy therefor
JPH044386B2 (en)
KR102650623B1 (en) Manufacturing method of sintered magnet
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP3425409B2 (en) Hard magnetic material, generator and motor
JP2005272925A (en) R-t-n based magnetic powder and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees