JP2000207771A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JP2000207771A
JP2000207771A JP11002219A JP221999A JP2000207771A JP 2000207771 A JP2000207771 A JP 2000207771A JP 11002219 A JP11002219 A JP 11002219A JP 221999 A JP221999 A JP 221999A JP 2000207771 A JP2000207771 A JP 2000207771A
Authority
JP
Japan
Prior art keywords
recording material
gap
tauc
optical recording
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11002219A
Other languages
Japanese (ja)
Other versions
JP3763563B2 (en
Inventor
Masato Harigai
眞人 針谷
Mikio Kinoshita
幹夫 木下
Yoshiyuki Kageyama
喜之 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP00221999A priority Critical patent/JP3763563B2/en
Publication of JP2000207771A publication Critical patent/JP2000207771A/en
Application granted granted Critical
Publication of JP3763563B2 publication Critical patent/JP3763563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high-sensitivity optical recording medium by setting the gap Tauc corresponding to the energy gap in an amorphous state to a specified range in an amorphous phase of a recording material, esp., after forming films. SOLUTION: Using a recording material having a gap Tauc obtained from the light absorption spectrum due to transition of its amorphous phase between bands or an optical gap of 0.18-0.58 eV, a recording medium capable of efficiently absorbing red or blue-green semiconductor laser lights at a high sensitivity and easily initially crystallizable is realized. The material having a gap Tauc ranging from 0.18 eV to 0.58 eV is mainly composed of Ag, In, Sb, Te, Ho and N, esp. N controls the gap Tauc which is changeable by the N quantity according to designs, thus leading to a high sensitivity, improved preserve characteristics, improved repetition characteristic, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、書き換えが可能で
ある光記録媒体の分野に応用可能な相変化型光記録媒体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase change optical recording medium applicable to the field of rewritable optical recording media.

【0002】[0002]

【従来の技術】レーザービームの照射による情報の記
録、再生および消去可能な光記録媒体の一つとして、結
晶−非結晶相間、あるいは結晶−結晶相間の転移を利用
する、いわゆる相変化形光記録媒体がよく知られてい
る。これは単一ビームによるオーバーライトが可能であ
り、ドライブ側の光学系もより単純であることを特徴と
し、コンピュータ関連や映像音響に関する記録媒体とし
て応用されている。その記録材料としては、GeTe、
GeTeSe、GeTeS、GeSeS、GeSeS
b、GeAsSe、InTe、SeTe、SeAs、G
e−Te−(Sn、Au、Pd)、GeTeSeSb、
GeTeSb、Ag−In−Sb−Teなどがある。ま
た、特開昭57−208648号公報に開示されている
ように、記録層をSiO2等の母材中に埋め込み、記録
材料の不可逆的変化を抑制する記録層も提案されてい
る。また、Ag−In−Sb−Teは、高感度でアモル
ファス部分の輪郭が明確な特徴を有し、マークエッジ記
録用の記録層として開発されている。(特開平2−37
466号、特開平2−171325号、特開平2−41
5581号、特開平4−141485号各公報)。更
に、高速化に対応した(Sb−Ag−Te)(Ge−T
e)系も開発されており(特開平1−10438号公
報)、ABSbGeTe(AはCo、Ti、Ni、V、
Cr等、BはTl、I、Na)系の材料も提案(特開平
7−144798号公報)されている。これらの記録層
を用いる光記録媒体として、反射層、第1保護層および
第2保護層を有する多層構造のものがあるが、この光記
録媒体では、繰り返し記録特性の改善および繰り返し記
録特性とその他の特性、例えば変調度、所定の反射率
等、との両立が重要な課題となる。この問題に関し、記
録層に窒素等を添加することが記録層の流動を抑制し繰
り返し記録特性の向上に寄与することが、特開平4−1
1336号、特開平4−10980号、特開平4−16
383号、特開平4−10979号、特開平4−521
88号、特開平4−52189号各公報に開示されてい
る。しかしながら、低価格で比較的低い記録線速を有す
る光記録システム、あるいはCDと再生互換性のある光
記録媒体(CD−RW)として使用される光記録媒体に
おいては、なお、記録層の流動、レーザー照射時の熱衝
撃による膜剥がれ、あるいは反射層に使用する金属の劣
化等の問題により、繰り返し記録回数は数千回のレベル
に留まり、コンピューターの周辺機器等で頻繁に書き替
えを行なう場合には問題点があった。また、更なるドラ
イブの低価格化のためには記録感度の向上が要求されて
いる。更に、従来の記録媒体は初期結晶化の容易性にあ
まり考慮しておらず、繰り返し特性、記録感度は良好で
も初期化がしにくいために、ジッター等の特性が低下す
る問題があった。
2. Description of the Related Art As one of optical recording media capable of recording, reproducing and erasing information by irradiating a laser beam, so-called phase-change optical recording utilizing a transition between a crystal and an amorphous phase or between a crystal and a crystal phase. The medium is well known. This is characterized in that overwriting with a single beam is possible and the optical system on the drive side is simpler, and is applied as a computer-related or audio-visual recording medium. GeTe,
GeTeSe, GeTeS, GeSeS, GeSeS
b, GeAsSe, InTe, SeTe, SeAs, G
e-Te- (Sn, Au, Pd), GeTeSeSb,
GeTeSb, Ag-In-Sb-Te and the like are available. Further, as disclosed in JP-A-57-208648, there has been proposed a recording layer in which a recording layer is embedded in a base material such as SiO 2 to suppress irreversible changes in the recording material. Ag-In-Sb-Te has high sensitivity and a feature in which an amorphous portion has a clear contour, and has been developed as a recording layer for mark edge recording. (JP-A-2-37
466, JP-A-2-171325, JP-A-2-41
No. 5581, JP-A-4-141485). Furthermore, (Sb-Ag-Te) (Ge-T)
e) system has also been developed (Japanese Patent Laid-Open No. 1-143838), and ABSbGeTe (A is Co, Ti, Ni, V,
Materials such as Cr and B (Tl, I, Na) have also been proposed (Japanese Patent Application Laid-Open No. 7-14798). Optical recording media using these recording layers include those having a multilayer structure having a reflective layer, a first protective layer, and a second protective layer. In this optical recording medium, the repetitive recording characteristics are improved, Are important issues, for example, the modulation degree, the predetermined reflectance, and the like. Regarding this problem, Japanese Patent Application Laid-Open No. Hei 4-1 describes that the addition of nitrogen or the like to the recording layer suppresses the flow of the recording layer and contributes to the improvement of repetitive recording characteristics.
1336, JP-A-4-10980, JP-A-4-16
No. 383, JP-A-4-10979, JP-A-4-521
No. 88 and JP-A-4-52189. However, in an optical recording system having a relatively low recording linear velocity at a low price or an optical recording medium used as an optical recording medium (CD-RW) which is compatible with reproduction from a CD, the flow of the recording layer, Due to problems such as film peeling due to thermal shock at the time of laser irradiation or deterioration of the metal used for the reflective layer, the number of repetitive recordings remains at the level of several thousand times, and when frequently rewriting is done with peripheral devices of computers etc. Had a problem. Further, in order to further reduce the price of the drive, it is required to improve the recording sensitivity. Furthermore, the conventional recording medium does not take into account the easiness of initial crystallization, and has a problem that characteristics such as jitter are deteriorated because initialization is difficult even though repetition characteristics and recording sensitivity are good.

【0003】[0003]

【発明が解決しようとする課題】したがって、本発明は
上記のような状況に鑑みてなされたものであって、本発
明の第一の目的は、記録感度の高い光記録媒体を提供す
ることにある。また、本発明の第二の目的は、記録感度
が高く、繰り返し特性が良好で、且つ初期結晶化の容易
な光記録媒体を提供することにある。更なる本発明の目
的は、高感度で繰り返し特性が良好で且つ初期結晶化が
容易であり、しかも短波長域から長波長域の光源に対応
できる光記録媒体を提供することにある。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above situation, and a first object of the present invention is to provide an optical recording medium having high recording sensitivity. is there. A second object of the present invention is to provide an optical recording medium having high recording sensitivity, good repetition characteristics, and easy initial crystallization. It is a further object of the present invention to provide an optical recording medium which has high sensitivity, good repetition characteristics, easy initial crystallization, and can be used for a light source in a short wavelength range to a long wavelength range.

【0004】[0004]

【課題を解決するための手段】本発明によれば、(1)
「記録材料にレーザー等の電磁波を照射して、その光学
定数を変化させて情報の記録、再生、消去を行なう光記
録材料において、その記録材料の非晶相、特に製膜後の
アモルファス状態のエネルギーギャップに対応するTa
ucギャップが0.18eVから0.58eVの範囲に
あることを特徴とする光記録材料。」、(2)「波長1
000nmから400nmの範囲に対する上記記録材料
の各波長に対する吸収係数αとその波長に対応するエネ
ルギーEとの積の平方根(α・E)1/2が260[cm
-1/2・eV1/2]から650[cm-1/2・eV1/2]の範
囲にあることを特徴とする前記第(1)項記載の光記録
材料。」、(3)「Taucギャップが0.18eVか
ら0.58eVの範囲にある記録材料が、AgとInと
SbとTeとHoとNから構成され、特にTaucギャ
ップを制御する元素がNであることを特徴とする前記第
(1)項記載の光記録材料。」、(4)「Taucギャ
ップが0.18eVから0.58eVの範囲にあるAg
とInとSbとTeとHoとNから構成される記録材料
の結晶化温度がTaucギャップが広くなると共に高く
なることを特徴とする前記第(3)項記載の光記録材
料。」、(5)「Taucギャップが0.18eVから
0.58eVの範囲にあるAgとInとSbとTeとH
oとNから構成される記録材料の結晶化温度が165℃
から253℃の間にあることを特徴とする前記第(3)
項記載の光記録材料。」、(6)「Taucギャップが
0.18eVから0.58eVの範囲にあるAgとIn
とSbとTeとHoとNから構成される記録材料の非晶
相の複素屈折率の実数部と虚数部の値が波長450nm
から800nmの間においてTaucギャップが大きく
なるにしたがって小さくなることを特徴とする前記第
(3)項記載の光記録材料。」、(7)「Taucギャ
ップが0.18eVから0.58eVの範囲にあるAg
とInとSbとTeとHoとNから構成される記録材料
の非晶相、特に製膜後の非晶相の複素屈折率の実数部n
と虚数部kの値が波長630nmにおいて、3.6≦n
≦4.3、1.5≦k≦2.5の範囲にあることを特徴
とする前記第(3)項記載の光記録材料。」、(8)
「Taucギャップが0.18eVから0.58eVの
範囲にあるAgとInとSbとTeとHoとNから構成
される記録材料に、Bi−Ge、Bi−Si、Gd−G
aの酸化物から選ばれた少なくとも一種類の化合物を添
加することを特徴とする前記第(3)項記載の光記録材
料。」、(9)「Taucギャップが0.18eVから
0.58eVの範囲にあるAgとInとSbとTeとH
oとNから構成される記録材料に添加される少なくとも
一種類のBi−Ge、Bi−Si、Gd−Gaの酸化物
の割合が5mol%以下であることを特徴とする前記第
(3)項記載の光記録材料。」が提供される。
According to the present invention, (1)
"In an optical recording material that records, reproduces, and erases information by irradiating the recording material with electromagnetic waves such as a laser and changing its optical constant, the amorphous phase of the recording material, especially the amorphous state after film formation, Ta corresponding to energy gap
An optical recording material having a uc gap in the range of 0.18 eV to 0.58 eV. ”, (2)“ Wavelength 1 ”
The square root (α · E) 1/2 of the product of the absorption coefficient α for each wavelength of the recording material in the range of 000 nm to 400 nm and the energy E corresponding to the wavelength is 260 [cm].
The optical recording material according to the above (1), wherein the optical recording material is in the range of -1 / 2.eV 1/2 ] to 650 [cm -1 / 2.eV 1/2 ]. (3) "A recording material having a Tauc gap in the range of 0.18 eV to 0.58 eV is composed of Ag, In, Sb, Te, Ho, and N, and in particular, the element that controls the Tauc gap is N. (4) Ag having a Tauc gap in the range of 0.18 eV to 0.58 eV.
(3) The optical recording material according to the above (3), wherein the crystallization temperature of the recording material composed of In, Sb, Te, Ho and N increases as the Tauc gap increases. And (5) “Ag, In, Sb, Te, and H having a Tauc gap in the range of 0.18 eV to 0.58 eV.”
The crystallization temperature of the recording material composed of o and N is 165 ° C.
(3) characterized in that the temperature is between
The optical recording material described in the above item. (6) “Ag and In with Tauc gap in the range of 0.18 eV to 0.58 eV”
The real part and the imaginary part of the complex refractive index of the amorphous phase of the recording material composed of Sb, Te, Ho and N have a wavelength of 450 nm.
(3) The optical recording material according to the above (3), wherein the Tauc gap becomes smaller as the Tauc gap becomes larger in a range from 1 to 800 nm. (7) “Ag with Tauc gap in the range of 0.18 eV to 0.58 eV”
Real part n of the complex refractive index of the amorphous phase of the recording material composed of Al, In, Sb, Te, Ho, and N, especially the amorphous phase after film formation
And the value of the imaginary part k is 3.6 ≦ n at a wavelength of 630 nm.
The optical recording material according to the above (3), wherein the optical recording material is in the range of ≦ 4.3 and 1.5 ≦ k ≦ 2.5. ”, (8)
"A recording material composed of Ag, In, Sb, Te, Ho, and N having a Tauc gap in the range of 0.18 eV to 0.58 eV is made of Bi-Ge, Bi-Si, Gd-G
(3) The optical recording material as described in (3) above, wherein at least one compound selected from oxides of a is added. (9) “Ag, In, Sb, Te, and H having a Tauc gap in the range of 0.18 eV to 0.58 eV.”
Item (3), wherein the proportion of at least one oxide of Bi-Ge, Bi-Si, and Gd-Ga added to the recording material composed of o and N is 5 mol% or less. The optical recording material according to the above. Is provided.

【0005】すなわち、本発明の前記第(1)項の記録
材料においては、その非晶相のバンド間遷移に伴う光吸
収スペクトルから求められるTaucギャップ、または
光学ギャップが0.18eVから0.58eVの記録材
料を用いることにより、高感度で初期結晶化が容易な記
録媒体が実現できる。これは記録材料のTaucギャッ
プがこの間にあると、現有の赤色半導体レーザー、また
は青緑半導体レーザー光を効率的に吸収できるためであ
る。Taucギャップが0.18eV以下になると後述
のように結晶化温度が低下して保存特性が劣化する。ま
た、Taucギャップが0.58eVを越えると結晶化
温度が上昇し、初期結晶化が困難となる。
That is, in the recording material according to the first aspect of the present invention, the Tauc gap or the optical gap determined from the light absorption spectrum accompanying the transition between the bands of the amorphous phase is from 0.18 eV to 0.58 eV. By using this recording material, a recording medium with high sensitivity and easy initial crystallization can be realized. This is because the existing red semiconductor laser or blue-green semiconductor laser light can be efficiently absorbed when the Tauc gap of the recording material is between the Tauc gaps. When the Tauc gap is 0.18 eV or less, the crystallization temperature is lowered and storage characteristics are deteriorated as described later. On the other hand, if the Tauc gap exceeds 0.58 eV, the crystallization temperature rises, making initial crystallization difficult.

【0006】また、前記第(2)項の記録材料において
は、Taucギャップが0.18eVから0.58eV
の範囲にあるとき、波長1000nmから400nmの
範囲に対する上記記録材料の各波長に対する吸収係数α
とその波長に対応するエネルギーEとの積の平方根(α
・E)1/2が260[cm-1/2・eV1/2]から650
[cm-1/2・eV1/2]の間にあることを特徴とするも
のである。これにより、高感度で初期結晶化が容易な記
録媒体を提供できる。
[0006] In the recording material according to the above (2), the Tauc gap is 0.18 eV to 0.58 eV.
, The absorption coefficient α for each wavelength of the recording material in the wavelength range of 1000 nm to 400 nm.
And the square root of the product of the energy E corresponding to the wavelength (α
・ E) 1/2 is 260 [cm -1/2 · eV 1/2 ] to 650
[Cm −1/2 · eV 1/2 ]. This makes it possible to provide a recording medium with high sensitivity and easy initial crystallization.

【0007】また、前記第(3)項の記録材料において
は、Taucギャップが0.18eVから0.58eV
の範囲にある材料として、AgとInとSbとTeとH
oとNから主に構成され、特にNがこのTaucギャッ
プを制御する材料であり、このNの量によりTaucギ
ャップを設計に応じて変化させることが可能となる。具
体的には高感度化、保存特性の向上、繰り返し特性の向
上等である。もちろん、Taucギャップの制御は、A
g、In、Sb、Te、Ho、Nの各々の組成比を変え
ることによっても可能であり、これ以外の化合物、例え
ば、Ag−Sn−Sb−Te−Ho−N、Cu−Sn−
Sb−Te−Ho−N、Ag−Pb−Sb−Te−Ho
−N、Ag−In−Sn−Sb−Te−Ho−N、Ag
−In−Pb−Sb−Te−Ho−N、Cu−In−S
n−Bi−Te−Ho−N、Ag−In−Sn−Bi−
Te−Ho−N、Ag−In−Pb−Bi−Te−Ho
−N、Ag−In−Sn−As−Te−Ho−N、およ
びこれらのInをGaに、TeをSe、Sから選ばれた
一つの元素に、HoをPr、Ce、Ndから選ばれた少
なくとも一つの元素に置換してもよい。このHo、P
r、Ce、Ndの元素は、記録材料の熱膨張を小さくす
る効果があり、繰り返し特性を向上させる。
[0007] In the recording material of the above item (3), the Tauc gap is from 0.18 eV to 0.58 eV.
Ag, In, Sb, Te, and H
It is mainly composed of o and N. In particular, N is a material for controlling the Tauc gap, and the Tauc gap can be changed according to the design by the amount of N. Specifically, it is to increase sensitivity, improve storage characteristics, and improve repetition characteristics. Of course, the Tauc gap is controlled by A
It is also possible by changing each composition ratio of g, In, Sb, Te, Ho, and N, and other compounds, for example, Ag-Sn-Sb-Te-Ho-N, Cu-Sn-
Sb-Te-Ho-N, Ag-Pb-Sb-Te-Ho
-N, Ag-In-Sn-Sb-Te-Ho-N, Ag
-In-Pb-Sb-Te-Ho-N, Cu-In-S
n-Bi-Te-Ho-N, Ag-In-Sn-Bi-
Te-Ho-N, Ag-In-Pb-Bi-Te-Ho
-N, Ag-In-Sn-As-Te-Ho-N, and In of these elements were selected from Ga, Te was selected from Se and S, and Ho was selected from Pr, Ce, and Nd. It may be replaced by at least one element. This Ho, P
The elements r, Ce, and Nd have the effect of reducing the thermal expansion of the recording material, and improve the repetition characteristics.

【0008】また、前記第(4)項、前記第(5)項の
記録材料においては、Taucギャップが0.18eV
から0.58eVの範囲にある、AgとInとSbとT
eとHoとNから構成される記録材料の結晶化温度がT
aucギャップが広くなると共に高くなることを特徴と
している。このため、Taucギャップを制御すること
により結晶化温度をコントロールできるため、記録材料
の保存特性、初期結晶化を容易にすることができる。具
体的な制御方法としては、N量を制御するのが一番容易
である。このときの結晶化温度は、上記Taucギャッ
プの範囲に対して165℃から253℃の間にあり、こ
れ以下の結晶化温度の場合、保存特性が劣化し、また、
これ以上の温度の場合、初期化がきわめて困難となる。
Further, in the recording material of the above (4) and (5), the Tauc gap is 0.18 eV.
Ag, In, Sb, and T in the range of
The crystallization temperature of the recording material composed of e, Ho and N is T
It is characterized in that the auc gap increases as the width increases. Therefore, since the crystallization temperature can be controlled by controlling the Tauc gap, the storage characteristics of the recording material and the initial crystallization can be facilitated. As a specific control method, it is easiest to control the amount of N. The crystallization temperature at this time is between 165 ° C. and 253 ° C. with respect to the range of the Tauc gap. If the crystallization temperature is lower than this, the storage characteristics deteriorate, and
At temperatures higher than this, initialization becomes extremely difficult.

【0009】また、前記第(6)項、前記第(7)項記
録材料においては、Taucギャップが0.18eVか
ら0.58eVの範囲にあるAgとInとSbとTeと
HoとNから構成される記録材料を製膜後の非晶相の複
素屈折率(nc=n+ik、nは実数部、kは虚数部)
の実数部nと虚数部kの値が波長450nmから800
nmの波長の間でTaucギャップが大きくなるにした
がって小さくなる傾向を有し、630nmの波長に対し
て3.6≦n≦4.3、1.5≦k≦2.5の間にある
ことを特徴としている。一般に材料の複素屈折率は、そ
のエネルギーギャップが大きくなるほど小さくなる傾向
が認められるが、このAgとInとSbとTeとHoと
Nから構成される素はこの関係が明確であることがわか
り、特にTaucギャップが0.18eVから0.58
eVの間で、λ=630nmの値に対し、nが3.6か
ら4.3、kが1.5から2.5の間で大きく変化す
る。但し、これはこの材料をスパッタ等の方法により製
膜した非晶相の複素屈折率であるが、このようにTau
cギャップの変化に対し、屈折率が大きく変化すること
はこれを記録材料として用いた場合、反射率等の光学特
性を自由に制御できるため、記録媒体の設計が容易とな
り変調度の大きな記録媒体を提供できる。
Further, in the recording material according to the above items (6) and (7), the recording material comprises Ag, In, Sb, Te, Ho, and N having a Tauc gap in a range of 0.18 eV to 0.58 eV. Complex refractive index of the amorphous phase after forming the recording material to be formed (n c = n + ik, n is a real part, and k is an imaginary part)
The values of the real part n and the imaginary part k of the
It has a tendency to become smaller as the Tauc gap increases between wavelengths of nm, and between 3.6 ≦ n ≦ 4.3 and 1.5 ≦ k ≦ 2.5 for the wavelength of 630 nm. It is characterized by. In general, the complex refractive index of a material tends to decrease as its energy gap increases, but the element composed of Ag, In, Sb, Te, Ho, and N has a clear relationship. In particular, the Tauc gap is from 0.18 eV to 0.58
Between eV, for n = 630 nm, n greatly changes between 3.6 and 4.3 and k between 1.5 and 2.5. Here, this is the complex refractive index of the amorphous phase obtained by forming this material by a method such as sputtering.
The large change in the refractive index with respect to the change in the c gap means that when this is used as a recording material, the optical characteristics such as the reflectance can be freely controlled, so that the recording medium can be easily designed and the recording medium having a large degree of modulation can be obtained. Can be provided.

【0010】また、前記第(8)項、前記第(9)項の
記録材料においては、Taucギャップが0.18eV
から0.58eVの範囲にあるAgとInとSbとTe
とHoとNから構成される記録材料にBi−Ge、Bi
−Si、Gd−Gaの酸化物から選ばれた少なくとも一
種類の化合物が添加されることを特徴とする。これらは
例えば、Al23、Bi4Ge312、Bi12GeO20
Gd3Ga512、LiNbO3等の化合物をスパッタ用
ターゲットとし、上記AgとInとSbとTeとHoか
ら成る記録材料と共にスパッタすることにより膜を作成
する。このときのこれら酸化物の割合は、5mol%以
下である。この酸化物の導入により記録膜の溶融時の物
質移動が抑制され繰り返し特性が向上する。この理由は
明確でないが、記録材料の溶融時の粘性が大きくなるも
のと考えられる。但し、5mol%以上になると感度が
低下する。好ましくは1mol%から3mol%がよ
い。
Further, in the recording material according to the above (8) or (9), the Tauc gap is 0.18 eV.
, In, Sb, and Te in the range of 0.58 eV to
Bi-Ge, Bi on the recording material composed of
At least one compound selected from oxides of -Si and Gd-Ga is added. These include, for example, Al 2 O 3 , Bi 4 Ge 3 O 12 , Bi 12 GeO 20 ,
Using a compound such as Gd 3 Ga 5 O 12 or LiNbO 3 as a sputtering target, a film is formed by sputtering with the above-mentioned recording material composed of Ag, In, Sb, Te, and Ho. At this time, the ratio of these oxides is 5 mol% or less. By the introduction of this oxide, mass transfer during melting of the recording film is suppressed, and the repetition characteristics are improved. Although the reason is not clear, it is considered that the viscosity of the recording material at the time of melting is increased. However, when the content is 5 mol% or more, the sensitivity decreases. Preferably 1 mol% to 3 mol% is good.

【0011】[0011]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
EXAMPLES The present invention will be described more specifically with reference to the following examples.

【0012】実施例1 トラックピッチ1.0μm、深さ500Åの溝付き厚さ
1.2mm、直径120μmのポリカーボネート基板上
に、表1に示す構成の下部耐熱保護層、記録層、上部耐
熱保護層および反射放熱層を順次スパッタ法により積層
し、相変化型記録媒体を作成した。このとき、記録膜の
Taucギャップ、結晶化温度、複素屈折率を測定する
ための試料を用意するために、別に記録層のみをガラス
基板上に2000Å設けるようにした。記録材料はA
g、In、Sb、Te、Hoから構成される表1で示さ
れる組成のターゲットを作成し、スパッタ法により記録
膜を作成した。そして、成膜時に窒素を0.5SCCM
流すことにより記録膜に窒素をドープした。また、保護
層は、(ZnS)80(SiO220を、反射放熱層はA
l合金を用いた。ここではCD−RWとしての特性を評
価するが、もちろんDVD−RAM及び青色光源(λ=
400nm以上)においても対応可能である。
Example 1 A lower heat-resistant protective layer, a recording layer, and an upper heat-resistant protective layer having the structure shown in Table 1 were formed on a polycarbonate substrate having a track pitch of 1.0 μm, a depth of 500 mm, a grooved thickness of 1.2 mm, and a diameter of 120 μm. The reflection heat radiation layer was sequentially laminated by a sputtering method to prepare a phase change recording medium. At this time, in order to prepare a sample for measuring the Tauc gap, crystallization temperature, and complex refractive index of the recording film, only the recording layer was separately provided on the glass substrate at 2000 °. Recording material is A
A target composed of g, In, Sb, Te, and Ho and having the composition shown in Table 1 was prepared, and a recording film was prepared by a sputtering method. Then, at the time of film formation, nitrogen was added at 0.5 SCCM.
The recording film was doped with nitrogen by flowing. The protective layer is made of (ZnS) 80 (SiO 2 ) 20 , and the reflective heat radiation layer is made of A
1 alloy was used. Here, the characteristics as a CD-RW are evaluated. Of course, the DVD-RAM and the blue light source (λ =
(400 nm or more).

【0013】[0013]

【表1】 [Table 1]

【0014】実施例2 記録層を製膜時に窒素を1SCCMとしてスパッタした
以外は実施例1と全く同様にして記録媒体を作成した。
Example 2 A recording medium was prepared in exactly the same manner as in Example 1 except that the recording layer was sputtered with nitrogen at 1 SCCM during film formation.

【0015】実施例3 記録層を製膜時に窒素を2SCCMとしてスパッタした
以外は実施例1と全く同様にして記録媒体を作成した。
Example 3 A recording medium was prepared in exactly the same manner as in Example 1 except that the recording layer was sputtered with 2 SCCM of nitrogen during film formation.

【0016】実施例4 記録層を製膜時に窒素を3SCCMとしてスパッタした
以外は実施例1と全く同様にして記録媒体を作成した。
Example 4 A recording medium was prepared in exactly the same manner as in Example 1 except that the recording layer was sputtered with nitrogen at 3 SCCM during film formation.

【0017】実施例5 記録層を製膜時に窒素を4SCCMとしてスパッタした
以外は実施例1と全く同様にして記録媒体を作成した。
Example 5 A recording medium was prepared in exactly the same manner as in Example 1 except that the recording layer was sputtered with nitrogen at 4 SCCM during film formation.

【0018】実施例6 記録層を製膜時に窒素を5SCCMとしてスパッタした
以外は実施例1と全く同様にして記録媒体を作成した。
Example 6 A recording medium was prepared in exactly the same manner as in Example 1 except that the recording layer was sputtered with nitrogen at 5 SCCM during film formation.

【0019】実施例7 記録層として(Ag3.0In6.0Sb61Te29Ho1)を
98mol%、(Bi4Ge312)を2mol%とした
ターゲットを用い、製膜時に窒素を0.5SCCMとし
た以外は実施例1と全く同様にして記録媒体を作成し
た。
Example 7 As a recording layer, a target having 98 mol% of (Ag 3.0 In 6.0 Sb 61 Te 29 Ho 1 ) and 2 mol% of (Bi 4 Ge 3 O 12 ) was used. A recording medium was prepared in exactly the same manner as in Example 1 except that the above conditions were satisfied.

【0020】実施例8 記録層として(Ag3.0In6.0Sb61Te29Ho1)を
98mol%、(Gd3Ga512)を2mol%とした
ターゲットを用い、製膜時に窒素を0.5SCCMとし
た以外は実施例1と全く同様にして記録媒体を作成し
た。
Example 8 A target having 98 mol% of (Ag 3.0 In 6.0 Sb 61 Te 29 Ho 1 ) and 2 mol% of (Gd 3 Ga 5 O 12 ) was used as a recording layer. A recording medium was prepared in exactly the same manner as in Example 1 except that the above conditions were satisfied.

【0021】[評価] (1)各実施例で用いられた記録材料のTaucギャッ
プと各波長に対する吸収係数αとその波長に対応するエ
ネルギーEとの積の平方根(α・E)1/2を分光吸光度
の測定から求めた。その結果を図1(但し実施例7、8
は除く)および表2に示す。 (2)同様に各記録材料の分光屈折率の実部nと虚数部
kを図2(但し実施例1、7、8は除く)に示す。ま
た、630nmでの値を表2に示す。 (3)同じく各記録材料の結晶化温度を表2に示す。 (4)次に記録媒体のディスク特性を評価した。 記録媒体を初期化後、線速1.4m/sでEFMランダ
ムパターンでオーバーライトの繰り返し記録を行ない、
そのときの3T信号のジッターの記録パワー依存性で評
価した。なお、再生時の線速は2.8m/sである。そ
の結果を表2〜表3に示す。ここで記録媒体の初期結晶
化は高出力半導体レーザーを利用した。初期化の容易性
をA、B、Cの3段階で表示した。Aはきわめて初期化
しやすいもの、Cは初期化しにくいもの、BはAとCの
中間の程度とした。その結果を同じく表3、4、5、
6、7、8、9、10に示す。
[Evaluation] (1) The square root (α · E) 1/2 of the product of the Tauc gap of the recording material used in each embodiment, the absorption coefficient α for each wavelength, and the energy E corresponding to that wavelength. It was determined from the measurement of the spectral absorbance. The results are shown in FIG. 1 (however, in Examples 7 and 8).
Are excluded) and Table 2. (2) Similarly, the real part n and the imaginary part k of the spectral refractive index of each recording material are shown in FIG. 2 (excluding Examples 1, 7, and 8). Table 2 shows the values at 630 nm. (3) Table 2 shows the crystallization temperature of each recording material. (4) Next, the disk characteristics of the recording medium were evaluated. After initializing the recording medium, overwrite repetitive recording is performed in an EFM random pattern at a linear velocity of 1.4 m / s,
The evaluation was made based on the recording power dependence of the jitter of the 3T signal at that time. Note that the linear velocity during reproduction is 2.8 m / s. The results are shown in Tables 2 and 3. Here, a high-output semiconductor laser was used for the initial crystallization of the recording medium. The easiness of the initialization is displayed in three stages of A, B, and C. A is very easy to initialize, C is difficult to initialize, and B is between A and C. The results are also shown in Tables 3, 4, 5,
6, 7, 8, 9, and 10 are shown.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】(実施例1) [Table 3] (Example 1)

【0024】[0024]

【表4】(実施例2) [Table 4] (Example 2)

【0025】[0025]

【表5】(実施例3) [Table 5] (Example 3)

【0026】[0026]

【表6】(実施例4) [Table 6] (Example 4)

【0027】[0027]

【表7】(実施例5) [Table 7] (Example 5)

【0028】[0028]

【表8】(実施例6) Table 8 (Example 6)

【0029】[0029]

【表9】(実施例7) Table 9 (Example 7)

【0030】[0030]

【表10】(実施例8) Table 10 (Example 8)

【0031】以上、表2からは、Taucギャップは成
膜時の窒素流量が多くなるほど大きくなることがわか
る。また、結晶化温度は、Taucギャップが大きくな
るほど高くなる。そして複素屈折率のn、kはTauc
ギャップが大きくなるほど小さくなることがわかる。一
方、表3、4、5、6、7、8、9、10から初期結晶
化はTaucギャップが0.58eVまでは比較的容易
に行なえるが、これより大きくなると急激に困難とな
る。また、記録感度はTaucギャップが小さいほど良
好であるが0.58eV以上になるとその感度は低下す
る。一方、記録材料に酸化物として実施例7の(Bi4
Ge312)と実施例8の(Gd3Ga512)を添加し
た系はその繰り返し特性が大幅に向上していることがわ
かる。また、具体例は示していないが、Ag、In、S
b、Te、Ho、NからHoを除くと、繰り返し特性は
劣化する。
From the above, it can be seen from Table 2 that the Tauc gap increases as the nitrogen flow rate during film formation increases. The crystallization temperature increases as the Tauc gap increases. The complex refractive indexes n and k are Tauc
It can be seen that the larger the gap, the smaller the gap. On the other hand, from Tables 3, 4, 5, 6, 7, 8, 9, and 10, initial crystallization can be performed relatively easily up to a Tauc gap of 0.58 eV, but becomes extremely difficult when the Tauc gap is larger than this. Further, the recording sensitivity is better as the Tauc gap is smaller, but the sensitivity decreases when the Tauc gap becomes 0.58 eV or more. On the other hand, (Bi 4
It can be seen that the system to which (Ge 3 O 12 ) and (Gd 3 Ga 5 O 12 ) of Example 8 are added has significantly improved repetition characteristics. Although specific examples are not shown, Ag, In, S
When Ho is removed from b, Te, Ho, and N, the repetition characteristics deteriorate.

【0032】[0032]

【発明の効果】以上、詳細且つ具体的な説明から明らか
なように、請求項1、2の光記録媒体は、その記録層を
構成する記録材料のTaucギャップが0.18eVか
ら0.58eVの範囲のとき、初期結晶化が容易に実現
でき、また、記録感度の優れたものとなる。また、青
色、例えばGaN系半導体レーザーに対応できる記録媒
体を提供できる。更に、請求項3の光記録媒体はその記
録層を構成する記録材料がAgとInとSbとTeとH
oとNから成り、この材料のTaucギャップを制御す
る材料がNであり、この制御により、優れた記録媒体が
提供できる。更に請求項4、5の光記録媒体は、その記
録層を構成する記録材料のTaucギャップが0.18
eVから0.58eVの範囲のとき、その結晶化温度が
165℃から253℃の範囲にあるため、初期結晶化が
容易に行なわれる記録媒体を提供できる。更に、請求項
6、8の光記録媒体は、その記録層を構成する記録材料
の複素屈折率の実数部と虚数部の値がTaucギャップ
の値が大きくなるにしたがって波長450nmから38
00nmの範囲内で一定の大きさで小さくなる傾向があ
り、Taucギャップの変化により複素屈折率が大きく
かわるため、450nmから3800nmの光に対して
変調度の大きい記録媒体が提供できる。更に、請求項
7、8の光記録媒体は、その記録層を構成する光記録材
料としてTaucギャップが0.18eVから0.58
eVの範囲にあるAgとInとSbとTeとHoとNか
ら成る材料に、Bi−Ge、Bi−Si、Gd−Gaの
酸化物から選ばれた少なくとも一種類の化合物を添加す
ることにより繰り返し特性の優れたものとなるという極
めて優れた効果を奏するものである。
As is apparent from the detailed and specific description, the optical recording medium according to claims 1 and 2 has a Tauc gap of 0.18 eV to 0.58 eV of the recording material constituting the recording layer. Within this range, initial crystallization can be easily achieved, and the recording sensitivity is excellent. Further, it is possible to provide a recording medium compatible with blue, for example, a GaN-based semiconductor laser. Further, in the optical recording medium of claim 3, the recording material constituting the recording layer is made of Ag, In, Sb, Te, and H.
N is a material consisting of o and N and controlling the Tauc gap of this material, and by this control, an excellent recording medium can be provided. Further, in the optical recording medium according to claims 4 and 5, the Tauc gap of the recording material constituting the recording layer is 0.18.
In the range of eV to 0.58 eV, since the crystallization temperature is in the range of 165 ° C. to 253 ° C., it is possible to provide a recording medium in which initial crystallization is easily performed. Furthermore, in the optical recording medium according to the sixth and eighth aspects, the values of the real part and the imaginary part of the complex refractive index of the recording material constituting the recording layer are changed from a wavelength of 450 nm to 38 as the value of the Tauc gap increases.
Since the complex refractive index tends to be smaller at a constant size within the range of 00 nm and changes in the Tauc gap, the recording medium having a large degree of modulation for light of 450 nm to 3800 nm can be provided. Further, the optical recording medium according to claim 7 or 8 has a Tauc gap of 0.18 eV to 0.58 as an optical recording material constituting the recording layer.
It is repeated by adding at least one compound selected from oxides of Bi-Ge, Bi-Si, and Gd-Ga to a material composed of Ag, In, Sb, Te, Ho, and N in the range of eV. It has an extremely excellent effect of being excellent in characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光記録材料(非晶相)の光吸収係数の
Taucギャップ依存性を示す図である。
FIG. 1 is a diagram showing the Tauc gap dependence of the light absorption coefficient of the optical recording material (amorphous phase) of the present invention.

【図2】本発明の記録材料(非晶相)のTaucギャッ
プに対する分光複素屈折率を示す図である。
FIG. 2 is a diagram showing a spectral complex refractive index with respect to a Tauc gap of a recording material (amorphous phase) of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 影山 喜之 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 Fターム(参考) 2H111 EA04 EA12 EA23 EA31 EA33 EA43 FA01 FB05 FB09 FB10 FB12 FB17 FB20 FB21 FB24 FB25 FB30 5D029 JA01 JB16 JB35 JB47 JC05 JC09 JC11 JC18 JC20  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshiyuki Kageyama 1-3-6 Nakamagome, Ota-ku, Tokyo F-term in Ricoh Co., Ltd. (Reference) 2H111 EA04 EA12 EA23 EA31 EA33 EA43 FA01 FB05 FB09 FB10 FB12 FB17 FB20 FB21 FB24 FB25 FB30 5D029 JA01 JB16 JB35 JB47 JC05 JC09 JC11 JC18 JC20

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電磁波を照射して結晶相と非晶相の間を
相転移する記録材料において、その非晶相のエネルギー
ギャップに対応するTaucギャップが0.18eVか
ら0.58eVの範囲にあることを特徴とする光記録材
料。
1. A recording material which undergoes a phase transition between a crystalline phase and an amorphous phase upon irradiation with an electromagnetic wave, has a Tauc gap corresponding to the energy gap of the amorphous phase in the range of 0.18 eV to 0.58 eV. An optical recording material, characterized in that:
【請求項2】 波長1000nmから400nmの範囲
に対する光記録材料の各波長に対する吸収係数αとその
波長に対応するエネルギーEとの積の平方根(α・E)
1/2が260cm-1/2・eV1/2から650cm-1/2・e
1/2の範囲にあることを特徴とする請求項1記載の光
記録材料。
2. The square root (α · E) of the product of the absorption coefficient α for each wavelength of the optical recording material in the wavelength range of 1000 nm to 400 nm and the energy E corresponding to the wavelength.
1/2 from 260cm -1/2 · eV 1/2 650cm -1/2 · e
2. The optical recording material according to claim 1, wherein the optical recording material is in the range of V1 / 2 .
【請求項3】 Taucギャップが0.18eVから
0.58eVの範囲にある記録材料が、AgとInとS
bとTeとHoとNから構成され、特にTaucギャッ
プを制御する元素がNであることを特徴とする請求項1
記載の光記録材料。
3. A recording material having a Tauc gap in a range of 0.18 eV to 0.58 eV is composed of Ag, In, and S.
2. The element comprising b, Te, Ho, and N, wherein the element controlling the Tauc gap is N.
The optical recording material according to the above.
【請求項4】 Taucギャップが0.18eVから
0.58eVの範囲にあるAgとInとSbとTeとH
oとNから構成される記録材料の結晶化温度がTauc
ギャップが広くなると共に高くなることを特徴とする請
求項3記載の光記録材料。
4. Ag, In, Sb, Te, and H having a Tauc gap in a range of 0.18 eV to 0.58 eV.
The crystallization temperature of the recording material composed of o and N is Tauc
4. The optical recording material according to claim 3, wherein the gap increases as the gap increases.
【請求項5】 Taucギャップが0.18eVから
0.58eVの範囲にあるAgとInとSbとTeとH
oとNから構成される記録材料の結晶化温度が165℃
から253℃の間にあることを特徴とする請求項3記載
の光記録材料。
5. Ag, In, Sb, Te, and H having a Tauc gap in the range of 0.18 eV to 0.58 eV.
The crystallization temperature of the recording material composed of o and N is 165 ° C.
4. The optical recording material according to claim 3, wherein the temperature is in the range of from 253.degree.
【請求項6】 Taucギャップが0.18eVから
0.58eVの範囲にあるAgとInとSbとTeとH
oとNから構成される光記録材料の非晶相の複素屈折率
の実数部と虚数部の値が波長450nmから800nm
の間においてTaucギャップが大きくなるにしたがっ
て小さくなることを特徴とする請求項3記載の光記録材
料。
6. Ag, In, Sb, Te, and H having a Tauc gap in a range of 0.18 eV to 0.58 eV.
The values of the real part and the imaginary part of the complex refractive index of the amorphous phase of the optical recording material composed of o and N are from 450 nm to 800 nm.
4. The optical recording material according to claim 3, wherein the gap decreases as the Tauc gap increases.
【請求項7】 Taucギャップが0.18eVから
0.58eVの範囲にあるAgとInとSbとTeとH
oとNから構成される光記録材料の非晶相の複素屈折率
の実数部nと虚数部kの値が波長630nmにおいて、
3.6≦n≦4.3、1.5≦k≦2.5の範囲にある
ことを特徴とする請求項3記載の光記録材料。
7. Ag, In, Sb, Te, and H having a Tauc gap in a range of 0.18 eV to 0.58 eV.
When the values of the real part n and the imaginary part k of the complex refractive index of the amorphous phase of the optical recording material composed of o and N are 630 nm,
4. The optical recording material according to claim 3, wherein the range is 3.6 ≦ n ≦ 4.3 and 1.5 ≦ k ≦ 2.5.
【請求項8】 Taucギャップが0.18eVから
0.58eVの範囲にあるAgとInとSbとTeとH
oとNから構成される光記録材料に、Bi−Ge、Bi
−Si、Gd−Gaの酸化物から選ばれた少なくとも一
種類の化合物を添加することを特徴とする請求項3記載
の光記録材料。
8. Ag, In, Sb, Te, and H having a Tauc gap in a range of 0.18 eV to 0.58 eV.
Bi-Ge, Bi are used for the optical recording material composed of o and N.
4. The optical recording material according to claim 3, wherein at least one compound selected from the group consisting of -Si and Gd-Ga oxides is added.
【請求項9】 Taucギャップが0.18eVから
0.58eVの範囲にあるAgとInとSbとTeとH
oとNから構成される光記録材料に添加される少なくと
も一種類のBi−Ge、Bi−Si、Gd−Gaの酸化
物の割合が5mol%以下であることを特徴とする請求
項3記載の光記録材料。
9. Ag, In, Sb, Te, and H having a Tauc gap in a range of 0.18 eV to 0.58 eV.
4. The composition according to claim 3, wherein the proportion of at least one kind of Bi-Ge, Bi-Si, Gd-Ga oxide added to the optical recording material composed of o and N is 5 mol% or less. Optical recording material.
JP00221999A 1999-01-07 1999-01-07 Recording material for optical recording media Expired - Fee Related JP3763563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00221999A JP3763563B2 (en) 1999-01-07 1999-01-07 Recording material for optical recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00221999A JP3763563B2 (en) 1999-01-07 1999-01-07 Recording material for optical recording media

Publications (2)

Publication Number Publication Date
JP2000207771A true JP2000207771A (en) 2000-07-28
JP3763563B2 JP3763563B2 (en) 2006-04-05

Family

ID=11523258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00221999A Expired - Fee Related JP3763563B2 (en) 1999-01-07 1999-01-07 Recording material for optical recording media

Country Status (1)

Country Link
JP (1) JP3763563B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433647A (en) * 2005-12-20 2007-06-27 Univ Southampton Phase change memory materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433647A (en) * 2005-12-20 2007-06-27 Univ Southampton Phase change memory materials
GB2433647B (en) * 2005-12-20 2008-05-28 Univ Southampton Phase change memory materials, devices and methods
US8624215B2 (en) 2005-12-20 2014-01-07 University Of Southampton Phase change memory devices and methods comprising gallium, lanthanide and chalcogenide compounds
US9029823B2 (en) 2005-12-20 2015-05-12 University Of South Hampton Phase change memory devices and methods comprising gallium, lanthanide and chalcogenide compounds

Also Published As

Publication number Publication date
JP3763563B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
JP2806274B2 (en) Optical information recording medium
JPH11240252A (en) Photorecording medium
JP4065032B2 (en) Information recording medium
JP2000182274A (en) Optical recording medium and optical recording method
JPH06195747A (en) Optical disc
JPH1166611A (en) Optical recording medium
JP4078237B2 (en) Optical recording medium, optical recording method, and optical recording apparatus
TW200406006A (en) Information recording medium
JP2004220699A (en) Optical recording medium
TWI221607B (en) Phase-change recording element for write once applications
US7532555B2 (en) Phase-change recording layer optical recording method
JP2004322556A (en) Optical recording medium, optical recording method, and optical recording apparatus
JP3882532B2 (en) Optical information recording medium and recording erasing method
JPH11110822A (en) Optical recording medium and its recording and reproducing method
JP3763563B2 (en) Recording material for optical recording media
JP4093846B2 (en) Phase change optical recording medium
JP4248327B2 (en) Phase change optical information recording medium
JPH08180413A (en) Method and device for recording optical information to optical disk
JP2001126315A (en) Optical information recording medium
JP4303575B2 (en) Optical recording method and recording / reproducing apparatus
JP2003242683A (en) Information recording medium
JP2947938B2 (en) Optical recording medium
JPH11134713A (en) Optical information recording medium
JP3912954B2 (en) Information recording medium
JPH0744892A (en) Optical information recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees