JP3912954B2 - Information recording medium - Google Patents

Information recording medium Download PDF

Info

Publication number
JP3912954B2
JP3912954B2 JP2000123680A JP2000123680A JP3912954B2 JP 3912954 B2 JP3912954 B2 JP 3912954B2 JP 2000123680 A JP2000123680 A JP 2000123680A JP 2000123680 A JP2000123680 A JP 2000123680A JP 3912954 B2 JP3912954 B2 JP 3912954B2
Authority
JP
Japan
Prior art keywords
layer
recording
interference
interference layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000123680A
Other languages
Japanese (ja)
Other versions
JP2001209972A (en
JP2001209972A5 (en
Inventor
真 宮本
喜博 碇
保 渕岡
均 渡辺
礼仁 田村
純子 牛山
圭吉 安藤
由美子 安齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2000123680A priority Critical patent/JP3912954B2/en
Publication of JP2001209972A publication Critical patent/JP2001209972A/en
Publication of JP2001209972A5 publication Critical patent/JP2001209972A5/ja
Application granted granted Critical
Publication of JP3912954B2 publication Critical patent/JP3912954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、レーザービームの照射により情報の記録が行われる情報記録媒体、また、上記情報記録媒体に係り、特に、DVD−RAM、DVD−RW等の相変化光ディスク、あるいはMD、MO等の光磁気ディスク、DVD−R等の追記型光ディスクなど、記録可能な光ディスクに関する。
【0002】
なお、本発明では上記情報記録媒体を相変化光ディスク、光磁気ディスク、あるいは単に光ディスクと表現することがあるが、本発明はレーザービームの照射により熱が発生し、この熱により原子配列、あるいは磁気モーメントに変化を生じさせることにより情報の記録が行われる情報記録媒体であれば適用可能であるので、特に情報記録媒体の形状によらず、光カード等の円盤状情報記録媒体以外の情報記録媒体にも効果がある。
【0003】
また、上記したレーザービームを単にレーザー光あるいは光と表現することがあるが、上記したように本発明は情報記録媒体上に熱を発生させることが可能なレーザービームであり、複数の屈折率の異なる干渉層により、多重干渉効果が得られるレーザービームであれば効果が得られる。また、本発明は赤色レーザー(波長645〜660nm)により発明させたものであるが、特にレーザーの波長によるものではなく、青色レーザー、紫外線レーザー等の比較的短波長のレーザーを使用した高密度光ディスクに対しても効果を発揮する。
【0004】
【従来の技術】
近年、DVD−ROM、DVD−Video等の再生専用型光ディスクとの再生互換性に優れているという特徴を生かし、2.6GBDVD−RAM等の相変化光ディスクが製品化されている。しかしながら、2.6GBDVD−RAMは記録容量の点で消費者の要請に充分に応えているとは言えないため、4.7GBDVD−RAMや4.7GBDVD−RWに対する期待が高まっている。すなわち、これらの相変化光ディスクはDVD―Videoと記録容量の点で同じになるため、VTRに代わる映像記録用光ディスクが実現するためである。
【0005】
4.7GBDVD−RAMを実現するためには多くの課題を解決する必要がある。この中でも、特にクロスイレーズの抑制が主な課題である。
【0006】
一般的に、情報記録媒体のトラックピッチをレーザービームスポットの80%程度に狭トラックピッチ化した場合、隣接情報記録トラックから再生信号のもれ込みが発生する。この隣接情報記録トラックに記録された情報からの再生信号のもれ込みをクロストークと呼ぶ。この問題を解決するため、以下に説明するランドグルーブ記録方式が開発された。
【0007】
書換型光ディスクではプラスチック基板上にレーザービームのトラッキングのための、凹凸形状(溝形状)が設けられており、凹部、あるいは凸部に情報を記録する方法が一般的である。しかしながら、記録密度向上(狭トラックピッチ化)を目的とし、近年、上記凹凸形状を利用して、凹部と凸部のそれぞれに情報を記録する方法が開発された。ここで、上記凹凸形状の凸部と凹部をランド、グルーブと呼ぶ。一般的に、情報記録媒体のトラックピッチをレーザービームスポットの80%程度に狭トラックピッチ化し、ランドとグルーブの両方に情報を記録した場合、隣接情報記録トラック(ランドに対するグルーブ、あるいはグルーブに対するランド)から再生信号のもれ込みが発生する。たとえばランドに記録された情報を再生する際にグルーブに記録された情報からの再生信号がもれ込み、ランドに記録された情報を正確に再生できない等の問題が発生する。
【0008】
この問題点を解決するために、特開平6−338064号公報(以下「文献1」という。)は、上記ランドグルーブ記録方式では上記溝深さをλ/7以上λ/5以下(λ:レーザー波長)にすることを開示する。この方式の特徴は、トラックピッチをレーザービームスポットの6割程度に狭くした場合においても、隣接情報記録トラックからのクロストーク(隣接情報記録トラックからの信号のもれ込み)をキャンセルできることである。
【0009】
一方、反射率を向上させる方法としては、第5回相変化記録研究会シンポジウム講演予稿集、pp9-14、1993(以下「文献2」という。)に記載されているように、記録層のエネルギービーム入射側にZnS−SiO2層、SiO2層という屈折率の異なる干渉層を設け、多重干渉の効果により反射率を向上させる方法が知られている。
【0010】
【発明が解決しようとする課題】
文献1では、隣接情報記録トラック(ランド記録時の隣接グルーブ、あるいはグルーブ記録時の隣接ランド)に記録されている記録マークが消去される現象(いわゆるクロスイレーズ)を抑制する方法については十分に考慮されていない。
【0011】
たとえば、文献1では、記録層と熱拡散層(反射層)との間の距離が18nmと小さいため、情報記録時に熱拡散層を介して隣接情報記録トラックに熱が拡散し、クロスイレーズが発生しやすくなるという問題が発生することがわかった(問題1)。
【0012】
この問題を解決するために、本願の先願である特願平10−285008号に記載されているように、記録層と熱拡散層との距離をグルーブ深さ以上に離すことが重要である。しかしながら、記録層と熱拡散層の距離をクロスイレーズが充分抑制される程度(レーザー波長が645〜660nm程度の場合、65nm以上)まで離した場合、光学干渉の効果により反射率が低下するという問題が発生する(問題2)。
【0013】
反射率を向上させるためには、文献2に開示される方法を利用することが考えられる。しかしながら、この方法では、記録層とZnS−SiO2が接しているため、数千回程度の記録を繰り返した際に、ZnS−SiO2層中のS元素が記録層中に拡散し、反射率が低下するという問題が発生する(問題3)。
【0014】
このような反射率低下を回避するためには、特開平10−228676号公報(以下「文献3」という。)に記載されているように、記録層とZnS−SiO2誘電体保護層の間にSiO2、Al23等の高融点誘電体化合物からなる界面層を設ける方法が知られている。しかしながら、上記方法では高温加湿試験等を行った場合、記録層と界面層の間において剥離が発生するおそれがあることが明らかになった(問題4)。
【0015】
この剥離を抑えるためには、上述の特願平10−285008号に記載されているようにAl23、SiO2等の高融点誘電体化合物の代わりにCr―O系材料,Ge−N系材料等の誘電体を界面層として設ければよい。しかしながら、発明者らは、上記Cr―O系材料,Ge−N系材料等は、剥離に対して強いが、レーザー光を吸収してしまうため、多重干渉の効果を阻害し、結果として反射率を低下させるという問題を引き起こすことを明らかにした(問題2と同様)。この場合、界面層の厚さを薄膜化すれば、上記問題をある程度抑えることは可能であるが、界面層の厚さを5nm以下にするとZnS−SiO2誘電体保護層からのS原子の拡散を充分に抑制できないことがわかった(問題3が発生)。
【0016】
また、文献2と文献3とを組み合わせた場合、記録層のレーザービーム入射側には4層の薄膜が存在することになり、総数が多すぎるため生産上好ましくない。また、上記文献1、文献2、文献3ではクロスイレーズに関しては十分に考慮されておらず、トラックピッチを狭めた場合、各層の膜厚によってはクロスイレーズが発生するという問題が発生した(問題1と同様)。
【0017】
したがって、本発明の課題はクロスイレーズ抑制(問題1対策)と、反射率向上(問題2対策)、多数回書換時の反射率低下抑制(問題3対策)、剥離による欠陥抑制(問題4対策)を両立させる情報記録媒体の構造を明らかにし、これを提供することに有る。
【0018】
【課題を解決するための手段】
上述した従来技術における問題点を解決するためには、以下の情報記録媒体を用いれば良い。(1)レーザービームの照射により原子配列変化、あるいは/および電子状態変化によって情報の記録が行われる情報記録媒体において、少なくとも、溝深さdgの溝形状を有する基板と、溝形状を反映した形状の記録層を備え、記録層のレーザービーム入射側から順に、第1干渉層、第2干渉層、第1界面層の組成の異なる3層の薄膜を備える情報記録媒体であって、第1干渉層の熱伝導率が第2干渉層の熱伝導率よりも低く、第2干渉層の屈折率が第1干渉層、記録層のいずれの屈折率よりも小さく、第2干渉層と記録層の間に、記録層と接して第1界面層を備え、第1干渉層と記録層の間の距離がdg以下である事を特徴とした情報記録媒体。
【0019】
実施例において詳細に説明するように、第1干渉層の屈折率が第2干渉層の屈折率よりも大きい場合、反射率が向上する。
【0020】
ここで、第1干渉層は、少なくとも第1干渉層のレーザービーム入射側に接して存在する物質の屈折率よりも大きな屈折率を有することが好ましい。通常、第1干渉層のレーザービーム光入射側に存在する物質はポリカーボネート等のプラスチック基板、あるいは、紫外線硬化樹脂等の有機物である。また、これらの屈折率は1.4から1.6程度である。上記有機物と第1干渉層の間において、効果的に光を反射させるためには第1干渉層の屈折率は2.0以上であることが望ましい。具体的には2.0以上の高屈折率を実現できるという点、製膜レートが高くノイズを発生させないという点、熱伝導率が極めて小さいという点においてZnSとSiO2の混合物が良い。
【0021】
また、第2干渉層の屈折率は2.0以下、望ましくは1.8以下であることが要求される。したがって具体的には、第2干渉層には、屈折率が極めて小さいという点において、たとえば、SiO2、Al23、MgOのような低屈折率酸化物を含有されていることが望ましい。
【0022】
発明者らは、このような低屈折率酸化物からなる第2干渉層は記録層との間において剥離しやすいことを明らかにした。このような剥離を抑制するためには記録層と第2干渉層の間に第1界面層を設ければ良い。第1界面層は記録膜に接して存在するため、少なくとも融点が記録層の融点よりも高いことが要求される。また、第1界面層は記録層と第2干渉層の間における接着性が良好な物質が良い。
【0023】
さらに、発明者らは実施例にも記載されているように、遷移金属の酸化物、窒化物、あるいはGe、Si等の半導体元素窒化物等の、不定比化合物となりやすい物質が接着性が良好であるが、不定比化合物であるがために、自由電子が存在し、これに起因した光吸収が発生し反射率を低下させてしまうことを明らかにした。
【0024】
しかしながら、第1干渉層、第2干渉層、第1界面層を組み合わせることにより、以上に示したような各層のデメリットが補完され、クロスイレーズ抑制と、反射率向上、多数回書換時の反射率低下抑制、剥離による欠陥抑制を両立させる情報記録媒体を得ることができる。
【0025】
さらに、発明者らは実施例に詳細に説明するように、第2干渉層に使用されるSiO2,Al23、MgO等の低屈折率化合物の熱伝導率が、第1干渉層に使用されるZnS−SiO2等の化合物と比較して大きいため、隣接トラックに熱が拡散することによるクロスイレーズが発生しやすくなってしまうことを明らかにした。また、これを避けるためには、第1干渉層と記録層の間の距離を溝深さdgよりも小さくすれば良いことを明らかにした。
【0026】
また、各層の組成には最適値が存在する。すなわち、以下に記載されているような情報記録媒体である。
【0027】
(2)レーザービームの照射により原子配列変化、あるいは/および電子状態変化によって情報の記録が行われる情報記録媒体において、少なくとも、溝深さdgの溝形状を有する基板と、溝形状を反映した形状の記録層を備え、記録層のレーザービーム入射側から順に、第1干渉層、第2干渉層、第1界面層の組成の異なる3層の薄膜を備える情報記録媒体であって、ZnSの組成比が50%以上95%以下であるZnSとSiO2の混合物からなる第1干渉層と、 O、N、S、Cの組成比の和をXとした場合、Oの組成比がXの50%以上であり、Al、Si、Mgの組成比の和が1―Xの70%以上である第2干渉層中と、第2干渉層と記録層の間に、記録層と接して、遷移金属元素の酸化物、窒化物、あるいは、Si,Geの窒化物、あるいは、これらを含有する混合物からなる第1界面層を備え、第1干渉層と記録層の間の距離がdg以下である事を特徴とした情報記録媒体。
【0028】
また、上記構成は特に光学干渉の効果により反射率が低下するような場合に効果を発揮する。すなわち、クロスイレーズ等の熱的な問題を解決するために反射率を犠牲にせざるを得ないような構成において有効となる。具体的には、記録層のレーザービーム入射側とは反対側に熱拡散層を設け、熱拡散層と記録層の距離を溝深さdg以上にしたような場合である。
【0029】
実施例においても詳細に説明しているように、記録層のレーザービーム入射側とは反対側に熱拡散層を設けることは、記録時に発生した熱をすばやく逃し、記録層のダメージを抑えるために有効であるが、熱拡散層内に拡散した熱が、隣接トラックに達しクロスイレーズを発生させてしまうという弊害がある。この問題を避けるためには、以下に示す場合のように記録層と熱拡散層の間に熱拡散層よりも小さな熱伝導率の層(第3干渉層)を設け、記録層と熱拡散層の距離を溝深さdg以上にすれば良い。しかしながら、このような構造にした場合、反射率が急激に低下する。
【0030】
このような場合においても(1)(2)に示したような構造とすることにより反射率低下を抑えることができる。したがって、以下に示すような反射率が高い実用的な低クロスイレーズ媒体が実現する。
【0031】
(3)(1)(2)に記載の情報記録媒体であって、記録層のレーザービーム入射側とは反対側に、少なくとも一層の熱拡散層を備え、記録層と熱拡散層の間に少なくとも一層の第3干渉層を備え、記録層と熱拡散層の間の距離が上記dg以上であることを特徴とした情報記録媒体。
【0032】
さらに、第3干渉層の組成には(4)に示したように、最適な組成が存在することがわかった。
【0033】
(4)(3)に記載の情報記録媒体であって、第3干渉層がZnSの組成比が50%以上95%以下であるZnSとSiO2の混合物からなることを特徴とした情報記録媒体。
【0034】
このような、組成を使用した場合、第3干渉層に含有されるS原子が、多数回書換時に記録層中に拡散し、反射率を低下させるという問題が発生する。このような場合、(5)に示すように、記録層と第3干渉層の間に第2界面層を設ければよい。既に述べたように、第2界面層で使用される界面層材料は第1界面層と同様に遷移金属元素の酸化物、窒化物、あるいはGe、Si等の半導体元素の窒化物が良い。しかしながら、上述したように、これらの化合物は光を吸収しやすいため、多重干渉の効果を阻害し、反射率を低下させやすい。このような場合においても(1)(2)に示したような構造とすることにより反射率低下を抑えることができる。また、言うまでもなく(5)に示すように、第2界面層に含有されるS元素が第3干渉層に含有されるS元素よりも少ないことが重要である。
【0035】
(5)(4)に記載の情報記録媒体であって、上記第3干渉層と記録層の間に記録層と接して第2界面層が存在し、第2界面層のS元素の組成比が第3干渉層よりも小さいことを特徴とした情報記録媒体。
【0036】
また、(6)に示したようにランドグルーブ記録を行う場合、特にクロスイレーズが問題となるが、このような場合においても、(3)に示したような構成の情報記録媒体を用いることにより、クロスイレーズが極めて小さな情報記録媒体を実現させることができる。
【0037】
(6)(3)に記載の情報記録媒体であって、溝内(グルーブ)と溝間(ランド)の両方に情報記録を行うことを特徴とした情報記録媒体。
【0038】
なお、上記した第1界面層、第2界面層、記録層等は通常、数nm程度と極めて薄い。このような場合、必ずしも層状をしておらず、島状に(まだらに)膜が存在するという現象が発生する(薄膜の島状形成)。このような場合においても、上記島状の薄膜間の距離がレーザービームの波長の10分の1程度であれば、光学的には無視でき、島状薄膜の平均膜厚を有する層が存在すると考えても、本発明の効果は失われない。また、たとえば、第2界面層等の界面層が島状に存在していたとしても、記録層への各干渉層元素の拡散防止効果は、十分ではないが発現する。また、第1界面層の主な目的は、第2干渉層と記録層の間において発生する剥離の防止である。したがって、第1界面層に関しては、第2干渉層に使用される材料が記録層中に拡散しにくい場合、島状に存在していたとしても一向に差し支えない。
【0039】
【発明の実施の形態】
本発明を以下の実施例によって詳細に説明する。
【0040】
図1に本発明の情報記録媒体の基本構造を示す。第1の情報記録部材は溝形状の情報記録トラックが設けられた基板1−1上に第1干渉層1−2、第2干渉層1−3、第1界面層1−4、記録層1−5、第2界面層1−6、第3干渉層1−7、熱緩衝層1−8、熱拡散層1−9が順次積層された構造である。また、同様の構造の情報記録部材を接着剤1−10を介して貼り合せている。
【0041】
基板1−1としてはポリカーボネート等のプラスチック製透明基板を用いる。
【0042】
通常、このような透明基板の屈折率は1.5〜1.6程度である。第1干渉層1−2の満足すべき光学特性は上記基板1−1よりも屈折率が大きく、屈折率が2.0以上であることが望ましい。これにより、基板1−1と第1干渉層1−2の間において光の反射が起こり、この反射を利用した光学干渉効果により、未記録部(結晶)と記録部(アモルファス)の反射率変化を大きくすることができる。
【0043】
また、第2干渉層1−3の屈折率は第1干渉層1−2の屈折率よりも小さく,さらに記録層1−5の屈折率よりも小さくする。第1界面層1−4は、記録層1−5と第2干渉層1−3との間剥離の抑制する。第1界面層1−4の屈折率は、できる限り第2干渉層1−3と同程度の値にすることが望ましいが、第1干渉層1−2程度に大きくなってしまう場合は、上記剥離抑制効果に影響を及ぼさない範囲において、できうる限り薄い方が良い。第3干渉層1−7は熱拡散層1−9と記録層1−5の距離を適度に離し、クロスイレーズを制御するために適度な膜厚が必要である。少なくとも膜厚は35nm以上、望ましくは溝深さ以上の厚さがあれば望ましい。また、熱伝導率が適度に低いことが要求される。第2界面層1−6は主に記録層1−5と第3干渉層1−7の間において発生する剥離の抑制、第3干渉層元素の記録層への拡散を抑制する役割を担っている。熱緩衝層1−8は記録層1−5が結晶とアモルファスのそれぞれの場合の吸収率を制御する役割と同時に、記録層1−5から熱拡散層1−9への熱の流れを制御する役割を担っている。光学定数(n、k)は1.4<n<4.5、−3.5<k<−0.5の範囲が良く、特に2<n<4、−3.0<k<−0.5の材料が望ましい。熱拡散層1−9は記録層1−5において発生した熱を速やかに拡散させ、記録時の記録層1−5の熱的なダメージを抑える役割を担っている。このため適度に熱伝導率が高いことが要求される。このため、膜厚が少なくとも30nm以上は必要である。
【0044】
以下に本発明の基本的な考え方を示す。ここでは、簡単のため、光学的に特に重要な第1干渉層、第2干渉層、記録層、第3干渉層、熱拡散層のみを用いて説明する。図2は第2干渉層がある場合と、ない場合の各層の屈折率を模式的に示した図である。縦軸は屈折率、横軸は基板内のある点からの光入射方向の距離を示している。ここで構造1とは基版上に第1干渉層、記録層、第3干渉層、反射層を順次積層した構造である。このような構造の場合、主に、4つの反射面を利用した多重干渉効果を利用し光学設計を行っている。すなわち、基板−第1干渉層間の反射面A、第1干渉層―記録層間の反射面B、記録層−第3干渉層間の反射面C、第3干渉層−熱拡散層間の反射面Dである。このような場合、光学設計に利用できる光路はA−B間、A−C間、 A−D間、 B−C間、 B−D間、C−D間の6種類である。これに対して、第1干渉層よりも屈折率が小さな第2干渉層を第1干渉層と記録層の間に挿入した場合(構造2)、新たに多重干渉に利用できる反射面Eが追加される。このような場合、光学設計に利用できる光路はA―B間、A−C間、A―D間、A−E間、B−C間、B−D間、B−E間、C−D間、C−E間、D−E間の10種類であり光学設計の自由度が飛躍的に向上する。また、反射面Eの反射を有効に活用することにより、反射率を向上させること容易となる。
【0045】
第2干渉層の屈折率が第1干渉層よりも小さい方が好ましい理由は2点ある。
【0046】
まず、基板の屈折率は基板に要求される諸特性を満足させるため選択できる材料が限られており、その屈折率は1.5−1.6程度である。したがって、反射面Aにおける反射係数を大きくするためには第1干渉層の屈折率をできるだけ小さくするか、又は大きくする必要がある。第1干渉層に使用できる通常の無機誘電体材料の屈折率が最低でも1.4程度であることを考慮すると第1干渉層の屈折率を小さくする事は現実的ではない。したがって、第1干渉層の屈折率は基板の屈折率よりもできるだけ大きくする必要がある。しかしながら、屈折率が2.5以上となるような材料は通常光を吸収しやすいため、現実的には第1干渉層の屈折率は2−2.2程度に抑えられている。同様に反射面Eにおける反射係数を大きくするためには、第2干渉層の屈折率を第1干渉層の屈折率よりも大きくするか、小さくするかのどちらかである。第2干渉層の屈折率を第1干渉層の屈折率よりも大きくした場合、2つの問題が発生する。一つは、たとえば屈折率が3以上となるような透明材料を得る事が極めて困難なこと、もう一つは記録層(屈折率が4程度)と、第2干渉層との間の屈折率差を小さくしてしまうことである。
【0047】
この結果、反射面Bにおける反射係数を小さくしてしまうことになる。したがって、第2干渉層の屈折率は第1干渉層の屈折率よりも小さい方がよい。また、第1界面層は主に記録層と第2干渉層の間において発生する剥離の抑制のために必要である。第1界面層の屈折率はできうる限り第2干渉層と同程度の値にすることが望ましいが、第1干渉層程度に大きくなってしまう場合は、上記剥離抑制効果に影響を及ぼさない範囲において、できうる限り薄い方が良い。
【0048】
次に光学計算結果を示す。
計算に用いた光学定数(n、k)を以下に示す。
第1干渉層:(2.16、0.00)
第2干渉層:(1.4〜2.2、0.00)
第1界面層:(2.6,−0.09)
記録層(結晶):(4.57、−5.46)
記録層(アモルファス):(4.51、−2.22)
第2界面層:(2.6、−0.09)
第3干渉層:(2.16、0.00)
熱緩衝層:(4.09、−2.88)
熱拡散層:(1.84、−5.74)
また、各層の膜厚を以下に示す。
第1干渉層:0〜150nm
第2干渉層:0〜80nm
第1界面層:1nm
記録層:6.3nm
第2界面層:10nm
第3干渉層:45nm
熱緩衝層:35nm
熱拡散層:60nm
図3は第2干渉層膜厚と屈折率を変数とし、結晶の反射率Rcとアモルファスの反射率Raの比(Rc−Ra)/Rcが90%以上になるように第1干渉層の膜厚を最適化した場合の計算結果である。第2干渉層の屈折率が第1干渉層の屈折率よりも大きい場合(n=2.2)第2干渉層の膜厚が0以上において(つまり第2干渉層が存在すると)結晶の反射率を低下させるが、第2干渉層の屈折率が第2干渉層の屈折率よりも小さい2.0以下の場合、反射率を向上させる効果を発揮する。目標となる反射率は4.7GBDVD−RAM規格書に記載されているように15%以上である。本計算ではレーザービームが基板表面において反射される効果等を考慮していないため、本計算の計算結果は実質的には4%程度大きく計算されている。したがって、本計算における反射率の目標値は19%以上である。この条件を満足する第2干渉層の屈折率は1.4〜1.8である。また、第2干渉層の屈折率が1.4〜1.8のいずれの値であったとしても第2干渉層の膜厚が20nm以上78nmであれば、上記条件を満足することができる。したがって、第2干渉層の屈折率は少なくとも第1干渉層の屈折率よりも小さく、望ましくは1.8以下がよく、膜厚は20nm以上78nm以下がよい。上記膜厚および屈折率の範囲は反射率の目標値が19%の場合であるが、実用的には、光ディスク面内の均一性、量産時の歩留り等を考慮すると、さらに3%程度反射率を高めておく必要がある。したがって、実用的には反射率22%以上が目標となる。この場合、第2干渉層の屈折率が1.4〜1.6であり膜厚が20nm以上70nm以下の場合に目標を満足する。
【0049】
次に、第1干渉層の膜厚を結晶の反射率Rcが20%以上になるように最適化した場合の、再生信号の第2干渉層膜厚および屈折率依存性の計算結果を図4に示す。第2干渉層の屈折率が第1干渉層の屈折率よりも大きい場合(n=2.2)第2干渉層の膜厚が0.0以上において(つまり第2干渉層が存在すると)、再生信号振幅を低下させるが、第2干渉層の屈折率が第2干渉層の屈折率よりも小さい2.0以下の場合、再生信号振幅を向上させる効果を発揮する。特に、第2干渉層の膜厚が20nm以上の場合、屈折率が2.0においても1dB以上の再生信号振幅向上効果が発揮される。また、最適な第2干渉層の厚さは45nm±25nm程度である。したがって、第2干渉層の屈折率は少なくとも第1干渉層の屈折率よりも小さく、膜厚は20nm以上がよい。特に第2干渉層の屈折率が1.8以下であり膜厚が20nm以上78nm以下の場合、再生信号振幅を2dB以上向上させることができる。
【0050】
また、図5は図3の計算を行った際の第2干渉層の膜厚および屈折率と最適な第1干渉層膜厚の関係を示した図である。第1干渉層と第2干渉層の膜厚の和は130±20nmが適しており、特に130±10nmの場合に最適値が集中しており、この関係を保持する事が重要である事がわかる。
【0051】
以上の計算は再生レーザーの波長が660nmについて計算を行っているが、たとえば他の波長の再生レーザを使用する場合は、レーザー波長をλとした場合、第2干渉層膜厚をλ/40〜λ/10程度、さらに望ましくはλ/30〜λ/10にすれば良い。また、第1干渉層と第2干渉層の膜厚の和はλ/5±λ/30、さらに望ましくはλ/5±λ/60程度にすればよい。
【0052】
次に、第1干渉層の熱伝導率を第2干渉層の熱伝導率よりも低くし、第1干渉層と記録層の間の距離を溝深さdg以下とすることにより、クロスイレーズを抑制することができる理由を説明する。クロスイレーズを抑制するためには隣接トラック方向への熱の流れを少なくすることが極めて重要である。図6に第2干渉層の熱伝導率が第1干渉層の熱伝導率よりも大きく、第1干渉層と記録層の間の距離が溝深さdgよりも大きい場合のグルーブ記録時の熱の流れを示した。このような場合、グルーブ記録時の発熱部6−11の隣接トラック方向には主に熱伝導率が高い第2干渉層6−2が存在する。したがって、隣接トラック方向に熱が拡散しやすく、結果としてクロスイレーズ引き起こすことになる。これに対して図7に示すように、第1干渉層7−1の熱伝導率が第2干渉層7−2の熱伝導率よりも低く、第1干渉層7−1と記録層7−4の間の距離が溝深さdg以下の場合、グルーブ記録時の発熱部7−11の隣接トラック方向には、主に熱伝導率が低い第1干渉層7−1が存在する。したがって、熱の流れ7−8は小さくなり、クロスイレーズが抑制される。このように、グルーブ記録時の発熱部7−11の隣接トラック方向への熱の流れ7−8は、第1干渉層7−1と記録層7−4の間の距離に、極めて大きく依存する。
【0053】
以上の説明ではグルーブ記録時のグルーブからランド方向への熱の流れについて説明したが、ランドからグルーブ方向への熱の流れの制御には第3干渉層の膜厚が重要となる。この現象についても図6、7を用いて説明する。熱拡散層6−7の熱伝導率が第3干渉層6−6の熱伝導率よりも高く、熱拡散層6−7と記録層6−4の距離が溝深さdg以下の場合(図6)、ランド記録時の発熱部6−12の隣接トラック方向に主に熱拡散層6−7が存在しているため、隣接トラック方向に熱が流れやすくなる。これに対して、図7の場合のように、熱拡散層7−7の熱伝導率が第3干渉層7−6の熱伝導率よりも高く、熱拡散層7−7と記録層7−4の距離が溝深さdg以上の場合、ランド記録時の発熱部7−12の隣接トラック方向には熱伝導率が低い第3干渉層7−6が存在しているため、隣接トラック方向に熱が流れにくくなり、結果としてクロスイレーズを抑制できる。
【0054】
以上の光学的、熱的考察を踏まえ、第1干渉層と第2干渉層の熱伝導率、屈折率の大小、第2干渉層と第1界面層の膜厚の和(第1干渉層と記録層の間の距離に相当)、第1界面層の有無を組み合わせた場合の、反射率、クロスイレーズ、剥離欠陥を図15にまとめた。
【0055】
反射率、クロスイレーズ、剥離欠陥のいずれも良好となる構造は構造Aと構造Kのみである。構造Aと構造Kの違いは第1干渉層の熱伝導率κ1と第2干渉層の熱伝導率κ2の大小関係と、溝深さdgに対する第2干渉層と第1界面層の膜厚の和d2+ds(第1干渉層と記録層の距離に相当)の大小関係である。構造Aと構造Kを比較した場合、以下の理由により構造Kの方が現実的である。本発明において第2干渉層に使用されるような低屈折率材料は耐熱性、生産性等を考慮するとSiO2、Al23、MgO等の比較的熱伝導率が高い材料となるため、構造Aの様に第2干渉層の熱伝導率を第1干渉層の熱伝導率以下にすることは、現実的には困難だからである。
【0056】
先に示した光学計算結果からは第2干渉層膜厚はλ/4程度まで厚くしても効果があった。また、通常、ランドグルーブ記録の場合溝深さはλ/6程度である。したがって、第2干渉層の膜厚の上限は、溝深さdgによって制限されることになる。
【0057】
以下に本発明の一実施例を示す。
【0058】
トラックピッチ0.615μm、溝深さ65nmであり、ランドとグルーブの両方に情報を記録するためのアドレス情報が各セクタの先頭部に設けられた厚さ0.6mmのランドグルーブ記録用ポリカーボネート製の基板上に、各薄膜(第1干渉層:(ZnS)80 (SiO2)20(100nm)、第2干渉層:Al23(35nm)、第1界面層:Cr23(2nm)、記録層3:Ge28Sb18Te54(7nm)、第2界面層:Cr23(5nm)、第3干渉層:(ZnS)80 (SiO2)20(40nm)、熱緩衝層:Cr75(Cr2325(60nm)、熱拡散層: Al98Ti2(100nm)を順次スパッタリングプロセスにより製膜した。
【0059】
また、同様の構造を有する情報記録部材を接着剤を介して貼り合せた。以上の構成の情報記録媒体を光ディスクAと呼ぶ。なお、上記ポリカーボネート基板の屈折率は1.58であった。この光ディスクの半径方向にはユーザ記録用のゾーンが35個あり、ゾーン内一周内には25〜59個のセクタが存在している。また、トラックピッチは0.615μmである。
【0060】
上記光ディスクAに対して図8に示した情報記録再生装置により、情報の記録再生を行なった。以下に本情報記録再生装置の動作を説明する。なお、記録再生を行なう際のモーター制御方法としては、記録再生を行なうゾーン毎にディスクの回転数を変化させるZCLV(Zone Constant Linear Velocity)方式を採用している。ディスク線速度は約8.2m/sである。
【0061】
記録装置外部からの情報は8ビットを1単位として、8−16変調器8−8に伝送される。光ディスク8−1上に情報を記録する際には、情報8ビットを16ビットに変換する変調方式、いわゆる8−16変調方式を用い記録が行われた。
【0062】
この変調方式では媒体上に、8ビットの情報に対応させた3T〜14Tのマーク長の情報の記録を行なっている。図中の8−16変調器8−8はこの変調を行なっている。なお、ここでTとは情報記録時のクロックの周期を表しており、ここでは17.1nsとした。
【0063】
8−16変調器8−8により変換された3T〜14Tのデジタル信号は記録波形発生回路8−6に転送され、、高パワーパルスの幅を約T/2とし、高パワーレベルのレーザー照射間に幅が約T/2の低パワーレベルのレーザー照射を行い、上記一連の高パワーパルス間に中間パワーレベルのレーザー照射が行われるマルチパルス記録波形が生成される。この際、記録マークを形成するための、高パワーレベルを10.0mW、記録マークの消去が可能な中間パワーレベルを4.0mWとした。また、上記記録波形発生回路8−6内において、3T〜14Tの信号を時系列的に交互に「0」と「1」に対応させ、「0」の場合には中間パワーレベルのレーザーパワーを照射し、「1」の場合には高パワーレベルのパルスを含む一連の高パワーパルス列を照射するようにしている。この際、光ディスク1上の中間パワーレベルのレーザービームが照射された部位は結晶となり(スペース部)、高パワーレベルのパルスを含む一連の高パワーパルス列のレーザービームが照射された部位は非晶質(マーク部)に変化する。また、上記記録波形発生回路8−6内は、マーク部を形成するための高パワーレベルを含む一連の高パワーパルス列を形成する際に、マーク部の前後のスペース部の長さに応じて、マルチパルス波形の先頭パルス幅と最後尾のパルス幅を変化させる方式(適応型記録波形制御)に対応したマルチパルス波形テーブルを有しており、これによりマーク間に発生するマーク間熱干渉の影響を極力排除できるマルチパルス記録波形を発生している。
【0064】
記録波形発生回路8−6により生成された記録波形は、レーザ駆動回路8−7に転送され、レーザー駆動回路8−7はこの記録波形をもとに、光ヘッド8−3内の半導体レーザを発光させる。
【0065】
本記録装置に搭載された光ヘッド8−3には、情報記録用のレーザービームとして光波長655nmの半導体レーザが使用されている。また、このレーザー光をレンズNA0.6の対物レンズにより上記光ディスク8−1の記録層上に絞り込み、上記記録波形に対応したレーザーのレーザービームを照射することにより、情報の記録を行なった。
【0066】
一般的に、レーザー波長λのレーザー光をレンズ開口数NAのレンズにより集光した場合、レーザービームのスポット径はおよそ0.9×λ/NAとなる。したがって、上記条件の場合、レーザービームのスポット径は約0.98ミクロンである。この時、レーザービームの偏光を円偏光とした。
【0067】
また、本記録装置はグルーブとランド(グルーブ間の領域)の両方に情報を記録する方式(いわゆるランドグルーブ記録方式)に対応している。本記録装置ではL/Gサーボ回路8−9により、ランドとグルーブに対するトラッキングを任意に選択することができる。
【0068】
記録された情報の再生も上記光ヘッド8−3を用いて行なった。レーザービームを記録されたマーク上に照射し、マークとマーク以外の部分からの反射光を検出することにより、再生信号を得る。この再生信号の振幅をプリアンプ回路8−4により増大させ、8−16復調器8−10に転送する。8−16復調器8−10では16ビット毎に8ビットの情報に変換する。以上の動作により、記録されたマークの再生が完了する。
【0069】
以上の条件で上記光ディスク8−1に記録を行った場合、最短マークである3Tマークのマーク長はおよそ0.42μm、最長マークである14Tマークのマーク長は約1.96μmとなる。
【0070】
以上の装置を用い、結晶の反射率、ランドグルーブにおける変調度(結晶の反射率とアモルファスの反射率の差を結晶の反射率で規格化した値)を測定した結果、それぞれ22%、55%(ランド)、56%(グルーブ)であり、良好な再生信号が得られることがわかった。また、10万回書換後の値もそれぞれ20.2%、54%(ランド)、54%(グルーブ)であり、十分に実用に耐えうる値であった。また、90℃湿度80%の条件下において、保存寿命の加速試験を行った結果、200時間後においても剥離欠陥が生じていないことがわかった。
【0071】
また、ディスクAの第1干渉層、第2干渉層、第1界面層、第1界面層の組成、膜厚を変更した場合の、第1干渉層、第2干渉層の屈折率、熱伝導率と反射率、クロスイレーズの有無、剥離欠陥の有無の関係を図16にまとめた。
【0072】
ディスクBは第2干渉層の熱伝導率が第1干渉層の熱伝導率よりも大きく、第2干渉層と第1界面層の膜厚の和が溝深さ(65nm)より大きい場合、ディスクCは第1界面層がない場合、ディスクDは第1干渉層の熱伝導率が第2干渉層の熱伝導率よりも大きく、第2干渉層と第1干渉層の膜厚の和が溝深さ(65nm)より小さい場合、ディスクEは、第2干渉層の屈折率が第1干渉層の屈折率よりも大きい場合である。これらのディスクでは、反射率低下、クロスイレーズ、剥離欠陥のいずれかの問題が発生したため実用的ではなかった。
【0073】
さらに、ディスクAと基板の溝深さ以外は同じ構造のディスクを試作し、クロスイレーズの有無を測定し以下に示した。
溝深さ(nm) クロスイレーズの有無
25 あり
30 あり
37 なし
65 なし
76 なし
この結果からも明らかなように、第2干渉層と第1界面層の膜厚の和(第1干渉層と記録膜の間の距離に相当:37nm)が溝深さよりも小さい場合、クロスイレーズが発生するが、第2干渉層と第1界面層の膜厚の和が溝深さ以上の場合、クロスイレーズを発生させない。
【0074】
以上の結果より明らかなように、以下の条件のうち、一つでも条件を満足しない構造の光ディスクでは、反射率低下、クロスイレーズ、剥離欠陥のいずれかの問題が発生した。
【0075】
(1)第1干渉層の熱伝導率が第2干渉層の熱伝導率よりも小さく、第1干渉層と記録層の間の距離が溝深さ以下。
(2)第2干渉層の屈折率が第1干渉層の屈折率より大きい。
(3)第2干渉層と記録層の間に第1界面層を有する。
【0076】
また、ディスクAのCr23の代りに、第1界面層として種々の材料を使用した場合の剥離欠陥の有無を調べ、結果を以下に示した。
第1界面層 剥離欠陥の有無
Ge34 なし
Si34 なし
SiO2 あり
Al23 あり
MgO あり
TiO2 なし
23 なし
Mn34 なし
Fe23 なし
Mo23 なし
23 なし
Co23 なし
AlN あり
以上のようにSi,Geの窒化物、Ti、V、Mn、Fe、Mo、W、Co等の遷移金属の酸化物を第1界面層に使用した場合、剥離による欠陥が発生しない事がわかった。
【0077】
次に、各層の最適組成、および最適膜厚について説明する。
【0078】
通常、第1干渉層の光入射側に存在する物質はポリカーボネート等のプラスチック基板、あるいは、紫外線硬化樹脂等の有機物である。また、これらの屈折率は1.4から1.6程度である。上記有機物と第1干渉層の間で反射を効果的に起こすためには第1干渉層の屈折率は2.0以上であることが望ましい。
【0079】
第1干渉層は光学的には屈折率が光入射側に存在する物質(本実施例では基板に相当する)以上であり、光の吸収が発生しない範囲において屈折率が大きいほうが良い。具体的には屈折率nが2.0〜3.0の間であり、光を吸収しない材料であり、特に金属の酸化物、炭化物、窒化物、硫化物、セレン化物を含有することが望ましい。また、熱伝導率が少なくとも2W/mk以下である事が望ましい。特にZnS−SiO2系の化合物は熱伝導率が低く第1干渉層として最適である。
【0080】
図9にZnSとSiO2の組成比を変化させた場合の、ZnSの組成比と屈折率の関係を示した。また、以下にZnSの組成比と熱伝導率の関係を示した。
ZnSの組成比 熱伝導率
0 2W/mk
50 0.6W/mk
70 0.5W/mk
80 0.5W/mk
95 1W/mk
100 4W/mk
また、図16にも示したが第2干渉層として使用されるAl23、SiO2、MgOの熱伝導率はそれぞれ11W/mk、2W/mk、4W/mkであった。
【0081】
したがって、これらの材料を第2干渉層として使用する場合、ZnSの組成比が50%以上95%以下の場合、第2干渉層の熱伝導率よりも、第1干渉層の熱伝導率が低下し、屈折率も2.0以上と充分大きくなるため本発明の効果が発現する。
【0082】
また、既に述べたように第1干渉層と第2干渉層の膜厚の和は130±20nmがよい。また、第2干渉層の最適膜厚は20〜70nmである。これらのことから、第1干渉層膜厚は40〜130nmが適している事がわかる。
【0083】
第2干渉層の屈折率は少なくとも第1干渉層の屈折率以下であり、2.0以下、望ましくは1.8以下であることが要求される。
【0084】
特に、第2干渉層に使用される材料としてはAl23、SiO2、MgO等の低屈折率材料が適している。あるいはこれらの混合材料でも良い。発明者らが測定したAl23、SiO2、MgOの屈折率はそれぞれ1.65、1.46、1.73であった。また、混合物の屈折率は混合比に比例して変化し、いずれも1.8以下であった。通常、Al、Si、Mgのいずれかの元素の酸化物が含有されている場合、これらの酸化物の含有量に比例して屈折率が低下する。したがって、第2干渉層に含有されるAl、Si、Mgの酸化物の含有量の和が、第1干渉層に含有される上記酸化物の含有量の和よりも、大きいことが要求される。
【0085】
第2干渉層に要求される特性は屈折率が第1干渉層以下であり、熱的、化学的に安定であることである。このような材料はAl、Si、Mgのいずれかの酸化物が含まれており、特に第2干渉層中のO、N、C、Sの組成比の和をXとした場合、Oの組成比がXの50%以上であり、Al、Si、Mgの組成比の和が1―Xの70%以上であることが重要である。Oの組成比がXの50%以下である場合、 あるいはAl,Si、Mgの組成比が1−Xの50以下の場合、屈折率が大きくなる傾向があり、本発明の効果が発現しにくくなるからである。
【0086】
一例として図10、図11に第2干渉層の組成と屈折率の関係を示した。
【0087】
図10はSiO2とSi34の混合比を変化させた場合、およびAl23とAlNの混合比を変化させた場合の、OとNの組成比の和Xに対するOの組成比と屈折率の関係を示した図である。SiO2とSi34を混合させた場合、屈折率は混合比に比例して変化する。屈折率が1.8以下となるXに対するOの組成比は49%以上であった。また、屈折率が2.0以下となるXに対するOの組成比は20%以上であった。したがって、Xに対するOの組成比が50%以上の場合、十分に本発明の効果が発現する。 また、Al23とAlNを混合させた場合も、屈折率は混合比に比例して変化する。屈折率が1.8以下となるXに対するOの組成比は74%以上であった。また、屈折率が2.0以下となるXに対するOの組成比46%以上であった。したがって、 Al23−AlN系、SiO2−Si34系とも、Xに対するOの組成比が50%以上の場合、十分に本発明の効果が発現する。
【0088】
また、図11はAl23、SiO2、MgOにCr23を添加した場合の1−Xに対するAl,Si,Mgの組成比と屈折率の関係を調べた結果である。Al23−Cr23系ではCrとAlの組成比の和に対するAlの組成比は73%以上の場合、 SiO2−Cr23系ではCrとSiの組成比の和に対するSiの組成比は62%以上の場合、 MgO−Cr23系ではCrとMgの組成比の和に対するMgの組成比は88%以上の場合に屈折率が1.8以下となった。 また、Al23−Cr23系ではCrとAlの組成比の和に対するAlの組成比は54%以上の場合、 SiO2−Cr23系ではCrとSiの組成比の和に対するSiの組成比は46%以上の場合、 MgO−Cr23系ではCrとMgの組成比の和に対するMgの組成比は65%以上の場合に屈折率が2.0以下となった。
【0089】
したがって、1−Xに対するAl,Si,Mgの組成比が70%以上の場合、本発明の効果が十分に発現する。また、すでに示したように、Al,Si,Mgの酸化物はいずれも低屈折率であり、これらの混合物も低屈折率である。したがって、これらの混合物に他の金属酸化物等を添加した場合においても、1−Xに対するAl,Si,Mgの組成比の和が70%以上の場合、本発明の効果が発現する。また、添加金属としてCr23を添加した場合の結果を示したが、他の金属酸化物、金属窒化物、半導体酸化物、半導体窒化物等もCr23と同等の屈折率であるため、上記条件を満足するよう組成比を調整する事により、本発明の効果が発現する。
【0090】
第2干渉層は通常吸収が起きにくい化学量論組成の化合物の単体、あるいは混合物が良いがこのような化合物は記録層と隣接させて積層した場合、記録層と第2干渉層との間において膜はがれによる欠陥が生じやすい。このような場合、第2干渉層に以下に説明するような不定比化合物となりやすい遷移金属元素の酸化物、窒化物あるいはこれらの元素の混合物を添加すれば良い。また、以上の対策を行ったとしても剥離抑制効果が十分ではない場合、第2干渉層と記録層との間に密着性を向上させるための第1界面層を設ければ良い。通常、 Al、Si、Mgの酸化物の含有量に応じて記録層と第2干渉層との間において剥離が発生しやすくなる。したがって、第1界面層に含有されるAl、Si、Mgの酸化物の含有量の和は、第2干渉層に含有されるAl、Si、Mgの酸化物の含有量の和よりも小さいことが要求される。また、第1界面層の材料としては、不定比化合物となりやすい遷移金属元素の酸化物、窒化物あるいはこれらの元素の混合物が特に優れている。さらに、Si、Ge等の半導体の酸化物、窒化物も不定比化合物となりやすいため優れている。
【0091】
具体的にはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Tc、Hf、Ta、W、La、Ce等の酸化物、窒化物あるいはこれらの混合物が適している。特にCr−O系材料、Co23,CoOなどのCo−O系材料などの酸化物、Ta―N系材料,Al―N系材料,Si−N系材料、Al-Si−N系材料(例えばAlSiN2)、Ge−N系材料などの窒化物、 SiC、GeC等の炭化物、また、これらの混合材料でもよい。
【0092】
また、上記材料は通常光を吸収するため、光学的には良い効果は得られない。
【0093】
しかしながら、膜はがれの抑制、保存寿命の向上、多数回書換え劣化の抑制効果が大きいため第1界面層は存在した方がより実用的である。したがって、第1界面層の膜厚としては上記効果が失われない範囲において薄いほうが良い。発明者らの検討結果によると第1界面層の膜厚は0.5nm以上であれば十分であった。また、5nm以上にした場合、反射率低下、信号振幅低下等の弊害が発生しやすくなり、20nm以上の場合、反射率低下、信号振幅低下も大きくなり実用的とは言えないレベルとなった。したがって、第1界面層の膜厚としては0.5nm以上20n以下、望ましくは0.5nm以上5nm以下が適している。
【0094】
また、本発明に使用される記録層としては、特に相変化記録材料が適しており、上記実施例において用いたGe28Sb18Te54の代わりの記録層の材料としては、 Geが23〜33原子%、Sbが10〜25原子%、Teが50〜60原子%の範囲にある組成が特に書き換え可能回数の低下が生じにくいことがわかった。また、AgSbTe2を1〜7%添加させた場合、多数回書換時に発生する記録膜流動を抑制する効果がある。
【0095】
さらに、上記以外のGe2Sb2Te5、GeSb2Te4、GeSb4Te7、In3SbTe2、In35Sb32Te33、In31Sb26Te43、GeTe、Ag-In-Sb-Te、 Co-Ge-Sb-Te、V-Ge-Sb-Te、 Ni-Ge-Sb-Te、Pt-Ge-Sb-Te、Si-Ge-Sb-Te、Au-Ge-Sb-Te、Cu-Ge-Sb-Te、Mo-Ge-Sb-Te、Mn-Ge-Sb-Te、Fe-Ge-Sb-Te、Ti-Ge-Sb-Te、Bi-Ge-Sb-Te、W−Ge−Sb−Teおよびこれらに近い組成のうちの少なくとも一つで置き換えても、Geの一部をInに置き換えても、これに近い特性が得られる。
【0096】
上記の各記録層組成に窒素を5原子%以下含有させた記録層を使用した場合、再生信号出力が減少するが、多数回書き換え時の記録層流動が抑制されるという長所がある。
【0097】
記録層膜厚は少なくともランドとグルーブの段差(溝深さ)以下の場合、クロスイレーズ低減効果が大きい。また、4〜20nmが変調度が大きく、流動が起こりにくく良好である。4〜10nmであれば、さらに良い。記録層の膜厚が4nmより薄い場合、反射率、信号振幅等が著しく低下するが、オーバーライトジッター抑制効果、多数回書換え時の記録膜流動抑制効果は大きかった。また、記録層の膜厚が10nmより厚い場合、反射率、信号振幅等は良好であったが、オーバーライトジッター上昇、多数回書換え時の記録膜流動等の弊害が顕著に現れた。
【0098】
図12はディスクAの記録層膜厚を変化させた場合の記録総膜厚と反射率の関係を示している。この際、変調度が一定となりできるだけ反射率が高くなるよう、各層の膜厚を最適化してある。記録層膜厚が4nm以上の場合、反射率が18%以上であり良好であるが、記録層膜厚が4%より薄い場合、反射率が急激に低下し目標の15%以下となったため実用的ではなくなった。
【0099】
また、図13はディスクAの記録層膜厚を変化させた場合の記録層膜厚とオーバーライトによるジッター上昇量の関係を示している。記録層膜厚が10nm以下の場合、オーバーライトによるジッター上昇量は約1%以下であり、許容範囲であったが、記録層膜厚が10nmより厚い場合、オーバーライトによるジッターが急激に上昇するため実用的ではなかった。
【0100】
本発明における記録層は原子配列変化によって記録が行われるが、原子配列変化とは相変化などの膜の外形変化をほとんど伴わない原子配列変化を指す。
【0101】
なお、本実施例では光ディスクとしてGe、Sb、Te、In、Ag等を主成分とする相変化記録層に対して記録を行っているが、本発明の基本はレーザービームにより熱が発生し、この熱により記録マークの記録を行う光ディスクの光学特性(反射率、変調度)とともに、熱特性(温度分布、冷却速度分布)を制御することにあるので、特に相変化光ディスクに限定されるものではなく、Tb、Fe、Co、Dy、Gd等を主成分とする光磁気記録層に対する記録においても効果を発揮する。また、書換可能型情報記録媒体に限定されるものではない。また、基板や記録層の形状を変化させて記録を行う有機色素記録の場合、高パワーのレーザービームを照射した場合のみ、変化が起こり、この変化が非可逆的であるが、上述したように、本発明の基本はレーザービームにより熱が発生し、この熱により記録マークの記録を行う光ディスクの光学特性(反射率、変調度)とともに、熱特性(温度分布、冷却速度分布)を制御することにあるので、特に書換型光ディスクに限定されるものではなく、追記型光ディスクに適応することもできる。
【0102】
第2界面層の材料としては、第1界面層と同様に不定比化合物となりやすい遷移金属元素の酸化物、窒化物あるいはこれらの元素の混合物がよい。また、Si、Ge等の半導体の酸化物、窒化物も不定比化合物となりやすいため優れている。
【0103】
具体的にはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Tc、Hf、Ta、W、La、Ce等の酸化物、窒化物あるいはこれらの混合物が適している。特にCr−O系材料、Co23,CoOなどのCo−O系材料などの酸化物、TaN,AlN,Si34などのSi−N系材料、Al-Si−N系材料(例えばAlSiN2)、Ge−N系材料などの窒化物、 SiC、GeC等の炭化物、また、これらの混合材料でもよい。
【0104】
また、上記材料は通常光を吸収するため、光学的には良い効果は得られない。
【0105】
しかしながら、膜はがれの抑制、保存寿命の向上、多数回書換え劣化の抑制効果が大きい。第1界面層と第2界面層の違いは記録層との隣接面とは反対側に存在する材料の違いである。第1界面層の場合、記録層との隣接面の反対側の面に第2干渉層が存在するのに対して、第2界面層の場合、記録層との隣接面の反対側の面には第3干渉層が存在する。第2干渉層は上記したように、Al,Si,Mg等の酸化物を主成分としているため、熱的化学的に極めて安定である。これに対して第3干渉層は上記したようにZnS等の硫化物が主成分となるため、熱的にも化学的にも不安定である。このような場合、第2界面層が薄すぎる場合、多数回書換え時に第3干渉層中のS原子が記録層中に拡散し、反射率低下、結晶化速度低下等の劣化を引き起こす。したがって、第2界面層の膜厚としては上記効果が失われない範囲において薄いほうが良い。発明者らの検討結果によると第2界面層の膜厚は5nm以上であれば十分であった。また、10nm以上にした場合、反射率低下、信号振幅低下等の弊害は発生しやすくなり、20nm以上の場合、反射率低下、信号振幅低下も大きくなり実用的とは言えないレベルとなった。したがって、第2界面層の膜厚としては5nm以上20nm以下、望ましくは5nm以上10nm以下が適している。
【0106】
第3干渉層は光学的には光の吸収しない材料であること、熱的には熱伝導率ができうる限り小さいほうが良い。具体的には屈折率nが1.5〜3.0の間であり、光を吸収しない材料であり、特に金属の酸化物、炭化物、窒化物、硫化物、セレン化物を含有することが望ましい。特に、第3干渉層が(ZnS)80(SiO220(モル比率)あるいはZnSとSiO2の混合比を換えたもの(ZnSが50〜95モル%)は特に熱伝導率が著しく低下するため、第3干渉層として最適である。
【0107】
また、第3干渉層の膜厚は35〜200nm程度が良い。望ましくはランドグルーブ間の段差(基板上の溝深さ、レーザー波長の1/7〜1/5程度)以上である方がよい。また、第3干渉層と熱緩衝層の膜厚の和がランドグルーブ間の段差以上でも良い。第3干渉層の膜厚が35nm以下の場合、あるいは、第3干渉層と熱緩衝層の膜厚の和がランドグルーブ間の段差以下の場合、記録層に記録した際に発生する熱が熱拡散層を伝熱し、隣接トラックに記録されている記録マークが消去されやすくなる。すなわち、クロスイレーズが発生しやすくなるという問題がおきる。また第3干渉層の膜厚が200nm以上の場合、情報記録時の記録層における冷却速度が極めて小さくなるため、アモルファス化しにくくなる(記録マークが形成されにくくなる)という弊害が現れると同時に、生産時に光ディスク面内の第3干渉層の膜厚分布により、ディスク面内の反射率分布が大きくなりすぎる等の問題が発生する。
【0108】
図14は光ディスクAの第3干渉層膜厚を変化させた際の、クロスイレーズによるジッター上昇量と第3干渉層膜厚の関係を示している。この際、変調度が一定となるよう第1干渉層の膜厚を最適化してある。また、あらかじめグルーブにマークを記録しておき隣接トラック(ランド)に1000回書き換えを行った際のグルーブに記録されたマークを再生した際のジッター上昇を測定した。(上記実験のランドとグルーブを逆にした方がクロスイレーズの影響は小さい。)第3干渉層の膜厚が35nm以上の場合(第3干渉層、第2界面層、熱緩衝層の膜厚の和が溝深さ65nm以上の場合)クロスイレーズは全く発生しなかったが、第3干渉層の膜厚が35nmより薄い場合(第3干渉層、第2界面層、熱緩衝層の膜厚の和が溝深さ65nmより薄い場合)、急激にクロスイレーズが発生するため実用的ではなかった。
【0109】
熱緩衝層は複素屈折率n、kが1.4<n<4.5、−3.5<k<−0.5の範囲が良く、特に2<n<4、−3.0<k<−0.5の材料が望ましい。熱緩衝層では光を吸収するため、熱的に安定な材料が好ましく、望ましくは融点が1000℃以上であることが要求される。
【0110】
また、第3干渉層に硫化物を添加した場合、特に大きなクロスイレーズ低減効果があったが、熱緩衝層の場合、 ZnS等の硫化物の含有量が少なくとも第3干渉層に添加される上記硫化物の含有量よりも少ないことが望ましい。融点低下、熱伝導率低下、吸収率低下等の悪影響が現れる場合があるからである。
【0111】
上記熱緩衝層の組成として、金属と金属酸化物、金属硫化物、金属窒化物、金属炭化物との混合物であることが望ましく、CrとCr23の混合物が特に良好なオーバーライト特性向上効果を示した。具体的には上記金属としてはAl、Cu、Ag、Au、Pt、Pd、 Co、Ti、Cr、Ni、Mg、Si、V、Ca、Fe、Zn、Zr、Nb、Mo、Rh、Sn、Sb、Te、Ta、W、Ir、Pb混合物が望ましく、金属酸化物、金属硫化物、金属窒化物、金属炭化物としてはSiO2,SiO,TiO2,Al23,Y23,CeO,La23,In23,GeO,GeO2,PbO,SnO,SnO2,Bi23,TeO2,MO2,、WO2,WO3,Sc23,Ta25,ZrO2が好ましい。この他にSi−O−N系材料,Si−Al−O−N系材料、Cr23,などのCr−O系材料、Co23,CoOなどのCo−O系材料などの酸化物、TaN,AlN,Si34などのSi−N系材料、Al-Si−N系材料(例えばAlSiN2)、Ge−N系材料などの窒化物、ZnS,Sb23,CdS,In23,Ga23,GeS,SnS2,PbS,Bi23,などの硫化物、 SnSe3, Sb23,CdSe,ZnSe, In2Se3,Ga2Se3,GeSe,GeSe2,SnSe,PbSe, Bi2Se3などのセレン化物、CeF3,MgF2,CaF2などの弗化物、または、上記の材料に近い組成のものを用いた熱緩衝層を用いてもよい。
【0112】
また、熱緩衝層の膜厚としては10nm以上100nm以下が望ましく、20nm以上50nm以下の場合、特に良好なオーバーライト特性向上効果が現れる。また、第3干渉層、第2界面層、熱緩衝層の膜厚の和が溝深さ以上である場合、クロスイレーズ低減効果が顕著に現れる。
【0113】
先に説明したように熱緩衝層は光を吸収する性質を有している。このため、記録層が光を吸収して発熱するように熱緩衝層も光を吸収して発熱する。また、熱緩衝層における吸収率は記録層が非晶質状態の場合に、記録層が結晶状態の場合よりも大きくすることが重要である。このように、光学設計することにより、記録層が非晶質状態における記録層での吸収率Aaを、記録層が結晶状態における記録層での吸収率Acよりも小さくする効果が発現する。この効果によりオーバーライト特性を大幅に向上することができる。以上の特性を得るためには熱緩衝層での吸収率を30〜40%程度に高める必要がある。また、熱緩衝層における発熱量は、記録層の状態が結晶状態であるか、非晶質状態であるかにより異なる。この結果、記録層から熱拡散層への熱の流れが、記録層の状態により変化することになり、この現象によりオーバーライトによるジッター上昇を抑制することができる。
【0114】
以上の効果は、熱緩衝層における温度が上昇することにより、記録層から熱拡散層への熱の流れを遮断する効果により発現する。この効果を有効に生かすためには、第3干渉層と熱緩衝層の膜厚の和がランドグルーブ間の段差(基板上の溝深さ、レーザー波長の1/7〜1/5程度)以上である方がよい。第3干渉層と熱緩衝層の膜厚の和がランドグルーブ間の段差以下の場合、記録層に記録した際に発生する熱が熱拡散層を伝熱し、隣接トラックに記録されている記録マークが消去されやすくなる。
【0115】
また、熱拡散層としては高反射率、高熱伝導率の金属あるいは合金が良く、Al、Cu、Ag、Au、Pt、Pdの総含有量が90%以上であることが望ましい。また、Cr,Mo,W等の高融点で硬度が大きい材料、および、これらの材料の合金も多数回書換え時の記録層材料の流動による劣化を防止することができ好ましい。特にAlを95%以上含有する熱拡散層とした場合、廉価であり、高CNR、高記録感度、多数回書換耐性に優れ、しかもクロスイレーズ低減効果が極めて大きい情報記録媒体を得ることができた。特に、上記熱拡散層の組成がAlを95%以上含有する場合、廉価でしかも耐食性に優れた情報記録媒体を実現することができる。Alに対する添加元素としてはCo、Ti、Cr、Ni、Mg、Si、V、Ca、Fe、Zn、Zr、Nb、Mo、Rh、Sn、Sb、Te、Ta、W、Ir、Pb、BおよびCが耐食性の点において優れているが、添加元素がCo、Cr、Ti、Ni、Fe、Cuの場合、特に耐食性向上に大きな効果がある。また、上記熱拡散層の膜厚は、30nm以上、300nm以下であることが良い。熱拡散層の膜厚が30nmより小さい場合、記録層において発生した熱が拡散しにくくなるため、特に10万回程度書換えた際に、記録層が劣化しやすくなり、また、クロスイレーズが発生しやすくなる場合がある。また、光を透過してしまうため反射層として使用することが困難になり再生信号振幅が低下する場合がある。また、熱緩衝層に含まれる金属元素と熱拡散層に含まれる金属元素が同じ場合、生産上は大きな利点がある。すなわち、同一ターゲットを用いて熱緩衝層と熱拡散層の2層の層を製膜することができるからである。つまり、熱緩衝層製膜時にはAr−O2混合ガス、Ar−N2混合ガス等の混合ガスによりスパッタリングして、スパッタリング中に金属元素と酸素、あるいは窒素を反応させることにより適当な屈折率の熱緩衝層を作成し、熱拡散層の製膜時にはArガスによりスパッタリングし熱伝導率が高い金属の熱拡散層を作成するのである。
【0116】
熱拡散層の膜厚は300nm以上の場合、生産性が悪く、熱拡散層の内部応力により、基板のそり等が発生し、情報の記録再生を正確に行うことができなくなる場合がある。また、熱拡散層の膜厚は、70nm以上150nm以下であれば、耐食性、生産性の点で優れており、さらに望ましい。
【0117】
【発明の効果】
以上詳細に説明したように、以下の条件を満足する場合、本発明の効果が顕著に現れる。
【0118】
(1)第1干渉層の熱伝導率が第2干渉層の熱伝導率よりも小さく、第1干渉層と記録層の間の距離が溝深さ以下。
(2)第2干渉層の屈折率が第1干渉層の屈折率より大きい。
(3)第2干渉層と記録層の間に第1界面層を有する。
また、第1干渉層、第2干渉層、第1界面層を組み合わせることにより各層のデメリットが補完されクロスイレーズ抑制と、反射率向上、多数回書換時の反射率低下抑制、剥離による欠陥抑制を両立させる情報記録媒体を得ることができ、高密度記録時に問題となるクロスイレーズ抑制を抑制するような構造にした場合においても、反射率低下、多数回書換時の反射率低下、剥離による欠陥が発生しないため、極めて容易に高密度情報記録媒体を作成する事が可能となる。
【図面の簡単な説明】
【図1】本発明の情報記録媒体の構造図である。
【図2】本発明の原理を説明するための概念図である。
【図3】本発明の一計算例を示す図である。
【図4】本発明の一計算例を示す図である。
【図5】本発明の一計算例を示す図である。
【図6】本発明の原理を説明するための概念図である。
【図7】本発明の原理を説明するための概念図である。
【図8】本発明の一実施例に使用した情報記録装置のブロック図である。
【図9】本発明に使用される第1干渉層の組成と屈折率の関係を示す図である。
【図10】本発明に使用される第2干渉層の組成と屈折率の関係を示す図である。
【図11】本発明に使用される第2干渉層の組成と屈折率の関係を示す図である。
【図12】本発明に使用される記録層の膜厚と反射率の関係を示す図である。
【図13】本発明に使用される記録層の膜厚とオーバーライトによるジッター上昇量の関係を示す図である。
【図14】本発明に使用される第3干渉層の膜厚とクロスイレーズによるジッター上昇量の関係を示す図である。
【図15】各構造の特性を考察するための図である。
【図16】各試作構造の特性をまとめた図である。
【符号の説明】
1−1、1−1‘:基板
1−2、1−2‘:下部保護層
1−3、1−3‘:記録層
1−4、1−4‘:第3干渉層
1−5、1−5‘:熱拡散層
1−6、1−6‘:接着剤
1−7、1−7‘:接着剤
1−8、1−8‘:接着剤
1−9、1−9‘:接着剤
1−10:接着剤
6−0、7−0:基板
6−1、7−1:第1干渉層
6−2、7−2:第2干渉層
6−3、7−3:第1界面層
6−4、7−4:記録層
6−5、7−5:第2界面層
6−6、7−6:第3干渉層
6−7、7−7:熱拡散層
6−8、7−8:熱の流れ
6−9、7−9:対物レンズ
6−10、7−10:レーザービーム
6−11、7−11:グルーブ記録時の発熱部
6−12、7−12:ランド記録時の発熱部
8−1:光ディスク
8−2:モーター
8−3:光ヘッド
8−4:プリアンプ回路
8−6:記録波形発生回路
8−7:レーザ駆動回路
8−8:8−16変調器
8−9:L/Gサーボ回路
8−10:8−16復調器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an information recording medium on which information is recorded by irradiation with a laser beam, and to the information recording medium, and more particularly to a phase change optical disk such as DVD-RAM and DVD-RW, or a light such as MD and MO. The present invention relates to a recordable optical disc such as a magnetic disc and a write-once optical disc such as a DVD-R.
[0002]
In the present invention, the information recording medium may be expressed as a phase change optical disk, a magneto-optical disk, or simply an optical disk. However, in the present invention, heat is generated by irradiation with a laser beam, and this heat generates an atomic arrangement or magnetic field. Since it is applicable to any information recording medium in which information is recorded by causing a change in moment, the information recording medium other than the disk-shaped information recording medium such as an optical card is applicable regardless of the shape of the information recording medium. Is also effective.
[0003]
In addition, the laser beam described above may be simply expressed as laser light or light. However, as described above, the present invention is a laser beam capable of generating heat on an information recording medium, and has a plurality of refractive indexes. The effect can be obtained if the laser beam has multiple interference effects due to different interference layers. Further, the present invention was invented by a red laser (wavelength 645 to 660 nm), but not particularly by the wavelength of the laser, and a high density optical disk using a relatively short wavelength laser such as a blue laser or an ultraviolet laser. Also effective against.
[0004]
[Prior art]
In recent years, phase change optical discs such as 2.6 GB DVD-RAM have been commercialized by taking advantage of their excellent reproduction compatibility with read-only optical discs such as DVD-ROM and DVD-Video. However, since 2.6 GB DVD-RAM cannot sufficiently meet the demands of consumers in terms of recording capacity, expectations for 4.7 GB DVD-RAM and 4.7 GB DVD-RW are increasing. That is, these phase change optical discs are the same in terms of recording capacity as DVD-Video, so that an optical disc for video recording replacing VTR is realized.
[0005]
In order to realize the 4.7 GB DVD-RAM, it is necessary to solve many problems. Among these, suppression of cross erase is a main problem.
[0006]
Generally, when the track pitch of the information recording medium is narrowed to about 80% of the laser beam spot, the reproduction signal leaks from the adjacent information recording track. This leakage of the reproduction signal from the information recorded on the adjacent information recording track is called crosstalk. In order to solve this problem, a land groove recording system described below has been developed.
[0007]
In a rewritable optical disc, a concavo-convex shape (groove shape) for tracking a laser beam is provided on a plastic substrate, and a method of recording information in a concave portion or a convex portion is generally used. However, for the purpose of improving the recording density (narrow track pitch), in recent years, a method of recording information on each of the concave and convex portions using the above-described concave and convex shape has been developed. Here, the concavo-convex convex portions and concave portions are referred to as lands and grooves. Generally, when the track pitch of the information recording medium is narrowed to about 80% of the laser beam spot and information is recorded on both the land and the groove, the adjacent information recording track (the groove for the land or the land for the groove) From the playback signal. For example, when information recorded on the land is reproduced, a reproduction signal from the information recorded on the groove leaks, and there is a problem that the information recorded on the land cannot be reproduced accurately.
[0008]
In order to solve this problem, Japanese Patent Laid-Open No. 6-338064 (hereinafter referred to as “Document 1”) describes that the groove depth is λ / 7 or more and λ / 5 or less (λ: laser) in the land groove recording method. Wavelength). The feature of this method is that even when the track pitch is narrowed to about 60% of the laser beam spot, the crosstalk from the adjacent information recording track (the leakage of the signal from the adjacent information recording track) can be canceled.
[0009]
On the other hand, as a method for improving the reflectivity, as described in the 5th Phase Change Recording Society Symposium Proceedings, pp9-14, 1993 (hereinafter referred to as “Document 2”), the energy of the recording layer is described. ZnS-SiO on the beam incident side 2 Layer, SiO 2 There is known a method of providing an interference layer having a different refractive index called a layer and improving the reflectance by the effect of multiple interference.
[0010]
[Problems to be solved by the invention]
In Document 1, sufficient consideration is given to a method for suppressing the phenomenon (so-called cross erase) that the recording mark recorded on the adjacent information recording track (adjacent groove at the time of land recording or adjacent land at the time of groove recording) is erased. It has not been.
[0011]
For example, in Document 1, since the distance between the recording layer and the heat diffusion layer (reflection layer) is as small as 18 nm, heat is diffused to the adjacent information recording track via the heat diffusion layer during information recording, and cross erase occurs. It has been found that there is a problem that it becomes easy to do (Problem 1).
[0012]
In order to solve this problem, as described in Japanese Patent Application No. 10-285008, which is a prior application of the present application, it is important to keep the distance between the recording layer and the thermal diffusion layer to be greater than the groove depth. . However, when the distance between the recording layer and the thermal diffusion layer is separated to such an extent that the cross erase is sufficiently suppressed (65 nm or more when the laser wavelength is about 645 to 660 nm), the reflectance is lowered due to the effect of optical interference. (Problem 2).
[0013]
In order to improve the reflectance, it is conceivable to use the method disclosed in Document 2. However, in this method, the recording layer and the ZnS-SiO 2 When the recording is repeated several thousand times, ZnS-SiO 2 There arises a problem that the S element in the layer diffuses into the recording layer and the reflectance decreases (Problem 3).
[0014]
In order to avoid such a decrease in reflectivity, as described in JP-A-10-228676 (hereinafter referred to as “Document 3”), the recording layer and ZnS—SiO 2 SiO between dielectric protective layers 2 , Al 2 O Three A method of providing an interface layer made of a high melting point dielectric compound such as the above is known. However, it has been clarified that the above method may cause peeling between the recording layer and the interface layer when a high temperature humidification test or the like is performed (Problem 4).
[0015]
In order to suppress this peeling, as described in the above-mentioned Japanese Patent Application No. 10-285008, Al 2 O Three , SiO 2 A dielectric such as a Cr—O-based material or a Ge—N-based material may be provided as an interface layer instead of the high melting point dielectric compound. However, the inventors have said that the Cr—O-based material, Ge—N-based material and the like are strong against peeling, but absorb the laser beam, thereby inhibiting the effect of multiple interference, resulting in a reflectivity. It has been clarified that this causes a problem of lowering (similar to problem 2). In this case, if the thickness of the interface layer is reduced, the above problem can be suppressed to some extent. However, if the thickness of the interface layer is 5 nm or less, ZnS-SiO 2 It was found that the diffusion of S atoms from the dielectric protective layer could not be sufficiently suppressed (Problem 3 occurred).
[0016]
Further, when Document 2 and Document 3 are combined, a thin film of four layers exists on the laser beam incident side of the recording layer, which is not preferable for production because the total number is too large. Further, in the above-mentioned Document 1, Document 2, and Document 3, cross erase is not sufficiently considered, and when the track pitch is narrowed, there is a problem that cross erase occurs depending on the film thickness of each layer (Problem 1). the same as).
[0017]
Therefore, the problems of the present invention are cross erase suppression (problem 1 countermeasure), reflectivity improvement (problem 2 countermeasure), reflectivity decrease suppression during multiple rewrites (problem 3 countermeasure), and defect suppression by peeling (problem 4 countermeasure). The purpose of this is to clarify the structure of an information recording medium that satisfies both requirements and to provide it.
[0018]
[Means for Solving the Problems]
In order to solve the above-described problems in the prior art, the following information recording medium may be used. (1) In an information recording medium on which information is recorded by atomic arrangement change or / and electronic state change by laser beam irradiation, at least a substrate having a groove shape with a groove depth dg and a shape reflecting the groove shape An information recording medium comprising three thin films having different compositions of a first interference layer, a second interference layer, and a first interface layer in order from the laser beam incident side of the recording layer. The thermal conductivity of the layer is lower than the thermal conductivity of the second interference layer, the refractive index of the second interference layer is smaller than the refractive index of either the first interference layer or the recording layer, and the second interference layer and the recording layer An information recording medium comprising a first interface layer in contact with the recording layer therebetween, wherein a distance between the first interference layer and the recording layer is dg or less.
[0019]
As will be described in detail in the embodiments, the reflectance is improved when the refractive index of the first interference layer is larger than the refractive index of the second interference layer.
[0020]
Here, it is preferable that the first interference layer has a refractive index larger than the refractive index of the substance existing at least in contact with the laser beam incident side of the first interference layer. Usually, the substance present on the laser beam incident side of the first interference layer is a plastic substrate such as polycarbonate, or an organic substance such as an ultraviolet curable resin. These refractive indexes are about 1.4 to 1.6. In order to reflect light effectively between the organic material and the first interference layer, the refractive index of the first interference layer is desirably 2.0 or more. Specifically, ZnS and SiO can be realized in that a high refractive index of 2.0 or more can be realized, a film forming rate is high and noise is not generated, and a thermal conductivity is extremely small. 2 A mixture of is good.
[0021]
The refractive index of the second interference layer is required to be 2.0 or less, preferably 1.8 or less. Therefore, specifically, the second interference layer has, for example, SiO 2 in that the refractive index is extremely small. 2 , Al 2 O Three It is desirable to contain a low refractive index oxide such as MgO.
[0022]
The inventors have clarified that the second interference layer made of such a low refractive index oxide easily peels from the recording layer. In order to suppress such peeling, a first interface layer may be provided between the recording layer and the second interference layer. Since the first interface layer exists in contact with the recording film, at least the melting point is required to be higher than the melting point of the recording layer. Further, the first interface layer is preferably a substance having good adhesion between the recording layer and the second interference layer.
[0023]
Furthermore, as described in the examples, the inventors have excellent adhesion to substances that easily become non-stoichiometric compounds such as oxides and nitrides of transition metals, or semiconductor element nitrides such as Ge and Si. However, since it is a non-stoichiometric compound, it has been clarified that free electrons exist, light absorption due to this occurs, and the reflectance is lowered.
[0024]
However, by combining the first interference layer, the second interference layer, and the first interface layer, the disadvantages of each layer as described above are complemented, cross-erasure suppression, improved reflectivity, and reflectivity during multiple rewrites It is possible to obtain an information recording medium that achieves both suppression of deterioration and suppression of defects due to peeling.
[0025]
Furthermore, the inventors use SiO used in the second interference layer, as will be explained in detail in the examples. 2 , Al 2 O Three The thermal conductivity of low refractive index compounds such as MgO is ZnS-SiO used for the first interference layer. 2 It has been clarified that cross erase is likely to occur due to the diffusion of heat to adjacent tracks because of its large size compared to such compounds. In order to avoid this, it has been clarified that the distance between the first interference layer and the recording layer should be smaller than the groove depth dg.
[0026]
There is an optimum value for the composition of each layer. That is, the information recording medium as described below.
[0027]
(2) In an information recording medium on which information is recorded by an atomic arrangement change or / and an electronic state change by laser beam irradiation, at least a substrate having a groove shape with a groove depth dg and a shape reflecting the groove shape An information recording medium comprising three thin films having different compositions of a first interference layer, a second interference layer, and a first interface layer in order from the laser beam incident side of the recording layer, the composition of ZnS ZnS and SiO having a ratio of 50% to 95% 2 When the sum of the composition ratio of O, N, S, and C is X, the composition ratio of O is 50% or more of X, and the composition ratio of Al, Si, and Mg In the second interference layer whose sum is 70% or more of 1-X, and between the second interference layer and the recording layer, in contact with the recording layer, an oxide, nitride, or Si, Ge of transition metal element An information recording medium comprising: a first interface layer made of the above nitride or a mixture containing these, wherein the distance between the first interference layer and the recording layer is dg or less.
[0028]
The above configuration is particularly effective when the reflectivity is reduced due to the effect of optical interference. In other words, it is effective in a configuration in which the reflectance must be sacrificed in order to solve a thermal problem such as cross erase. Specifically, this is a case where a thermal diffusion layer is provided on the side opposite to the laser beam incident side of the recording layer, and the distance between the thermal diffusion layer and the recording layer is set to the groove depth dg or more.
[0029]
As described in detail in the examples, the provision of the thermal diffusion layer on the side opposite to the laser beam incident side of the recording layer quickly releases the heat generated during recording, and suppresses damage to the recording layer. Although effective, there is an adverse effect that the heat diffused in the heat diffusion layer reaches an adjacent track and causes cross erase. In order to avoid this problem, a layer (third interference layer) having a thermal conductivity smaller than that of the thermal diffusion layer is provided between the recording layer and the thermal diffusion layer as shown below, and the recording layer and the thermal diffusion layer are provided. Is set to a groove depth dg or more. However, in the case of such a structure, the reflectance is rapidly reduced.
[0030]
Even in such a case, a decrease in reflectivity can be suppressed by using the structure as shown in (1) and (2). Therefore, a practical low cross erase medium with high reflectivity as described below is realized.
[0031]
(3) The information recording medium according to (1) (2), comprising at least one thermal diffusion layer on the side opposite to the laser beam incident side of the recording layer, and between the recording layer and the thermal diffusion layer. An information recording medium comprising at least one third interference layer, wherein a distance between the recording layer and the thermal diffusion layer is not less than the above dg.
[0032]
Further, it has been found that the composition of the third interference layer has an optimum composition as shown in (4).
[0033]
(4) The information recording medium according to (3), wherein the third interference layer has a ZnS composition ratio of 50% to 95%. 2 An information recording medium comprising a mixture of
[0034]
When such a composition is used, there arises a problem that S atoms contained in the third interference layer are diffused into the recording layer at the time of rewriting many times, and the reflectance is lowered. In such a case, as shown in (5), a second interface layer may be provided between the recording layer and the third interference layer. As already described, the interface layer material used in the second interface layer is preferably a transition metal element oxide or nitride, or a nitride of a semiconductor element such as Ge or Si, as in the first interface layer. However, as described above, since these compounds easily absorb light, the effect of multiple interference is hindered and the reflectance is easily lowered. Even in such a case, a decrease in reflectivity can be suppressed by using the structure as shown in (1) and (2). Needless to say, as shown in (5), it is important that the S element contained in the second interface layer is smaller than the S element contained in the third interference layer.
[0035]
(5) The information recording medium according to (4), wherein the second interface layer is present in contact with the recording layer between the third interference layer and the recording layer, and the composition ratio of the S element in the second interface layer Is smaller than the third interference layer.
[0036]
Further, when land / groove recording is performed as shown in (6), cross erase is a problem. Even in such a case, by using an information recording medium having a configuration as shown in (3). Thus, an information recording medium with extremely small cross erase can be realized.
[0037]
(6) The information recording medium according to (3), wherein information is recorded both in a groove (groove) and between grooves (land).
[0038]
The first interface layer, the second interface layer, the recording layer, and the like described above are usually extremely thin, about several nm. In such a case, a phenomenon that the film is not necessarily formed in a layer but is present in an island shape (a mottle) occurs (island formation of a thin film). Even in such a case, if the distance between the island-shaped thin films is about one-tenth of the wavelength of the laser beam, it is optically negligible and there is a layer having an average film thickness of the island-shaped thin films. Even if it thinks, the effect of the present invention is not lost. For example, even if the interface layer such as the second interface layer exists in an island shape, the effect of preventing the diffusion of each interference layer element into the recording layer is not sufficient, but is manifested. Also, the main purpose of the first interface layer is to prevent peeling that occurs between the second interference layer and the recording layer. Therefore, regarding the first interface layer, if the material used for the second interference layer is difficult to diffuse into the recording layer, it may be present even if it exists in an island shape.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
The invention is illustrated in detail by the following examples.
[0040]
FIG. 1 shows the basic structure of the information recording medium of the present invention. The first information recording member includes a first interference layer 1-2, a second interference layer 1-3, a first interface layer 1-4, and a recording layer 1 on a substrate 1-1 on which a groove-shaped information recording track is provided. -5, the second interface layer 1-6, the third interference layer 1-7, the thermal buffer layer 1-8, and the thermal diffusion layer 1-9 are sequentially stacked. Moreover, the information recording member of the same structure is bonded through the adhesive 1-10.
[0041]
A plastic transparent substrate such as polycarbonate is used as the substrate 1-1.
[0042]
Usually, the refractive index of such a transparent substrate is about 1.5 to 1.6. It is desirable that the optical characteristics to be satisfied of the first interference layer 1-2 have a refractive index larger than that of the substrate 1-1 and the refractive index is 2.0 or more. As a result, light is reflected between the substrate 1-1 and the first interference layer 1-2, and the reflectance change between the unrecorded portion (crystal) and the recorded portion (amorphous) due to the optical interference effect using this reflection. Can be increased.
[0043]
The refractive index of the second interference layer 1-3 is smaller than the refractive index of the first interference layer 1-2, and further smaller than the refractive index of the recording layer 1-5. The first interface layer 1-4 suppresses peeling between the recording layer 1-5 and the second interference layer 1-3. The refractive index of the first interface layer 1-4 is desirably as high as possible as that of the second interference layer 1-3. If the refractive index of the first interface layer 1-4 is as large as the first interference layer 1-2, In the range that does not affect the peeling suppression effect, it is preferable to be as thin as possible. The third interference layer 1-7 needs an appropriate film thickness in order to control the cross erase by appropriately separating the distance between the thermal diffusion layer 1-9 and the recording layer 1-5. At least the film thickness is 35 nm or more, and desirably a thickness greater than the groove depth. Moreover, it is requested | required that heat conductivity is moderately low. The second interface layer 1-6 mainly plays a role of suppressing peeling occurring between the recording layer 1-5 and the third interference layer 1-7 and suppressing diffusion of the third interference layer element to the recording layer. Yes. The thermal buffer layer 1-8 controls the flow of heat from the recording layer 1-5 to the thermal diffusion layer 1-9 at the same time as controlling the absorption rate when the recording layer 1-5 is crystalline or amorphous. Have a role. The optical constants (n, k) are preferably in the range of 1.4 <n <4.5 and −3.5 <k <−0.5, particularly 2 <n <4, −3.0 <k <−0. A material of .5 is desirable. The thermal diffusion layer 1-9 has a role of quickly diffusing heat generated in the recording layer 1-5 and suppressing thermal damage of the recording layer 1-5 during recording. For this reason, it is required that the thermal conductivity is moderately high. For this reason, a film thickness of at least 30 nm or more is necessary.
[0044]
The basic concept of the present invention is shown below. Here, for the sake of simplicity, description will be made using only the first interference layer, the second interference layer, the recording layer, the third interference layer, and the thermal diffusion layer, which are particularly important optically. FIG. 2 is a diagram schematically showing the refractive index of each layer with and without the second interference layer. The vertical axis represents the refractive index, and the horizontal axis represents the distance in the light incident direction from a certain point in the substrate. Here, the structure 1 is a structure in which a first interference layer, a recording layer, a third interference layer, and a reflection layer are sequentially laminated on a base plate. In the case of such a structure, optical design is mainly performed using a multiple interference effect using four reflecting surfaces. That is, the reflection surface A between the substrate and the first interference layer, the reflection surface B between the first interference layer and the recording layer, the reflection surface C between the recording layer and the third interference layer, and the reflection surface D between the third interference layer and the heat diffusion layer. is there. In such a case, there are six types of optical paths that can be used for optical design: A-B, A-C, A-D, B-C, B-D, and C-D. In contrast, when a second interference layer having a refractive index smaller than that of the first interference layer is inserted between the first interference layer and the recording layer (Structure 2), a reflection surface E that can be used for multiple interference is newly added. Is done. In such a case, optical paths that can be used for optical design are A-B, A-C, A-D, A-E, B-C, B-D, B-E, C-D. There are 10 types of between, CE, and DE, and the degree of freedom in optical design is dramatically improved. Moreover, it becomes easy to improve a reflectance by utilizing the reflection of the reflective surface E effectively.
[0045]
There are two reasons why the refractive index of the second interference layer is preferably smaller than that of the first interference layer.
[0046]
First, the refractive index of the substrate is limited to materials that can be selected in order to satisfy various properties required for the substrate, and the refractive index is about 1.5 to 1.6. Therefore, in order to increase the reflection coefficient at the reflection surface A, it is necessary to reduce or increase the refractive index of the first interference layer as much as possible. Considering that the refractive index of a normal inorganic dielectric material that can be used for the first interference layer is at least about 1.4, it is not practical to reduce the refractive index of the first interference layer. Therefore, the refractive index of the first interference layer needs to be as large as possible than the refractive index of the substrate. However, since a material having a refractive index of 2.5 or more normally absorbs light normally, the refractive index of the first interference layer is actually suppressed to about 2-2.2. Similarly, in order to increase the reflection coefficient at the reflection surface E, either the refractive index of the second interference layer is made larger or smaller than the refractive index of the first interference layer. When the refractive index of the second interference layer is made larger than the refractive index of the first interference layer, two problems occur. One is that it is very difficult to obtain a transparent material having a refractive index of 3 or more, for example, and the other is a refractive index between the recording layer (refractive index is about 4) and the second interference layer. It is to reduce the difference.
[0047]
As a result, the reflection coefficient on the reflection surface B is reduced. Therefore, the refractive index of the second interference layer is preferably smaller than the refractive index of the first interference layer. Further, the first interface layer is necessary mainly for suppressing peeling that occurs between the recording layer and the second interference layer. The refractive index of the first interface layer is desirably as high as possible as that of the second interference layer. However, when the refractive index becomes as large as the first interference layer, the range that does not affect the above-described peeling suppression effect. However, it is better to be as thin as possible.
[0048]
Next, optical calculation results are shown.
The optical constants (n, k) used for the calculation are shown below.
First interference layer: (2.16, 0.00)
Second interference layer: (1.4 to 2.2, 0.00)
First interface layer: (2.6, -0.09)
Recording layer (crystal): (4.57, -5.46)
Recording layer (amorphous): (4.51, -2.22)
Second interface layer: (2.6, -0.09)
Third interference layer: (2.16, 0.00)
Thermal buffer layer: (4.09, -2.88)
Thermal diffusion layer: (1.84, -5.74)
Moreover, the film thickness of each layer is shown below.
First interference layer: 0 to 150 nm
Second interference layer: 0 to 80 nm
First interface layer: 1 nm
Recording layer: 6.3 nm
Second interface layer: 10 nm
Third interference layer: 45 nm
Thermal buffer layer: 35 nm
Thermal diffusion layer: 60 nm
FIG. 3 shows the film of the first interference layer so that the ratio (Rc−Ra) / Rc of the crystal reflectance Rc and the amorphous reflectance Ra is 90% or more, with the second interference layer thickness and the refractive index as variables. It is a calculation result when the thickness is optimized. When the refractive index of the second interference layer is larger than the refractive index of the first interference layer (n = 2.2), the reflection of the crystal when the thickness of the second interference layer is 0 or more (that is, when the second interference layer exists) However, when the refractive index of the second interference layer is 2.0 or less, which is smaller than the refractive index of the second interference layer, the effect of improving the reflectance is exhibited. The target reflectance is 15% or more as described in the 4.7 GB DVD-RAM standard. Since this calculation does not take into account the effect of the laser beam reflected on the substrate surface, the calculation result of this calculation is substantially larger by about 4%. Therefore, the target value of the reflectance in this calculation is 19% or more. The refractive index of the second interference layer that satisfies this condition is 1.4 to 1.8. Even if the refractive index of the second interference layer is any value between 1.4 and 1.8, the above condition can be satisfied if the thickness of the second interference layer is 20 nm or more and 78 nm. Accordingly, the refractive index of the second interference layer is at least smaller than the refractive index of the first interference layer, desirably 1.8 or less, and the film thickness is preferably 20 nm or more and 78 nm or less. The range of film thickness and refractive index is the case where the target value of reflectivity is 19%. However, practically, the reflectivity is about 3% considering the uniformity in the optical disk surface, the yield during mass production, and the like. Need to be raised. Therefore, practically, the target is a reflectance of 22% or more. In this case, the target is satisfied when the refractive index of the second interference layer is 1.4 to 1.6 and the film thickness is 20 nm to 70 nm.
[0049]
Next, FIG. 4 shows calculation results of the second interference layer thickness and the refractive index dependence of the reproduction signal when the thickness of the first interference layer is optimized so that the crystal reflectance Rc is 20% or more. Shown in When the refractive index of the second interference layer is larger than the refractive index of the first interference layer (n = 2.2), when the thickness of the second interference layer is 0.0 or more (that is, when the second interference layer exists), Although the reproduction signal amplitude is reduced, when the refractive index of the second interference layer is 2.0 or less, which is smaller than the refractive index of the second interference layer, the effect of improving the reproduction signal amplitude is exhibited. In particular, when the thickness of the second interference layer is 20 nm or more, the reproduction signal amplitude improvement effect of 1 dB or more is exhibited even when the refractive index is 2.0. The optimum thickness of the second interference layer is about 45 nm ± 25 nm. Therefore, the refractive index of the second interference layer is at least smaller than the refractive index of the first interference layer, and the film thickness is preferably 20 nm or more. In particular, when the refractive index of the second interference layer is 1.8 or less and the film thickness is 20 nm or more and 78 nm or less, the reproduction signal amplitude can be improved by 2 dB or more.
[0050]
FIG. 5 is a diagram showing the relationship between the thickness and refractive index of the second interference layer and the optimum thickness of the first interference layer when the calculation of FIG. 3 is performed. The sum of the thicknesses of the first interference layer and the second interference layer is suitably 130 ± 20 nm, and especially when 130 ± 10 nm, the optimum values are concentrated. It is important to maintain this relationship. Recognize.
[0051]
The above calculation is performed when the wavelength of the reproduction laser is 660 nm. For example, when using a reproduction laser of another wavelength, when the laser wavelength is λ, the thickness of the second interference layer is λ / 40˜ It may be about λ / 10, more preferably λ / 30 to λ / 10. Further, the sum of the film thicknesses of the first interference layer and the second interference layer may be about λ / 5 ± λ / 30, more preferably about λ / 5 ± λ / 60.
[0052]
Next, by making the thermal conductivity of the first interference layer lower than the thermal conductivity of the second interference layer and setting the distance between the first interference layer and the recording layer to be equal to or less than the groove depth dg, cross erase is performed. The reason why it can be suppressed will be described. In order to suppress the cross erase, it is extremely important to reduce the heat flow toward the adjacent track. FIG. 6 shows the heat at the time of groove recording when the thermal conductivity of the second interference layer is larger than the thermal conductivity of the first interference layer and the distance between the first interference layer and the recording layer is larger than the groove depth dg. Showed the flow. In such a case, the second interference layer 6-2 having a high thermal conductivity mainly exists in the adjacent track direction of the heat generating portion 6-11 during groove recording. Therefore, heat is likely to diffuse in the direction of the adjacent track, resulting in cross erase. On the other hand, as shown in FIG. 7, the thermal conductivity of the first interference layer 7-1 is lower than the thermal conductivity of the second interference layer 7-2, and the first interference layer 7-1 and the recording layer 7- When the distance between 4 is equal to or less than the groove depth dg, the first interference layer 7-1 having a low thermal conductivity exists mainly in the adjacent track direction of the heat generating portion 7-11 during groove recording. Therefore, the heat flow 7-8 is reduced, and cross erase is suppressed. As described above, the heat flow 7-8 in the direction of the adjacent track of the heat generating portion 7-11 during groove recording greatly depends on the distance between the first interference layer 7-1 and the recording layer 7-4. .
[0053]
In the above description, the flow of heat from the groove to the land during groove recording has been described. However, the thickness of the third interference layer is important for controlling the flow of heat from the land to the groove. This phenomenon will also be described with reference to FIGS. When the thermal conductivity of the thermal diffusion layer 6-7 is higher than that of the third interference layer 6-6, and the distance between the thermal diffusion layer 6-7 and the recording layer 6-4 is equal to or less than the groove depth dg (FIG. 6) Since the heat diffusion layer 6-7 is mainly present in the adjacent track direction of the heat generating portion 6-12 at the time of land recording, heat easily flows in the adjacent track direction. In contrast, as in the case of FIG. 7, the thermal conductivity of the thermal diffusion layer 7-7 is higher than that of the third interference layer 7-6, and the thermal diffusion layer 7-7 and the recording layer 7- When the distance 4 is equal to or greater than the groove depth dg, the third interference layer 7-6 having a low thermal conductivity exists in the adjacent track direction of the heat generating portion 7-12 during land recording. It becomes difficult for heat to flow, and as a result, cross erase can be suppressed.
[0054]
Based on the above optical and thermal considerations, the sum of the thermal conductivity and the refractive index of the first interference layer and the second interference layer, and the thickness of the second interference layer and the first interface layer (the first interference layer and the first interference layer) (Corresponding to the distance between the recording layers) and the presence or absence of the first interface layer are shown in FIG.
[0055]
Structures A and K are the only structures that have good reflectivity, cross erase, and peeling defects. The difference between the structure A and the structure K is that the relationship between the thermal conductivity κ1 of the first interference layer and the thermal conductivity κ2 of the second interference layer and the film thicknesses of the second interference layer and the first interface layer with respect to the groove depth dg. The magnitude relationship of the sum d2 + ds (corresponding to the distance between the first interference layer and the recording layer). When the structure A and the structure K are compared, the structure K is more realistic for the following reason. In the present invention, the low refractive index material used for the second interference layer is SiO in consideration of heat resistance, productivity, etc. 2 , Al 2 O Three Since it is a material having a relatively high thermal conductivity such as MgO, it is practically difficult to make the thermal conductivity of the second interference layer below the thermal conductivity of the first interference layer as in the structure A. It is.
[0056]
From the optical calculation results shown above, there was an effect even when the thickness of the second interference layer was increased to about λ / 4. Usually, in the case of land groove recording, the groove depth is about λ / 6. Therefore, the upper limit of the film thickness of the second interference layer is limited by the groove depth dg.
[0057]
An embodiment of the present invention will be shown below.
[0058]
The track pitch is 0.615 μm, the groove depth is 65 nm, and address information for recording information on both the land and the groove is provided at the head of each sector. Each thin film (first interference layer: (ZnS) on the substrate 80 (SiO 2 ) 20 (100 nm), second interference layer: Al 2 O Three (35 nm), first interface layer: Cr 2 O Three (2 nm), recording layer 3: Ge 28 Sb 18 Te 54 (7 nm), second interface layer: Cr 2 O Three (5 nm), third interference layer: (ZnS) 80 (SiO 2 ) 20 (40 nm), thermal buffer layer: Cr 75 (Cr 2 O Three ) twenty five (60 nm), thermal diffusion layer: Al 98 Ti 2 (100 nm) were sequentially formed by a sputtering process.
[0059]
Moreover, the information recording member which has the same structure was bonded together through the adhesive agent. The information recording medium having the above configuration is called an optical disc A. The refractive index of the polycarbonate substrate was 1.58. There are 35 user recording zones in the radial direction of the optical disc, and there are 25 to 59 sectors in one circumference of the zone. The track pitch is 0.615 μm.
[0060]
Information was recorded / reproduced on the optical disc A by the information recording / reproducing apparatus shown in FIG. The operation of the information recording / reproducing apparatus will be described below. As a motor control method for recording / reproducing, a ZCLV (Zone Constant Linear Velocity) method for changing the number of rotations of the disk for each zone for recording / reproducing is adopted. The disk linear velocity is about 8.2 m / s.
[0061]
Information from outside the recording apparatus is transmitted to the 8-16 modulator 8-8 in units of 8 bits. When information was recorded on the optical disc 8-1, recording was performed using a modulation system that converts 8 bits of information into 16 bits, a so-called 8-16 modulation system.
[0062]
In this modulation method, information having a mark length of 3T to 14T corresponding to 8-bit information is recorded on the medium. The 8-16 modulator 8-8 in the figure performs this modulation. Here, T represents the clock cycle at the time of information recording, and here it was 17.1 ns.
[0063]
The digital signal of 3T to 14T converted by the 8-16 modulator 8-8 is transferred to the recording waveform generation circuit 8-6, the width of the high power pulse is set to about T / 2, and the high power level laser irradiation interval Then, a low power level laser irradiation having a width of about T / 2 is performed, and a multi-pulse recording waveform is generated in which the intermediate power level laser irradiation is performed between the series of high power pulses. At this time, the high power level for forming the recording mark was set to 10.0 mW, and the intermediate power level capable of erasing the recording mark was set to 4.0 mW. Further, in the recording waveform generation circuit 8-6, the signals of 3T to 14T are made to correspond to “0” and “1” alternately in time series, and in the case of “0”, the laser power of the intermediate power level is set. In the case of “1”, a series of high power pulse trains including high power level pulses are irradiated. At this time, the portion irradiated with the intermediate power level laser beam on the optical disk 1 becomes a crystal (space portion), and the portion irradiated with a series of high power pulse trains including a high power level pulse is amorphous. Changes to (marked part). Further, in the recording waveform generation circuit 8-6, when forming a series of high power pulse trains including a high power level for forming the mark portion, according to the length of the space portion before and after the mark portion, It has a multi-pulse waveform table corresponding to a method (adaptive recording waveform control) that changes the first pulse width and the last pulse width of a multi-pulse waveform, and this affects the effect of thermal interference between marks. The multi-pulse recording waveform that can eliminate as much as possible is generated.
[0064]
The recording waveform generated by the recording waveform generating circuit 8-6 is transferred to the laser driving circuit 8-7. The laser driving circuit 8-7 uses the recording waveform to scan the semiconductor laser in the optical head 8-3. Make it emit light.
[0065]
In the optical head 8-3 mounted on the recording apparatus, a semiconductor laser having an optical wavelength of 655 nm is used as an information recording laser beam. Information was recorded by narrowing down the laser beam onto the recording layer of the optical disc 8-1 with an objective lens having a lens NA of 0.6 and irradiating a laser beam corresponding to the recording waveform.
[0066]
In general, when laser light having a laser wavelength λ is condensed by a lens having a lens numerical aperture NA, the spot diameter of the laser beam is approximately 0.9 × λ / NA. Therefore, in the case of the above conditions, the spot diameter of the laser beam is about 0.98 microns. At this time, the polarization of the laser beam was circularly polarized.
[0067]
The recording apparatus is compatible with a system (so-called land / groove recording system) for recording information on both the groove and the land (area between the grooves). In this recording apparatus, the tracking for the land and groove can be arbitrarily selected by the L / G servo circuit 8-9.
[0068]
The recorded information was also reproduced using the optical head 8-3. A reproduction signal is obtained by irradiating a laser beam onto a recorded mark and detecting reflected light from the mark and a portion other than the mark. The amplitude of the reproduced signal is increased by the preamplifier circuit 8-4 and transferred to the 8-16 demodulator 8-10. The 8-16 demodulator 8-10 converts the information into 8-bit information every 16 bits. With the above operation, the reproduction of the recorded mark is completed.
[0069]
When recording is performed on the optical disc 8-1 under the above conditions, the mark length of the 3T mark which is the shortest mark is about 0.42 μm, and the mark length of the 14T mark which is the longest mark is about 1.96 μm.
[0070]
As a result of measuring the reflectance of the crystal and the degree of modulation in the land groove (a value obtained by normalizing the difference between the reflectance of the crystal and the reflectance of the amorphous by the reflectance of the crystal) using the above apparatus, 22% and 55%, respectively. (Land), 56% (groove), and it was found that a good reproduction signal was obtained. The values after 100,000 rewrites were 20.2%, 54% (land), and 54% (groove), respectively, and were values that could sufficiently withstand practical use. Further, as a result of an accelerated storage life test under the condition of 90 ° C. and 80% humidity, it was found that no peeling defect occurred even after 200 hours.
[0071]
Further, when the composition and film thickness of the first interference layer, the second interference layer, the first interface layer, and the first interface layer of the disk A are changed, the refractive index and heat conduction of the first interference layer and the second interference layer are changed. FIG. 16 shows the relationship between the reflectance and the reflectance, the presence / absence of cross-erase, and the presence / absence of peeling defects.
[0072]
When the thermal conductivity of the second interference layer is larger than the thermal conductivity of the first interference layer and the sum of the film thicknesses of the second interference layer and the first interface layer is larger than the groove depth (65 nm), In C, when there is no first interface layer, in the disk D, the thermal conductivity of the first interference layer is larger than the thermal conductivity of the second interference layer, and the sum of the film thicknesses of the second interference layer and the first interference layer is the groove. When the depth is smaller than 65 nm, the disk E is a case where the refractive index of the second interference layer is larger than the refractive index of the first interference layer. These disks are not practical because of problems such as a decrease in reflectivity, cross erase, and peeling defects.
[0073]
Further, a disc having the same structure except for the disc A and the groove depth of the substrate was made as a prototype, and the presence / absence of cross erase was measured.
Groove depth (nm) Cross erase
25 Yes
30 Yes
37 None
65 None
76 None
As is clear from this result, when the sum of the film thicknesses of the second interference layer and the first interface layer (corresponding to the distance between the first interference layer and the recording film: 37 nm) is smaller than the groove depth, cross erase is performed. However, when the sum of the film thicknesses of the second interference layer and the first interface layer is equal to or greater than the groove depth, no cross erase occurs.
[0074]
As is clear from the above results, in the optical disk having a structure that does not satisfy any of the following conditions, any of problems such as a decrease in reflectivity, cross erase, and peeling defects occurred.
[0075]
(1) The thermal conductivity of the first interference layer is smaller than the thermal conductivity of the second interference layer, and the distance between the first interference layer and the recording layer is equal to or less than the groove depth.
(2) The refractive index of the second interference layer is larger than the refractive index of the first interference layer.
(3) A first interface layer is provided between the second interference layer and the recording layer.
[0076]
Also, the Cr of disk A 2 O Three Instead of this, the presence or absence of peeling defects when various materials were used as the first interface layer was examined, and the results are shown below.
First interface layer Existence of peeling defects
Ge Three N Four None
Si Three N Four None
SiO 2 Yes
Al 2 O Three Yes
With MgO
TiO 2 None
V 2 O Three None
Mn Three O Four None
Fe 2 O Three None
Mo 2 O Three None
W 2 O Three None
Co 2 O Three None
With AlN
As described above, when transition metal oxides such as Si, Ge nitride, Ti, V, Mn, Fe, Mo, W, and Co are used for the first interface layer, it is understood that no defects due to peeling occur. It was.
[0077]
Next, the optimum composition and the optimum film thickness of each layer will be described.
[0078]
Usually, the substance present on the light incident side of the first interference layer is a plastic substrate such as polycarbonate or an organic substance such as an ultraviolet curable resin. These refractive indexes are about 1.4 to 1.6. In order to effectively cause reflection between the organic substance and the first interference layer, the refractive index of the first interference layer is desirably 2.0 or more.
[0079]
The first interference layer is optically higher in refractive index than the substance existing on the light incident side (corresponding to the substrate in this embodiment), and preferably has a high refractive index in a range where light absorption does not occur. Specifically, the refractive index n is between 2.0 and 3.0, and it is a material that does not absorb light, and it is particularly desirable to contain a metal oxide, carbide, nitride, sulfide, or selenide. . Further, it is desirable that the thermal conductivity is at least 2 W / mk or less. Especially ZnS-SiO 2 The compound of the system has a low thermal conductivity and is optimal as the first interference layer.
[0080]
FIG. 9 shows ZnS and SiO. 2 The relationship between the composition ratio of ZnS and the refractive index when the composition ratio was changed was shown. In addition, the relationship between the composition ratio of ZnS and the thermal conductivity is shown below.
Composition ratio of ZnS Thermal conductivity
0 2W / mk
50 0.6 W / mk
70 0.5 W / mk
80 0.5W / mk
95 1W / mk
100 4W / mk
Also, as shown in FIG. 16, Al used as the second interference layer 2 O Three , SiO 2 The thermal conductivity of MgO was 11 W / mk, 2 W / mk, and 4 W / mk, respectively.
[0081]
Therefore, when these materials are used as the second interference layer, when the composition ratio of ZnS is 50% or more and 95% or less, the thermal conductivity of the first interference layer is lower than the thermal conductivity of the second interference layer. In addition, since the refractive index is sufficiently large as 2.0 or more, the effect of the present invention is exhibited.
[0082]
As described above, the sum of the film thicknesses of the first interference layer and the second interference layer is preferably 130 ± 20 nm. The optimum film thickness of the second interference layer is 20 to 70 nm. From these, it can be seen that the thickness of the first interference layer is suitably 40 to 130 nm.
[0083]
The refractive index of the second interference layer is at least equal to or lower than the refractive index of the first interference layer, and is required to be 2.0 or less, preferably 1.8 or less.
[0084]
In particular, the material used for the second interference layer is Al. 2 O Three , SiO 2 A low refractive index material such as MgO is suitable. Or these mixed materials may be sufficient. Al measured by the inventors 2 O Three , SiO 2 MgO had refractive indexes of 1.65, 1.46, and 1.73, respectively. Moreover, the refractive index of the mixture changed in proportion to the mixing ratio, and all were 1.8 or less. Usually, when an oxide of any element of Al, Si, and Mg is contained, the refractive index decreases in proportion to the content of these oxides. Therefore, the sum of the contents of the oxides of Al, Si, and Mg contained in the second interference layer is required to be larger than the sum of the contents of the oxides contained in the first interference layer. .
[0085]
The characteristics required for the second interference layer are that the refractive index is equal to or lower than that of the first interference layer, and that it is thermally and chemically stable. Such a material contains any oxide of Al, Si, and Mg. In particular, when the sum of the composition ratios of O, N, C, and S in the second interference layer is X, the composition of O It is important that the ratio is 50% or more of X and the sum of the composition ratios of Al, Si, and Mg is 70% or more of 1-X. When the composition ratio of O is 50% or less of X, or when the composition ratio of Al, Si, and Mg is 50 or less of 1-X, the refractive index tends to increase, and the effects of the present invention are hardly exhibited. Because it becomes.
[0086]
As an example, FIGS. 10 and 11 show the relationship between the composition and refractive index of the second interference layer.
[0087]
Figure 10 shows SiO 2 And Si Three N Four When the mixing ratio of Al is changed, and Al 2 O Three 5 is a graph showing the relationship between the composition ratio of O and the refractive index with respect to the sum X of the composition ratios of O and N when the mixing ratio of Al and AlN is changed. SiO 2 And Si Three N Four Is mixed, the refractive index changes in proportion to the mixing ratio. The composition ratio of O to X at which the refractive index was 1.8 or less was 49% or more. Further, the composition ratio of O to X with a refractive index of 2.0 or less was 20% or more. Therefore, when the composition ratio of O to X is 50% or more, the effect of the present invention is sufficiently exhibited. Al 2 O Three Also when AlN is mixed with AlN, the refractive index changes in proportion to the mixing ratio. The composition ratio of O to X with a refractive index of 1.8 or less was 74% or more. Further, the composition ratio of O to X with a refractive index of 2.0 or less was 46% or more. Therefore, Al 2 O Three -AlN, SiO 2 -Si Three N Four In both systems, when the composition ratio of O to X is 50% or more, the effects of the present invention are sufficiently exhibited.
[0088]
FIG. 11 shows Al. 2 O Three , SiO 2 , MgO to Cr 2 O Three It is the result of investigating the relationship between the composition ratio and refractive index of Al, Si, Mg with respect to 1-X in the case of adding. Al 2 O Three -Cr 2 O Three In the system, when the composition ratio of Al with respect to the sum of the composition ratio of Cr and Al is 73% or more, SiO 2 2 -Cr 2 O Three In the system, when the composition ratio of Si with respect to the sum of the composition ratios of Cr and Si is 62% or more, MgO—Cr 2 O Three In the system, when the composition ratio of Mg with respect to the sum of the composition ratios of Cr and Mg was 88% or more, the refractive index was 1.8 or less. Al 2 O Three -Cr 2 O Three In the system, when the composition ratio of Al with respect to the sum of the composition ratio of Cr and Al is 54% or more, SiO 2 2 -Cr 2 O Three In the system, when the composition ratio of Si with respect to the sum of the composition ratios of Cr and Si is 46% or more, MgO—Cr 2 O Three In the system, when the composition ratio of Mg with respect to the sum of the composition ratios of Cr and Mg was 65% or more, the refractive index was 2.0 or less.
[0089]
Therefore, when the composition ratio of Al, Si, Mg to 1-X is 70% or more, the effect of the present invention is sufficiently exhibited. Moreover, as already shown, all of the oxides of Al, Si, and Mg have a low refractive index, and a mixture thereof also has a low refractive index. Therefore, even when other metal oxides or the like are added to these mixtures, the effect of the present invention is manifested when the sum of the composition ratios of Al, Si, and Mg to 1-X is 70% or more. Also, Cr as an additive metal 2 O Three The results of the addition of, but other metal oxides, metal nitrides, semiconductor oxides, semiconductor nitrides, etc. are also Cr 2 O Three Therefore, the effect of the present invention is manifested by adjusting the composition ratio so as to satisfy the above conditions.
[0090]
The second interference layer is usually a single compound or a mixture of stoichiometric compositions that are unlikely to absorb, but when such a compound is laminated adjacent to the recording layer, it is between the recording layer and the second interference layer. Defects due to film peeling are likely to occur. In such a case, an oxide or nitride of a transition metal element that is likely to become a non-stoichiometric compound as described below, or a mixture of these elements may be added to the second interference layer. In addition, even if the above measures are taken, if the effect of suppressing peeling is not sufficient, a first interface layer for improving the adhesion may be provided between the second interference layer and the recording layer. Usually, peeling easily occurs between the recording layer and the second interference layer depending on the content of oxides of Al, Si, and Mg. Therefore, the sum of the contents of Al, Si, Mg oxide contained in the first interface layer is smaller than the sum of the contents of the Al, Si, Mg oxide contained in the second interference layer. Is required. In addition, as the material for the first interface layer, oxides or nitrides of transition metal elements that are likely to become non-stoichiometric compounds, or mixtures of these elements are particularly excellent. In addition, oxides and nitrides of semiconductors such as Si and Ge are excellent because they easily become non-stoichiometric compounds.
[0091]
Specifically, oxides such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc, Hf, Ta, W, La, and Ce, nitrides, or mixtures thereof Is suitable. Especially Cr-O-based material, Co 2 O Three , Oxides such as Co—O based materials such as CoO, Ta—N based materials, Al—N based materials, Si—N based materials, Al—Si—N based materials (for example, AlSiN 2 ), Nitrides such as Ge—N-based materials, carbides such as SiC and GeC, and mixed materials thereof.
[0092]
Further, since the above materials usually absorb light, an optically good effect cannot be obtained.
[0093]
However, it is more practical to have the first interface layer because it has a great effect of suppressing film peeling, improving the storage life, and suppressing deterioration of many-time rewriting. Therefore, it is better that the thickness of the first interface layer is thin as long as the above effect is not lost. According to the examination results of the inventors, the film thickness of the first interface layer should be 0.5 nm or more. When the thickness is 5 nm or more, adverse effects such as a decrease in reflectivity and signal amplitude are likely to occur. When the thickness is 20 nm or more, the reflectivity decreases and the signal amplitude decreases, and the level is not practical. Therefore, the thickness of the first interface layer is 0.5 nm to 20 n, preferably 0.5 nm to 5 nm.
[0094]
Further, as the recording layer used in the present invention, a phase change recording material is particularly suitable, and the Ge layer used in the above examples is used. 28 Sb 18 Te 54 As a material for the recording layer in place of the above, a composition in which Ge is in the range of 23 to 33 atomic%, Sb is in the range of 10 to 25 atomic%, and Te is in the range of 50 to 60 atomic%, particularly, the rewritable number of times is hardly reduced all right. In addition, AgSbTe 2 When 1 to 7% is added, there is an effect of suppressing recording film flow that occurs at the time of rewriting many times.
[0095]
Furthermore, Ge other than the above 2 Sb 2 Te Five , GeSb 2 Te Four , GeSb Four Te 7 , In Three SbTe 2 , In 35 Sb 32 Te 33 , In 31 Sb 26 Te 43 , GeTe, Ag-In-Sb-Te, Co-Ge-Sb-Te, V-Ge-Sb-Te, Ni-Ge-Sb-Te, Pt-Ge-Sb-Te, Si-Ge-Sb-Te Au-Ge-Sb-Te, Cu-Ge-Sb-Te, Mo-Ge-Sb-Te, Mn-Ge-Sb-Te, Fe-Ge-Sb-Te, Ti-Ge-Sb-Te, Bi Even if it is replaced with at least one of —Ge—Sb—Te, W—Ge—Sb—Te and compositions close thereto, or even if a part of Ge is replaced with In, similar characteristics can be obtained.
[0096]
When a recording layer containing 5 atomic% or less of nitrogen is used in each recording layer composition described above, the reproduction signal output is reduced, but there is an advantage in that the recording layer flow during multiple rewriting is suppressed.
[0097]
When the recording layer thickness is at least the level difference (groove depth) between the land and the groove, the cross erase reduction effect is large. Moreover, 4-20 nm has a large degree of modulation, and it is good that it does not flow easily. If it is 4-10 nm, it is still better. When the film thickness of the recording layer is less than 4 nm, the reflectivity, the signal amplitude, etc. are remarkably reduced, but the effect of suppressing the overwrite jitter and the effect of suppressing the recording film flow at the time of many rewrites are large. Further, when the thickness of the recording layer was greater than 10 nm, the reflectivity, the signal amplitude, and the like were good, but problems such as an increase in overwrite jitter and a flow of the recording film at the time of many rewrites appeared remarkably.
[0098]
FIG. 12 shows the relationship between the total recording film thickness and the reflectance when the recording layer film thickness of the disk A is changed. At this time, the thickness of each layer is optimized so that the degree of modulation is constant and the reflectance is as high as possible. When the recording layer film thickness is 4 nm or more, the reflectance is 18% or more, which is good. However, when the recording layer film thickness is less than 4%, the reflectance is drastically decreased to a target value of 15% or less. It was no longer right.
[0099]
FIG. 13 shows the relationship between the recording layer thickness and the amount of increase in jitter due to overwriting when the recording layer thickness of the disk A is changed. When the recording layer thickness is 10 nm or less, the amount of increase in jitter due to overwriting is about 1% or less, which is an allowable range. However, when the recording layer thickness is greater than 10 nm, jitter due to overwriting increases rapidly. Therefore, it was not practical.
[0100]
The recording layer in the present invention performs recording by changing the atomic arrangement. The atomic arrangement change refers to an atomic arrangement change that hardly accompanies a change in the outer shape of the film such as a phase change.
[0101]
In this embodiment, recording is performed on a phase change recording layer mainly composed of Ge, Sb, Te, In, Ag, etc. as an optical disk. However, the basis of the present invention is that heat is generated by a laser beam, This is to control the thermal characteristics (temperature distribution, cooling rate distribution) as well as the optical characteristics (reflectance, modulation degree) of the optical disk on which the recording mark is recorded by this heat. In addition, the present invention is also effective in recording on a magneto-optical recording layer mainly composed of Tb, Fe, Co, Dy, Gd and the like. Further, the present invention is not limited to a rewritable information recording medium. Further, in the case of organic dye recording in which recording is performed by changing the shape of the substrate or the recording layer, the change occurs only when a high power laser beam is irradiated, and this change is irreversible. The basis of the present invention is to control heat characteristics (temperature distribution, cooling rate distribution) as well as optical characteristics (reflectance, modulation degree) of an optical disc that records a recording mark by the heat generated by the laser beam. Therefore, the present invention is not limited to a rewritable optical disc, and can be applied to a write-once optical disc.
[0102]
As the material for the second interface layer, an oxide or nitride of a transition metal element that is likely to become a non-stoichiometric compound, or a mixture of these elements is preferable as in the first interface layer. In addition, oxides and nitrides of semiconductors such as Si and Ge are excellent because they easily become non-stoichiometric compounds.
[0103]
Specifically, oxides such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Tc, Hf, Ta, W, La, and Ce, nitrides, or mixtures thereof Is suitable. Especially Cr-O-based material, Co 2 O Three , CoO-based oxides such as CoO, TaN, AlN, Si Three N Four Si-N-based materials such as Al-Si-N-based materials (for example, AlSiN 2 ), Nitrides such as Ge—N-based materials, carbides such as SiC and GeC, and mixed materials thereof.
[0104]
Further, since the above materials usually absorb light, an optically good effect cannot be obtained.
[0105]
However, it has great effects of suppressing film peeling, improving the storage life, and suppressing deterioration of many-time rewriting. The difference between the first interface layer and the second interface layer is the difference in material existing on the side opposite to the adjacent surface to the recording layer. In the case of the first interface layer, the second interference layer exists on the surface opposite to the adjacent surface to the recording layer, whereas in the case of the second interface layer, on the surface opposite to the adjacent surface to the recording layer. Has a third interference layer. As described above, since the second interference layer is mainly composed of an oxide such as Al, Si, Mg, etc., it is extremely thermally and chemically stable. On the other hand, since the third interference layer is mainly composed of a sulfide such as ZnS as described above, it is unstable both thermally and chemically. In such a case, if the second interface layer is too thin, S atoms in the third interference layer diffuse into the recording layer at the time of many rewrites, causing deterioration such as a decrease in reflectance and a decrease in crystallization speed. Therefore, it is better that the thickness of the second interface layer is as thin as possible without losing the above effect. According to the examination results of the inventors, it was sufficient that the thickness of the second interface layer was 5 nm or more. When the thickness is 10 nm or more, adverse effects such as a decrease in reflectance and signal amplitude are likely to occur. When the thickness is 20 nm or more, the decrease in reflectance and signal amplitude is increased, and the level is not practical. Therefore, the thickness of the second interface layer is 5 nm to 20 nm, preferably 5 nm to 10 nm.
[0106]
The third interference layer is optically a material that does not absorb light, and is preferably as small as possible in terms of thermal conductivity. Specifically, the refractive index n is between 1.5 and 3.0, and it is a material that does not absorb light. In particular, it is desirable to contain a metal oxide, carbide, nitride, sulfide, or selenide. . In particular, the third interference layer is (ZnS) 80 (SiO 2 ) 20 (Molar ratio) or ZnS and SiO 2 Since the thermal conductivity is remarkably lowered particularly when the mixing ratio is changed (ZnS is 50 to 95 mol%), it is optimal as the third interference layer.
[0107]
The film thickness of the third interference layer is preferably about 35 to 200 nm. Desirably, it is better than the step between land grooves (groove depth on the substrate, about 1/7 to 1/5 of the laser wavelength) or more. Further, the sum of the film thicknesses of the third interference layer and the heat buffer layer may be greater than the step between the land grooves. When the film thickness of the third interference layer is 35 nm or less, or when the sum of the film thicknesses of the third interference layer and the thermal buffer layer is equal to or less than the step between the land grooves, the heat generated when recording on the recording layer is heated. Heat is transferred through the diffusion layer, and the recording marks recorded on the adjacent tracks are easily erased. That is, there arises a problem that cross erase is likely to occur. In addition, when the thickness of the third interference layer is 200 nm or more, the cooling rate in the recording layer during information recording becomes extremely small, which causes the problem that it becomes difficult to become amorphous (a recording mark is difficult to form) and at the same time, production Occasionally, the film thickness distribution of the third interference layer in the optical disk surface causes a problem such that the reflectance distribution in the disk surface becomes too large.
[0108]
FIG. 14 shows the relationship between the amount of increase in jitter due to cross erase and the thickness of the third interference layer when the thickness of the third interference layer of the optical disc A is changed. At this time, the thickness of the first interference layer is optimized so that the degree of modulation is constant. Further, a mark increase was recorded when a mark was recorded in advance and the mark recorded in the groove was reproduced when the adjacent track (land) was rewritten 1000 times. (The effect of cross erase is smaller when the lands and grooves in the above experiment are reversed.) When the thickness of the third interference layer is 35 nm or more (the thickness of the third interference layer, the second interface layer, and the thermal buffer layer) Cross erase did not occur at all, but the sum of the thickness of the third interference layer was less than 35 nm (thickness of the third interference layer, the second interface layer, and the thermal buffer layer). This is not practical because a cross erase occurs suddenly.
[0109]
The thermal buffer layer preferably has a complex refractive index n and k in the range of 1.4 <n <4.5 and −3.5 <k <−0.5, particularly 2 <n <4 and −3.0 <k. A material of <-0.5 is desirable. In order to absorb light in the thermal buffer layer, a thermally stable material is preferable, and it is desirable that the melting point is 1000 ° C. or higher.
[0110]
In addition, when sulfide is added to the third interference layer, there is a particularly large cross erase reduction effect. However, in the case of the thermal buffer layer, the content of sulfide such as ZnS is added to at least the third interference layer. Desirably less than the sulfide content. This is because adverse effects such as a decrease in melting point, a decrease in thermal conductivity, and a decrease in absorption rate may appear.
[0111]
The composition of the thermal buffer layer is preferably a mixture of metal and metal oxide, metal sulfide, metal nitride, metal carbide, Cr and Cr 2 O Three This mixture showed a particularly good effect of improving the overwrite property. Specifically, the metals include Al, Cu, Ag, Au, Pt, Pd, Co, Ti, Cr, Ni, Mg, Si, V, Ca, Fe, Zn, Zr, Nb, Mo, Rh, Sn, A mixture of Sb, Te, Ta, W, Ir, and Pb is desirable. Metal oxide, metal sulfide, metal nitride, and metal carbide are SiO. 2 , SiO, TiO 2 , Al 2 O Three , Y 2 O Three , CeO, La 2 O Three , In 2 O Three , GeO, GeO 2 , PbO, SnO, SnO 2 , Bi 2 O Three , TeO 2 , MO 2 , WO 2 , WO Three , Sc 2 O Three , Ta 2 O Five , ZrO 2 Is preferred. In addition, Si-O-N materials, Si-Al-O-N materials, Cr 2 O Three , Etc. Cr-O-based materials, Co 2 O Three , CoO-based oxides such as CoO, TaN, AlN, Si Three N Four Si-N-based materials such as Al-Si-N-based materials (for example, AlSiN 2 ), Nitrides such as Ge—N-based materials, ZnS, Sb 2 S Three , CdS, In 2 S Three , Ga 2 S Three , GeS, SnS 2 , PbS, Bi 2 S Three , Etc., SnSe Three , Sb 2 S Three , CdSe, ZnSe, In 2 Se Three , Ga 2 Se Three , GeSe, GeSe 2 , SnSe, PbSe, Bi 2 Se Three Selenides such as CeF Three , MgF 2 , CaF 2 A heat buffer layer using a fluoride such as the above or a composition close to the above material may be used.
[0112]
Further, the film thickness of the thermal buffer layer is preferably 10 nm or more and 100 nm or less. When the film thickness is 20 nm or more and 50 nm or less, a particularly excellent overwrite characteristic improvement effect appears. In addition, when the sum of the film thicknesses of the third interference layer, the second interface layer, and the thermal buffer layer is equal to or greater than the groove depth, the effect of reducing the cross erase appears remarkably.
[0113]
As described above, the thermal buffer layer has a property of absorbing light. For this reason, the thermal buffer layer also absorbs light and generates heat, as the recording layer absorbs light and generates heat. Further, it is important that the absorptance in the thermal buffer layer is larger when the recording layer is in the amorphous state than when the recording layer is in the crystalline state. Thus, by optical design, the effect of reducing the absorption rate Aa in the recording layer when the recording layer is in an amorphous state to be smaller than the absorption rate Ac in the recording layer when the recording layer is in a crystalline state is exhibited. This effect can greatly improve the overwrite characteristics. In order to obtain the above characteristics, it is necessary to increase the absorption rate in the thermal buffer layer to about 30 to 40%. The amount of heat generated in the thermal buffer layer varies depending on whether the recording layer is in a crystalline state or an amorphous state. As a result, the flow of heat from the recording layer to the thermal diffusion layer changes depending on the state of the recording layer, and this phenomenon can suppress an increase in jitter due to overwriting.
[0114]
The above effects are manifested by the effect of blocking the flow of heat from the recording layer to the thermal diffusion layer when the temperature in the thermal buffer layer rises. In order to make effective use of this effect, the sum of the thicknesses of the third interference layer and the thermal buffer layer is not less than the step between the land grooves (groove depth on the substrate, about 1/7 to 1/5 of the laser wavelength). Is better. When the sum of the thicknesses of the third interference layer and the heat buffer layer is equal to or less than the step between the land grooves, the heat generated when recording on the recording layer is transferred to the thermal diffusion layer and recorded on the adjacent track. Becomes easier to erase.
[0115]
The heat diffusion layer is preferably a metal or alloy having high reflectivity and high thermal conductivity, and the total content of Al, Cu, Ag, Au, Pt, and Pd is desirably 90% or more. Further, a material having a high melting point such as Cr, Mo, W and the like, and an alloy of these materials, and alloys of these materials are also preferable because they can prevent deterioration due to the flow of the recording layer material at the time of rewriting many times. In particular, when a thermal diffusion layer containing 95% or more of Al is used, an information recording medium that is inexpensive, excellent in high CNR, high recording sensitivity, excellent in multiple rewritability, and extremely effective in reducing cross erase can be obtained. . In particular, when the composition of the heat diffusion layer contains 95% or more of Al, an inexpensive information recording medium with excellent corrosion resistance can be realized. As additive elements for Al, Co, Ti, Cr, Ni, Mg, Si, V, Ca, Fe, Zn, Zr, Nb, Mo, Rh, Sn, Sb, Te, Ta, W, Ir, Pb, B and C is excellent in terms of corrosion resistance, but when the additive element is Co, Cr, Ti, Ni, Fe, or Cu, there is a great effect in improving corrosion resistance. The film thickness of the thermal diffusion layer is preferably 30 nm or more and 300 nm or less. When the thickness of the thermal diffusion layer is smaller than 30 nm, the heat generated in the recording layer is difficult to diffuse. Therefore, the recording layer is liable to deteriorate especially when rewritten about 100,000 times, and cross erase occurs. It may be easier. Further, since light is transmitted, it is difficult to use as a reflective layer, and the reproduction signal amplitude may be reduced. Further, when the metal element contained in the thermal buffer layer and the metal element contained in the thermal diffusion layer are the same, there is a great advantage in production. That is, two layers of the thermal buffer layer and the thermal diffusion layer can be formed using the same target. In other words, Ar-O during the thermal buffer layer formation 2 Mixed gas, Ar-N 2 Sputtering is performed with a mixed gas such as a mixed gas, and a thermal buffer layer having an appropriate refractive index is created by reacting a metal element with oxygen or nitrogen during sputtering. When forming a thermal diffusion layer, sputtering is performed with Ar gas. A metal thermal diffusion layer with high thermal conductivity is created.
[0116]
When the film thickness of the thermal diffusion layer is 300 nm or more, the productivity is poor, and the internal stress of the thermal diffusion layer may cause warpage of the substrate, and information recording / reproduction may not be performed accurately. Moreover, if the film thickness of the thermal diffusion layer is 70 nm or more and 150 nm or less, it is more preferable in terms of corrosion resistance and productivity.
[0117]
【The invention's effect】
As described above in detail, the effects of the present invention are remarkably exhibited when the following conditions are satisfied.
[0118]
(1) The thermal conductivity of the first interference layer is smaller than the thermal conductivity of the second interference layer, and the distance between the first interference layer and the recording layer is equal to or less than the groove depth.
(2) The refractive index of the second interference layer is larger than the refractive index of the first interference layer.
(3) A first interface layer is provided between the second interference layer and the recording layer.
Also, by combining the first interference layer, the second interference layer, and the first interface layer, the disadvantages of each layer are complemented, suppressing cross erase, improving the reflectance, suppressing the decrease in reflectance during multiple rewrites, and suppressing defects due to peeling. Even when it is possible to obtain a compatible information recording medium and have a structure that suppresses cross erase suppression, which is a problem during high-density recording, there is a decrease in reflectivity, a decrease in reflectivity during multiple rewrites, and defects due to peeling. Since it does not occur, a high-density information recording medium can be created very easily.
[Brief description of the drawings]
FIG. 1 is a structural diagram of an information recording medium of the present invention.
FIG. 2 is a conceptual diagram for explaining the principle of the present invention.
FIG. 3 is a diagram illustrating a calculation example of the present invention.
FIG. 4 is a diagram illustrating a calculation example of the present invention.
FIG. 5 is a diagram illustrating a calculation example of the present invention.
FIG. 6 is a conceptual diagram for explaining the principle of the present invention.
FIG. 7 is a conceptual diagram for explaining the principle of the present invention.
FIG. 8 is a block diagram of an information recording apparatus used in an embodiment of the present invention.
FIG. 9 is a diagram showing the relationship between the composition and refractive index of the first interference layer used in the present invention.
FIG. 10 is a diagram showing the relationship between the composition and refractive index of the second interference layer used in the present invention.
FIG. 11 is a diagram showing the relationship between the composition and refractive index of the second interference layer used in the present invention.
FIG. 12 is a diagram showing the relationship between the film thickness of the recording layer used in the present invention and the reflectance.
FIG. 13 is a diagram showing the relationship between the film thickness of a recording layer used in the present invention and the amount of jitter increase due to overwriting.
FIG. 14 is a diagram showing the relationship between the film thickness of the third interference layer used in the present invention and the amount of increase in jitter due to cross erase.
FIG. 15 is a diagram for considering characteristics of each structure;
FIG. 16 is a diagram summarizing the characteristics of each prototype structure.
[Explanation of symbols]
1-1, 1-1 ′: substrate
1-2, 1-2 ': Lower protective layer
1-3, 1-3 ′: Recording layer
1-4, 1-4 ′: Third interference layer
1-5, 1-5 ′: Thermal diffusion layer
1-6, 1-6 ′: Adhesive
1-7, 1-7 ′: Adhesive
1-8, 1-8 ′: Adhesive
1-9, 1-9 ′: Adhesive
1-10: Adhesive
6-0, 7-0: Substrate
6-1, 7-1: first interference layer
6-2, 7-2: Second interference layer
6-3, 7-3: First interface layer
6-4, 7-4: Recording layer
6-5, 7-5: Second interface layer
6-6, 7-6: Third interference layer
6-7, 7-7: Thermal diffusion layer
6-8, 7-8: Heat flow
6-9, 7-9: Objective lens
6-10, 7-10: Laser beam
6-11, 7-11: Heat generating part during groove recording
6-12, 7-12: Heat generating portion during land recording
8-1: Optical disc
8-2: Motor
8-3: Optical head
8-4: Preamplifier circuit
8-6: Recording waveform generation circuit
8-7: Laser drive circuit
8-8: 8-16 modulator
8-9: L / G servo circuit
8-10: 8-16 demodulator.

Claims (2)

レーザービームの照射により、記録層が相変化することによって情報の記録が行われる情報記録媒体であって、
溝深さdgの溝形状を有する基板と、上記溝形状を反映した形状の上記記録層との間に、上記基板に近い方から順に、第1干渉層、第2干渉層、第1界面層とを有し、
上記第1干渉層の熱伝導率は上記第2干渉層の熱伝導率よりも低く、上記第2干渉層の屈折率は上記第1干渉層の屈折率及び上記記録層の屈折率よりも小さく、
上記第1干渉層と上記記録層との間の距離が上記dg以下であり、
上記記録層の上記第1界面層と接する側とは反対側に、金属元素からなる熱拡散層と、上記記録層と上記熱拡散層との間に設けられた第3干渉層を有し、
上記記録層と上記熱拡散層との間の距離が上記dg以上であり、
上記第3干渉層と記録層の間に記録層と接して第2界面層を設けたことを特徴とする情報記録媒体。
An information recording medium on which information is recorded by the phase change of the recording layer by irradiation with a laser beam,
A first interference layer, a second interference layer, and a first interface layer are arranged in order from the side closer to the substrate between a substrate having a groove shape with a groove depth dg and the recording layer reflecting the groove shape. And
The thermal conductivity of the first interference layer is lower than the thermal conductivity of the second interference layer, and the refractive index of the second interference layer is smaller than the refractive index of the first interference layer and the refractive index of the recording layer. ,
A distance between the first interference layer and the recording layer is not more than the dg;
On the opposite side of the recording layer to the side in contact with the first interface layer, a thermal diffusion layer made of a metal element, and a third interference layer provided between the recording layer and the thermal diffusion layer,
The distance between the recording layer and the heat diffusion layer is not less than the dg,
An information recording medium, wherein a second interface layer is provided in contact with the recording layer between the third interference layer and the recording layer.
上記第1、第3干渉層はZnSの組成比が50%以上90%以下であるZnSとSiOの混合物からなり、上記第2干渉層はO,N,S,Cの組成比の和をXとした場合、Oの組成比がXの50%以上であり、Al,Si,Mgの組成比の和が1−Xの70%以上であり、上記第1界面層は遷移金属元素の酸化物、若しくは窒化物、Si,Geの窒化物、又はこれらを含有する混合物からなることを特徴とする請求項1に記載の情報記録媒体。The first and third interference layers are made of a mixture of ZnS and SiO 2 having a composition ratio of ZnS of 50% or more and 90% or less, and the second interference layer has a sum of composition ratios of O, N, S, and C. In the case of X, the composition ratio of O is 50% or more of X, the sum of the composition ratios of Al, Si, and Mg is 70% or more of 1-X, and the first interface layer is an oxidation of a transition metal element. The information recording medium according to claim 1, wherein the information recording medium is made of a material, a nitride, a nitride of Si, Ge, or a mixture containing these.
JP2000123680A 2000-04-19 2000-04-19 Information recording medium Expired - Fee Related JP3912954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123680A JP3912954B2 (en) 2000-04-19 2000-04-19 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123680A JP3912954B2 (en) 2000-04-19 2000-04-19 Information recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000021757A Division JP3689612B2 (en) 2000-01-26 2000-01-26 Information recording medium

Publications (3)

Publication Number Publication Date
JP2001209972A JP2001209972A (en) 2001-08-03
JP2001209972A5 JP2001209972A5 (en) 2005-12-22
JP3912954B2 true JP3912954B2 (en) 2007-05-09

Family

ID=18633926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123680A Expired - Fee Related JP3912954B2 (en) 2000-04-19 2000-04-19 Information recording medium

Country Status (1)

Country Link
JP (1) JP3912954B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003036632A1 (en) 2001-10-19 2005-02-17 松下電器産業株式会社 Optical information recording medium and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001209972A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP3689612B2 (en) Information recording medium
KR100418011B1 (en) Information recording medium and information recording device
JP3255051B2 (en) Optical information recording medium
JP4680465B2 (en) Optical information recording medium, recording / reproducing method thereof, and optical information recording / reproducing system using the same
US20070037093A1 (en) Information-recording medium
JP2005025910A (en) Optical information recording medium and method for manufacturing same
JP4091262B2 (en) Information recording medium and method for manufacturing information recording medium
JP3509807B2 (en) Information recording medium, medium manufacturing method, information recording method and reproducing method
JP2004220699A (en) Optical recording medium
JP2002518782A (en) Rewritable optical information medium
JP2002074742A (en) Information recording medium
JP3912954B2 (en) Information recording medium
JP3255172B2 (en) Optical information recording medium
JP4248327B2 (en) Phase change optical information recording medium
JP3786665B2 (en) Information recording medium
JP4542922B2 (en) Optical information recording medium and manufacturing method thereof
JP3655298B2 (en) Information recording medium
JP3654897B2 (en) Information recording medium
JP4282706B2 (en) Information recording medium
KR20050026477A (en) Multi-stack optical data storage medium and use of such medium
JP3877756B2 (en) Information recording medium
JP2005205762A (en) Information recording medium
JP2007164896A (en) Optical information recording medium
JP2007141455A (en) Information recording medium
JP2004303350A (en) Information recording medium, and method and device of recording information to the medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees