JP3763563B2 - Recording material for optical recording media - Google Patents

Recording material for optical recording media Download PDF

Info

Publication number
JP3763563B2
JP3763563B2 JP00221999A JP221999A JP3763563B2 JP 3763563 B2 JP3763563 B2 JP 3763563B2 JP 00221999 A JP00221999 A JP 00221999A JP 221999 A JP221999 A JP 221999A JP 3763563 B2 JP3763563 B2 JP 3763563B2
Authority
JP
Japan
Prior art keywords
recording material
recording
gap
range
tauc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00221999A
Other languages
Japanese (ja)
Other versions
JP2000207771A (en
Inventor
眞人 針谷
幹夫 木下
喜之 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP00221999A priority Critical patent/JP3763563B2/en
Publication of JP2000207771A publication Critical patent/JP2000207771A/en
Application granted granted Critical
Publication of JP3763563B2 publication Critical patent/JP3763563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、書き換えが可能である光記録媒体の分野に応用可能な相変化型光記録媒体に関する。
【0002】
【従来の技術】
レーザービームの照射による情報の記録、再生および消去可能な光記録媒体の一つとして、結晶−非結晶相間、あるいは結晶−結晶相間の転移を利用する、いわゆる相変化形光記録媒体がよく知られている。これは単一ビームによるオーバーライトが可能であり、ドライブ側の光学系もより単純であることを特徴とし、コンピュータ関連や映像音響に関する記録媒体として応用されている。その記録材料としては、GeTe、GeTeSe、GeTeS、GeSeS、GeSeSb、GeAsSe、InTe、SeTe、SeAs、Ge−Te−(Sn、Au、Pd)、GeTeSeSb、GeTeSb、Ag−In−Sb−Teなどがある。また、特開昭57−208648号公報に開示されているように、記録層をSiO2等の母材中に埋め込み、記録材料の不可逆的変化を抑制する記録層も提案されている。また、Ag−In−Sb−Teは、高感度でアモルファス部分の輪郭が明確な特徴を有し、マークエッジ記録用の記録層として開発されている。(特開平2−37466号、特開平2−171325号、特開平2−415581号、特開平4−141485号各公報)。更に、高速化に対応した(Sb−Ag−Te)(Ge−Te)系も開発されており(特開平1−10438号公報)、ABSbGeTe(AはCo、Ti、Ni、V、Cr等、BはTl、I、Na)系の材料も提案(特開平7−144798号公報)されている。
これらの記録層を用いる光記録媒体として、反射層、第1保護層および第2保護層を有する多層構造のものがあるが、この光記録媒体では、繰り返し記録特性の改善および繰り返し記録特性とその他の特性、例えば変調度、所定の反射率等、との両立が重要な課題となる。この問題に関し、記録層に窒素等を添加することが記録層の流動を抑制し繰り返し記録特性の向上に寄与することが、特開平4−11336号、特開平4−10980号、特開平4−16383号、特開平4−10979号、特開平4−52188号、特開平4−52189号各公報に開示されている。
しかしながら、低価格で比較的低い記録線速を有する光記録システム、あるいはCDと再生互換性のある光記録媒体(CD−RW)として使用される光記録媒体においては、なお、記録層の流動、レーザー照射時の熱衝撃による膜剥がれ、あるいは反射層に使用する金属の劣化等の問題により、繰り返し記録回数は数千回のレベルに留まり、コンピューターの周辺機器等で頻繁に書き替えを行なう場合には問題点があった。また、更なるドライブの低価格化のためには記録感度の向上が要求されている。更に、従来の記録媒体は初期結晶化の容易性にあまり考慮しておらず、繰り返し特性、記録感度は良好でも初期化がしにくいために、ジッター等の特性が低下する問題があった。
【0003】
【発明が解決しようとする課題】
したがって、本発明は上記のような状況に鑑みてなされたものであって、本発明の第一の目的は、記録感度の高い光記録媒体を提供することにある。また、本発明の第二の目的は、記録感度が高く、繰り返し特性が良好で、且つ初期結晶化の容易な光記録媒体を提供することにある。更なる本発明の目的は、高感度で繰り返し特性が良好で且つ初期結晶化が容易であり、しかも短波長域から長波長域の光源に対応できる光記録媒体を提供することにある。
【0004】
【課題を解決するための手段】
本発明によれば、(1)「記録材料にレーザー等の電磁波を照射して、その光学定数を変化させて情報の記録、再生、消去を行なう光記録材料において、その記録材料の非晶相、特に製膜後のアモルファス状態のエネルギーギャップに対応するTaucギャップが0.18eVから0.58eVの範囲にあることを特徴とする光記録材料。」、(2)「波長1000nmから400nmの範囲に対する上記記録材料の各波長に対する吸収係数αとその波長に対応するエネルギーEとの積の平方根(α・E)1/2が260[cm-1/2・eV1/2]から650[cm-1/2・eV1/2]の範囲にあることを特徴とする前記第(1)項記載の光記録材料。」、(3)「Taucギャップが0.18eVから0.58eVの範囲にある記録材料が、AgとInとSbとTeとHoとNから構成され、特にTaucギャップを制御する元素がNであることを特徴とする前記第(1)項記載の光記録材料。」、(4)「Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される記録材料の結晶化温度がTaucギャップが広くなると共に高くなることを特徴とする前記第(3)項記載の光記録材料。」、(5)「Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される記録材料の結晶化温度が165℃から253℃の間にあることを特徴とする前記第(3)項記載の光記録材料。」、(6)「Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される記録材料の非晶相の複素屈折率の実数部と虚数部の値が波長450nmから800nmの間においてTaucギャップが大きくなるにしたがって小さくなることを特徴とする前記第(3)項記載の光記録材料。」、(7)「Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される記録材料の非晶相、特に製膜後の非晶相の複素屈折率の実数部nと虚数部kの値が波長630nmにおいて、3.6≦n≦4.3、1.5≦k≦2.5の範囲にあることを特徴とする前記第(3)項記載の光記録材料。」、(8)「Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される記録材料に、Bi−Ge、Bi−Si、Gd−Gaの酸化物から選ばれた少なくとも一種類の化合物を添加することを特徴とする前記第(3)項記載の光記録材料。」、(9)「Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される記録材料に添加される少なくとも一種類のBi−Ge、Bi−Si、Gd−Gaの酸化物の割合が5mol%以下であることを特徴とする前記第(3)項記載の光記録材料。」が提供される。
【0005】
すなわち、本発明の前記第(1)項の記録材料においては、その非晶相のバンド間遷移に伴う光吸収スペクトルから求められるTaucギャップ、または光学ギャップが0.18eVから0.58eVの記録材料を用いることにより、高感度で初期結晶化が容易な記録媒体が実現できる。これは記録材料のTaucギャップがこの間にあると、現有の赤色半導体レーザー、または青緑半導体レーザー光を効率的に吸収できるためである。Taucギャップが0.18eV以下になると後述のように結晶化温度が低下して保存特性が劣化する。また、Taucギャップが0.58eVを越えると結晶化温度が上昇し、初期結晶化が困難となる。
【0006】
また、前記第(2)項の記録材料においては、Taucギャップが0.18eVから0.58eVの範囲にあるとき、波長1000nmから400nmの範囲に対する上記記録材料の各波長に対する吸収係数αとその波長に対応するエネルギーEとの積の平方根(α・E)1/2が260[cm-1/2・eV1/2]から650[cm-1/2・eV1/2]の間にあることを特徴とするものである。これにより、高感度で初期結晶化が容易な記録媒体を提供できる。
【0007】
また、前記第(3)項の記録材料においては、Taucギャップが0.18eVから0.58eVの範囲にある材料として、AgとInとSbとTeとHoとNから主に構成され、特にNがこのTaucギャップを制御する材料であり、このNの量によりTaucギャップを設計に応じて変化させることが可能となる。具体的には高感度化、保存特性の向上、繰り返し特性の向上等である。もちろん、Taucギャップの制御は、Ag、In、Sb、Te、Ho、Nの各々の組成比を変えることによっても可能であり、これ以外の化合物、例えば、Ag−Sn−Sb−Te−Ho−N、Cu−Sn−Sb−Te−Ho−N、Ag−Pb−Sb−Te−Ho−N、Ag−In−Sn−Sb−Te−Ho−N、Ag−In−Pb−Sb−Te−Ho−N、Cu−In−Sn−Bi−Te−Ho−N、Ag−In−Sn−Bi−Te−Ho−N、Ag−In−Pb−Bi−Te−Ho−N、Ag−In−Sn−As−Te−Ho−N、およびこれらのInをGaに、TeをSe、Sから選ばれた一つの元素に、HoをPr、Ce、Ndから選ばれた少なくとも一つの元素に置換してもよい。このHo、Pr、Ce、Ndの元素は、記録材料の熱膨張を小さくする効果があり、繰り返し特性を向上させる。
【0008】
また、前記第(4)項、前記第(5)項の記録材料においては、Taucギャップが0.18eVから0.58eVの範囲にある、AgとInとSbとTeとHoとNから構成される記録材料の結晶化温度がTaucギャップが広くなると共に高くなることを特徴としている。このため、Taucギャップを制御することにより結晶化温度をコントロールできるため、記録材料の保存特性、初期結晶化を容易にすることができる。具体的な制御方法としては、N量を制御するのが一番容易である。このときの結晶化温度は、上記Taucギャップの範囲に対して165℃から253℃の間にあり、これ以下の結晶化温度の場合、保存特性が劣化し、また、これ以上の温度の場合、初期化がきわめて困難となる。
【0009】
また、前記第(6)項、前記第(7)項記録材料においては、Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される記録材料を製膜後の非晶相の複素屈折率(nc=n+ik、nは実数部、kは虚数部)の実数部nと虚数部kの値が波長450nmから800nmの波長の間でTaucギャップが大きくなるにしたがって小さくなる傾向を有し、630nmの波長に対して3.6≦n≦4.3、1.5≦k≦2.5の間にあることを特徴としている。一般に材料の複素屈折率は、そのエネルギーギャップが大きくなるほど小さくなる傾向が認められるが、このAgとInとSbとTeとHoとNから構成される素はこの関係が明確であることがわかり、特にTaucギャップが0.18eVから0.58eVの間で、λ=630nmの値に対し、nが3.6から4.3、kが1.5から2.5の間で大きく変化する。但し、これはこの材料をスパッタ等の方法により製膜した非晶相の複素屈折率であるが、このようにTaucギャップの変化に対し、屈折率が大きく変化することはこれを記録材料として用いた場合、反射率等の光学特性を自由に制御できるため、記録媒体の設計が容易となり変調度の大きな記録媒体を提供できる。
【0010】
また、前記第(8)項、前記第(9)項の記録材料においては、Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される記録材料にBi−Ge、Bi−Si、Gd−Gaの酸化物から選ばれた少なくとも一種類の化合物が添加されることを特徴とする。これらは例えば、Al23、Bi4Ge312、Bi12GeO20、Gd3Ga512、LiNbO3等の化合物をスパッタ用ターゲットとし、上記AgとInとSbとTeとHoから成る記録材料と共にスパッタすることにより膜を作成する。このときのこれら酸化物の割合は、5mol%以下である。この酸化物の導入により記録膜の溶融時の物質移動が抑制され繰り返し特性が向上する。この理由は明確でないが、記録材料の溶融時の粘性が大きくなるものと考えられる。但し、5mol%以上になると感度が低下する。好ましくは1mol%から3mol%がよい。
【0011】
【実施例】
以下、実施例により本発明を更に具体的に説明する。
【0012】
実施例1
トラックピッチ1.0μm、深さ500Åの溝付き厚さ1.2mm、直径120μmのポリカーボネート基板上に、表1に示す構成の下部耐熱保護層、記録層、上部耐熱保護層および反射放熱層を順次スパッタ法により積層し、相変化型記録媒体を作成した。
このとき、記録膜のTaucギャップ、結晶化温度、複素屈折率を測定するための試料を用意するために、別に記録層のみをガラス基板上に2000Å設けるようにした。記録材料はAg、In、Sb、Te、Hoから構成される表1で示される組成のターゲットを作成し、スパッタ法により記録膜を作成した。そして、成膜時に窒素を0.5SCCM流すことにより記録膜に窒素をドープした。
また、保護層は、(ZnS)80(SiO220を、反射放熱層はAl合金を用いた。ここではCD−RWとしての特性を評価するが、もちろんDVD−RAM及び青色光源(λ=400nm以上)においても対応可能である。
【0013】
【表1】

Figure 0003763563
【0014】
実施例2
記録層を製膜時に窒素を1SCCMとしてスパッタした以外は実施例1と全く同様にして記録媒体を作成した。
【0015】
実施例3
記録層を製膜時に窒素を2SCCMとしてスパッタした以外は実施例1と全く同様にして記録媒体を作成した。
【0016】
実施例4
記録層を製膜時に窒素を3SCCMとしてスパッタした以外は実施例1と全く同様にして記録媒体を作成した。
【0017】
比較例1
記録層を製膜時に窒素を4SCCMとしてスパッタした以外は実施例1と全く同様にして記録媒体を作成した。
【0018】
比較例2
記録層を製膜時に窒素を5SCCMとしてスパッタした以外は実施例1と全く同様にして記録媒体を作成した。
【0019】
実施例
記録層として(Ag3.0In6.0Sb61Te29Ho)を98mol%、(BiGe12)を2mol%としたターゲットを用い、製膜時に窒素を0.5SCCMとした以外は実施例1と全く同様にして記録媒体を作成した。
【0020】
実施例
記録層として(Ag3.0In6.0Sb61Te29Ho)を98mol%、(GdGa12)を2mol%としたターゲットを用い、製膜時に窒素を0.5SCCMとした以外は実施例1と全く同様にして記録媒体を作成した。
【0021】
[評価]
(1)各実施例で用いられた記録材料のTaucギャップと各波長に対する吸収係数αとその波長に対応するエネルギーEとの積の平方根(α・E)1/2を分光吸光度の測定から求めた。その結果を図1(但し実施例は除く)および表2に示す。
(2)同様に各記録材料の分光屈折率の実部nと虚数部kを図2(但し実施例1、は除く)に示す。また、630nmでの値を表2に示す。
(3)同じく各記録材料の結晶化温度を表2に示す。
(4)次に記録媒体のディスク特性を評価した。
記録媒体を初期化後、線速1.4m/sでEFMランダムパターンでオーバーライトの繰り返し記録を行ない、そのときの3T信号のジッターの記録パワー依存性で評価した。なお、再生時の線速は2.8m/sである。その結果を表2〜表3に示す。ここで記録媒体の初期結晶化は高出力半導体レーザーを利用した。初期化の容易性をA、B、Cの3段階で表示した。Aはきわめて初期化しやすいもの、Cは初期化しにくいもの、BはAとCの中間の程度とした。その結果を同じく表3、4、5、6、7、8、9、10に示す。
【0022】
【表2】
Figure 0003763563
【0023】
【表3】
(実施例1)
Figure 0003763563
【0024】
【表4】
(実施例2)
Figure 0003763563
【0025】
【表5】
(実施例3)
Figure 0003763563
【0026】
【表6】
(実施例4)
Figure 0003763563
【0027】
【表7】
Figure 0003763563
【0028】
【表8】
Figure 0003763563
【0029】
【表9】
Figure 0003763563
【0030】
【表10】
Figure 0003763563
【0031】
以上、表2からは、Taucギャップは成膜時の窒素流量が多くなるほど大きくなることがわかる。また、結晶化温度は、Taucギャップが大きくなるほど高くなる。そして複素屈折率のn、kはTaucギャップが大きくなるほど小さくなることがわかる。
一方、表3、4、5、6、7、8、9、10から初期結晶化はTaucギャップが0.58eVまでは比較的容易に行なえるが、これより大きくなると急激に困難となる。また、記録感度はTaucギャップが小さいほど良好であるが0.58eV以上になるとその感度は低下する。一方、記録材料に酸化物として実施例の(BiGe12)と実施例の(GdGa12)を添加した系はその繰り返し特性が大幅に向上していることがわかる。また、具体例は示していないが、Ag、In、Sb、Te、Ho、NからHoを除くと、繰り返し特性は劣化する。
【0032】
【発明の効果】
以上、詳細且つ具体的な説明から明らかなように、請求項1、2の光記録媒体は、その記録層を構成する記録材料のTaucギャップが0.18eVから0.58eVの範囲のとき、初期結晶化が容易に実現でき、また、記録感度の優れたものとなる。また、青色、例えばGaN系半導体レーザーに対応できる記録媒体を提供できる。更に、請求項3の光記録媒体はその記録層を構成する記録材料がAgとInとSbとTeとHoとNから成り、この材料のTaucギャップを制御する材料がNであり、この制御により、優れた記録媒体が提供できる。更に請求項4、5の光記録媒体は、その記録層を構成する記録材料のTaucギャップが0.18eVから0.58eVの範囲のとき、その結晶化温度が165℃から253℃の範囲にあるため、初期結晶化が容易に行なわれる記録媒体を提供できる。更に、請求項6、8の光記録媒体は、その記録層を構成する記録材料の複素屈折率の実数部と虚数部の値がTaucギャップの値が大きくなるにしたがって波長450nmから3800nmの範囲内で一定の大きさで小さくなる傾向があり、Taucギャップの変化により複素屈折率が大きくかわるため、450nmから3800nmの光に対して変調度の大きい記録媒体が提供できる。更に、請求項7、8の光記録媒体は、その記録層を構成する光記録材料としてTaucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから成る材料に、Bi−Ge、Bi−Si、Gd−Gaの酸化物から選ばれた少なくとも一種類の化合物を添加することにより繰り返し特性の優れたものとなるという極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の光記録材料(非晶相)の光吸収係数のTaucギャップ依存性を示す図である。
【図2】本発明の記録材料(非晶相)のTaucギャップに対する分光複素屈折率を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phase change optical recording medium applicable to the field of rewritable optical recording media.
[0002]
[Prior art]
As an optical recording medium capable of recording, reproducing and erasing information by laser beam irradiation, a so-called phase change type optical recording medium using a transition between a crystal and an amorphous phase or between a crystal and a crystal phase is well known. ing. This is characterized in that it can be overwritten by a single beam, and the optical system on the drive side is simpler, and is applied as a recording medium related to computers and video / audio. The recording materials include GeTe, GeTeSe, GeTeS, GeSeS, GeSeSb, GeAsSe, InTe, SeTe, SeAs, Ge-Te- (Sn, Au, Pd), GeTeSeSb, GeTeSb, Ag-In-Sb-Te, and the like. . In addition, as disclosed in JP-A-57-208648, a recording layer is proposed in which the recording layer is embedded in a base material such as SiO 2 to suppress irreversible changes in the recording material. Ag-In-Sb-Te has high sensitivity and a clear outline of the amorphous part, and has been developed as a recording layer for mark edge recording. (JP-A-2-37466, JP-A-2-171325, JP-A-2-415581, JP-A-4-141485). Furthermore, a (Sb-Ag-Te) (Ge-Te) system corresponding to high speed has been developed (Japanese Patent Laid-Open No. 1-10438), ABSbGeTe (A is Co, Ti, Ni, V, Cr, etc.) B (Tl, I, Na) -based materials have also been proposed (Japanese Patent Laid-Open No. 7-144798).
As an optical recording medium using these recording layers, there is a multilayer structure having a reflective layer, a first protective layer and a second protective layer. In this optical recording medium, repeated recording characteristics are improved, repeated recording characteristics and others. These characteristics, for example, the degree of modulation, predetermined reflectance, etc., are important issues. Regarding this problem, adding nitrogen or the like to the recording layer suppresses the flow of the recording layer and contributes to the improvement of repetitive recording characteristics, as disclosed in JP-A-4-11336, JP-A-4-10980, and JP-A-4- No. 16383, JP-A-4-10979, JP-A-4-52188, and JP-A-4-52189.
However, in an optical recording system having a relatively low recording linear velocity at a low price, or an optical recording medium used as an optical recording medium (CD-RW) compatible with CD, the flow of the recording layer is Due to problems such as film peeling due to thermal shock during laser irradiation or deterioration of the metal used in the reflective layer, the number of repeated recordings remains at the level of several thousand times, and when rewriting is frequently performed on computer peripherals, etc. There was a problem. Further, in order to further reduce the drive price, improvement in recording sensitivity is required. Furthermore, the conventional recording medium does not take much consideration on the ease of initial crystallization, and has a problem that characteristics such as jitter are deteriorated because initialization is difficult even if the repetition characteristics and recording sensitivity are good.
[0003]
[Problems to be solved by the invention]
Accordingly, the present invention has been made in view of the above situation, and a first object of the present invention is to provide an optical recording medium having high recording sensitivity. The second object of the present invention is to provide an optical recording medium having high recording sensitivity, good repeatability and easy initial crystallization. A further object of the present invention is to provide an optical recording medium having high sensitivity, good repeatability, easy initial crystallization, and capable of dealing with a light source in a short wavelength region to a long wavelength region.
[0004]
[Means for Solving the Problems]
According to the present invention, (1) in an optical recording material that records, reproduces, and erases information by irradiating a recording material with electromagnetic waves such as a laser and changing its optical constant, the amorphous phase of the recording material In particular, the optical recording material is characterized in that the Tauc gap corresponding to the energy gap in the amorphous state after film formation is in the range of 0.18 eV to 0.58 eV. ”, (2)“ For wavelengths in the range of 1000 nm to 400 nm. ” The square root (α · E) 1/2 of the product of the absorption coefficient α for each wavelength of the recording material and the energy E corresponding to the wavelength varies from 260 [cm −1/2 · eV 1/2 ] to 650 [cm −. characterized in that said is in the range of 1/2 · eV 1/2] paragraph (1), wherein the optical recording material. "(3)" Tauc gap is in the range 0.58eV from 0.18eV The recording material is Ag and In , Sb, Te, Ho, and N, and the element for controlling the Tauc gap is N in particular. The optical recording material according to the item (1), wherein the Tauc gap is 0. (3) The crystallization temperature of the recording material composed of Ag, In, Sb, Te, Ho, and N in the range of .18 eV to 0.58 eV increases as the Tauc gap increases. (5) “The crystallization temperature of a recording material composed of Ag, In, Sb, Te, Ho, and N having a Tauc gap in the range of 0.18 eV to 0.58 eV is 165.” The optical recording material according to the item (3), characterized in that the temperature is between ℃ and 253 ° C. ”, (6)“ Ag, In and Sb with Tauc gap in the range of 0.18 eV to 0.58 eV ” And Te and H The value of the real part and the imaginary part of the complex refractive index of the amorphous phase of the recording material comprising N and N decreases as the Tauc gap increases between wavelengths 450 nm and 800 nm. ), (7) “Amorphous phase of a recording material composed of Ag, In, Sb, Te, Ho, and N with a Tauc gap in the range of 0.18 eV to 0.58 eV, In particular, the values of the real part n and the imaginary part k of the complex refractive index of the amorphous phase after film formation are in the range of 3.6 ≦ n ≦ 4.3 and 1.5 ≦ k ≦ 2.5 at a wavelength of 630 nm. The optical recording material according to the item (3), characterized in that “8” is composed of Ag, In, Sb, Te, Ho, and N with a Tauc gap in the range of 0.18 eV to 0.58 eV. Bi-Ge, Bi- i, wherein the (3) above, wherein the optical recording material comprising adding at least one compound selected from oxides of Gd-Ga. (9) “At least one type of Bi—Ge, Bi added to a recording material composed of Ag, In, Sb, Te, Ho, and N with a Tauc gap in the range of 0.18 eV to 0.58 eV. The optical recording material according to item (3), wherein the ratio of the oxides of —Si and Gd—Ga is 5 mol% or less ”is provided.
[0005]
That is, in the recording material according to the item (1) of the present invention, the Tauc gap or optical gap obtained from the optical absorption spectrum accompanying the band transition of the amorphous phase is from 0.18 eV to 0.58 eV. Can be used to realize a recording medium with high sensitivity and easy initial crystallization. This is because the existing red semiconductor laser or blue-green semiconductor laser light can be efficiently absorbed if the Tauc gap of the recording material is between them. When the Tauc gap is 0.18 eV or less, the crystallization temperature is lowered and the storage characteristics are deteriorated as described later. On the other hand, if the Tauc gap exceeds 0.58 eV, the crystallization temperature rises and initial crystallization becomes difficult.
[0006]
In the recording material of item (2), when the Tauc gap is in the range of 0.18 eV to 0.58 eV, the absorption coefficient α for each wavelength of the recording material with respect to the wavelength range of 1000 nm to 400 nm and its wavelength The square root (α · E) 1/2 of the product with energy E corresponding to is between 260 [cm −1/2 · eV 1/2 ] and 650 [cm −1/2 · eV 1/2 ]. It is characterized by this. Thereby, a recording medium with high sensitivity and easy initial crystallization can be provided.
[0007]
The recording material of item (3) is mainly composed of Ag, In, Sb, Te, Ho, and N as a material having a Tauc gap in the range of 0.18 eV to 0.58 eV. Is a material for controlling the Tauc gap, and the Tac gap can be changed according to the design by the amount of N. Specifically, the sensitivity is increased, the storage characteristics are improved, the repetition characteristics are improved, and the like. Of course, the Tauc gap can be controlled by changing the composition ratios of Ag, In, Sb, Te, Ho, and N, and other compounds such as Ag-Sn-Sb-Te-Ho- N, Cu-Sn-Sb-Te-Ho-N, Ag-Pb-Sb-Te-Ho-N, Ag-In-Sn-Sb-Te-Ho-N, Ag-In-Pb-Sb-Te- Ho-N, Cu-In-Sn-Bi-Te-Ho-N, Ag-In-Sn-Bi-Te-Ho-N, Ag-In-Pb-Bi-Te-Ho-N, Ag-In- Sn—As—Te—Ho—N, and these In, Ga, Te, one element selected from Se, S, and Ho, at least one element selected from Pr, Ce, Nd May be. These elements of Ho, Pr, Ce, and Nd have the effect of reducing the thermal expansion of the recording material, and improve the repetition characteristics.
[0008]
In the recording materials of the items (4) and (5), the Tauc gap is in the range of 0.18 eV to 0.58 eV, and is composed of Ag, In, Sb, Te, Ho, and N. The recording material is characterized in that the crystallization temperature of the recording material increases as the Tauc gap increases. For this reason, since the crystallization temperature can be controlled by controlling the Tauc gap, the storage characteristics and initial crystallization of the recording material can be facilitated. As a specific control method, it is easiest to control the N amount. The crystallization temperature at this time is between 165 ° C. and 253 ° C. with respect to the range of the Tauc gap. When the crystallization temperature is lower than this, the storage characteristics deteriorate, and when the temperature is higher than this, Initialization becomes extremely difficult.
[0009]
In the recording materials of the items (6) and (7), the recording material is composed of Ag, In, Sb, Te, Ho, and N with a Tauc gap in the range of 0.18 eV to 0.58 eV. Tauc between the values of the real part n and the imaginary part k of the complex refractive index (n c = n + ik, where n is the real part and k is the imaginary part) of the amorphous phase after the film formation is between 450 nm and 800 nm. The gap tends to decrease as the gap increases, and is characterized by being between 3.6 ≦ n ≦ 4.3 and 1.5 ≦ k ≦ 2.5 for a wavelength of 630 nm. In general, the complex refractive index of a material tends to decrease as the energy gap increases, but it can be seen that this relationship is clear for the element composed of Ag, In, Sb, Te, Ho, and N. In particular, when the Tauc gap is between 0.18 eV and 0.58 eV, the value of λ = 630 nm varies greatly between 3.6 and 4.3 and k between 1.5 and 2.5. However, this is a complex refractive index of an amorphous phase obtained by depositing this material by a method such as sputtering, but the fact that the refractive index changes greatly with respect to the change of the Tauc gap in this way is used as a recording material. In this case, optical characteristics such as reflectance can be freely controlled, so that the recording medium can be easily designed and a recording medium having a high degree of modulation can be provided.
[0010]
The recording materials of the items (8) and (9) are composed of Ag, In, Sb, Te, Ho, and N with a Tauc gap in the range of 0.18 eV to 0.58 eV. At least one compound selected from Bi-Ge, Bi-Si, and Gd-Ga oxides is added to the recording material. These include, for example, compounds such as Al 2 O 3 , Bi 4 Ge 3 O 12 , Bi 12 GeO 20 , Gd 3 Ga 5 O 12 , LiNbO 3 and the like as sputtering targets, and from the above Ag, In, Sb, Te, and Ho. A film is formed by sputtering together with the recording material. The ratio of these oxides at this time is 5 mol% or less. By introducing this oxide, mass transfer at the time of melting of the recording film is suppressed, and repetitive characteristics are improved. The reason for this is not clear, but it is considered that the viscosity of the recording material when melted increases. However, when the amount is 5 mol% or more, the sensitivity decreases. Preferably 1 mol% to 3 mol% is good.
[0011]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0012]
Example 1
A lower heat-resistant protective layer, a recording layer, an upper heat-resistant protective layer, and a reflective heat-dissipating layer having the structure shown in Table 1 are sequentially formed on a polycarbonate substrate having a track pitch of 1.0 μm, a depth of 500 mm with a grooved thickness of 1.2 mm, and a diameter of 120 μm. Lamination was performed by sputtering to produce a phase change recording medium.
At this time, in order to prepare a sample for measuring the Tauc gap, the crystallization temperature, and the complex refractive index of the recording film, only 2000 mm of the recording layer was separately provided on the glass substrate. As the recording material, a target having the composition shown in Table 1 composed of Ag, In, Sb, Te, and Ho was prepared, and a recording film was formed by a sputtering method. Then, the recording film was doped with nitrogen by flowing 0.5 SCCM of nitrogen at the time of film formation.
Further, (ZnS) 80 (SiO 2 ) 20 was used for the protective layer, and an Al alloy was used for the reflective heat radiation layer. Here, the characteristics as a CD-RW are evaluated, but of course, the present invention can also be applied to a DVD-RAM and a blue light source (λ = 400 nm or more).
[0013]
[Table 1]
Figure 0003763563
[0014]
Example 2
A recording medium was prepared in exactly the same manner as in Example 1 except that nitrogen was sputtered with 1 SCCM when forming the recording layer.
[0015]
Example 3
A recording medium was prepared in exactly the same manner as in Example 1 except that nitrogen was sputtered with 2 SCCM when forming the recording layer.
[0016]
Example 4
A recording medium was prepared in exactly the same manner as in Example 1 except that the recording layer was sputtered with nitrogen at 3 SCCM during film formation.
[0017]
Comparative Example 1
A recording medium was prepared in exactly the same manner as in Example 1 except that the recording layer was sputtered with 4 SCCM of nitrogen during film formation.
[0018]
Comparative Example 2
A recording medium was prepared in exactly the same manner as in Example 1 except that nitrogen was sputtered with 5 SCCM when forming the recording layer.
[0019]
Example 5
As the recording layer (Ag 3.0 In 6.0 Sb 61 Te 29 Ho 1) to 98mol%, (Bi 4 Ge 3 O 12) using a target in which a 2 mol% of nitrogen was used as a 0.5SCCM during the film A recording medium was prepared in the same manner as in Example 1 except for the above.
[0020]
Example 6
As a recording layer, a target having (Ag 3.0 In 6.0 Sb 61 Te 29 Ho 1 ) of 98 mol% and (Gd 3 Ga 5 O 12 ) of 2 mol% was used, and nitrogen was adjusted to 0.5 SCCM during film formation. A recording medium was prepared in the same manner as in Example 1 except for the above.
[0021]
[Evaluation]
(1) The square root (α · E) 1/2 of the product of the Tauc gap of the recording material used in each example, the absorption coefficient α for each wavelength and the energy E corresponding to that wavelength is obtained from the measurement of spectral absorbance. It was. The results are shown in FIG. 1 (except for Examples 5 and 6 ) and Table 2.
(2) Similarly, the real part n and the imaginary part k of the spectral refractive index of each recording material are shown in FIG. 2 (however, Examples 1, 5 and 6 are excluded). The values at 630 nm are shown in Table 2.
(3) Similarly, Table 2 shows the crystallization temperature of each recording material.
(4) Next, the disk characteristics of the recording medium were evaluated.
After initializing the recording medium, overwriting was repeatedly recorded with an EFM random pattern at a linear velocity of 1.4 m / s, and the 3T signal jitter at that time was evaluated by the recording power dependence. Note that the linear velocity during reproduction is 2.8 m / s. The results are shown in Tables 2 to 3. Here, a high-power semiconductor laser was used for the initial crystallization of the recording medium. The ease of initialization is displayed in three stages of A, B, and C. A is very easy to initialize, C is difficult to initialize, and B is intermediate between A and C. The results are also shown in Tables 3, 4, 5, 6, 7, 8, 9, and 10.
[0022]
[Table 2]
Figure 0003763563
[0023]
[Table 3]
Example 1
Figure 0003763563
[0024]
[Table 4]
(Example 2)
Figure 0003763563
[0025]
[Table 5]
Example 3
Figure 0003763563
[0026]
[Table 6]
(Example 4)
Figure 0003763563
[0027]
[Table 7]
Figure 0003763563
[0028]
[Table 8]
Figure 0003763563
[0029]
[Table 9]
Figure 0003763563
[0030]
[Table 10]
Figure 0003763563
[0031]
As described above, it can be seen from Table 2 that the Tauc gap increases as the nitrogen flow rate during film formation increases. In addition, the crystallization temperature increases as the Tauc gap increases. It can be seen that the complex refractive indexes n and k become smaller as the Tauc gap becomes larger.
On the other hand, from Tables 3, 4, 5, 6, 7, 8, 9, and 10, the initial crystallization can be performed relatively easily up to a Tauc gap of 0.58 eV. The recording sensitivity is better as the Tauc gap is smaller. However, when the recording sensitivity is 0.58 eV or more, the sensitivity is lowered. Meanwhile, the system with the addition of (Gd 3 Ga 5 O 12) of the recording material of Example 5 as an oxide (Bi 4 Ge 3 O 12) and Example 6 is that the repetition characteristics are significantly improved Recognize. Moreover, although a specific example is not shown, if Ho is removed from Ag, In, Sb, Te, Ho, and N, the repetitive characteristics deteriorate.
[0032]
【The invention's effect】
As is apparent from the detailed and specific description above, the optical recording medium according to claims 1 and 2 is the initial one when the Tauc gap of the recording material constituting the recording layer is in the range of 0.18 eV to 0.58 eV. Crystallization can be easily realized and the recording sensitivity is excellent. Further, it is possible to provide a recording medium that can cope with blue, for example, a GaN-based semiconductor laser. Further, in the optical recording medium of claim 3, the recording material constituting the recording layer is composed of Ag, In, Sb, Te, Ho, and N, and the material that controls the Tauc gap of this material is N. By this control, An excellent recording medium can be provided. Further, the optical recording medium of claims 4 and 5 has a crystallization temperature in the range of 165 ° C. to 253 ° C. when the Tauc gap of the recording material constituting the recording layer is in the range of 0.18 eV to 0.58 eV. Therefore, it is possible to provide a recording medium in which initial crystallization is easily performed. Further, in the optical recording medium of claims 6 and 8, the real part and imaginary part of the complex refractive index of the recording material constituting the recording layer are within a wavelength range of 450 nm to 3800 nm as the Tauc gap value increases. Since the complex refractive index is greatly changed by changing the Tauc gap, it is possible to provide a recording medium having a high degree of modulation with respect to light of 450 nm to 3800 nm. Furthermore, the optical recording medium according to claims 7 and 8 is composed of Ag, In, Sb, Te, Ho, and N having a Tauc gap in the range of 0.18 eV to 0.58 eV as an optical recording material constituting the recording layer. By adding at least one type of compound selected from Bi-Ge, Bi-Si, and Gd-Ga oxides to the material, the material has an excellent effect of having excellent repeatability.
[Brief description of the drawings]
FIG. 1 is a graph showing the Tauc gap dependence of the light absorption coefficient of an optical recording material (amorphous phase) according to the present invention.
FIG. 2 is a diagram showing a spectral complex refractive index with respect to a Tauc gap of the recording material (amorphous phase) of the present invention.

Claims (4)

電磁波を照射して結晶相と非晶相の間を相転移する記録材料において、その記録材料が、AgとInとSbとTeとHoとNから構成され、その非晶相のエネルギーギャップに対応するTaucギャップが0.18eVから0.58eVの範囲にあることを特徴とする光記録媒体用記録材料。In a recording material that undergoes phase transition between a crystalline phase and an amorphous phase by irradiating electromagnetic waves, the recording material is composed of Ag, In, Sb, Te, Ho, and N, and corresponds to the energy gap of the amorphous phase. The recording material for optical recording media, wherein the Tauc gap is in the range of 0.18 eV to 0.58 eV. Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される記録材料の結晶化温度が165℃から253℃の間にあることを特徴とする請求項1記載の光記録媒体用記録材料。 The crystallization temperature of the recording material composed of Ag, In, Sb, Te, Ho, and N having a Tauc gap in the range of 0.18 eV to 0.58 eV is between 165 ° C. and 253 ° C. The recording material for optical recording media according to claim 1. Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される光記録材料の非晶相の複素屈折率の実数部nと虚数部kの値が波長630nmにおいて、3.815≦n≦4.3、1.891≦k≦2.5の範囲にあることを特徴とする請求項1記載の光記録媒体用記録材料。Tauc gap area by the near of 0.58eV from 0.18 eV A g In, Sb and Te and Ho real part n of the complex refractive index of the amorphous phase of the optical recording material that consists of N and the imaginary part k 2. The recording material for an optical recording medium according to claim 1 , wherein the value of is in the range of 3.815 ≦ n ≦ 4.3 and 1.891 ≦ k ≦ 2.5 at a wavelength of 630 nm . Taucギャップが0.18eVから0.58eVの範囲にあるAgとInとSbとTeとHoとNから構成される光記録材料に、Bi−Ge、Bi−Si、Gd−Gaの酸化物から選ばれた少なくとも一種類の化合物を1mol%から3mol%の範囲で添加されることを特徴とする請求項1記載の光記録媒体用記録材料。An optical recording material composed of Ag, In, Sb, Te, Ho, and N with a Tauc gap in the range of 0.18 eV to 0.58 eV is selected from oxides of Bi—Ge, Bi—Si, and Gd—Ga. 2. The recording material for an optical recording medium according to claim 1 , wherein at least one kind of compound is added in the range of 1 mol% to 3 mol% .
JP00221999A 1999-01-07 1999-01-07 Recording material for optical recording media Expired - Fee Related JP3763563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00221999A JP3763563B2 (en) 1999-01-07 1999-01-07 Recording material for optical recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00221999A JP3763563B2 (en) 1999-01-07 1999-01-07 Recording material for optical recording media

Publications (2)

Publication Number Publication Date
JP2000207771A JP2000207771A (en) 2000-07-28
JP3763563B2 true JP3763563B2 (en) 2006-04-05

Family

ID=11523258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00221999A Expired - Fee Related JP3763563B2 (en) 1999-01-07 1999-01-07 Recording material for optical recording media

Country Status (1)

Country Link
JP (1) JP3763563B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433647B (en) 2005-12-20 2008-05-28 Univ Southampton Phase change memory materials, devices and methods

Also Published As

Publication number Publication date
JP2000207771A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
JP2806274B2 (en) Optical information recording medium
JP2000298875A (en) Optical recording medium
JP2000182274A (en) Optical recording medium and optical recording method
JP2004220699A (en) Optical recording medium
US7532555B2 (en) Phase-change recording layer optical recording method
JPH11110822A (en) Optical recording medium and its recording and reproducing method
JP3763563B2 (en) Recording material for optical recording media
JP4093846B2 (en) Phase change optical recording medium
JP2002347341A (en) Medium for recording optical information and method for recording and erasing
JP4248327B2 (en) Phase change optical information recording medium
JP2001126315A (en) Optical information recording medium
JPH08180413A (en) Method and device for recording optical information to optical disk
JP2001067722A (en) Optical recording medium
JP3870702B2 (en) Optical information recording medium and recording / erasing method thereof
JP2947938B2 (en) Optical recording medium
JP3651824B2 (en) Optical recording medium
JP2003211849A (en) Optical recoding medium
JP4058204B2 (en) Optical recording medium
JP3654172B2 (en) Optical information recording medium and recording method
JP2006027034A (en) Optical recording medium
JPH0744892A (en) Optical information recording medium
JP2004303350A (en) Information recording medium, and method and device of recording information to the medium
JP2006031803A (en) Optical recording medium
JPH07141695A (en) Optical information recording medium
JP2003099983A (en) Optical recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees