JP2000206141A - Momentum sensor - Google Patents

Momentum sensor

Info

Publication number
JP2000206141A
JP2000206141A JP11011282A JP1128299A JP2000206141A JP 2000206141 A JP2000206141 A JP 2000206141A JP 11011282 A JP11011282 A JP 11011282A JP 1128299 A JP1128299 A JP 1128299A JP 2000206141 A JP2000206141 A JP 2000206141A
Authority
JP
Japan
Prior art keywords
shaped
frame
acceleration
sensor
additional mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP11011282A
Other languages
Japanese (ja)
Inventor
Yoshiro Tomikawa
義朗 富川
Norihiko Shiratori
典彦 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyota KK
Original Assignee
Miyota KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyota KK filed Critical Miyota KK
Priority to JP11011282A priority Critical patent/JP2000206141A/en
Publication of JP2000206141A publication Critical patent/JP2000206141A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an oscillating-body sensor to detect acceleration by changes in natural frequencies and a substantially single-body momentum sensor which applies the oscillating-body sensor and is capable of simultaneously measuring a plurality of motion elements such as acceleration in other directions, angular velocity, and the like. SOLUTION: The momentum sensor is provided with at least one acceleration sensor to detect changes in the oscillation frequency of a rod-shaped, plate- shaped, or frame-shaped oscillating body 1 with one end fixed and the other end connected to an additional mass 9 and to detect impressed acceleration. In addition, the oscillating bodies 1 of the above-mentioned constitution or tuning fork-type oscillating bodies are integrally arranged in the periphery of the common additional mass 9 to measure accelerations in different directions by changes in natural frequencies and to detect voltage generated by the Coriolis force to measure angular velocity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は加速度あるいは回転
角速度を測定することができる運動量センサに関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a momentum sensor capable of measuring acceleration or rotational angular velocity.

【0002】[0002]

【従来の技術】運動体の運動状況の計測制御において、
小型の電気機械的なセンサを計測対象となる物体に搭載
し、その振動状態の変化を知る技術が発達しつつある。
例えば加速度計としては質量の慣性力を圧電的あるいは
電磁的に検知する装置、角速度計としてはフリーフリー
バーや音叉等の振動体を特定の軸方向で回転させたとき
に発生するコリオリ力に基づく振動の変化を圧電的に検
知して角速度を知る装置が知られている。
2. Description of the Related Art In measurement control of a movement state of a moving body,
The technology of mounting a small electromechanical sensor on an object to be measured and knowing a change in the vibration state thereof is being developed.
For example, an accelerometer is a device that detects the inertial force of mass in a piezoelectric or electromagnetic manner, and an gyro is based on the Coriolis force generated when a vibrating body such as a free bar or tuning fork is rotated in a specific axial direction. 2. Description of the Related Art There is known an apparatus which detects a change in vibration by piezoelectrically detecting an angular velocity.

【0003】まず角速度センサとしては図9に示すL字
型の音叉型振動体が公知である。この原理を簡単に述べ
る。振動体は金属や圧電性結晶の板材より成り、台座等
に固定される基部500にて連結された2本のL字型の
振動脚100、200を持ち、側方に張り出した偏心質
量102、202を各自由端に備える。G1、G2はそ
の重心位置を示す。この質量の偏心構造により音叉板面
内の回転運動における角速度Ωが計測可能となってい
る。
First, as an angular velocity sensor, an L-shaped tuning fork type vibrator shown in FIG. 9 is known. This principle will be briefly described. The vibrating body is made of a metal or a piezoelectric crystal plate, has two L-shaped vibrating legs 100 and 200 connected by a base 500 fixed to a pedestal or the like, and has an eccentric mass 102 projecting sideways. 202 is provided at each free end. G1 and G2 indicate the position of the center of gravity. The eccentric structure of the mass makes it possible to measure the angular velocity Ω in the rotational movement in the plane of the tuning fork plate.

【0004】図示Ωが作用すると、両振動脚が開きつつ
あって偏心質量102、202がそれぞれU1、U2な
る速度(図示状態は両脚が開きつつある位相にある)を
持つとき、Ωに比例してコリオリ力FC1、FC2が発
生する。各コリオリ力は脚のバネ軸に対して偏心してい
るので、脚の断面にモーメントを生じ、その回転方向は
同じ向きである。
When the illustrated Ω acts, when both oscillating legs are opening and the eccentric masses 102 and 202 have velocities of U1 and U2, respectively (the illustrated state is in a phase where both legs are opening), it is proportional to Ω. Coriolis forces FC1 and FC2 are generated. Since each Coriolis force is eccentric with respect to the spring axis of the leg, a moment is generated in the cross section of the leg, and its rotation direction is the same.

【0005】103、203は振動脚のバネ部101、
201に接着した圧電素子(音叉が圧電材料製の場合は
電極膜群の組)であり、電気−機械変換器である。この
電極には駆動(励振)電圧、脚の振動変位に比例して圧
電的に発生する電圧、コリオリ力のモーメントに比例し
て発生する電圧の3者が重畳している。そこで両圧電素
子の呈示する電圧を差動的に増幅することによって前2
者は相殺され、コリオリ力に比例する電圧のみが取り出
され、振動ジャイロ装置が成立する。
[0005] 103, 203 is a spring portion 101 of the vibrating leg,
A piezoelectric element (a group of electrode films in the case where the tuning fork is made of a piezoelectric material) adhered to 201 is an electro-mechanical converter. A driving (excitation) voltage, a voltage generated piezoelectrically in proportion to the vibration displacement of the leg, and a voltage generated in proportion to the moment of the Coriolis force are superimposed on this electrode. Therefore, by amplifying the voltage presented by both piezoelectric elements differentially,
Are canceled and only the voltage proportional to the Coriolis force is taken out, and the vibrating gyroscope is established.

【0006】また従来の加速度センサは、印加される作
用力を電圧に変換する圧電素子を機械−電気変換器とし
て使用し、その一端を被測定機器に固定し、他端に付加
質量を固着して、この付加質量に作用する慣性力を直接
アナログ的に測定していた。この加速度センサは振動体
の応用ではないので、測定原理はコリオリ力の測定との
共通性はない。
Further, the conventional acceleration sensor uses a piezoelectric element for converting an applied acting force into a voltage as a mechanical-electrical converter, and has one end fixed to the device to be measured and the additional mass fixed to the other end. Thus, the inertial force acting on the additional mass was directly measured in an analog manner. Since this acceleration sensor is not an application of a vibrating body, the measurement principle has no commonality with the measurement of Coriolis force.

【0007】[0007]

【発明が解決しようとする課題】上記従来の加速度セン
サは、その感度あるいは精度が圧電材料の圧電特性に依
存する。これは圧電材料の製造、加工工程、電極の状
態、それらの温度や時間に対する依存性に関係して変化
やバラツキを生じる。加速度の変化をかようなアナログ
量に頼る計測ではなく、例えば周波数の変化などに変換
していわばデジタル量として計測できるようになれば、
測定結果に対する変動要因が少なくなる。また圧電定数
が加速度の感度に直接関係しなくなるので、圧電定数は
小さいが材質的に極めて安定な水晶等の単結晶材料など
をセンサに用いることができる。これらによって測定精
度の向上が期待できる。
The sensitivity or accuracy of the conventional acceleration sensor depends on the piezoelectric characteristics of the piezoelectric material. This causes changes and variations in relation to the production of the piezoelectric material, the processing steps, the state of the electrodes, and their dependence on temperature and time. If the change in acceleration can be measured as a digital amount if it is converted into a change in frequency, for example, instead of relying on such an analog amount,
Variation factors for measurement results are reduced. Further, since the piezoelectric constant has no direct relation to the sensitivity of acceleration, a single crystal material such as quartz, which has a small piezoelectric constant but is extremely stable in material, can be used for the sensor. These can be expected to improve measurement accuracy.

【0008】また、加速度と角速度はベクトル量である
から3次元の方向を考慮すると合計6種類ある。運動の
計測制御においてはこれらを全て計測する必要があるこ
とは稀で、大抵の運動体はその種類によって、6種のベ
クトル量のうち2〜3を知れば目的を達することが多
い。例えばカメラの手ぶれ制御では通常2軸の角速度検
出を行っている。しかるに従来実用の域に達している運
動量センサのほとんどは単項目のみが計測できるに過ぎ
ない。
Since acceleration and angular velocity are vector quantities, there are a total of six types in consideration of three-dimensional directions. In the measurement control of the movement, it is rarely necessary to measure all of them, and most of the moving bodies reach their purpose by knowing two or three of the six types of vector amounts depending on the type. For example, in camera shake control, two-axis angular velocity detection is usually performed. However, most of the exercise amount sensors which have reached the practical range conventionally can measure only a single item.

【0009】単項目のみが計測できるセンサを複数個集
めれば計測目的は達成できるが、計測装置自体は別個の
センサを必要とする。各センサはデリケートな構造を有
し、性能維持のためには安定性のある支持構造や、気密
容器に封入するなどの手段を必要とし、別個の調整を行
わなければならない。従って複数のセンサの搭載は、対
象となる運動物体の十分な小型化を妨げるし、コスト削
減の制限となることは避けられない。複数項目の計測が
可能な単体センサが実現すれば、これらの制約がなくな
り、大幅な技術的改善の可能性が生じることは明らかで
ある。
The purpose of measurement can be achieved by collecting a plurality of sensors capable of measuring only a single item, but the measuring apparatus itself requires a separate sensor. Each sensor has a delicate structure, requires a stable support structure and a means such as enclosing in an airtight container to maintain performance, and must be separately adjusted. Therefore, mounting a plurality of sensors hinders a sufficient reduction in the size of the target moving object, and inevitably limits the cost reduction. If a single sensor capable of measuring a plurality of items is realized, it is clear that these restrictions are eliminated and that there is a possibility of significant technical improvement.

【0010】本発明の第1の目的は、加速度を周波数変
化として検出できる加速度センサを提供することであ
る。また第2の目的は、複数の運動項目を検知すること
が可能で実用性が高い、単体のセンサを提供することで
ある。
[0010] A first object of the present invention is to provide an acceleration sensor capable of detecting acceleration as a frequency change. A second object is to provide a single sensor that can detect a plurality of exercise items and is highly practical.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明の運動量センサは以下の諸特徴の少なくとも
1つを備える。
In order to solve the above-mentioned problems, a momentum sensor according to the present invention has at least one of the following features.

【0012】(1)一端を固定し他端を付加質量に連結
した振動体の振動周波数の変化を検出して、印加される
加速度を検知する加速度センサを少なくとも1個備えた
こと。
(1) At least one acceleration sensor for detecting a change in vibration frequency of a vibrating body having one end fixed and the other end connected to an additional mass, and detecting an applied acceleration.

【0013】(2)共通の付加質量の両側にそれぞれ一
端を固着し、他端を固定部材に固着した2個の振動体の
振動周波数の変化を検出して、印加される加速度を検知
する加速度センサを備えたこと。
(2) An acceleration for detecting an applied acceleration by detecting a change in the vibration frequency of two vibrating bodies having one end fixed to both sides of a common additional mass and the other end fixed to a fixed member. Having a sensor.

【0014】(3)前記振動体は屈曲振動する枠状の振
動体であること。
(3) The vibrating body is a frame-shaped vibrating body that bends and vibrates.

【0015】(4)前記振動体は縦振動する棒状、板
状、あるいは枠状の振動体であること。
(4) The vibrating body is a bar-shaped, plate-shaped, or frame-shaped vibrating body that vibrates vertically.

【0016】(5)共通の付加質量の周囲に屈曲振動す
る枠状の振動体あるいは縦振動する棒状、板状、または
枠状の振動体を複数個放射状に配置して前記付加質量に
それらの一端を固着し、またそれらの他端を固定部材に
連結し、前記複数個の振動体の固有振動数の変化を検出
して、少なくとも二つの方向の加速度を検知すること。
(5) A plurality of frame-shaped vibrating bodies that flexurally vibrate or a plurality of bar-shaped, plate-shaped, or frame-shaped vibrating bodies that vibrate longitudinally are arranged radially around a common additional mass, and these are added to the additional mass. One end is fixed and the other end is connected to a fixing member, and a change in the natural frequency of the plurality of vibrators is detected to detect acceleration in at least two directions.

【0017】(6)共通の付加質量の両側あるいは周囲
に屈曲振動する枠状の振動体あるいは縦振動する棒状、
板状、または枠状の振動体を複数個放射状に配置して前
記付加質量にそれらの一端を固着し、またそれらの他端
を固定部材に連結し、前記複数個の振動体の固有振動数
の変化を検出し、あるいは枠状の振動体に作用するコリ
オリ力に基づいて生起する電圧を検出して、少なくとも
一つの方向の加速度と少なくとも一つの回転軸に関する
角速度を検知すること。
(6) A frame-shaped vibrating body that vibrates flexibly on both sides or around the common additional mass or a rod that vibrates longitudinally,
A plurality of plate-shaped or frame-shaped vibrators are radially arranged, one end of each of which is fixed to the additional mass, and the other end thereof is connected to a fixing member. To detect the acceleration in at least one direction and the angular velocity with respect to at least one axis of rotation by detecting a change in the rotational speed or detecting a voltage generated based on a Coriolis force acting on the frame-shaped vibrating body.

【0018】(7)少なくとも1組の音叉型の振動体の
基部を共通の付加質量とし、その両側あるいは周囲に屈
曲振動する枠状の振動体あるいは縦振動する棒状、板
状、または枠状の振動体の少なくとも2個の一端を連結
し、他端を固定部材に固定した構造を有し、前記音叉型
振動体に作用するコリオリ力に基づいて生起する電圧を
検出して少なくとも一つの回転軸に関する角速度を検知
すると共に、前記他の振動体の固有振動数の変化を検出
して少なくとも一つの方向の加速度を検知すること。
(7) At least one set of tuning fork-type vibrating bodies has a common additional mass, and a frame-shaped vibrating body that bends and vibrates on both sides or around it, or a bar, plate, or frame-shaped vibrating longitudinally. At least two ends of the vibrator are connected to each other, and the other end is fixed to a fixed member. At least one rotation shaft is detected by detecting a voltage generated based on a Coriolis force acting on the tuning-fork type vibrator. Detecting an angular velocity of the other vibrating body and detecting a change in a natural frequency of the other vibrating body to detect an acceleration in at least one direction.

【0019】[0019]

【発明の実施の形態】まず1次元(1方向)の加速度を
検出する加速度センサに関する本発明の実施の形態の例
を図5〜図7の各平面図に示す。これらは印加された加
速度を振動体の固有振動数の変化として検出するもので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an example of an embodiment of the present invention relating to an acceleration sensor for detecting one-dimensional (one direction) acceleration is shown in plan views of FIGS. These are to detect the applied acceleration as a change in the natural frequency of the vibrating body.

【0020】図5(a)は本発明の第1の実施の形態の
平面図であり、全体は金属あるいは圧電材料等の板材を
図示形状に打ち抜いて形成される。枠型振動体1の左端
は固定部材10と一体であり、その最左端は基台あるい
はセンサの容器等に固定される。右端は連結部13を経
由して付加質量9(板材の膨大形状部あるいはその部分
に更に高比重の金属を厚メッキしたり錘部材を接着して
質量を増したもの)に固着されている。図示矢印G方向
の加速度成分を検出する。
FIG. 5A is a plan view of the first embodiment of the present invention, and the whole is formed by punching a plate material such as a metal or a piezoelectric material into an illustrated shape. The left end of the frame-shaped vibrating body 1 is integral with the fixing member 10, and the leftmost end thereof is fixed to a base or a sensor container. The right end is fixed to the additional mass 9 (the mass is increased by thickly plating a metal having a higher specific gravity on the enlarged portion of the plate material or the portion thereof or attaching a weight member thereto) via the connecting portion 13. The acceleration component in the direction indicated by arrow G is detected.

【0021】本例でセンサの中核となるのは両端を連結
された振動脚11、12より成る枠型の振動体1であ
る。両者のバネ軸は平行であるが、図中細い実線で示し
たように、枠の長手方向の中心軸(図示せず)の両側に
対称的に開閉するモードの屈曲の自由振動を励振されて
いる。この自由振動状態の枠の長手方向両端に引張力あ
るいは圧縮力を印加すると、力に応じて振動数が変化す
るので、その変化分を知れば(例えば他の基準周波数と
比較する等の手段で)、荷重の大きさが知られる。この
原理は既に電子秤で実用化されている。このセンサの全
体がG方向に加速されるときに付加質量9に発生する慣
性力が枠型振動体の周波数変化として検出される。
In the present embodiment, the core of the sensor is a frame-shaped vibrating body 1 composed of vibrating legs 11 and 12 connected at both ends. Although both spring axes are parallel to each other, as shown by a thin solid line in the figure, free vibration of bending in a mode of opening and closing symmetrically on both sides of a central axis (not shown) in the longitudinal direction of the frame is excited. I have. When a tensile force or a compressive force is applied to both ends in the longitudinal direction of the frame in the free vibration state, the frequency changes in accordance with the force, and if the change is known (for example, by comparing with another reference frequency or the like) ), The magnitude of the load is known. This principle has already been put to practical use in electronic balances. The inertial force generated in the additional mass 9 when the entire sensor is accelerated in the G direction is detected as a frequency change of the frame type vibrator.

【0022】固定部材10の周囲は外枠状をなし、付加
質量9を支えると共に、その左右方向への直線運動のガ
イド部材を兼用している。くびれ部30および可撓部4
0は付加質量の直線運動による固定部材10の変形抵抗
を減ずるために設けてある。また図5(b)はその直線
ガイド機構部分の変形例であり、可撓部の他の形状を示
している。
The periphery of the fixing member 10 has an outer frame shape, supports the additional mass 9, and also serves as a guide member for linear movement in the left-right direction. Constricted part 30 and flexible part 4
0 is provided to reduce the deformation resistance of the fixed member 10 due to the linear movement of the additional mass. FIG. 5B shows a modification of the linear guide mechanism, and shows another shape of the flexible portion.

【0023】図5(c)は本発明の第2の実施の形態を
示す平面図である。本例では、振動体1として、長手方
向に縦振動を行う板状(棒状と言うこともできる)の振
動体を用いている。振動体1は一端が断面変化を設けて
振動体部分と区画をつけた固定部10を介して固定さ
れ、他端が連結部13を介して付加質量9に固着されて
いる。付加質量9には図5(a)、(b)に示したくび
れ部30や可撓部40等の直線運動のガイド部材を設け
てもよいが、本例では図示を省略している。なお振動体
1と固定部10あるいは連結部13との断面変化の大小
の設け方は図示と逆であることもあり得る。
FIG. 5C is a plan view showing a second embodiment of the present invention. In this example, a plate-shaped (also referred to as a bar-shaped) vibrator that performs longitudinal vibration in the longitudinal direction is used as the vibrator 1. The vibrating body 1 is fixed at one end via a fixing portion 10 having a section change so as to form a section with the vibrating body portion, and the other end is fixed to the additional mass 9 via a connecting portion 13. The additional mass 9 may be provided with a linear motion guide member such as the constricted portion 30 and the flexible portion 40 shown in FIGS. 5A and 5B, but is not shown in this example. It should be noted that the way of providing a large or small change in cross section between the vibrating body 1 and the fixed portion 10 or the connecting portion 13 may be reversed from that shown in the figure.

【0024】本センサが検出する加速度の方向は図示の
G方向、またはその逆方向であり、振動体1の固有振動
数の変化量およびその符号は、印加される加速度の大き
さと向き(方向)とに依存する。また振動体1の縦振動
の振動モードは各種の次数のものが採用可能であり、実
験的に最適の次数が選ばれる。各次数によって、付加質
量9の固有振動数への関与の程度はもちろん異なる。ま
た振動体を圧電的に励振する場合、一般に屈曲振動より
も縦振動の方が電極構造は簡単になりうる。なお枠型の
振動体を、2本の棒状(板状)の縦振動体が平行に組み
合わされたものとみなして、図5(a)、(b)に示し
たセンサ振動体をほとんどそのままの形状で、両縦振動
体が同位相で励振される複合型縦振動体とすることもで
きる。
The direction of the acceleration detected by the sensor is the G direction shown in the drawing or the opposite direction. The amount of change in the natural frequency of the vibrating body 1 and the sign thereof are the magnitude and direction (direction) of the applied acceleration. And depends on. Further, the vibration mode of the longitudinal vibration of the vibrating body 1 can be of various orders, and an optimum order is experimentally selected. The degree of contribution of the additional mass 9 to the natural frequency differs depending on the order. When the vibrating body is excited piezoelectrically, the electrode structure can be generally simpler in longitudinal vibration than in bending vibration. Note that the frame-shaped vibrator is regarded as a combination of two rod-shaped (plate-shaped) vertical vibrators, and the sensor vibrator shown in FIGS. 5A and 5B is almost intact. The shape may be a composite longitudinal vibrator in which both longitudinal vibrators are excited in the same phase.

【0025】図6は本発明の第3の実施の形態である加
速度センサの平面図を示す。前述の実施の形態と対応す
る部材には同じ記号を付し改めて説明しない。本例はも
う1つの枠型の振動体2(振動脚21、22、連結部2
3を含む)が付加質量9に対称的に固着されている。ま
た両枠型振動体は共通の固定部材10と一体化されてお
り、固定部材10は図示しない基台に固定されている
(斜線部)。固定部材10がG方向に加速度運動すると
き付加質量9に発生する逆方向の慣性力mGは、枠型の
振動体1および2の一方に引張り力、他方に圧縮力とし
て作用し、それぞれに逆方向の周波数変化をもたらすの
で両周波数の差をとれば、基準振動源がなくても高感度
で慣性力に従って長軸方向の加速度が計測できる。
FIG. 6 is a plan view of an acceleration sensor according to a third embodiment of the present invention. Members corresponding to those in the above-described embodiment are denoted by the same reference numerals, and will not be described again. In this example, another frame-shaped vibrating body 2 (vibrating legs 21 and 22, connecting portion 2)
3 are symmetrically fixed to the additional mass 9. Further, both frame type vibrators are integrated with a common fixing member 10, and the fixing member 10 is fixed to a base (not shown) (shaded portion). The reverse inertial force mG generated in the additional mass 9 when the fixed member 10 accelerates in the G direction acts on one of the frame-shaped vibrators 1 and 2 as a tensile force and acts on the other as a compressive force. Since the frequency changes in the direction, if the difference between the two frequencies is calculated, the acceleration in the long axis direction can be measured in accordance with the inertia force with high sensitivity even without the reference vibration source.

【0026】また改めて図示しないが、この第3の実施
の形態における枠型の振動体1および2を、上記の第2
の実施の形態にて示したような縦振動型の振動体で置き
換えて、即ち1個の付加質量の両側にそれぞれ縦振動を
行う振動体を連結し、これら振動体の両外側を固定し
て、新たな加速度センサである第4の実施の形態とする
こともできる。
Although not shown again, the frame-shaped vibrators 1 and 2 in the third embodiment are replaced with the second vibrators described above.
In this case, the vibration bodies of the longitudinal vibration type as shown in the embodiment are replaced, that is, the vibration bodies that perform longitudinal vibration are connected to both sides of one additional mass, and both outer sides of these vibration bodies are fixed. The fourth embodiment may be a new acceleration sensor.

【0027】また図7は第5の実施の形態の加速度セン
サの平面図であり、付加質量9の代りに枠型の振動体1
自身の質量mによって枠型の振動体に慣性力を印加しよ
うとする構成である。また本実施の形態における振動体
を、棒状、板状、あるいは枠状等の縦振動体で置換する
こともできる。
FIG. 7 is a plan view of the acceleration sensor according to the fifth embodiment.
In this configuration, an inertial force is applied to the frame-shaped vibrating body by its own mass m. Further, the vibrating body in the present embodiment can be replaced by a vertical vibrating body such as a bar, a plate, or a frame.

【0028】次に、複数の運動項目を検知することが可
能なように、しかも単体で構成した本発明のセンサに関
する種々の実施の形態を、図1〜図4および図8によっ
て説明する。
Next, various embodiments relating to the sensor of the present invention which can be configured to be able to detect a plurality of exercise items, and which are configured as a single unit, will be described with reference to FIGS.

【0029】図1は本発明の第6の実施の形態である2
次元(あるいは2軸)の加速度センサを示す平面図であ
る。役割をほぼ等しくする部材には他の例と共通の記号
を新たな説明なしで付してある。本例においては4個の
枠型の振動体1〜4を有する。それらはほぼ同一形状を
有し、1枚の板状素材から一体形成されている。11、
12、21、22、31、32、41、42はそれぞれ
振動脚、13、23、33、43は連結部、9は付加質
量で、4個の枠型振動体はその連結部が中心の付加質量
に連結されてその周囲に90°間隔で放射状に配置さ
れ、それらの外端は固定部材10と一体になっている。
FIG. 1 shows a sixth embodiment of the present invention.
It is a top view which shows a dimensional (or two-axis) acceleration sensor. Members having substantially the same functions are denoted by the same reference numerals as those of the other examples without further explanation. In this example, there are four frame-shaped vibrators 1 to 4. They have substantially the same shape and are integrally formed from one plate-shaped material. 11,
12, 21, 22, 31, 32, 41, and 42 are vibrating legs, 13, 23, 33, and 43 are connecting parts, and 9 is an additional mass. It is connected to the mass and radially arranged around it at 90 ° intervals, the outer ends of which are integral with the fixing member 10.

【0030】4個の枠型の振動体はそれぞれ図示しない
電気−機械変換器と発振回路とによって自励振動してい
る。加速度の検出は、図の上下方向の加速度成分につい
ては付加質量9の慣性力による枠型振動体1と3との周
波数変化を、水平方向の加速度成分は枠型の振動体2と
4との周波数変化を例えば第3の実施の形態(図6)で
述べたように測定して行う。また両成分の大きさと符号
の比較により、センサ平面内で実際に作用している任意
方向の加速度Gθの未知の方向と絶対値を知ることがで
きる。各枠型振動体の励振周波数は、相互間の引き込み
現象を避けねばならない場合、故意にずらして設定する
ことがある。また振動体1〜4を棒状、板状、枠型の縦
振動体に置換して新たな実施の形態とすることができる
ことも前述の通りである。
Each of the four frame-shaped vibrators is self-excited by an electromechanical converter (not shown) and an oscillation circuit. The acceleration is detected by detecting the frequency change between the frame-shaped vibrators 1 and 3 due to the inertial force of the additional mass 9 for the vertical acceleration component in the drawing, and the frequency change between the frame-shaped vibrators 2 and 4 due to the horizontal acceleration component. The frequency change is measured and measured, for example, as described in the third embodiment (FIG. 6). Also, by comparing the magnitude and sign of both components, it is possible to know the unknown direction and absolute value of the acceleration Gθ in any direction that is actually acting in the sensor plane. The excitation frequency of each frame-type vibrator may be deliberately shifted when it is necessary to avoid the pull-in phenomenon between them. As described above, the vibrators 1 to 4 can be replaced with bar-, plate-, and frame-type vertical vibrators to provide a new embodiment.

【0031】次に本発明の第7の実施の形態について述
べる。センサの概略形状は図1と同じなので本例の図示
は省略する。両者の差は、第6の実施の形態においては
周波数の差により検出したが、第7の実施の形態では例
えば枠型振動体2と3とを自励振動させず、付加質量9
からの慣性力により電気−機械変換器(自励振動させる
第1の実施の形態の場合とは必ずしも同構造ではない)
に生起される電圧、電荷、電流、あるいはそれらの変化
を検出するようにし、任意方向のGθをより容易に判別
することを意図している。
Next, a seventh embodiment of the present invention will be described. Since the schematic shape of the sensor is the same as that of FIG. 1, illustration of this example is omitted. The difference between the two is detected by the frequency difference in the sixth embodiment. However, in the seventh embodiment, for example, the frame type vibrators 2 and 3 are not self-excited and the additional mass 9
-Mechanical converter by inertia force from the first embodiment (not necessarily the same structure as in the first embodiment in which self-excited vibration is applied)
This is intended to detect a voltage, a charge, a current, or a change in the voltage, a charge, or a current generated therein, and to easily determine Gθ in an arbitrary direction.

【0032】図2はいずれも他の2次元加速度センサの
平面図であり、(a)は本発明の第8の実施の形態、
(b)は本発明の第9の実施の形態を示す。これらのよ
うに、振動体の数を3個、(6個:図示せず)、8個等
と多脚化した構成によって、Gθをより直接に、あるい
はくわしく検出できるように構成することが可能とな
る。これら振動体を既に度々述べたように、縦振動を行
うものに置換することもできる。
FIGS. 2A and 2B are plan views of other two-dimensional acceleration sensors, and FIG. 2A shows an eighth embodiment of the present invention.
(B) shows a ninth embodiment of the present invention. As described above, the configuration in which the number of vibrators is three, six (not shown), eight, and the like can be configured so that Gθ can be detected more directly or in detail. Becomes These vibrators can be replaced by those that perform longitudinal vibration, as has already been often described.

【0033】図3(a)は本発明の第10の実施の形態
を示す平面図である。本センサは角速度も測定可能であ
る。角速度測定の原理は以下の通りである。例えば枠型
の振動体1と3とを同一周波数かつ逆相(一方が拡張の
とき他方が縮幅)で励振すると、付加質量9は図の上下
方向に振動する。そこでセンサ面内の回転運動(回転軸
は図面に垂直)が加わると、水平方向にコリオリ力が発
生して付加質量9に水平方向の振動が誘起される。枠型
の振動体2と4とをセンサとしてこの振動を検出すれば
角速度Ωを知ることができる。
FIG. 3A is a plan view showing a tenth embodiment of the present invention. This sensor can also measure angular velocity. The principle of the angular velocity measurement is as follows. For example, when the frame-shaped vibrators 1 and 3 are excited at the same frequency and in opposite phases (when one is expanded, the other is reduced in width), the additional mass 9 vibrates in the vertical direction in the figure. Therefore, when a rotational motion in the sensor plane (the rotation axis is perpendicular to the drawing) is applied, a Coriolis force is generated in the horizontal direction, and horizontal vibration is induced in the additional mass 9. If this vibration is detected using the frame-shaped vibrators 2 and 4 as sensors, the angular velocity Ω can be known.

【0034】本例においては、コリオリ力センサの駆動
と検出の両方に枠型の振動体(両持ちの音叉とみなすこ
とができる)を使用しているので、センサの支持の影響
を小さくできる長所がある。ピックアップとなる2つの
対向する枠型振動体、あるいはその各振動脚に設けた電
気−機械変換器は適宜差動的に接続してノイズを減じ感
度を上げることができる。また枠型の振動体1、3によ
る垂直振動と2、4による横振動とをほぼ等しくし、同
形縮退モードを利用することができる。
In this embodiment, since a frame-type vibrator (which can be regarded as a double-ended tuning fork) is used for both driving and detecting the Coriolis force sensor, the advantage of supporting the sensor can be reduced. There is. The two opposing frame-type vibrators serving as pickups, or the electro-mechanical converters provided on each vibrating leg thereof can be differentially connected as appropriate to reduce noise and increase sensitivity. In addition, the vertical vibration of the frame-shaped vibrators 1 and 3 and the lateral vibration of the frame-shaped vibrators 2 and 4 are made substantially equal to each other, so that the isomorphous mode can be used.

【0035】また駆動素子である枠型の振動体1、3の
周波数変化を用いて、垂直方向の加速度も同時に計測で
きる。即ち1次元の加速度と1次元の角速度が計測でき
る。あるいは駆動・検出動作を時分割的に短いサイクル
で繰り返し交替で行わせることにより、2次元の加速度
計測と1次元の角速度の計測を同じセンサで行うことも
可能である。すなわち1つの平面内でのあらゆる並進お
よび回転運動の情報が得られるセンサが実現できる。
Further, the vertical acceleration can be simultaneously measured by using the frequency change of the frame-shaped vibrators 1 and 3 as the driving elements. That is, one-dimensional acceleration and one-dimensional angular velocity can be measured. Alternatively, two-dimensional acceleration measurement and one-dimensional angular velocity measurement can be performed by the same sensor by repeatedly performing the drive / detection operation in a short cycle in a time-division manner. That is, it is possible to realize a sensor capable of obtaining information on all translational and rotational movements in one plane.

【0036】図3(b)は本発明の第11の実施の形態
を示す平面図で、同一平面内の回転と2次元加速度を計
測する多機能センサの例である。角速度の検出は枠型の
振動体1で付加質量9を上下方向に駆動し、コリオリ力
による水平方向の振動を枠型振動体4をピックアップと
して検出する。また2次元の加速度を枠型の振動体2と
3との自励発振周波数の変化量を用いて検出する。
FIG. 3B is a plan view showing an eleventh embodiment of the present invention, which is an example of a multifunctional sensor for measuring rotation and two-dimensional acceleration in the same plane. To detect the angular velocity, the frame-type vibrator 1 drives the additional mass 9 in the vertical direction, and detects horizontal vibration caused by Coriolis force using the frame-type vibrator 4 as a pickup. The two-dimensional acceleration is detected by using the amount of change in the self-excited oscillation frequency of the frame-shaped vibrators 2 and 3.

【0037】このとき枠型の振動体1は両持ち音叉とし
ての最低周波数のモードで励振するが、枠型の振動体2
と3とは細い実線で示したように高次のモードで励振
し、角速度の情報と加速度の情報を周波数フィルタで分
離できるように構成する。なお情報弁別のため異なる周
波数を設定する方法は、このような異なるモードを用い
る他、枠型の振動体の寸法を個別に変えて、同じ振動モ
ードを用いて両持ち音叉の固有振動数を異ならせてもよ
い。
At this time, the frame-shaped vibrating body 1 is excited in the mode of the lowest frequency as a double-ended tuning fork.
And 3 are configured to be excited in a higher-order mode as shown by a thin solid line, and to be able to separate angular velocity information and acceleration information by a frequency filter. The method of setting different frequencies for information discrimination is to use such different modes, or to change the dimensions of the frame-shaped vibrator individually and to use the same vibration mode to change the natural frequency of the double-ended tuning fork. You may let it.

【0038】なおこれらの実施の形態のセンサのように
付加質量9の2次元的運動を利用する計測の場合、枠型
の振動体の連結部13、23、33、43等はできるだ
け細く、かつ短くすることが望ましい。また付加質量は
十分大きいことが望ましいので追加の質量を与える部材
を接着してもよい。
In the case of the measurement using the two-dimensional movement of the additional mass 9 as in the sensors of these embodiments, the connecting portions 13, 23, 33, 43, etc. of the frame-shaped vibrating body are as thin as possible and It is desirable to shorten it. Further, since it is desirable that the additional mass is sufficiently large, a member giving the additional mass may be bonded.

【0039】図4は本発明の第12の実施の形態を示す
多機能センサの平面図である。本センサは8個の枠型の
振動体1〜8を共通付加質量9のまわりに等間隔に有す
る。90°間隔で配置された枠型の振動体1、3、5、
7の群はほぼ等しい固有振動数を有して駆動機能と検出
機能を持ち前記実施例の如くにして例えば回転角速度を
検出する。また他の枠型の振動体2、4、6、8の群は
前群と異なる固有振動数の駆動・検出を行い、角速度情
報と分離しつつ2次元加速度を検出する。
FIG. 4 is a plan view of a multifunctional sensor according to a twelfth embodiment of the present invention. This sensor has eight frame-shaped vibrators 1 to 8 at equal intervals around a common additional mass 9. Frame-shaped vibrators 1, 3, 5, arranged at 90 ° intervals
The group 7 has substantially the same natural frequency, has a driving function and a detecting function, and detects, for example, a rotational angular velocity as in the above embodiment. The other group of the frame-shaped vibrators 2, 4, 6, and 8 drives and detects a natural frequency different from that of the preceding group, and detects a two-dimensional acceleration while being separated from angular velocity information.

【0040】図8(a)は本発明の第13の実施の形態
を示す多機能センサの平面図、(b)はその変形例の平
面図であり、板面内の回転と図面横方向の加速度を検出
する。(a)図において、本例は枠型の振動体1、2と
L字型の振動脚100、200、300、400より成
る2対のL字型音叉を組み合わせた多機能センサであ
る。自励発振する枠型の振動体1、2は内端がL字型音
叉の基部500に接続され、外端が枠状部材としては図
示していないが固定部材に固定される。基部500とL
字型音叉全体が2つの枠型の振動体の共通付加質量とな
り、加速度検出を行う。角速度検出は従来例(図9)同
様L字型音叉の各対を用いて行う。振動体1、2を縦振
動型の振動体に置換することも可能である。
FIG. 8A is a plan view of a multifunctional sensor showing a thirteenth embodiment of the present invention, and FIG. 8B is a plan view of a modified example thereof. Detect acceleration. (A) In this figure, the present example is a multifunctional sensor in which frame-type vibrators 1 and 2 and two pairs of L-shaped tuning forks composed of L-shaped vibrating legs 100, 200, 300 and 400 are combined. The frame-shaped vibrating bodies 1 and 2 which oscillate self-oscillate have an inner end connected to a base 500 of an L-shaped tuning fork and an outer end fixed to a fixed member (not shown) as a frame-shaped member. Base 500 and L
The entire character-shaped tuning fork serves as a common additional mass of the two frame-shaped vibrators, and acceleration is detected. Angular velocity detection is performed using each pair of L-shaped tuning forks as in the conventional example (FIG. 9). It is also possible to replace the vibrators 1 and 2 with a longitudinal vibration type vibrator.

【0041】図8(a)のセンサにおいては4つのL字
型振動脚のバネ部101、201、301、401はセ
ンサの水平な対称軸に関して、細い実線でバネ軸と共に
曲線で示したように同位相で開閉するモードで振動させ
る。そのとき角速度Ωによって発生するコリオリ力FC
1とFC4、FC2とFC3は同方向となり、センサ全
体にコリオリ力の作るモーメントが残る。
In the sensor of FIG. 8A, the spring portions 101, 201, 301, and 401 of the four L-shaped vibrating legs are shown by a thin solid line and a curve together with the spring axis with respect to the horizontal symmetry axis of the sensor. Vibrates in a mode that opens and closes in phase. Coriolis force FC generated by angular velocity Ω
1 and FC4 and FC2 and FC3 are in the same direction, and the moment created by the Coriolis force remains in the entire sensor.

【0042】図8(b)のセンサは前図の第13の実施
の形態の変形例である。形状の変化はないが、図示しな
い電極接続あるいは回路接続を変えて左右のL字型音叉
の屈曲振動の位相を逆相としてある。このときコリオリ
力FC1とFC4、FC2とFC3は互いに逆向きとな
り、センサ全体ではコリオリ力は打ち消されて完全に力
およびモーメントのバランスが取れたセンサが実現でき
る。
The sensor shown in FIG. 8B is a modification of the thirteenth embodiment shown in the previous figure. Although the shape does not change, the phases of the bending vibrations of the left and right L-shaped tuning forks are reversed by changing the electrode connection or circuit connection (not shown). At this time, the Coriolis forces FC1 and FC4 and the FC2 and FC3 are opposite to each other, and the Coriolis force is canceled in the entire sensor, and a sensor in which the force and the moment are perfectly balanced can be realized.

【0043】以上種々の実施の形態を例示したが、本発
明の技術的範囲はもちろんこれらのみに限定されない。
例えば各実施の形態の特徴の取捨選択あるいは組み合わ
せ、真直脚音叉の採用、可能な場合の振動体の種類や形
状変更(枠型音叉、縦振動体以外にも、厚みすべり振動
体や輪郭すべり振動体等も採用し得るであろう)、配置
の変更、部分形状の変更(固定部材の形状や細部形状の
R付け等の最適化など)、センサ材料の選択(恒弾性金
属材料、水晶その他種々の単結晶材料、磁器材料、高分
子材料などの使用)、支持構造、固定構造、センサ容器
等のの変更、電気−機械変換器の構造、検出する加速度
や角速度の方向の選択、など多くの可能性を含んでい
る。
Although various embodiments have been described above, the technical scope of the present invention is, of course, not limited to these.
For example, selection or combination of the features of the embodiments, adoption of straight leg tuning forks, change of the type and shape of the vibrating body when possible (in addition to frame type tuning forks and longitudinal vibrating bodies, thickness shear vibrating bodies and contour shear vibrations) Body, etc.), change of arrangement, change of partial shape (optimization of R shape of fixed member shape and detailed shape, etc.), selection of sensor material (constant elastic metal material, quartz and other various types) Use of single crystal material, porcelain material, polymer material, etc.), change of support structure, fixed structure, sensor container, etc., structure of electro-mechanical converter, selection of direction of acceleration and angular velocity to be detected, etc. Includes possibilities.

【0044】[0044]

【発明の効果】本発明のセンサ(請求項1〜4)は加速
度を周波数変化として測定するので、精密な測定が容易
になると共に、センサ振動体を構成する材質の電気的性
質が感度に及ぼす影響を減じることができたので、その
こと自体、あるいは材質の選択の自由度を増すことがで
きることによって、測定の精度や安定度を改善しうる。
The sensor according to the present invention (claims 1 to 4) measures the acceleration as a frequency change, so that accurate measurement is facilitated and the electrical properties of the material constituting the sensor vibrator affect the sensitivity. Since the influence can be reduced, the measurement accuracy and stability can be improved by increasing the degree of freedom in selecting the material itself or the material.

【0045】また本発明においては共通の付加質量の周
囲に複数の振動体を配した構造により(請求項5〜
7)、複数項目の運動項目を検知することが可能な単体
のセンサが得られ、応用範囲が拡大すると共に、センサ
自体およびセンサを搭載する対象機器の小型化やコスト
の低減を達成できる効果がある。
Further, in the present invention, a structure in which a plurality of vibrators are arranged around a common additional mass (claim 5 to claim 5).
7) A single sensor capable of detecting a plurality of exercise items can be obtained, and the range of application can be expanded, and the effect of achieving downsizing and cost reduction of the sensor itself and a target device on which the sensor is mounted can be achieved. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第6の実施の形態である2次元加速度
センサの平面図である。
FIG. 1 is a plan view of a two-dimensional acceleration sensor according to a sixth embodiment of the present invention.

【図2】(a)は本発明の第8の実施の形態である2次
元加速度センサの平面図、(b)は本発明の第9の実施
の形態である2次元加速度センサの平面図である。
FIG. 2A is a plan view of a two-dimensional acceleration sensor according to an eighth embodiment of the present invention, and FIG. 2B is a plan view of a two-dimensional acceleration sensor according to a ninth embodiment of the present invention. is there.

【図3】(a)は本発明の第10の実施の形態である多
機能センサの平面図、(b)は本発明の第11の実施の
形態である多機能センサの平面図である。
FIG. 3A is a plan view of a multifunctional sensor according to a tenth embodiment of the present invention, and FIG. 3B is a plan view of a multifunctional sensor according to an eleventh embodiment of the present invention.

【図4】本発明の第12の実施の形態である多機能セン
サの平面図である。
FIG. 4 is a plan view of a multifunction sensor according to a twelfth embodiment of the present invention.

【図5】(a)は本発明の第1の実施の形態である加速
度センサを示す平面図、(b)はその変形例の要部平面
図、(c)は本発明の第2の実施の形態である加速度セ
ンサの平面図である。
5A is a plan view showing an acceleration sensor according to a first embodiment of the present invention, FIG. 5B is a plan view of a main part of a modified example thereof, and FIG. 5C is a second embodiment of the present invention; It is a top view of the acceleration sensor which is a form.

【図6】本発明の第3の実施の形態である加速度センサ
を示す平面図である。
FIG. 6 is a plan view showing an acceleration sensor according to a third embodiment of the present invention.

【図7】本発明の第5の実施の形態である加速度センサ
を示す平面図である。
FIG. 7 is a plan view showing an acceleration sensor according to a fifth embodiment of the present invention.

【図8】(a)は本発明の第13の実施の形態である多
機能センサの作動平面図、(b)はその変形例の作動平
面図である。
FIG. 8A is an operation plan view of a multifunction sensor according to a thirteenth embodiment of the present invention, and FIG. 8B is an operation plan view of a modification thereof.

【図9】公知の角速度センサであるL字型音叉の平面図
である。
FIG. 9 is a plan view of an L-shaped tuning fork that is a known angular velocity sensor.

【符号の説明】[Explanation of symbols]

1、2、3、4、5、6、7、8 振動体 9 付加質量 10 固定部材 20 取付穴 30 くびれ部 40 可撓部 11、12、21、22、31、32、41、42 振
動脚 13、23、33、43 連結部 100、200、300、400 L字型振動脚 101、201、301、401 バネ部 102、202 偏心質量 103、203 圧電素子 500 基部 FC1、FC2、FC3、FC4 コリオリ力 G 加速度 m 付加質量 Gθ 任意方向の加速度 G1、G2 偏心質量の重心位置 U1、U2 速度 Ω 角速度
1, 2, 3, 4, 5, 6, 7, 8 Vibrating body 9 Additional mass 10 Fixing member 20 Mounting hole 30 Constricted part 40 Flexible part 11, 12, 21, 22, 31, 32, 41, 42 Vibrating leg 13, 23, 33, 43 Connecting part 100, 200, 300, 400 L-shaped vibrating leg 101, 201, 301, 401 Spring part 102, 202 Eccentric mass 103, 203 Piezoelectric element 500 Base FC1, FC2, FC3, FC4 Coriolis Force G Acceleration m Additional mass Gθ Acceleration in any direction G1, G2 Center of gravity position of eccentric mass U1, U2 Speed Ω Angular speed

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01P 15/00 G01P 15/00 K ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01P 15/00 G01P 15/00 K

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一端を固定し他端を付加質量に連結した
振動体の振動周波数の変化を検出して、印加される加速
度を検知する加速度センサを少なくとも1個備えたこと
を特徴とする運動量センサ。
1. A momentum comprising at least one acceleration sensor for detecting a change in a vibration frequency of a vibrating body having one end fixed and the other end connected to an additional mass and detecting an applied acceleration. Sensor.
【請求項2】 共通の付加質量の両側にそれぞれ一端を
固着し、他端を固定部材に固着した2個の振動体の振動
周波数の変化を検出して、印加される加速度を検知する
加速度センサを備えたことを特徴とする運動量センサ。
2. An acceleration sensor for detecting an applied acceleration by detecting a change in the vibration frequency of two vibrators having one end fixed to both sides of a common additional mass and the other end fixed to a fixing member. A momentum sensor comprising:
【請求項3】 前記振動体は屈曲振動する枠状の振動体
であることを特徴とする請求項1または2の運動量セン
サ。
3. The momentum sensor according to claim 1, wherein the vibrating body is a frame-shaped vibrating body that bends and vibrates.
【請求項4】 前記振動体は縦振動する棒状、板状、あ
るいは枠状の振動体であることを特徴とする請求項1ま
たは2の運動量センサ。
4. The momentum sensor according to claim 1, wherein the vibrating body is a bar-shaped, plate-shaped, or frame-shaped vibrating body that vibrates longitudinally.
【請求項5】 共通の付加質量の周囲に屈曲振動する枠
状の振動体あるいは縦振動する棒状、板状、または枠状
の振動体を複数個放射状に配置して前記付加質量にそれ
らの一端を固着し、またそれらの他端を固定部材に連結
し、前記複数個の振動体の固有振動数の変化を検出し
て、少なくとも二つの方向の加速度を検知することを特
徴とする運動量センサ。
5. A frame-shaped vibrating body that flexurally vibrates or a plurality of bar-shaped, plate-shaped, or frame-shaped vibrating bodies that vibrate around a common additional mass are radially arranged, and one end of the vibrator is arranged on the additional mass. A momentum sensor for detecting the change in the natural frequency of the plurality of vibrators and detecting acceleration in at least two directions.
【請求項6】 共通の付加質量の両側あるいは周囲に屈
曲振動する枠状の振動体あるいは縦振動する棒状、板
状、または枠状の振動体を複数個放射状に配置して前記
付加質量にそれらの一端を固着し、またそれらの他端を
固定部材に連結し、前記複数個の振動体の固有振動数の
変化を検出し、あるいは枠状の振動体に作用するコリオ
リ力に基づいて生起する電圧を検出して、少なくとも一
つの方向の加速度と少なくとも一つの回転軸に関する角
速度を検知することを特徴とする運動量センサ。
6. A frame-shaped vibrating body that bends and vibrates on both sides or around a common additional mass or a plurality of bar-shaped, plate-like, or frame-shaped vibrating bodies that vibrate vertically are radially arranged on the additional mass. Are fixed to each other, and the other ends thereof are connected to a fixing member to detect a change in the natural frequency of the plurality of vibrators, or to occur based on Coriolis force acting on the frame-shaped vibrator. A momentum sensor for detecting a voltage to detect an acceleration in at least one direction and an angular velocity about at least one rotation axis.
【請求項7】 少なくとも1組の音叉型の振動体の基部
を共通の付加質量とし、その両側あるいは周囲に屈曲振
動する枠状の振動体あるいは縦振動する棒状、板状、ま
たは枠状の振動体の少なくとも2個の一端を連結し、他
端を固定部材に固定した構造を有し、前記音叉型振動体
に作用するコリオリ力に基づいて生起する電圧を検出し
て少なくとも一つの回転軸に関する角速度を検知すると
共に、前記他の振動体の固有振動数の変化を検出して少
なくとも一つの方向の加速度を検知することを特徴とす
る運動量センサ。
7. A frame-shaped vibrator that bends and vibrates on both sides or around it, or a rod-shaped, plate-shaped, or frame-shaped vibrator that vibrates flexibly on both sides or around the base of at least one set of tuning-fork vibrators. It has a structure in which at least two ends of a body are connected and the other end is fixed to a fixing member, and a voltage generated based on a Coriolis force acting on the tuning-fork type vibrator is detected to detect at least one rotation axis. A momentum sensor for detecting an angular velocity and detecting a change in a natural frequency of the another vibrating body to detect acceleration in at least one direction.
JP11011282A 1999-01-20 1999-01-20 Momentum sensor Ceased JP2000206141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011282A JP2000206141A (en) 1999-01-20 1999-01-20 Momentum sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011282A JP2000206141A (en) 1999-01-20 1999-01-20 Momentum sensor

Publications (1)

Publication Number Publication Date
JP2000206141A true JP2000206141A (en) 2000-07-28

Family

ID=11773653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011282A Ceased JP2000206141A (en) 1999-01-20 1999-01-20 Momentum sensor

Country Status (1)

Country Link
JP (1) JP2000206141A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
WO2002069803A1 (en) * 2001-03-06 2002-09-12 Microstone Co., Ltd. Body motion detector
JP2003010265A (en) * 2001-06-27 2003-01-14 Microstone Corp Communication terminal apparatus and system
JP2003042768A (en) * 2001-07-26 2003-02-13 Microstone Corp Motion sensor
JP2005249446A (en) * 2004-03-02 2005-09-15 Matsushita Electric Ind Co Ltd Vibration piezoelectric acceleration sensor
JP2006162315A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Compound sensor
JP2006308291A (en) * 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd Vibration type piezoelectric acceleration sensor element, and vibration type piezoelectric acceleration sensor using it
JP2007322200A (en) * 2006-05-31 2007-12-13 Kyocera Kinseki Corp Inertial sensor element
JP2008026303A (en) * 2007-01-24 2008-02-07 Epson Toyocom Corp Acceleration sensor
JP2008185343A (en) * 2007-01-26 2008-08-14 Epson Toyocom Corp Gyro module
JP2008309731A (en) * 2007-06-18 2008-12-25 Epson Toyocom Corp Acceleration detection unit and acceleration sensor
FR2919393A1 (en) * 2007-07-27 2009-01-30 Thales Sa SIMPLIFIED ACCELEROMETER OF INERTIAL MEASURING UNIT AT REDUCED COST OR IMPROVED SAFETY.
JP2009250859A (en) * 2008-04-09 2009-10-29 Epson Toyocom Corp Acceleration sensing device
JP2010014510A (en) * 2008-07-03 2010-01-21 Panasonic Corp Sensing apparatus
JP2010117375A (en) * 2010-02-24 2010-05-27 Epson Toyocom Corp Gyro module
US7802475B2 (en) 2006-10-13 2010-09-28 Seiko Epson Corporation Acceleration sensor
CN102169128A (en) * 2010-01-18 2011-08-31 精工爱普生株式会社 Acceleration sensor and acceleration detecting apparatus
JP2012189480A (en) * 2011-03-11 2012-10-04 Seiko Epson Corp Acceleration detector, acceleration detecting device and electronic apparatus
JP2013015436A (en) * 2011-07-05 2013-01-24 Murata Mfg Co Ltd Vibrator and vibration gyro
WO2013161597A1 (en) * 2012-04-27 2013-10-31 株式会社村田製作所 Acceleration sensor
GB2505875A (en) * 2012-09-04 2014-03-19 Cambridge Entpr Ltd Dual and triple axis inertial sensors and methods of inertial sensing
CN103977550A (en) * 2014-04-11 2014-08-13 浙江工业大学 Coriolis football device
JP2015099154A (en) * 2015-01-07 2015-05-28 セイコーエプソン株式会社 Acceleration detector, acceleration detecting device, and electronic apparatus
CN106352862A (en) * 2016-10-26 2017-01-25 西安交通大学 Digital differential micro-accelerometer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048972U (en) * 1990-05-10 1992-01-27
JPH04361166A (en) * 1991-06-07 1992-12-14 Japan Aviation Electron Ind Ltd Oscillator type accelerometer
JPH0642971A (en) * 1990-05-18 1994-02-18 British Aerospace Plc <Baf> Sensor
JPH0989572A (en) * 1995-09-28 1997-04-04 Kyocera Corp Piezoelectric vibrator
JPH11325917A (en) * 1998-02-12 1999-11-26 Ngk Insulators Ltd Vibrator, vibration type gyroscope, linear accelerometer, and measuring method of rotation angular velocity
JPH11325912A (en) * 1998-05-18 1999-11-26 Kinseki Ltd Composite sensor
JP2000180466A (en) * 1998-12-18 2000-06-30 Ngk Insulators Ltd Linear accelerometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048972U (en) * 1990-05-10 1992-01-27
JPH0642971A (en) * 1990-05-18 1994-02-18 British Aerospace Plc <Baf> Sensor
JPH04361166A (en) * 1991-06-07 1992-12-14 Japan Aviation Electron Ind Ltd Oscillator type accelerometer
JPH0989572A (en) * 1995-09-28 1997-04-04 Kyocera Corp Piezoelectric vibrator
JPH11325917A (en) * 1998-02-12 1999-11-26 Ngk Insulators Ltd Vibrator, vibration type gyroscope, linear accelerometer, and measuring method of rotation angular velocity
JPH11325912A (en) * 1998-05-18 1999-11-26 Kinseki Ltd Composite sensor
JP2000180466A (en) * 1998-12-18 2000-06-30 Ngk Insulators Ltd Linear accelerometer

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022445A (en) * 2000-07-03 2002-01-23 Yoshiro Tomikawa Motion sensor
WO2002069803A1 (en) * 2001-03-06 2002-09-12 Microstone Co., Ltd. Body motion detector
US7028547B2 (en) 2001-03-06 2006-04-18 Microstone Co., Ltd. Body motion detector
JP2003010265A (en) * 2001-06-27 2003-01-14 Microstone Corp Communication terminal apparatus and system
JP2003042768A (en) * 2001-07-26 2003-02-13 Microstone Corp Motion sensor
US7587941B2 (en) 2004-03-02 2009-09-15 Panasonic Corporation Vibration piezoelectric acceleration sensor
JP2005249446A (en) * 2004-03-02 2005-09-15 Matsushita Electric Ind Co Ltd Vibration piezoelectric acceleration sensor
WO2005085876A1 (en) * 2004-03-02 2005-09-15 Matsushita Electric Industrial Co., Ltd. Vibration piezoelectric acceleration sensor
JP2006162315A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Compound sensor
JP2006308291A (en) * 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd Vibration type piezoelectric acceleration sensor element, and vibration type piezoelectric acceleration sensor using it
JP2007322200A (en) * 2006-05-31 2007-12-13 Kyocera Kinseki Corp Inertial sensor element
US7802475B2 (en) 2006-10-13 2010-09-28 Seiko Epson Corporation Acceleration sensor
JP2008026303A (en) * 2007-01-24 2008-02-07 Epson Toyocom Corp Acceleration sensor
JP2008185343A (en) * 2007-01-26 2008-08-14 Epson Toyocom Corp Gyro module
JP2008309731A (en) * 2007-06-18 2008-12-25 Epson Toyocom Corp Acceleration detection unit and acceleration sensor
FR2919393A1 (en) * 2007-07-27 2009-01-30 Thales Sa SIMPLIFIED ACCELEROMETER OF INERTIAL MEASURING UNIT AT REDUCED COST OR IMPROVED SAFETY.
WO2009016120A1 (en) * 2007-07-27 2009-02-05 Thales Simplified accelerometer for low cost and improved safety inertial measuring unit
JP2009250859A (en) * 2008-04-09 2009-10-29 Epson Toyocom Corp Acceleration sensing device
JP2010014510A (en) * 2008-07-03 2010-01-21 Panasonic Corp Sensing apparatus
CN102169128A (en) * 2010-01-18 2011-08-31 精工爱普生株式会社 Acceleration sensor and acceleration detecting apparatus
JP2010117375A (en) * 2010-02-24 2010-05-27 Epson Toyocom Corp Gyro module
JP2012189480A (en) * 2011-03-11 2012-10-04 Seiko Epson Corp Acceleration detector, acceleration detecting device and electronic apparatus
JP2013015436A (en) * 2011-07-05 2013-01-24 Murata Mfg Co Ltd Vibrator and vibration gyro
JPWO2013161597A1 (en) * 2012-04-27 2015-12-24 株式会社村田製作所 Acceleration sensor
WO2013161597A1 (en) * 2012-04-27 2013-10-31 株式会社村田製作所 Acceleration sensor
US9753057B2 (en) 2012-04-27 2017-09-05 Murata Manufacturing Co., Ltd. Acceleration sensor
GB2505875A (en) * 2012-09-04 2014-03-19 Cambridge Entpr Ltd Dual and triple axis inertial sensors and methods of inertial sensing
US9310391B2 (en) 2012-09-04 2016-04-12 Cambridge Enterprise Limited Dual and triple axis inertial sensors and methods of inertial sensing
CN103977550A (en) * 2014-04-11 2014-08-13 浙江工业大学 Coriolis football device
JP2015099154A (en) * 2015-01-07 2015-05-28 セイコーエプソン株式会社 Acceleration detector, acceleration detecting device, and electronic apparatus
CN106352862A (en) * 2016-10-26 2017-01-25 西安交通大学 Digital differential micro-accelerometer
CN106352862B (en) * 2016-10-26 2019-04-09 西安交通大学 A kind of digital differential relaying type micro-acceleration gauge

Similar Documents

Publication Publication Date Title
JP2000206141A (en) Momentum sensor
US8549918B2 (en) Inertial sensors using piezoelectric transducers
JP3399336B2 (en) Detector
US4930351A (en) Vibratory linear acceleration and angular rate sensing system
JP3492010B2 (en) Vibrating gyroscope and vibration isolator
JP2006525514A (en) Microfabricated multi-sensor for uniaxial acceleration detection and biaxial angular velocity detection
JP2006162584A (en) Tuning-fork type vibrating mems gyroscope
US6598455B1 (en) Non-inertial calibration of vibratory gyroscopes
JP2002022445A (en) Motion sensor
EP2037217B1 (en) Inertia force sensor
WO2017007428A1 (en) Motion measurement devices and methods for measuring motion
EP2236982B1 (en) MEMS gyroscope magnetic field gradient sensitivity recuction
JP2003042768A (en) Motion sensor
Li et al. A micro-machined differential resonance accelerometer based on silicon on quartz method
JP2000074673A (en) Compound movement sensor
JP2000512019A (en) Small box type vibration gyroscope
Sugawara et al. finite-element analysis and experimental study of frequency-change-type two-axis acceleration sensor
JPH085382A (en) Angular-velocity sensor
JP2001194155A (en) Motion sensor
US6895819B1 (en) Acceleration sensor
JP2001133476A (en) Acceleration sensor
JP2001194148A (en) Vibrating gyro
RU2234679C2 (en) Angular velocity micromechanical sensor
JPH07190782A (en) Vibrational angular velocity meter
JP2009192403A (en) Angular velocity and acceleration detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090212

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20090630