JPH11325912A - Composite sensor - Google Patents

Composite sensor

Info

Publication number
JPH11325912A
JPH11325912A JP10135026A JP13502698A JPH11325912A JP H11325912 A JPH11325912 A JP H11325912A JP 10135026 A JP10135026 A JP 10135026A JP 13502698 A JP13502698 A JP 13502698A JP H11325912 A JPH11325912 A JP H11325912A
Authority
JP
Japan
Prior art keywords
branch
axis direction
parallel
plane
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10135026A
Other languages
Japanese (ja)
Other versions
JP3756668B2 (en
Inventor
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP13502698A priority Critical patent/JP3756668B2/en
Publication of JPH11325912A publication Critical patent/JPH11325912A/en
Application granted granted Critical
Publication of JP3756668B2 publication Critical patent/JP3756668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect angular speed with high precision as well as acceleration. SOLUTION: An excitation electrode is formed at branch parts A2 and A3. A detection electrode is formed at branch parts A4-A7. A5 and A7 are tilted. The excitation electrode is applied with AC voltage e for stretching vibration of A2 and A3 with amplitude in Y-axis direction. Thus, A1 is brought into bending vibration with amplitude in Y-axis direction parallel to an X-Y plane while A4-A7 brought into bending vibration with amplitude in X-axis direction parallel to the X-Y plane. With rotation around the Y-axis, Coriolis force allows bending vibration of A4-A7 with Z-axis direction component, with a voltage signal corresponding to angular speed obtained from the detection electrode or A4 and A6. With acceleration acting in Z-axis direction, a bending vibration which starts with torsion phenomenon due to inertia takes place at A5 and A7, providing a voltage signal corresponding to the acceleration from the detection electrode of A5 and A7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ひとつのセンサ
を用い、このセンサの一部を伸縮振動(縦振動)させ、
更に屈曲振動に変換して、特定方向に振動する固有振動
を誘起し、このセンサが移動・回転することにより発生
する慣性力の作用で、初期振動方向からズレた変化分を
検出・制御回路により電気的に検出する方法で角速度と
加速度の異なるふたつの物理量を同時に、かつ、独立し
て検出する複合センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses one sensor and causes a part of the sensor to expand and contract (longitudinal vibration).
In addition, it converts to bending vibration and induces natural vibration that oscillates in a specific direction. By the action of inertial force generated by the movement and rotation of this sensor, the amount of change that deviates from the initial vibration direction is detected by the The present invention relates to a composite sensor for simultaneously and independently detecting two physical quantities having different angular velocities and accelerations by an electrical detection method.

【0002】[0002]

【従来の技術】従来は、それぞれ、センサと検出・制御
回路を一体とした角速度センサユニット、或いは加速度
センサユニットが別々に存在して有り、これらを単独、
或いは組み合わせて必要とする物理量を検出していた。
その為、システム全体の大きさは非常に大きなものにな
っていた。なお、角速度センサユニットと、加速度セン
サユニットとを組み合わせ、更に、2つの情報を積分回
路等を用いて処理することで、移動体の3次元変動量を
正確に知ることが出来る為、航空機の慣性航法システ
ム、自動車の自立航法システム、軌跡記録、姿勢制御、
工場内の自動搬送システムなど幅広い分野で使用され
る。
2. Description of the Related Art Conventionally, an angular velocity sensor unit or an acceleration sensor unit in which a sensor and a detection / control circuit are integrated are separately provided.
Or, the required physical quantity is detected in combination.
Therefore, the size of the entire system has become very large. In addition, by combining the angular velocity sensor unit and the acceleration sensor unit and further processing the two pieces of information using an integration circuit or the like, the three-dimensional fluctuation amount of the moving object can be accurately known, so that the inertia of the aircraft Navigation systems, autonomous navigation systems for vehicles, trajectory recording, attitude control,
Used in a wide range of fields, such as automatic transport systems in factories.

【0003】それでは、従来からこれらの検出によく使
用される角速度センサと加速度センサについて述べる。
角速度センサユニットでは、リング状のガラス管(共振
器)の中でHe-Ne レーザ光をプラズマ放電により発生さ
せ、ガラス管の中をCW、CCW の方向に進行する光の共振
系を作る。これに、回転が印加されるとCW、CCW 光の共
振器内1周に要する時間に差が生じ(サニャック効
果)、2方向の光の周波数差が発生し、この時の干渉縞
の移動速度と方向をフォトセンサで検出するリングレー
ザジャイロユニット(RLG )や、円筒形状に巻いたガラ
スファイバの両端からレーザ光を入射させ、前記同様、
CW、CCW 光を作り、外部から回転が加えられた時、サニ
ャック効果により発生した光の干渉を検出するファイバ
ーオプティックジャイロユニット(FOG )が有り、近年
では、価格的に安価、かつ、小型化が可能な圧電振動式
角速度センサユニット(PVG )が急速に市場に出回るよ
うになった。
[0003] Next, an angular velocity sensor and an acceleration sensor which are conventionally often used for these detections will be described.
In the angular velocity sensor unit, He-Ne laser light is generated by plasma discharge in a ring-shaped glass tube (resonator), and a light resonance system that travels in the direction of CW and CCW in the glass tube is created. When rotation is applied to this, there is a difference in the time required for the CW and CCW light to make one round inside the resonator (Sagnac effect), which causes a difference in the frequency of light in two directions, and the moving speed of the interference fringe at this time. A laser beam is incident from both ends of a ring laser gyro unit (RLG) or a glass fiber wound in a cylindrical shape.
There is a fiber optic gyro unit (FOG) that detects the interference of light generated by the Sagnac effect when CW, CCW light is applied and rotation is applied from the outside. In recent years, the price has been reduced and the size has been reduced. Possible piezoelectric vibrating angular velocity sensor units (PVGs) have quickly become available on the market.

【0004】ここでは、圧電材料として水晶を用いた圧
電振動式角速度センサの動作原理について、述べる。図
7は水晶を用いた従来の角速度センサの要部を示す図で
ある。図7において、(a)は平面図、(b)は図7
(a)をE方向から見た図である。同図において、1は
音叉型の振動子素子(水晶板)、2−1〜2−4は励振
用の電極板、3−1〜3−4は角速度検出用の電極板で
あり、励振用の電極板2−1〜2−4を励振電極2の構
成要素とし、角速度検出用の電極板3−1〜3−4を検
出電極3の構成要素としている。励振用の電極板2−1
〜2−4は振動子素子1の一方の脚部1−1の表裏およ
び左右の面に、検出用の電極板3−1〜3−4は振動子
素子1の他方の脚部1−2の左右の面に形成されてい
る。脚部1−1および1−2は、この脚部1−1および
1−2に対して平行な軸線Lを有する主軸1−3から分
岐されており、脚部1−1,1−2と主軸1−3とは共
通の平面に位置している。
Here, the principle of operation of a piezoelectric vibration type angular velocity sensor using quartz as a piezoelectric material will be described. FIG. 7 is a diagram showing a main part of a conventional angular velocity sensor using quartz. 7A is a plan view, and FIG.
It is the figure which looked at (a) from the E direction. In the figure, reference numeral 1 denotes a tuning-fork type vibrator element (crystal plate), 2-1 to 2-4 denote electrode plates for excitation, and 3-1 to 3-4 denote electrode plates for detecting angular velocity. The electrode plates 2-1 to 2-4 are used as components of the excitation electrode 2, and the electrode plates 3-1 to 3-4 for detecting angular velocity are used as components of the detection electrode 3. Electrode plate 2-1 for excitation
2-4 are on the front, back, left and right sides of one leg 1-1 of the vibrator element 1, and the electrode plates 3-1-3-4 for detection are the other leg 1-2 of the vibrator element 1. Are formed on the left and right surfaces of the camera. The legs 1-1 and 1-2 are branched from a main shaft 1-3 having an axis L parallel to the legs 1-1 and 1-2. The spindle 1-3 is located on a common plane.

【0005】この角速度センサにおいては、図7(b)
に示されるように、励振用の電極板2−1と2−3とが
端子P1に共通に接続され、励振用の電極板2−2と2
−4とが端子P2に共通に接続され、この端子P1とP
2との間に交流電圧(励振振動信号)eが印加される。
このため、ある時は図7(b)中脚部1−1に矢印で示
す如く電界が発生し、次には逆方向の電界が発生するこ
とにより、逆圧電効果により振動子素子1の一方の脚部
1−1が、更に他方の脚部1−2も連動して、左右に振
動(屈曲振動)する。
In this angular velocity sensor, FIG.
As shown in FIG. 2, the excitation electrode plates 2-1 and 2-3 are commonly connected to the terminal P1, and the excitation electrode plates 2-2 and 2 are connected.
-4 are commonly connected to a terminal P2.
2, an AC voltage (excitation vibration signal) e is applied.
For this reason, at one time, an electric field is generated in the middle leg portion 1-1 as shown by an arrow in FIG. 7B, and then an electric field in the opposite direction is generated. The leg 1-1 vibrates left and right (flexural vibration) in conjunction with the other leg 1-2.

【0006】ここで、脚部1−1,1−2の振動方向を
X軸方向、このX軸方向と直交する紙面内の方向、すな
わち主軸1−3の軸線Lの方向をY軸方向、このX−Y
平面と直交する方向(振動子素子1の板面に垂直な方
向)をZ軸方向とした場合、Y軸の回りに角速度が作用
すると、すなわち振動子素子1がY軸の回りに回転する
と、コリオリの力によりZ軸方向の振動成分が生じ、振
動子素子1がZ軸方向成分をもって紙面に対し斜めに振
動(屈曲振動)する。このZ軸方向の振動成分の大きさ
はコリオリの力に比例しているので、振動子素子1の他
方の脚部1−2には圧電効果により、角速度に比例した
大きさで振動の方向に応じた極の電荷が発生する。
Here, the vibration direction of the legs 1-1 and 1-2 is the X-axis direction, and the direction in the paper plane orthogonal to the X-axis direction, that is, the direction of the axis L of the main shaft 1-3 is the Y-axis direction. This XY
When the direction perpendicular to the plane (the direction perpendicular to the plate surface of the transducer element 1) is the Z-axis direction, when an angular velocity acts around the Y axis, that is, when the transducer element 1 rotates around the Y axis, Due to the Coriolis force, a vibration component in the Z-axis direction is generated, and the vibrator element 1 vibrates obliquely (bending vibration) with respect to the paper surface with the Z-axis direction component. Since the magnitude of the vibration component in the Z-axis direction is proportional to the Coriolis force, the other leg 1-2 of the vibrator element 1 has a magnitude proportional to the angular velocity in the direction of vibration due to the piezoelectric effect. The corresponding pole charge is generated.

【0007】これにより、検出用の電極板3−1と3−
4とを共通に接続した端子P3と、検出用の電極板3−
2と3−3とを共通に接続した端子P4との間に電荷が
発生し、コリオリの力に応じた電圧信号esが得られ
る。この電圧信号esの大きさによって、Y軸の回りに
作用する角速度の大きさを知ることができる。また、こ
の電圧信号esは基本的にサインカーブとして得られ、
この電圧信号esの波形と励振振動信号eの波形(励振
波形)とを位相比較することにより、その位相の進み遅
れで角速度の方向を知ることができる。
As a result, the detection electrode plates 3-1 and 3-
4 is connected to a terminal P3 which is connected in common with an electrode plate 3 for detection.
An electric charge is generated between the terminal P4 connecting the terminals 2 and 3-3 in common, and a voltage signal es corresponding to the Coriolis force is obtained. The magnitude of the angular velocity acting around the Y axis can be known from the magnitude of the voltage signal es. This voltage signal es is basically obtained as a sine curve,
By comparing the phase of the waveform of the voltage signal es with the waveform of the excitation vibration signal e (excitation waveform), it is possible to know the direction of the angular velocity based on the lead and lag of the phase.

【0008】一方、加速度センサユニットでは、Siなど
単結晶を使用して平板を形成しその片面に錘を付加す
る。少なくとも平板の1面に電極を構成し、この構造体
をバネ構造を持つ支持体で外枠に固定する。そして、平
板上に構成した電極と対向して平行に一定の間隔を維持
して固定電極を配し、加速度が印加されたとき、その大
きさに応じて錘にかかる慣性力で平板が変形し2電極間
の距離が変動する。これを容量値変化として検出する静
電容量式加速度センサユニットや、固有振動する振動子
上に錘を付加した構造で、加速度が印加されたときその
大きさに応じて錘にかかる慣性力により振動子の固有振
動を束縛する為、振動子の振動周波数が加速度の大きさ
に応じて変化するのを周波数変化として検出する振動式
加速度センサユニットなどがある。
On the other hand, in the acceleration sensor unit, a flat plate is formed using a single crystal such as Si, and a weight is added to one side thereof. An electrode is formed on at least one surface of the flat plate, and this structure is fixed to the outer frame by a support having a spring structure. Then, fixed electrodes are arranged in parallel with the electrodes formed on the flat plate while maintaining a constant interval, and when the acceleration is applied, the flat plate is deformed by the inertia force applied to the weight according to the size. The distance between the two electrodes fluctuates. A capacitance type acceleration sensor unit that detects this as a change in capacitance value, or a structure in which a weight is added on a vibrator that inherently vibrates. There is a vibration-type acceleration sensor unit that detects, as a frequency change, a change in the vibration frequency of the vibrator according to the magnitude of acceleration in order to restrict the natural vibration of the vibrator.

【0009】ここでは、一般に広く用いられている静電
容量式加速度センサの動作原理について述べる。Siを材
料とする、いわゆる半導体センサ構造体は、フォトリソ
グラフィ法によりエッチングで加工される。従って、上
記のセンサ構造体部分、すなわち、外枠、バネ構造をし
た支持体、平板及び 錘は、電極が構築された状態で立
体的に一体化して形成される。そして、対向電極部分近
傍には、検出・制御などの回路が構築され、センサ構造
体部分を陽極接合などにより電極間ギャップを確保して
固定出来る構造を有している。今、電極面に平行な一方
向に加速度が発生すると、平板上の片側の面に構築され
た錘には慣性力が働き平板が波打つ様に変形し、それに
伴い電極間ギャップも変化する。その為、二電極間の静
電容量値が変化する。この変化量が加速度の大きさに応
じて変化するので、これを検出すれば加速度の大きさを
知ることができる。
Here, the operating principle of a generally used capacitive acceleration sensor will be described. A so-called semiconductor sensor structure made of Si is processed by etching using a photolithography method. Therefore, the above-mentioned sensor structure portion, that is, the outer frame, the support having the spring structure, the flat plate, and the weight are integrally formed three-dimensionally in a state where the electrodes are constructed. In the vicinity of the counter electrode portion, a circuit for detection and control is constructed, and the sensor structure portion has a structure in which a gap between electrodes can be secured and secured by anodic bonding or the like. Now, when acceleration is generated in one direction parallel to the electrode surface, an inertial force acts on the weight constructed on one surface of the flat plate to deform the flat plate into a wavy shape, and the gap between the electrodes changes accordingly. Therefore, the capacitance value between the two electrodes changes. Since the amount of the change changes according to the magnitude of the acceleration, the magnitude of the acceleration can be known by detecting the change.

【0010】[0010]

【発明が解決しようとする課題】従来は、それぞれのセ
ンサユニットが単独で別々に存在し、これらを組み合わ
せ積分回路等を付加する事で慣性航法システムや、自立
航法システム等を構築していた。その為、装置全体が大
きくなり、小型化が困難で有ると同時にコスト面でも高
いものになっていた。
Heretofore, each sensor unit has existed independently and separately, and an inertial navigation system, a self-contained navigation system, and the like have been constructed by combining these and adding an integrating circuit and the like. As a result, the size of the entire apparatus is increased, making it difficult to reduce the size of the apparatus, and at the same time, increasing the cost.

【0011】本発明はこのような課題を解決するために
なされたもので、センサの高安定・高精度検出・小型
化、および、センサユニット全体の小型化とを目的に、
ひとつのセンサを用い、角速度と加速度の大きさを独立
して検出し、それぞれ処理回路で出力可能とし、小型で
省スペース対応、ローコストで有りながら異なった2種
類の物理量を、安定、かつ、高精度で計測する能力を備
えた複合センサを提供することにある。また、完全対称
の電極構成により対称的な電界発生から生み出される純
粋な伸縮振動により、第1の枝部、更に、検出用枝部に
純粋な屈曲振動を誘発させる事を可能とし、従来のコリ
オリ力を応用した圧電振動式センサの宿命とされる「振
動モレ」(励振振動が、検出側に影響する現象。検出側
の振動モードに影響したり、電気的に影響を与える現象
で、環境温度に対し不安定な為、検出信号の信頼性、精
度を著しく劣化させる。)を大幅に減少させる事の可能
な複合センサを提供することにある。なお、「振動モ
レ」現象は、形状構造上のアンバランス、電極構成上の
アンバランス、電極間の信号リーク、駆動側、検出側の
振動数差の状態などが原因とされている。この中でも、
電極構成・配置について、従来の様に、励振の手段とし
て屈曲振動を起用するならば、その電極配置上どうして
もアンバランスに構成せざるを得ず、その結果、非対称
電界による励振により異常な振動モードが発生し、振動
モレの大きいセンサとなる。
The present invention has been made in order to solve such problems, and aims at high stability, high accuracy detection and miniaturization of a sensor, and miniaturization of the entire sensor unit.
Using a single sensor, the magnitudes of angular velocity and acceleration can be independently detected and output by a processing circuit. Small, space-saving, low cost, yet two different physical quantities are stable and high. An object of the present invention is to provide a composite sensor having an ability to measure with accuracy. Also, pure bending vibrations can be induced in the first branch portion and the detection branch portion by pure stretching vibration generated by symmetric electric field generation by a completely symmetric electrode configuration, and the conventional Coriolis "Vibration leakage", which is the fate of a piezoelectric vibration sensor that applies force (a phenomenon in which excitation vibration affects the detection side. A phenomenon that affects the vibration mode on the detection side or electrically affects the ambient temperature. Therefore, it is an object of the present invention to provide a composite sensor capable of greatly reducing the reliability and accuracy of the detection signal due to instability. The "vibration leakage" phenomenon is caused by an imbalance in the shape and structure, an imbalance in the electrode configuration, a signal leak between the electrodes, a state of a frequency difference between the drive side and the detection side, and the like. Among them,
Regarding the electrode configuration and arrangement, if bending vibration is used as a means of excitation as in the past, the electrode arrangement must be imbalanced, and as a result, an abnormal vibration mode due to excitation by an asymmetric electric field Is generated, resulting in a sensor with large vibration leakage.

【0012】[0012]

【課題を解決するための手段】このような目的を達成す
るために、第1発明(請求項1に係る発明)は、ひとつ
のセンシング素子構造体(センサ)を用いて、角速度と
加速度を同時に、かつ、独立して検出するようにしたも
のである。この発明によれば、ひとつのセンサで、角速
度と加速度が同時に、かつ、独立して検出される。
In order to achieve the above object, the first invention (the invention according to claim 1) uses one sensing element structure (sensor) to simultaneously measure angular velocity and acceleration. And independent detection. According to the present invention, the angular velocity and the acceleration are detected simultaneously and independently by one sensor.

【0013】第2発明(請求項2に係る発明)は、その
両端が支持固定された第1の枝部と、この第1の枝部の
ほゞ中央部の枝面からこの枝面と直交する一方向および
他方向に延びその先端が支持固定された第2および第3
の枝部と、第1の枝部の一方の端部と中央部との間の枝
面から第2,第3の枝部の長手方向と平行する一方向お
よび他方向に延びた第4の枝部および第5の枝部と、第
1の枝部の他方の端部と中央部との間の枝面から第2,
第3の枝部の長手方向と平行する一方向および他方向に
延びた第6の枝部および第7の枝部とを備え、第1の枝
部の長手方向に平行な方向をX軸方向、第2,第3の枝
部の長手方向に平行な方向をY軸方向、X−Y平面と直
交する方向と平行な方向をZ軸方向とし、第5および第
7の枝部が第1の枝部との付け根部付近のX軸方向幅寸
法よりも先端付近のX軸方向幅寸法の方が大きく、かつ
第5および第7の枝部の重心位置がX軸方向の互いに異
なる方向に偏心している振動子素子(センサ)と、第2
の枝部および第3の枝部の枝面に形成された励振電極に
より、交流電圧の印加を受けて第2の枝部および第3の
枝部をY軸方向へ逆相で伸縮振動させ、この励振した伸
縮振動によって第1の枝部をX−Y平面に平行にY軸方
向へ振幅をもって屈曲振動させ、この屈曲振動によって
更に第4の枝部,第5の枝部,第6の枝部および第7の
枝部をX−Y平面に平行にX軸方向へ振幅をもって屈曲
振動させる励振構造と、第4の枝部および第6の枝部の
枝面に形成された検出電極により、この第4の枝部およ
び第6の枝部がX−Y平面に平行にX軸方向へ振幅をも
って振動しているとき、振動子素子がY軸の回りに回転
した場合、この第4の枝部および第6の枝部が慣性によ
り生じるZ軸方向成分による屈曲振動によって生ずる電
荷を取り出す第1の検出構造と、第5の枝部および第7
の枝部の枝面に形成された検出電極により、この第5の
枝部および第7の枝部がX−Y平面に平行にX軸方向へ
振幅をもって振動しているとき、振動子素子へZ軸方向
の加速度が作用した場合、この第5の枝部および第7の
枝部が慣性により生じるねじれ現象から誘発される屈曲
振動によって生ずる電荷を取り出す第2の検出構造とを
設けたものである。
The second invention (the invention according to claim 2) is characterized in that a first branch portion whose both ends are supported and fixed and a branch surface substantially at the center of the first branch portion are orthogonal to the branch surface. Second and third extending in one direction and the other direction and having their tips supported and fixed.
A fourth branch extending in one direction and the other direction parallel to the longitudinal direction of the second and third branches from a branch surface between one end and the center of the first branch. A second branch from the branch surface between the branch and the fifth branch and the other end and the center of the first branch;
A sixth branch and a seventh branch extending in one direction and the other direction parallel to the longitudinal direction of the third branch, wherein the direction parallel to the longitudinal direction of the first branch is the X-axis direction. , The direction parallel to the longitudinal direction of the second and third branches is the Y-axis direction, the direction parallel to the direction orthogonal to the XY plane is the Z-axis direction, and the fifth and seventh branches are the first direction. The width dimension in the X-axis direction near the tip is larger than the width dimension in the X-axis direction near the base with the branch part, and the positions of the centers of gravity of the fifth and seventh branches are different from each other in the X-axis direction. An eccentric transducer element (sensor) and a second
AC voltage is applied by the excitation electrodes formed on the branch surfaces of the third branch and the third branch to cause the second branch and the third branch to expand and contract in the Y-axis direction in opposite phases, The first branch portion is caused to bend and vibrate in the Y-axis direction in parallel with the XY plane by the excited stretching vibration, and the fourth branch portion, the fifth branch portion, and the sixth branch are further caused by the bending vibration. An excitation structure for bending and vibrating the portion and the seventh branch with an amplitude in the X-axis direction parallel to the XY plane, and a detection electrode formed on the branch surface of the fourth branch and the sixth branch, When the fourth branch and the sixth branch vibrate with an amplitude in the X-axis direction parallel to the XY plane, when the vibrator element rotates around the Y-axis, the fourth branch is formed. The first part and the sixth branch take out charges generated by bending vibration due to a Z-axis direction component generated by inertia. A detection structure, branches of the fifth and seventh
When the fifth branch and the seventh branch vibrate with an amplitude in the X-axis direction parallel to the XY plane by the detection electrode formed on the branch surface of the branch, The fifth branch and the seventh branch are provided with a second detection structure for taking out charge generated by bending vibration induced by a twisting phenomenon caused by inertia when acceleration in the Z-axis direction acts. is there.

【0014】この発明によれば、励振電極に交流電圧を
印加すると、第2の枝部および第3の枝部がY軸方向へ
逆相で伸縮振動し、この伸縮振動によって第1の枝部が
X−Y平面に平行にY軸方向へ振幅をもって屈曲振動
し、この屈曲振動によって第4の枝部,第5の枝部,第
6の枝部および第7の枝部がX−Y平面に平行にX軸方
向へ振幅をもって屈曲振動する。この状態で、Y軸の回
りに角速度が作用すると、コリオリの力がX軸と直交す
るZ軸方向に働き、その結果、第4の枝部,第5の枝
部,第6の枝部および第7の枝部がZ軸方向成分をもっ
て逆相で屈曲振動する。そして、この屈曲振動によって
第4の枝部および第6の枝部にはZ軸方向成分に対応し
た電荷がその検出電極より取り出され、この取り出され
た電荷量に基づいてY軸の回りに作用する角速度の大き
さが検出される。この時、第5,第7の枝部は電極構造
から逆相モードの電荷が打ち消されるので、角速度は検
出されない。また、振動子素子へZ軸方向の加速度が作
用すると、第5の枝部および第7の枝部に慣性によるね
じれ現象が生じ、更に枝部が偏心しているため、ねじれ
が同相モードの屈曲振動を誘発する。それによる電荷を
検出電極より取り出し、この取り出された電荷量に基づ
いて振動子素子のZ軸方向に作用する加速度の大きさが
検出される。なお、第4,第6の枝部は電極構造から同
相モードの電荷が打ち消されるので、加速度は検出され
ない。従って、2つの物理量は独立して検出が可能とな
る。
According to the present invention, when an AC voltage is applied to the excitation electrode, the second branch and the third branch expand and contract in the Y-axis direction in opposite phases, and the first branch is caused by the expansion and contraction vibration. Vibrates with an amplitude in the Y-axis direction in parallel with the XY plane, and the fourth vibration, the fifth branch, the sixth branch, and the seventh branch are caused by the bending vibration. Vibrates with an amplitude in the X-axis direction in parallel with. In this state, when an angular velocity acts around the Y axis, Coriolis force acts in the Z axis direction orthogonal to the X axis, and as a result, the fourth branch, the fifth branch, the sixth branch, and The seventh branch flexurally vibrates in the opposite phase with the component in the Z-axis direction. Due to this bending vibration, electric charges corresponding to the Z-axis direction component are extracted from the detection electrode at the fourth branch and the sixth branch, and act around the Y-axis based on the amount of the extracted electric charge. The magnitude of the angular velocity is detected. At this time, since the charges in the opposite phase mode are canceled out from the electrode structure in the fifth and seventh branches, the angular velocity is not detected. Also, when acceleration in the Z-axis direction acts on the vibrator element, a twisting phenomenon occurs due to inertia in the fifth branch and the seventh branch, and the branches are eccentric. Trigger. The resulting charge is extracted from the detection electrode, and the magnitude of the acceleration acting on the vibrator element in the Z-axis direction is detected based on the amount of the extracted charge. In the fourth and sixth branch portions, acceleration in the common mode is canceled from the electrode structure, and thus no acceleration is detected. Therefore, the two physical quantities can be detected independently.

【0015】第3発明(請求項3に係る発明)は、その
両端が支持固定された第1の枝部と、この第1の枝部の
ほゞ中央部の枝面からこの枝面と直交する一方向に延び
その先端が支持固定された第2の枝部と、第1の枝部の
一方の端部と中央部との間の枝面から第2の枝部の長手
方向と平行する一方向および他方向に延びた第3の枝部
および第4の枝部と、第1の枝部の他方の端部と中央部
との間の枝面から第2の枝部の長手方向と平行する一方
向および他方向に延びた第5の枝部および第6の枝部と
を備え、第1の枝部の長手方向に平行な方向をX軸方
向、第2の枝部の長手方向に平行な方向をY軸方向、X
−Y平面と直交する方向と平行な方向をZ軸方向とし、
第4および第6の枝部が第1の枝部との付け根部付近の
X軸方向幅寸法よりも先端付近のX軸方向幅寸法の方が
大きく、かつ第4および第6の枝部の重心位置がX軸方
向の互いに異なる方向に偏心している振動子素子(セン
サ)と、第2の枝部の枝面に形成された励振電極によ
り、交流電圧の印加を受けて第2の枝部をY軸方向へ伸
縮振動させ、この励振した伸縮振動によって第1の枝部
をX−Y平面に平行にY軸方向へ振幅をもって屈曲振動
させ、この屈曲振動によって更に第3の枝部,第4の枝
部,第5の枝部および第6の枝部をX−Y平面に平行に
X軸方向へ振幅をもって屈曲振動させる励振構造と、第
3の枝部および第5の枝部の枝面に形成された検出電極
により、この第3の枝部および第5の枝部がX−Y平面
に平行にX軸方向へ振幅をもって振動しているとき、振
動子素子がY軸の回りに回転した場合、この第3の枝部
および第5の枝部が慣性により生じるZ軸方向成分によ
る屈曲振動によって生ずる電荷を取り出す第1の検出構
造と、第4の枝部および第6の枝部の枝面に形成された
検出電極により、この第4の枝部および第6の枝部がX
−Y平面に平行にX軸方向へ振幅をもって振動している
とき、振動子素子へZ軸方向の加速度が作用した場合、
この第4の枝部および第6の枝部が慣性により生じるね
じれ現象から誘発される屈曲振動によって生ずる電荷を
取り出す第2の検出構造とを設けたものである。
The third invention (the invention according to claim 3) is characterized in that the first branch portion whose both ends are supported and fixed, and the branch surface substantially at the center of the first branch portion are orthogonal to the branch surface. A second branch extending in one direction, the tip of which is supported and fixed, and a branch surface between one end and the center of the first branch which is parallel to the longitudinal direction of the second branch. A third branch and a fourth branch extending in one direction and the other direction, and a longitudinal direction of the second branch from a branch surface between the other end and the center of the first branch. A fifth branch and a sixth branch extending in parallel in one direction and the other direction, wherein the direction parallel to the longitudinal direction of the first branch is the X-axis direction, and the longitudinal direction of the second branch is The direction parallel to
-A direction parallel to a direction orthogonal to the Y plane is defined as a Z-axis direction,
The width of the fourth and sixth branches in the X-axis direction near the tip is larger than the width of the X-axis in the vicinity of the base with the first branch, and the width of the fourth and sixth branches is smaller. An AC voltage is applied by a vibrator element (sensor) whose center of gravity is eccentric in directions different from each other in the X-axis direction and an excitation electrode formed on a branch surface of the second branch. Is caused to expand and contract in the Y-axis direction, and the excited branch vibration causes the first branch portion to bend and vibrate with an amplitude in the Y-axis direction parallel to the XY plane. An excitation structure for bending and vibrating the fourth, fifth and sixth branches in the X-axis direction in parallel with the XY plane with an amplitude, and a branch of the third and fifth branches The third branch portion and the fifth branch portion are moved in the X-axis direction parallel to the XY plane by the detection electrode formed on the surface. When the vibrator element rotates around the Y axis while vibrating with a width, the third branch and the fifth branch take out charges generated by bending vibration due to a Z-axis direction component caused by inertia. 1 and the detection electrodes formed on the branch surfaces of the fourth branch and the sixth branch, the fourth branch and the sixth branch are X-shaped.
-When vibrating with an amplitude in the X-axis direction parallel to the Y-plane, when acceleration in the Z-axis direction acts on the vibrator element,
The fourth branch and the sixth branch are provided with a second detection structure for taking out charges generated by bending vibration induced by a twisting phenomenon caused by inertia.

【0016】この発明によれば、励振電極に交流電圧を
印加すると、第2の枝部がY軸方向へ伸縮振動し、この
伸縮振動によって第1の枝部がX−Y平面に平行にY軸
方向へ振幅をもって屈曲振動し、この屈曲振動によって
第3の枝部,第4の枝部,第5の枝部および第6の枝部
がX−Y平面に平行にX軸方向へ振幅をもって屈曲振動
する。この状態で、Y軸の回りに角速度が作用すると、
コリオリの力がX軸と直交するZ軸方向に働き、その結
果、第3の枝部,第4の枝部,第5の枝部および第6の
枝部がZ軸方向成分をもって逆相で屈曲振動する。そし
て、この屈曲振動によって3の枝部および第5の枝部は
Z軸方向成分に対応した電荷がその検出電極より取り出
され、この取り出された電荷量に基づいてY軸の回りに
作用する角速度の大きさが検出される。この時、第4,
第6の枝部は電極構造から逆相モードの電荷が打ち消さ
れるので、角速度は検出されない。また、振動子素子へ
Z軸方向の加速度が作用すると、第4の枝部および第6
の枝部に慣性によるねじれ現象が生じ、更に枝部が偏心
しているため、ねじれが同相モードの屈曲振動を誘発す
る。それによる電荷を検出電極より取り出し、この取り
出された電荷量に基づいて振動子素子のZ軸方向に作用
する加速度の大きさが検出される。なお、第3,第5の
枝部は電極構造から同相モードの電荷が打ち消されるの
で、加速度は検出されない。従って、2つの物理量は独
立して検出が可能となる。
According to the present invention, when an AC voltage is applied to the excitation electrode, the second branch expands and contracts in the Y-axis direction, and this expansion and contraction causes the first branch to extend in parallel with the XY plane. The third branch, the fourth branch, the fifth branch, and the sixth branch are vibrated with an amplitude in the axial direction with an amplitude in the X-axis direction parallel to the XY plane. It bends and vibrates. In this state, when an angular velocity acts around the Y axis,
The Coriolis force acts in the Z-axis direction orthogonal to the X-axis, so that the third, fourth, fifth, and sixth branches have a Z-axis component in opposite phase. It bends and vibrates. Due to this bending vibration, charges corresponding to the Z-axis direction component are extracted from the detection electrode of the third branch portion and the fifth branch portion, and the angular velocity acting around the Y axis based on the extracted charge amount. Is detected. At this time,
In the sixth branch, since the charges in the reverse phase mode are canceled from the electrode structure, the angular velocity is not detected. When acceleration in the Z-axis direction acts on the vibrator element, the fourth branch portion and the sixth
The torsional phenomena occur due to inertia in the branches and the branches are eccentric, so that the torsion induces in-phase mode bending vibration. The resulting charge is extracted from the detection electrode, and the magnitude of the acceleration acting on the vibrator element in the Z-axis direction is detected based on the amount of the extracted charge. In the third and fifth branch portions, the common mode charges are canceled from the electrode structure, and thus no acceleration is detected. Therefore, the two physical quantities can be detected independently.

【0017】第4発明(請求項4に係る発明)は、第3
発明において、第1の枝部のほゞ中央部の枝面からこの
枝面と直交する一方向に延びその先端が支持固定された
第2の枝部に代えて、第1の枝部のほゞ中央部の枝面か
らこの枝面と直交する他方向に延びその先端が支持固定
された第2の枝部を設けたものである。この発明によれ
ば、第1の枝部のほゞ中央部の枝面からこの枝面と直交
する他方向に延びた第2の枝部がY軸方向へ伸縮振動
し、第3発明と同様にして、Y軸の回りに作用する角速
度およびZ軸方向に作用する加速度の大きさが検出され
る。
The fourth invention (the invention according to claim 4) is the third invention.
In the present invention, instead of the second branch extending in a direction perpendicular to the branch from a branch surface at a substantially central portion of the first branch, the tip of the first branch is substantially replaced with the second branch.ゞ A second branch portion extending from the branch surface in the central portion in the other direction orthogonal to the branch surface and having its tip supported and fixed is provided. According to the present invention, the second branch extending in the other direction orthogonal to the branch from the branch at the center of the first branch substantially expands and contracts in the Y-axis direction, similar to the third invention. Then, the magnitude of the angular velocity acting around the Y axis and the magnitude of the acceleration acting in the Z axis direction are detected.

【0018】[0018]

【発明の実施の形態】以下、本発明を実施の形態に基づ
き詳細に説明する。 〔基本原理:第2発明〕図1(a)はこの発明の基本原
理を説明する図である。同図において、Aは振動子素子
(センサ)であり、その材料は金属、セラミックス、単
結晶など、どれを用いても構わないが、ここでは水晶板
で説明する。振動子素子Aは第1の枝部A1と第2の枝
部A2と第3の枝部A3と第4の枝部A4と第5の枝部
A5と第6の枝部A6と第7の枝部A7とからなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. [Basic Principle: Second Invention] FIG. 1A is a diagram for explaining the basic principle of the present invention. In the figure, reference numeral A denotes a vibrator element (sensor), which may be made of any material such as metal, ceramics, and single crystal, but is described here using a quartz plate. The vibrator element A includes a first branch A1, a second branch A2, a third branch A3, a fourth branch A4, a fifth branch A5, a sixth branch A6, and a seventh branch A6. And a branch A7.

【0019】第1の枝部A1はその両端が支持固定され
ている。第2の枝部A2および第3の枝部A3は第1の
枝部A1のほゞ中央部の枝面からこの枝面と直交する一
方向および他方向に延びその先端が支持固定されてい
る。第4の枝部A4および第5の枝部A5は第1の枝部
A1の一方の端部と中央部との間の枝面から第2の枝部
A2,第3の枝部A3の長手方向と平行する一方向およ
び他方向に延びている。第6の枝部A6および第7の枝
部A7は第1の枝部A1の他方の端部と中央部との間の
枝面から第2の枝部A2,第3の枝部A3の長手方向と
平行する一方向および他方向に延びている。枝部A1〜
A7は共通の平面に位置している。
Both ends of the first branch A1 are supported and fixed. The second branch portion A2 and the third branch portion A3 extend from a branch surface at a substantially central portion of the first branch portion A1 in one direction and the other direction orthogonal to the branch surface, and the tips thereof are supported and fixed. . The fourth branch A4 and the fifth branch A5 extend from the branch surface between one end and the center of the first branch A1 to the length of the second branch A2 and the third branch A3. It extends in one direction and the other direction parallel to the direction. The sixth branch A6 and the seventh branch A7 extend from the branch surface between the other end of the first branch A1 and the center to the lengths of the second branch A2 and the third branch A3. It extends in one direction and the other direction parallel to the direction. Branch A1
A7 is located on a common plane.

【0020】この振動子素子Aにおいて、第1の枝部A
1の長手方向に平行な方向をX軸方向、第2の枝部A
2,第3の枝部A3の長手方向に平行な方向をY軸方
向、X−Y平面と直交する方向と平行な方向をZ軸方向
とする。ここで、第5の枝部A5は、第1の枝部A1と
の付け根部付近のX軸方向幅寸法よりも先端付近のX軸
方向幅寸法の方が大きく形成され、かつその重心位置が
X軸方向の一方に偏心している。また、第7の枝部A7
は、第1の枝部A1との付け根部付近のX軸方向幅寸法
よりも先端付近のX軸方向幅寸法の方が大きく形成さ
れ、かつその重心位置がX軸方向の他方に偏心してい
る。すなわち、この例では、枝部A5が枝部A1の付け
根部から先端へ向けて枝部A1の一方の端部側に拡がる
傾斜形状とされ、枝部A7が枝部A1の付け根部から先
端へ向けて枝部A1の他方の端部側に拡がる傾斜形状と
されている。
In the vibrator element A, the first branch A
The direction parallel to the longitudinal direction of the first branch is the X-axis direction, and the second branch A
2. A direction parallel to the longitudinal direction of the third branch portion A3 is defined as a Y-axis direction, and a direction parallel to a direction orthogonal to the XY plane is defined as a Z-axis direction. Here, the fifth branch portion A5 is formed so that the X-axis direction width dimension near the tip is larger than the X-axis direction width dimension near the root portion with the first branch portion A1, and the center of gravity thereof is located at the center of gravity. It is eccentric to one side in the X-axis direction. Also, the seventh branch A7
Is formed so that the width in the X-axis direction near the tip is larger than the width in the X-axis direction near the base with the first branch A1, and the center of gravity is eccentric to the other side in the X-axis direction. . That is, in this example, the branch portion A5 has an inclined shape that expands from the base portion of the branch portion A1 to one end side of the branch portion A1, and the branch portion A7 extends from the base portion of the branch portion A1 to the front end. It has an inclined shape that expands toward the other end of the branch A1 toward the other end.

【0021】なお、この例では、枝部A5を枝部A1の
付け根部から先端へ向けて枝部A1の一方の端部側に拡
がる傾斜形状とし、枝部A7を枝部A1の付け根部から
先端へ向けて枝部A1の他方の端部側に拡がる傾斜形状
としたが、図1(b)に示すように、枝部A5を枝部A
1の付け根部から先端へ向けて枝部A1の他方の端部側
に拡がる傾斜形状とし、枝部A7を枝部A1の付け根部
から先端へ向けて枝部A1の一方の端部側に拡がる傾斜
形状とするようにしてもよい。また、この例では傾斜形
状としたが、必ずしも傾斜形状としなくてもよい。すな
わち、第5の枝部A5および第7の枝部A7の重心位置
がX軸方向の互いに異なる方向に偏心していればよく、
その形状は傾斜形状に限られない。
In this example, the branch A5 has an inclined shape extending from the base of the branch A1 to the tip and extending toward one end of the branch A1, and the branch A7 extends from the base of the branch A1. The branch A1 has an inclined shape that extends toward the other end of the branch A1 toward the front end, but as shown in FIG.
1 has a sloping shape extending toward the other end of the branch A1 from the base toward the tip, and the branch A7 extends toward one end of the branch A1 from the base of the branch A1 toward the tip. You may make it an inclined shape. Further, in this example, the inclined shape is used, but the inclined shape is not necessarily required. That is, the center of gravity of the fifth branch A5 and the seventh branch A7 may be eccentric in directions different from each other in the X-axis direction.
The shape is not limited to the inclined shape.

【0022】このように構成された振動子素子Aに対し
て、その第2の枝部A2の対向する枝面A21およびA
22ならびに第3の枝部A3の対向する枝面A31およ
びA32に励振電極(図示せず)を形成する。また、第
4の枝部A4の対向する枝面A41およびA42ならび
に第6の枝部A6の対向する枝面A61およびA62
に、角速度検出用の検出電極(図示せず)を形成する。
また、第5の枝部A5の対向する枝面A51およびA5
2ならびに第7の枝部A7の対向する枝面A71および
A72に、加速度検出用の検出電極(図示せず)を形成
する。
With respect to the vibrator element A thus configured, the opposing branch surfaces A21 and A2 of the second branch portion A2 are provided.
Excitation electrodes (not shown) are formed on the opposite branch surfaces A31 and A32 of the second branch portion A3 and the third branch portion A3. Also, opposing branch surfaces A41 and A42 of the fourth branch A4 and opposing branch surfaces A61 and A62 of the sixth branch A6.
Then, a detection electrode (not shown) for detecting an angular velocity is formed.
Also, opposing branch surfaces A51 and A5 of the fifth branch A5.
A detection electrode (not shown) for detecting acceleration is formed on the opposite branch surfaces A71 and A72 of the second and seventh branch portions A7.

【0023】そして、第2の枝部A2および第3の枝部
A3に形成された励振電極へ交流電圧(励振振動信号)
eを印加し、枝部A2およびA3をY軸方向へ逆相(枝
部A2が伸びたとき枝部A3が縮み、次にはその逆にな
るように交互に)で伸縮振動させる。この励振された伸
縮振動によって第1の枝部A1がX−Y平面に平行にY
軸方向へ振幅をもって屈曲振動する。図1ではこの屈曲
振動を1次の屈曲姿態で表記しているが、奇数次(1、
3、5・・・・)であれば構わない。そして、第4の枝
部A4、第5の枝部A5、第6の枝部A6、第7の枝部
A7を第1の枝部A1の傾きが大きいところ、例えば3
次モードでは後述する如く節の位置に配置することが望
ましい。そうすると、この屈曲振動によって、更に第4
の枝部A4、第5の枝部A5、第6の枝部A6および第
7の枝部A7がX−Y平面に逆相、かつ、平行にX軸方
向へ振幅をもって屈曲振動する。
Then, an AC voltage (excitation vibration signal) is applied to the excitation electrodes formed on the second branch A2 and the third branch A3.
e is applied, and the branch portions A2 and A3 are caused to expand and contract in the Y-axis direction in an opposite phase (alternately so that the branch portion A3 contracts when the branch portion A2 expands and then reverses in the opposite direction). Due to the excited stretching vibration, the first branch portion A1 moves in the Y direction parallel to the XY plane.
Bending vibration occurs with amplitude in the axial direction. In FIG. 1, the bending vibration is represented by a first-order bending mode.
3, 5,...). Then, the fourth branch A4, the fifth branch A5, the sixth branch A6, and the seventh branch A7 are connected to a place where the inclination of the first branch A1 is large, for example, 3
In the next mode, it is desirable to arrange at a node position as described later. Then, by this bending vibration, the fourth
, The fifth branch A5, the sixth branch A6, and the seventh branch A7 vibrate flexibly with an amplitude in the X-axis direction opposite to and parallel to the XY plane.

【0024】ここで、振動子素子AがY軸の回りに回転
すると、コリオリの力により振動子素子AにZ軸方向の
振動成分が生じ、第4の枝部A4、第5の枝部A5、第
6の枝部A6および第7の枝部A7がZ軸方向成分をも
って屈曲振動する。このZ軸方向成分による屈曲振動に
より、角速度に比例した大きさで、かつ回転方向で変動
する振動の方向成分に応じた電荷が第4の枝部A4およ
び第6の枝部A6の検出電極から取り出され、この検出
電極よりコリオリの力に応じた電圧信号esωが得られ
る。この電圧信号esωの大きさによって、Y軸の回り
に作用する角速度の大きさを知ることができる。また、
この電圧信号esωの波形と励振振動信号eの波形とを
位相比較することにより、その位相の進み遅れで角速度
の方向を知ることができる。
Here, when the vibrator element A rotates around the Y-axis, a vibration component in the Z-axis direction is generated in the vibrator element A by Coriolis force, and the fourth branch A4 and the fifth branch A5 , The sixth branch A6 and the seventh branch A7 flexurally vibrate with a component in the Z-axis direction. Due to the bending vibration due to the Z-axis direction component, electric charges having a magnitude proportional to the angular velocity and corresponding to the direction component of the vibration fluctuating in the rotation direction are generated from the detection electrodes of the fourth branch A4 and the sixth branch A6. The voltage signal esω corresponding to the Coriolis force is obtained from the detection electrode. The magnitude of the angular velocity acting around the Y axis can be known from the magnitude of the voltage signal esω. Also,
By comparing the phase of the waveform of the voltage signal esω with the phase of the waveform of the excitation vibration signal e, it is possible to know the direction of the angular velocity based on the lead and lag of the phase.

【0025】これに対し、振動子素子AへZ軸方向(紙
面前方、あるいは紙面後方)の加速度が作用すると、第
5の枝部A5および第7の枝部A7は偏心しているため
に慣性によるねじれ現象が生じ、このねじれ現象によ
り、同相モードでZ軸方向成分を持った屈曲振動が発生
するので、加速度に比例した大きさで、かつ加速度の方
向で位相が変動した電荷が第5の枝部A5および第7の
枝部A7の検出電極から取り出され、この検出電極より
加速度に応じた電圧信号esαが得られる。この電圧信
号esαの大きさによって、Z軸方向へ作用する加速度
の大きさを知ることができる。また、この電圧信号es
αの波形と励振振動信号eの波形とを位相比較すること
により、その位相の進み遅れで加速度の方向を知ること
ができる。
On the other hand, when acceleration is applied to the vibrator element A in the Z-axis direction (forward or backward on the paper), the fifth branch A5 and the seventh branch A7 are eccentric, so that inertia occurs. A torsion phenomenon occurs, and this torsion phenomenon causes a bending vibration having a Z-axis component in the in-phase mode. Therefore, the electric charge whose magnitude is proportional to the acceleration and whose phase has fluctuated in the direction of the acceleration is the fifth branch. The voltage is extracted from the detection electrodes of the portion A5 and the seventh branch portion A7, and a voltage signal esα corresponding to the acceleration is obtained from the detection electrodes. The magnitude of the acceleration acting in the Z-axis direction can be known from the magnitude of the voltage signal esα. Also, this voltage signal es
By comparing the phase of the waveform of α with the waveform of the excitation vibration signal e, it is possible to know the direction of the acceleration based on the lead and lag of the phase.

【0026】この複合センサでは、第2の枝部A2およ
び第3の枝部A3に励振電極を設けて駆動することによ
り、すなわち第2の枝部A2および第3の枝部A3をY
軸方向へ逆相で伸縮振動させることより、第1の枝部A
1をX−Y平面に平行にY軸方向へ振幅をもって屈曲振
動させ、この第1の枝部A1の屈曲振動により第4の枝
部A4、第5の枝部A5、第6の枝部A6および第7の
枝部A7のX−Y平面に平行なX軸方向に振幅をもつ屈
曲振動を誘動しているので、第4の枝部A4、第5の枝
部A5、第6の枝部A6および第7の枝部A7の振動方
向は純粋にX−Y平面に平行なX軸方向のみの成分をも
った振動となり、図7に示した脚部1−1に励振電極2
を設けて直接駆動する従来の振動式センサと比較して振
動のもれ(励振位相の回転)を小さくすることができ、
角速度を高精度で検出することができる。
In this composite sensor, the second branch A2 and the third branch A3 are driven by providing excitation electrodes on the second branch A2 and the third branch A3.
The first branch A
1 is caused to bend and vibrate with an amplitude in the Y-axis direction in parallel to the XY plane, and the fourth branch A4, the fifth branch A5, and the sixth branch A6 are caused by the bending vibration of the first branch A1. And the bending vibration having an amplitude in the X-axis direction parallel to the XY plane of the seventh branch A7 is induced, so that the fourth branch A4, the fifth branch A5, and the sixth branch are induced. The vibration direction of the portion A6 and the seventh branch portion A7 is a vibration having a component only in the X-axis direction purely parallel to the XY plane, and the excitation electrode 2 is provided on the leg 1-1 shown in FIG.
The vibration leakage (rotation of the excitation phase) can be reduced as compared with a conventional vibration sensor that is directly driven by providing
Angular velocity can be detected with high accuracy.

【0027】また、この複合センサでは、角速度に加え
て加速度を検出することができるので、すなわち角速度
と加速度の両方を1つのセンサで検出することができる
ので、移動体の慣性航法制御などに際して角速度センサ
と加速度センサとを別々に設ける必要がなく、低コスト
化を図ることができる。また、1つのセンサ分のスペー
スでよく、省スペース化を図ることができ、付随する回
路の簡略化なども図られる
Further, in this composite sensor, acceleration can be detected in addition to angular velocity, that is, both angular velocity and acceleration can be detected by one sensor. It is not necessary to provide a sensor and an acceleration sensor separately, and cost can be reduced. In addition, a space for one sensor is sufficient, space can be saved, and accompanying circuits can be simplified.

【0028】図2のように第1の枝部A1を3次の振動
姿態になるように第2の枝部A2および第3の枝部A3
を励振したときを考慮すると、第1の枝部A1には2箇
所の節と3箇所の腹をもつ屈曲振動形態であることが分
かる。このとき、節の部分に注目すると、変位は最小で
あるが、このごく近傍では傾きが最大となる。このよう
な位置に第4の枝部A4、第5の枝部A5、第6の枝部
A6および第7の枝部A7を形成配置すると、第4の枝
部A4、第5の枝部A5、第6の枝部A6および第7の
枝部A7のX軸方向への振幅が大きくなり、Y軸の回り
に角速度が作用した場合に得られる出力電荷が増大し、
またZ軸方向へ加速度が作用した場合に得られる出力電
荷も増大し、検出精度がアップする。
As shown in FIG. 2, the second branch A2 and the third branch A3 are arranged so that the first branch A1 is in the third vibration mode.
When the first branch A1 is excited, it is understood that the first branch portion A1 has a bending vibration mode having two nodes and three antinodes. At this time, paying attention to the nodes, the displacement is the smallest, but the inclination becomes the largest near this node. When the fourth branch A4, the fifth branch A5, the sixth branch A6, and the seventh branch A7 are formed and arranged at such positions, the fourth branch A4, the fifth branch A5 are formed. , The amplitude of the sixth branch A6 and the seventh branch A7 in the X-axis direction increases, and the output charge obtained when an angular velocity acts around the Y-axis increases.
Further, the output charge obtained when the acceleration acts in the Z-axis direction also increases, and the detection accuracy increases.

【0029】〔応用例1:第3発明〕上述した基本原理
では駆動する枝部を2つとした。これに対して、応用例
1では、図3に示すように、駆動する枝部を1つとす
る。すなわち、振動子素子Bとして、図1の枝部A3に
対応する枝部を省略し、枝部A1,A2,A4,A5,
A6,A7に対応する枝部B1,B2,B3,B4,B
5,B6を設ける。
[Application Example 1: Third Invention] In the basic principle described above, two driven branches are used. On the other hand, in the application example 1, as shown in FIG. 3, one branch is driven. That is, as the transducer element B, the branches corresponding to the branches A3 in FIG. 1 are omitted, and the branches A1, A2, A4, A5,
Branches B1, B2, B3, B4, B corresponding to A6, A7
5, B6 are provided.

【0030】〔応用例2:第4発明〕上述した応用例1
では図1の枝部A3に対応する枝部を省略した。これに
対して、応用例2では、振動子素子Cとして、図4に示
すように、図1の枝部A2に対応する枝部を省略し、枝
部A1,A3,A4,A5,A6,A7に対応する枝部
C1,C2,C3,C4,C5,C6を設ける。
[Application Example 2: Fourth Invention] Application Example 1 described above.
In FIG. 1, the branch corresponding to the branch A3 in FIG. 1 is omitted. On the other hand, in the application example 2, as the transducer element C, as shown in FIG. 4, the branch corresponding to the branch A2 in FIG. 1 is omitted, and the branches A1, A3, A4, A5, A6, and Branches C1, C2, C3, C4, C5, and C6 corresponding to A7 are provided.

【0031】〔実施の形態1〕図5は上述した基本原理
(図1(a))に基づいて作製した角速度センサの要部
を示す図であり、同図(a)は平面図、同図(b)は左
側面図、同図(c)は右側面図であり、同図(d)は同
図(a)を裏面側から見た図である。
[Embodiment 1] FIG. 5 is a view showing a main part of an angular velocity sensor manufactured based on the above-described basic principle (FIG. 1A). FIG. 5A is a plan view and FIG. (B) is a left side view, FIG. (C) is a right side view, and (d) is a view of FIG. (A) viewed from the back side.

【0032】図5において、8は振動子素子(水晶
板)、8−1は第1の枝部、8−2は第2の枝部、8−
3は第3の枝部、8−4は第4の枝部、8−5は第5の
枝部、8−6は第6の枝部、8−7は第7の枝部、8−
8は外枠である。第1の枝部8−1はその両端8−1
a,8−1bが外枠8−8につながっている。第2の枝
部8−2は第1の枝部8−1のほゞ中央部8−1cの枝
面8−1dからこの枝面8−1dと直交する一方向に延
びその先端8−2aが外枠8−8につながっている。第
3の枝部8−3は第1の枝部8−1のほゞ中央部8−1
cの枝面8−1eからこの枝面8−1eと直交する他方
向に延びその先端8−3aが外枠8−8につながってい
る。
In FIG. 5, 8 is a vibrator element (crystal plate), 8-1 is a first branch, 8-2 is a second branch, and 8-
3 is a third branch, 8-4 is a fourth branch, 8-5 is a fifth branch, 8-6 is a sixth branch, 8-7 is a seventh branch, 8-
8 is an outer frame. The first branch 8-1 has both ends 8-1.
a, 8-1b are connected to the outer frame 8-8. The second branch portion 8-2 extends from the branch surface 8-1d of the substantially central portion 8-1c of the first branch portion 8-1 in one direction perpendicular to the branch surface 8-1d, and has a tip 8-2a. Is connected to the outer frame 8-8. The third branch portion 8-3 is substantially the center portion 8-1 of the first branch portion 8-1.
c extends in the other direction perpendicular to the branch surface 8-1e from the branch surface 8-1e, and a tip 8-3a thereof is connected to the outer frame 8-8.

【0033】第4の枝部8−4は第1の枝部8−1の一
方の端部8−1aと中央部8−1cとの間の枝面8−1
dから第2の枝部8−2,第3の枝部8−3の長手方向
と平行する一方向に延びている。第6の枝部8−6は第
1の枝部8−1の他方の端部8−1bと中央部8−1c
との間の枝面8−1dから第2の枝部8−2,第3の枝
部8−3の長手方向と平行する一方向に延びている。
The fourth branch 8-4 is a branch surface 8-1 between one end 8-1a and the center 8-1c of the first branch 8-1.
d extends in one direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3. The sixth branch 8-6 includes the other end 8-1b and the center 8-1c of the first branch 8-1.
And extends in one direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3 from the branch surface 8-1d.

【0034】第5の枝部8−5は第1の枝部8−1の一
方の端部8−1aと中央部8−1cとの間の枝面8−1
eから第2の枝部8−2,第3の枝部8−3の長手方向
と平行する他方向に延びている。第7の枝部8−7は第
1の枝部8−1の他方の端部8−1bと中央部8−1c
との間の枝面8−1eから第2の枝部8−2,第3の枝
部8−3の長手方向と平行する他方向に延びている。こ
の場合、第1の枝部8−1の長手方向に平行な方向をX
軸方向、第2の枝部8−2,第3の枝部8−3の長手方
向に平行な方向をY軸方向、X−Y平面と直交する方向
と平行な方向をZ軸方向とする。
The fifth branch 8-5 is a branch surface 8-1 between one end 8-1a and the center 8-1c of the first branch 8-1.
e extends in the other direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3. The seventh branch 8-7 includes the other end 8-1b and the center 8-1c of the first branch 8-1.
And extends in the other direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3 from the branch surface 8-1e. In this case, the direction parallel to the longitudinal direction of the first branch portion 8-1 is X
An axial direction, a direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3 is a Y-axis direction, and a direction parallel to a direction orthogonal to the XY plane is a Z-axis direction. .

【0035】ここで、第5の枝部8−5は、第1の枝部
8−1との付け根部付近のX軸方向幅寸法よりも先端付
近のX軸方向幅寸法の方が大きくされ、かつその重心位
置がX軸方向の一方に偏心している。また、第7の枝部
8−7は、第1の枝部8−1との付け根部付近のX軸方
向幅寸法よりも先端付近のX軸方向幅寸法の方が大きく
され、かつその重心位置がX軸方向の他方に偏心してい
る。すなわち、この例では、枝部8−5が枝部8−1の
付け根部から先端へ向けて枝部8−1の一方の端部側に
拡がる傾斜形状とされ、枝部8−7が枝部8−1の付け
根部から先端へ向けて枝部8−1の他方の端部側に拡が
る傾斜形状とされている。
The width of the fifth branch portion 8-5 in the X-axis direction near the tip is larger than the width in the X-axis direction near the base of the first branch portion 8-1. And the position of the center of gravity is eccentric to one side in the X-axis direction. The X-direction width of the seventh branch portion 8-7 near the tip is larger than the X-direction width near the base of the first branch portion 8-1, and the center of gravity of the seventh branch portion 8-7. The position is eccentric to the other in the X-axis direction. That is, in this example, the branch portion 8-5 has an inclined shape extending toward one end of the branch portion 8-1 from the base of the branch portion 8-1 toward the tip, and the branch portion 8-7 is formed as a branch. It has an inclined shape that extends from the base of the portion 8-1 toward the tip to the other end of the branch portion 8-1.

【0036】このように構成された振動子素子8に対し
て、その第2の枝部8−2の対向する左右の枝面8−2
bおよび8−2cに励振電極9(9−1,9−2)を形
成している。すなわち、第2の枝部8−2の枝面8−2
bに励振用の電極板9−1を、この枝面8−2bに対向
する枝面8−2cに励振用の電極板9−2を形成してい
る。また、第3の枝部8−3の対向する左右の枝面8−
3bおよび8−3cに励振電極10(10−1,10−
2)を形成している。すなわち、第3の枝部8−3の枝
面8−3bに励振用の電極板10−1を、この枝面8−
3bに対向する枝面8−3cに励振用の電極板10−2
を形成している。
With respect to the vibrator element 8 thus configured, the left and right branch surfaces 8-2 of the second branch portion 8-2 are opposed to each other.
Excitation electrodes 9 (9-1, 9-2) are formed on b and 8-2c. That is, the branch surface 8-2 of the second branch portion 8-2
An electrode plate 9-1 for excitation is formed at b, and an electrode plate 9-2 for excitation is formed at a branch surface 8-2c opposed to the branch surface 8-2b. Also, the left and right branch surfaces 8-
Excitation electrodes 10 (10-1, 10-
2) is formed. That is, the electrode plate 10-1 for excitation is provided on the branch surface 8-3b of the third branch portion 8-3.
Electrode plate 10-2 for excitation is provided on branch surface 8-3c facing 3b.
Is formed.

【0037】また、第4の枝部8−4の対向する左右の
枝面8−4aおよび8−4bに角速度検出用の検出電極
11(11−1〜11−4)を形成している。すなわ
ち、第4の枝部8−4の枝面8−4aに角速度検出用の
電極板11−1および11−2を、この枝面8−4aに
対向する枝面8−4bに角速度検出用の電極板11−3
および11−4を形成している。また、第6の枝部8−
6の対向する左右の枝面8−6aおよび8−6bに角速
度検出用の検出電極12(12−1〜12−4)を形成
している。すなわち、第6の枝部8−6の枝面8−6a
に角速度検出用の電極板12−1および12−2を、こ
の枝面8−6aに対向する枝面8−6bに角速度検出用
の電極板12−3および12−4を形成している。
The detection electrodes 11 (11-1 to 11-4) for detecting the angular velocity are formed on the left and right branch surfaces 8-4a and 8-4b of the fourth branch portion 8-4 facing each other. That is, the electrode plates 11-1 and 11-2 for detecting the angular velocity are provided on the branch surface 8-4a of the fourth branch portion 8-4, and the electrode plates 11-1 and 11-2 for detecting the angular velocity are provided on the branch surface 8-4b opposed to the branch surface 8-4a. Electrode plate 11-3
And 11-4. In addition, the sixth branch 8-
The detection electrodes 12 (12-1 to 12-4) for detecting angular velocity are formed on the left and right branch surfaces 8-6a and 8-6b facing each other. That is, the branch surface 8-6a of the sixth branch portion 8-6
The electrode plates 12-1 and 12-2 for detecting angular velocity are formed on the branch surface 8-6b opposed to the branch surface 8-6a, and the electrode plates 12-3 and 12-4 for detecting angular velocity are formed on the branch surface 8-6b.

【0038】また、第5の枝部8−5の対向する左右の
枝面8−5aおよび8−5bに加速度検出用の検出電極
13(13−1〜13−4)を形成している。すなわ
ち、第5の枝部8−5の枝面8−5aに加速度検出用の
電極板13−1および13−2を、この枝面8−5aに
対向する枝面8−5bに加速度検出用の電極板13−3
および13−4を形成している。また、第7の枝部8−
7の対向する左右の枝面8−7aおよび8−7bに加速
度検出用の検出電極14(14−1〜14−4)を形成
している。すなわち、第7の枝部8−7の枝面8−7a
に加速度検出用の電極板14−1および14−2を、こ
の枝面8−7aに対向する枝面8−7bに加速度検出用
の電極板14−3および14−4を形成している。
Detection electrodes 13 (13-1 to 13-4) for acceleration detection are formed on the left and right branch surfaces 8-5a and 8-5b facing the fifth branch portion 8-5. That is, the electrode plates 13-1 and 13-2 for detecting acceleration are provided on the branch surface 8-5a of the fifth branch portion 8-5, and the acceleration detecting electrodes 13-1 and 13-2 are provided on the branch surface 8-5b opposed to the branch surface 8-5a. Electrode plate 13-3
And 13-4. In addition, the seventh branch 8-
The detection electrodes 14 (14-1 to 14-4) for acceleration detection are formed on the left and right branch surfaces 8-7a and 8-7b facing each other. That is, the branch surface 8-7a of the seventh branch portion 8-7
In addition, electrode plates 14-1 and 14-2 for acceleration detection are formed, and electrode plates 14-3 and 14-4 for acceleration detection are formed on a branch surface 8-7b opposed to the branch surface 8-7a.

【0039】図6は図5における各電極の接続関係を分
かり易いように示した結線図である。図6(a)は図5
(a)におけるII−II線断面図に各電極の接続関係を示
した図であり、図6(b)は図5(a)におけるIII −
III 線断面図に各電極の接続関係を示した図である。
FIG. 6 is a connection diagram showing the connection relation of the respective electrodes in FIG. 5 for easy understanding. FIG. 6A shows FIG.
FIG. 6A is a diagram showing a connection relationship of each electrode in a cross-sectional view taken along line II-II in FIG.
FIG. 3 is a diagram showing a connection relationship of each electrode in a sectional view taken along a line III.

【0040】すなわち、この複合センサにおいては励振
用の電極板9−1が端子T1に、9−2がT2に、10
−1がT3に、10−2がT4にそれぞれ接続されてい
る。ここでT1とT3、T2とT4は同一の極性であ
り、配線の関係で素子の外で接続して2端子としてい
る。
That is, in this composite sensor, the electrode plate 9-1 for excitation is connected to the terminal T1, the electrode plate 9-2 is connected to the terminal T2, and the excitation electrode plate 9-1 is connected to the terminal T2.
-1 is connected to T3 and 10-2 is connected to T4. Here, T1 and T3, and T2 and T4 have the same polarity, and are connected outside the element due to wiring to form two terminals.

【0041】また、角速度検出用の電極板11−1、1
1−4、12−2、12−3が端子T4,T5に、角速
度検出用の電極板11−2、11−3、12−1、12
−4が端子T6,T7に接続されている。
Further, the electrode plates 11-1 and 1-1 for detecting angular velocity
1-4, 12-2, and 12-3 are connected to terminals T4 and T5, respectively, and electrode plates 11-2, 11-3, 12-1, and 12 for angular velocity detection.
-4 is connected to terminals T6 and T7.

【0042】また、加速度検出用の電極板13−1と1
3−4が端子T10に、加速度検出用の電極板14−1
と14−4が端子T11に、加速度検出用の電極板13
−2と13−3が端子T8に、加速度検出用の電極板1
4−2と14−3が端子T9に接続されている。端子T
8とT9とは振動子素子8の外側で端子T12に接続さ
れ、また端子T10とT11は振動子素子8の外側で端
子T13に接続され、2端子とされている。
Further, the electrode plates 13-1 and 1 for detecting acceleration are provided.
3-4 is a terminal T10, and an electrode plate 14-1 for acceleration detection.
And 14-4 are connected to the terminal T11 by the electrode plate 13 for acceleration detection.
-2 and 13-3 are connected to the terminal T8 and the electrode plate 1 for detecting acceleration.
4-2 and 14-3 are connected to the terminal T9. Terminal T
The terminals 8 and T9 are connected to a terminal T12 outside the vibrator element 8, and the terminals T10 and T11 are connected to a terminal T13 outside the vibrator element 8 to form two terminals.

【0043】なお、図5では、振動子素子8でのリード
電極の引き回し状況を示すために第1の枝部8−1をY
軸方向へ厚く示したが、実際にはスパッタや蒸着などに
よる薄膜形成が望ましい。しかし、恒弾性金属などの材
料として使用する場合は薄辺に加工された圧電セラミッ
クス板を貼付することもある。
In FIG. 5, the first branch portion 8-1 is connected to the Y-axis in order to show how the lead electrodes are routed in the vibrator element 8.
Although shown thick in the axial direction, it is actually desirable to form a thin film by sputtering or vapor deposition. However, when used as a material such as a constant elastic metal, a piezoelectric ceramic plate processed to a thin side may be attached.

【0044】〔検出動作〕端子T1とT2との間および
端子T3とT4との間に交流電圧(励振振動信号)eを
印加する。これにより、励振電極9の電極板9−1と9
−2との間および励振電極10の電極板10−1と10
−2との間に、ある時は図6(a),(b)中に矢印で
示す如く電界が発生し、次には逆方向の電界が発生する
ことにより、第2の枝部8−2と第3の枝部8−3が逆
相(枝部8−2が伸びたとき枝部8−3が縮み、次には
その逆になるように交互に)でY軸方向へ伸縮振動す
る。この伸縮振動によって第1の枝部8−1がX−Y平
面に平行にY軸方向へ振幅をもって屈曲振動する。この
屈曲振動によって更に第4の枝部8−4,第5の枝部8
−5,第6の枝部8−6および第7の枝部8−7がX−
Y平面に平行にX軸方向へ振幅をもって屈曲振動する。
[Detection Operation] An AC voltage (excitation vibration signal) e is applied between the terminals T1 and T2 and between the terminals T3 and T4. Thereby, the electrode plates 9-1 and 9 of the excitation electrode 9 are formed.
-2 and the electrode plates 10-1 and 10 of the excitation electrode 10
In some cases, an electric field is generated as shown by the arrows in FIGS. 6A and 6B, and then an electric field in the opposite direction is generated. The second and third branches 8-3 are in the opposite phase (the branches 8-3 contract when the branches 8-2 expand, and then alternately so as to be in the opposite direction), and expand and contract in the Y-axis direction. I do. Due to this stretching vibration, the first branch portion 8-1 bends and vibrates with an amplitude in the Y-axis direction parallel to the XY plane. This bending vibration further causes the fourth branch portion 8-4 and the fifth branch portion 8 to move.
-5, the sixth branch 8-6 and the seventh branch 8-7 are X-
It bends and vibrates with amplitude in the X-axis direction parallel to the Y plane.

【0045】ここで、振動子素子8がY軸の回りに回転
すると、コリオリの力により振動子素子8にZ軸方向の
振動成分が生じ、第4の枝部8−4,第5の枝部8−
5,第6の枝部8−6および第7の枝部8−7がZ軸方
向成分をもって八の字型でねじれた形で屈曲振動する。
このZ軸方向成分をもつ屈曲振動により、第4の枝部8
−4および第6の枝部8−6の検出電極11および12
より、角速度に比例した大きさでかつ回転方向により位
相が変動した形で電荷が取り出される。
Here, when the vibrator element 8 rotates around the Y-axis, a vibration component in the Z-axis direction is generated in the vibrator element 8 by Coriolis force, and the fourth branch portion 8-4 and the fifth branch portion are formed. Part 8-
5, the sixth branch portion 8-6 and the seventh branch portion 8-7 flex and vibrate in an eight-shape torsion with a component in the Z-axis direction.
Due to the bending vibration having the Z-axis direction component, the fourth branch portion 8 is formed.
-4 and the detection electrodes 11 and 12 of the sixth branch 8-6
As a result, electric charges are taken out in a form in which the magnitude is proportional to the angular velocity and the phase varies depending on the rotation direction.

【0046】この場合、電極板11−1,11−4,1
2−2,12−3を共通に接続した端子T4(T5)と
電極板11−2,11−3,12−1,12−4を共通
に接続した端子T6(T7)との間に、コリオリの力に
応じた交流の電圧信号esωが得られる。
In this case, the electrode plates 11-1, 11-4, 1
Between a terminal T4 (T5) commonly connecting 2-2 and 12-3 and a terminal T6 (T7) commonly connecting electrode plates 11-2, 11-3, 12-1 and 12-4. An AC voltage signal esω corresponding to the Coriolis force is obtained.

【0047】この電圧信号esωの大きさによって、Y
軸の回りに作用する角速度の大きさを知ることができ
る。また、この電圧信号esωの波形と励振振動信号e
の波形とを位相比較することにより、その位相の進み遅
れで角速度の方向を知ることができる。
Depending on the magnitude of the voltage signal esω, Y
The magnitude of the angular velocity acting around the axis can be known. The waveform of the voltage signal esω and the excitation vibration signal e
By comparing the phase with the above waveform, the direction of the angular velocity can be known from the lead and lag of the phase.

【0048】これに対し、振動子素子8へZ軸方向の加
速度が作用すると、第5の枝部8−5および第7の枝部
8−7に慣性によるねじれ現象が生じ、第5の枝部8−
5および第7の枝部8−5より、加速度に比例した大き
さでかつ加速度の方向で位相が変動した形で電荷が取り
出される。
On the other hand, when acceleration in the Z-axis direction acts on the vibrator element 8, the fifth branch portion 8-5 and the seventh branch portion 8-7 are twisted by inertia, and the fifth branch portion 8-5 and the fifth branch portion 8-7 are twisted. Part 8-
From the fifth and seventh branches 8-5, electric charges are taken out in a form in which the magnitude is proportional to the acceleration and the phase varies in the direction of the acceleration.

【0049】この場合、電極板13−1,13−4,1
4−1,14−4を共通に接続した端子T12と電極板
13−2,13−3,14−2,14−3を共通に接続
した探知T13との間に交流の電圧信号esαが得られ
る。
In this case, the electrode plates 13-1, 13-4, 1
An AC voltage signal esα is obtained between a terminal T12 commonly connected to 4-1 and 14-4 and a detection T13 commonly connected to the electrode plates 13-2, 13-3, 14-2 and 14-3. Can be

【0050】この電圧信号esαの大きさによって、Z
軸方向へ作用する加速度の大きさを知ることができる。
また、この電圧信号esαの波形と励振振動信号eの波
形とを位相比較することにより、その位相の進み遅れで
加速度の方向を知ることができる。
Depending on the magnitude of the voltage signal esα, Z
The magnitude of the acceleration acting in the axial direction can be known.
Further, by comparing the phase of the waveform of the voltage signal esα with the waveform of the excitation vibration signal e, it is possible to know the direction of the acceleration based on the lead and lag of the phase.

【0051】なお、言うまでもないが、例えば図1
(a)において、枝部A4およびA6を省略するか、A
4,A6の代わりにA5,A7を対称的に付加すれば、
単独の加速度センサが得られる。また、枝部A5および
A7を省略するか、A5,A7の代わりにA4,A6を
対称的に付加すれば、単独の角速度センサが得られる。
Needless to say, for example, FIG.
In (a), the branches A4 and A6 are omitted or A
If A5 and A7 are added symmetrically instead of 4, A6,
A single acceleration sensor is obtained. If the branch portions A5 and A7 are omitted or A4 and A6 are symmetrically added instead of A5 and A7, a single angular velocity sensor can be obtained.

【0052】[0052]

【発明の効果】以上説明したことから明らかなように本
発明によれば、第2発明に代表されるように、第2の枝
部および第3の枝部をY軸方向へ伸縮振動させることよ
り、第1の枝部をX−Y平面に平行でY軸方向へ振幅を
もって屈曲振動させ、更にこの第1の枝部の屈曲振動に
より第4の枝部、第5の枝部、第6の枝部および第7の
枝部をX−Y平面に平行でX軸方向へ振幅をもって屈曲
振動させるようにしているので、第4の枝部、第5の枝
部、第6の枝部および第7の枝部の振動方向は純粋にX
−Y平面に平行なX軸方向のみの成分をもった振動とな
り、第4の枝部、第5の枝部、第6の枝部および第7の
枝部の誘動振動のZ軸方向成分がきわめて小さくなり、
運動停止時の状態で検出側のヌル電圧を限りなく零にす
ることができ、すなわち振動のもれ(励振位相の回転)
を小さくして角速度を高精度で検出することができるよ
うになる。また、本発明によれば、角速度と加速度を同
時に別々にして検出することができるので、すなわち角
速度と加速度の両方を1つのセンサで独立して検出する
ことができるので、移動体の慣性航法制御などに際して
角速度センサと加速度センサとを別々に設ける必要がな
く、低コスト化を図ることができる。また、1つのセン
サ分のスペースでよく、省スペース化を図ることがで
き、付随する回路の簡略化なども図ることができるよう
になる。
As apparent from the above description, according to the present invention, as represented by the second invention, the second and third branches are caused to expand and contract in the Y-axis direction. Accordingly, the first branch portion is flexibly vibrated with an amplitude in the Y-axis direction parallel to the XY plane, and the fourth branch portion, the fifth branch portion, and the sixth branch portion are caused by the bending vibration of the first branch portion. And the seventh branch are bent and vibrated with an amplitude in the X-axis direction in parallel with the XY plane, so that the fourth branch, the fifth branch, the sixth branch, and The vibration direction of the seventh branch is purely X
-A vibration having a component only in the X-axis direction parallel to the Y-plane, and the Z-axis component of the induced vibration of the fourth branch, the fifth branch, the sixth branch, and the seventh branch. Becomes extremely small,
The null voltage on the detection side can be reduced to zero as much as possible when motion is stopped, that is, leakage of vibration (excitation phase rotation)
And the angular velocity can be detected with high accuracy. Further, according to the present invention, since the angular velocity and the acceleration can be detected separately and simultaneously, that is, both the angular velocity and the acceleration can be independently detected by one sensor, the inertial navigation control of the moving body can be performed. In such a case, it is not necessary to separately provide the angular velocity sensor and the acceleration sensor, and the cost can be reduced. In addition, a space for one sensor is sufficient, space saving can be achieved, and simplification of accompanying circuits can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の基本原理(第2発明)を説明する図
である。
FIG. 1 is a diagram illustrating a basic principle (second invention) of the present invention.

【図2】 第1の枝部の3次の振動姿態を示す図であ
る。
FIG. 2 is a diagram illustrating a third-order vibration mode of a first branch.

【図3】 本発明の応用例1(第3発明)を説明する図
である。
FIG. 3 is a diagram illustrating an application example 1 (third invention) of the present invention.

【図4】 本発明の応用例2(第4発明)を説明する図
である。
FIG. 4 is a diagram illustrating an application example 2 (fourth invention) of the present invention.

【図5】 基本原理に基づいて作製した角速度センサの
要部を示す図である。
FIG. 5 is a diagram showing a main part of an angular velocity sensor manufactured based on the basic principle.

【図6】 図5における各電極の接続関係を分かり易い
ように示した結線図である。
FIG. 6 is a connection diagram showing a connection relationship of each electrode in FIG. 5 for easy understanding.

【図7】 従来の角速度センサの要部を示す図である。FIG. 7 is a diagram showing a main part of a conventional angular velocity sensor.

【図8】 この角速度センサにおける励振位相の回転を
説明する図である。
FIG. 8 is a diagram illustrating rotation of an excitation phase in the angular velocity sensor.

【図9】 この角速度センサにおいて励振位相がθ゜回
転した場合に検出される角速度に誤差が生じる状況を説
明する図である。
FIG. 9 is a diagram illustrating a situation where an error occurs in an angular velocity detected when the excitation phase rotates by θ ゜ in the angular velocity sensor.

【符号の説明】[Explanation of symbols]

A…振動子素子、A1…第1の枝部、A2…第2の枝
部、A3…第3の枝部、A4…第4の枝部、A5…第5
の枝部、A6…第6の枝部、A7…第7の枝部、B…振
動子素子、B1…第1の枝部、B2…第2の枝部、B3
…第3の枝部、B4…第4の枝部、B5…第5の枝部、
B6…第6の枝部、C…振動子素子、C1…第1の枝
部、C2…第2の枝部、C3…第3の枝部、C4…第4
の枝部、C5…第5の枝部、C6…第6の枝部、8…振
動子素子(水晶板)、8−1…第1の枝部、8−2…第
2の枝部、8−3…第3の枝部、8−4…第4の枝部、
8−5…第5の枝部、8−6…第6の枝部、8−7…第
7の枝部、9(9−1,9−2),10(10−1,1
0−2)…励振電極、11(11−1〜11−4),1
2(12−1〜12−4),13(13−1〜13−
4),14(14−1〜14−4)…検出電極。
A: transducer element, A1: first branch, A2: second branch, A3: third branch, A4: fourth branch, A5: fifth
A6, sixth branch, A7, seventh branch, B, transducer element, B1, first branch, B2, second branch, B3
... third branch, B4 ... fourth branch, B5 ... fifth branch,
B6: sixth branch, C: transducer element, C1: first branch, C2: second branch, C3: third branch, C4: fourth
, C5: fifth branch, C6: sixth branch, 8: vibrator element (quartz plate), 8-1: first branch, 8-2: second branch, 8-3: third branch, 8-4: fourth branch,
8-5: fifth branch, 8-6: sixth branch, 8-7: seventh branch, 9 (9-1, 9-2), 10 (10-1, 1)
0-2) Excitation electrode, 11 (11-1 to 11-4), 1
2 (12-1 to 12-4), 13 (13-1 to 13-)
4), 14 (14-1 to 14-4) ... detection electrodes.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ひとつのセンシング素子構造体(セン
サ)を用いて、角速度と加速度を同時に、かつ、独立し
て検出することを特徴とした複合センサ。
1. A composite sensor characterized by detecting angular velocity and acceleration simultaneously and independently using one sensing element structure (sensor).
【請求項2】 その両端が支持固定された第1の枝部
と、この第1の枝部のほゞ中央部の枝面からこの枝面と
直交する一方向および他方向に延びその先端が支持固定
された第2および第3の枝部と、前記第1の枝部の一方
の端部と中央部との間の枝面から前記第2,第3の枝部
の長手方向と平行する一方向および他方向に延びた第4
の枝部および第5の枝部と、前記第1の枝部の他方の端
部と中央部との間の枝面から前記第2,第3の枝部の長
手方向と平行する一方向および他方向に延びた第6の枝
部および第7の枝部とを備え、前記第1の枝部の長手方
向に平行な方向をX軸方向、前記第2,第3の枝部の長
手方向に平行な方向をY軸方向、X−Y平面と直交する
方向と平行な方向をZ軸方向とし、前記第5および第7
の枝部が前記第1の枝部との付け根部付近のX軸方向幅
寸法よりも先端付近のX軸方向幅寸法の方が大きく、か
つ前記第5および第7の枝部の重心位置がX軸方向の互
いに異なる方向に偏心している振動子素子と、 前記第2の枝部および第3の枝部の枝面に形成された励
振電極により、交流電圧の印加を受けて前記第2の枝部
および第3の枝部をY軸方向へ逆相で伸縮振動させ、こ
の励振した伸縮振動によって前記第1の枝部をX−Y平
面に平行にY軸方向へ振幅をもって屈曲振動させ、この
屈曲振動によって更に前記第4の枝部,第5の枝部,第
6の枝部および第7の枝部をX−Y平面に平行にX軸方
向へ振幅をもって屈曲振動させる励振構造と、 前記第4の枝部および第6の枝部の枝面に形成された検
出電極により、この第4の枝部および第6の枝部がX−
Y平面に平行にX軸方向へ振幅をもって振動していると
き、前記振動子素子がY軸の回りに回転した場合、この
第4の枝部および第6の枝部が慣性により生じるZ軸方
向成分による屈曲振動によって生ずる電荷を取り出す第
1の検出構造と、 前記第5の枝部および第7の枝部の枝面に形成された検
出電極により、この第5の枝部および第7の枝部がX−
Y平面に平行にX軸方向へ振幅をもって振動していると
き、前記振動子素子へZ軸方向の加速度が作用した場
合、この第5の枝部および第7の枝部が慣性により生じ
るねじれ現象から誘発される屈曲振動によって生ずる電
荷を取り出す第2の検出構造とを備えたことを特徴とす
る複合センサ。
2. A first branch portion whose both ends are supported and fixed, and a first branch portion extends from a branch surface at a substantially central portion in one direction and another direction orthogonal to the branch surface, and has a tip end. The second and third branches supported and fixed, and a branch surface between one end and the center of the first branch is parallel to the longitudinal direction of the second and third branches. Fourth extending in one direction and the other
And a fifth branch, and a direction parallel to the longitudinal direction of the second and third branches from a branch surface between the other end and the center of the first branch. A sixth branch and a seventh branch extending in the other direction, wherein a direction parallel to a longitudinal direction of the first branch is an X-axis direction, and a longitudinal direction of the second and third branches is A direction parallel to the Y-axis direction and a direction parallel to the direction orthogonal to the XY plane as the Z-axis direction.
Is larger in the X-axis direction width near the tip than in the X-axis width near the base with the first branch, and the center of gravity of the fifth and seventh branches is An oscillator element that is eccentric in directions different from each other in the X-axis direction; and an excitation electrode formed on a branch surface of the second branch portion and the third branch portion. The branch portion and the third branch portion are stretched and vibrated in the Y-axis direction in the opposite phase, and the first stretch portion is bent and vibrated with an amplitude in the Y-axis direction in parallel with the XY plane by the excited stretching vibration. An excitation structure that further causes the fourth branch, the fifth branch, the sixth branch, and the seventh branch to bend and vibrate with an amplitude in the X-axis direction parallel to the XY plane by the bending vibration; The detection electrodes formed on the branch surfaces of the fourth branch and the sixth branch form the fourth branch and the fourth branch. Beauty branches of the sixth X-
When the vibrator element rotates around the Y axis while vibrating with an amplitude in the X axis direction parallel to the Y plane, the fourth and sixth branches are caused by inertia in the Z axis direction. The fifth branch and the seventh branch are formed by a first detection structure for extracting a charge generated by bending vibration due to the component, and a detection electrode formed on a branch surface of the fifth branch and the seventh branch. Part is X-
When vibration is applied in the X-axis direction in parallel to the Y-plane with an amplitude in the X-axis direction, and when acceleration in the Z-axis direction acts on the vibrator element, the fifth and seventh branches are twisted due to inertia. And a second detection structure for extracting electric charges generated by bending vibration induced from the second sensor.
【請求項3】 その両端が支持固定された第1の枝部
と、この第1の枝部のほゞ中央部の枝面からこの枝面と
直交する一方向に延びその先端が支持固定された第2の
枝部と、前記第1の枝部の一方の端部と中央部との間の
枝面から前記第2の枝部の長手方向と平行する一方向お
よび他方向に延びた第3の枝部および第4の枝部と、前
記第1の枝部の他方の端部と中央部との間の枝面から前
記第2の枝部の長手方向と平行する一方向および他方向
に延びた第5の枝部および第6の枝部とを備え、前記第
1の枝部の長手方向に平行な方向をX軸方向、前記第2
の枝部の長手方向に平行な方向をY軸方向、X−Y平面
と直交する方向と平行な方向をZ軸方向とし、前記第4
および第6の枝部が前記第1の枝部との付け根部付近の
X軸方向幅寸法よりも先端付近のX軸方向幅寸法の方が
大きく、かつ前記第4および第6の枝部の重心位置がX
軸方向の互いに異なる方向に偏心している振動子素子
と、 前記第2の枝部の枝面に形成された励振電極により、交
流電圧の印加を受けて前記第2の枝部をY軸方向へ伸縮
振動させ、この励振した伸縮振動によって前記第1の枝
部をX−Y平面に平行にY軸方向へ振幅をもって屈曲振
動させ、この屈曲振動によって更に前記第3の枝部,第
4の枝部,第5の枝部および第6の枝部をX−Y平面に
平行にX軸方向へ振幅をもって屈曲振動させる励振構造
と、 前記第3の枝部および第5の枝部の枝面に形成された検
出電極により、この第3の枝部および第5の枝部がX−
Y平面に平行にX軸方向へ振幅をもって振動していると
き、前記振動子素子がY軸の回りに回転した場合、この
第3の枝部および第5の枝部が慣性により生じるZ軸方
向成分による屈曲振動によって生ずる電荷を取り出す第
1の検出構造と、 前記第4の枝部および第6の枝部の枝面に形成された検
出電極により、この第4の枝部および第6の枝部がX−
Y平面に平行にX軸方向へ振幅をもって振動していると
き、前記振動子素子へZ軸方向の加速度が作用した場
合、この第4の枝部および第6の枝部が慣性により生じ
るねじれ現象から誘発される屈曲振動によって生ずる電
荷を取り出す第2の検出構造とを備えたことを特徴とす
る複合センサ。
3. A first branch portion having both ends supported and fixed, and a first branch portion extending from a branch surface at a substantially central portion in one direction orthogonal to the branch surface, and a distal end thereof supported and fixed. A second branch, and a second branch extending in one direction and the other direction parallel to the longitudinal direction of the second branch from a branch surface between one end and the center of the first branch. A third branch and a fourth branch, and one direction and another direction parallel to the longitudinal direction of the second branch from a branch surface between the other end and the center of the first branch. A fifth branch portion and a sixth branch portion extending in a direction parallel to the longitudinal direction of the first branch portion in the X-axis direction;
The direction parallel to the longitudinal direction of the branch portion is defined as the Y-axis direction, and the direction parallel to the direction orthogonal to the XY plane is defined as the Z-axis direction.
And the sixth branch has a larger width in the X-axis direction near the tip than in the X-axis direction near the base with the first branch, and the fourth and sixth branches have The center of gravity is X
An oscillator element that is eccentric in directions different from each other in the axial direction, and an excitation electrode formed on a branch surface of the second branch receives an AC voltage to move the second branch in the Y-axis direction. The first branch portion is flexibly vibrated with an amplitude in the Y-axis direction in parallel with the XY plane by the excited stretching vibration, and the third branch portion and the fourth branch are further flexed by the flexural vibration. An exciting structure for bending and bending the portion, the fifth branch and the sixth branch in the X-axis direction with an amplitude in parallel with the XY plane; and a branch surface of the third branch and the fifth branch. Due to the formed detection electrode, the third branch and the fifth branch are X-
When the vibrator element rotates around the Y-axis while vibrating with amplitude in the X-axis direction parallel to the Y-plane, the third and fifth branches are caused by inertia in the Z-axis direction. The first branch structure and the sixth branch are formed by a first detection structure for extracting a charge generated by bending vibration due to the component, and a detection electrode formed on a branch surface of the fourth branch portion and the sixth branch portion. Part is X-
When the vibrator element vibrates with an amplitude in the X-axis direction in parallel with the Y-plane and the acceleration in the Z-axis direction acts on the vibrator element, the fourth and sixth branches are twisted due to inertia. And a second detection structure for extracting electric charges generated by bending vibration induced from the second sensor.
【請求項4】 その両端が支持固定された第1の枝部
と、この第1の枝部のほゞ中央部の枝面からこの枝面と
直交する他方向に延びその先端が支持固定された第2の
枝部と、前記第1の枝部の一方の端部と中央部との間の
枝面から前記第2の枝部の長手方向と平行する一方向お
よび他方向に延びた第3の枝部および第4の枝部と、前
記第1の枝部の他方の端部と中央部との間の枝面から前
記第2の枝部の長手方向と平行する一方向および他方向
に延びた第5の枝部および第6の枝部とを備え、前記第
1の枝部の長手方向に平行な方向をX軸方向、前記第2
の枝部の長手方向に平行な方向をY軸方向、X−Y平面
と直交する方向と平行な方向をZ軸方向とし、前記第4
および第6の枝部が前記第1の枝部との付け根部付近の
X軸方向幅寸法よりも先端付近のX軸方向幅寸法の方が
大きく、かつ前記第4および第6の枝部の重心位置がX
軸方向の互いに異なる方向に偏心している振動子素子
と、 前記第2の枝部の枝面に形成された励振電極により、交
流電圧の印加を受けて前記第2の枝部をY軸方向へ伸縮
振動させ、この励振した伸縮振動によって前記第1の枝
部をX−Y平面に平行にY軸方向へ振幅をもって屈曲振
動させ、この屈曲振動によって更に前記第3の枝部,第
4の枝部,第5の枝部および第6の枝部をX−Y平面に
平行にX軸方向へ振幅をもって屈曲振動させる励振構造
と、 前記第3の枝部および第5の枝部の枝面に形成された検
出電極により、この第3の枝部および第5の枝部がX−
Y平面に平行にX軸方向へ振幅をもって振動していると
き、前記振動子素子がY軸の回りに回転した場合、この
第3の枝部および第5の枝部が慣性により生じるZ軸方
向成分による屈曲振動によって生ずる電荷を取り出す第
1の検出構造と、 前記第4の枝部および第6の枝部の枝面に形成された検
出電極により、この第4の枝部および第6の枝部がX−
Y平面に平行にX軸方向へ振幅をもって振動していると
き、前記振動子素子へZ軸方向の加速度が作用した場
合、この第4の枝部および第6の枝部が慣性により生じ
るねじれ現象から誘発される屈曲振動によって生ずる電
荷を取り出す第2の検出構造とを備えたことを特徴とす
る複合センサ。
4. A first branch portion having both ends supported and fixed, and a first branch portion extending from a branch surface at a substantially central portion in the other direction orthogonal to the branch surface, and a distal end thereof supported and fixed. A second branch, and a second branch extending in one direction and the other direction parallel to the longitudinal direction of the second branch from a branch surface between one end and the center of the first branch. A third branch and a fourth branch, and one direction and another direction parallel to the longitudinal direction of the second branch from a branch surface between the other end and the center of the first branch. A fifth branch portion and a sixth branch portion extending in a direction parallel to the longitudinal direction of the first branch portion in the X-axis direction;
The direction parallel to the longitudinal direction of the branch portion is defined as the Y-axis direction, and the direction parallel to the direction orthogonal to the XY plane is defined as the Z-axis direction.
And the sixth branch has a larger width in the X-axis direction near the tip than in the X-axis direction near the base with the first branch, and the fourth and sixth branches have The center of gravity is X
A transducer element that is eccentric in directions different from each other in the axial direction, and an excitation electrode formed on a branch surface of the second branch section receives an AC voltage to move the second branch section in the Y-axis direction. The first branch portion is flexibly vibrated with an amplitude in the Y-axis direction in parallel with the XY plane by the excited vibration, and the third branch portion and the fourth branch are further flexed by the flexural vibration. An exciting structure for bending and vibrating the portion, the fifth branch and the sixth branch in the X-axis direction in parallel to the XY plane with an amplitude; and a branch surface of the third branch and the fifth branch. Due to the formed detection electrode, the third branch and the fifth branch are X-
When the vibrator element rotates around the Y-axis while vibrating with amplitude in the X-axis direction parallel to the Y-plane, the third branch and the fifth branch are generated by inertia in the Z-axis direction. The first branch structure and the sixth branch are formed by a first detection structure for extracting a charge generated by bending vibration due to the component, and a detection electrode formed on a branch surface of the fourth branch portion and the sixth branch portion. Part is X-
When vibration is applied in the X-axis direction in parallel with the Y-plane in the X-axis direction and the acceleration in the Z-axis direction is applied to the vibrator element, the fourth branch and the sixth branch are twisted due to inertia. And a second detection structure for extracting electric charges generated by bending vibration induced from the second sensor.
JP13502698A 1998-05-18 1998-05-18 Compound sensor Expired - Fee Related JP3756668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13502698A JP3756668B2 (en) 1998-05-18 1998-05-18 Compound sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13502698A JP3756668B2 (en) 1998-05-18 1998-05-18 Compound sensor

Publications (2)

Publication Number Publication Date
JPH11325912A true JPH11325912A (en) 1999-11-26
JP3756668B2 JP3756668B2 (en) 2006-03-15

Family

ID=15142210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13502698A Expired - Fee Related JP3756668B2 (en) 1998-05-18 1998-05-18 Compound sensor

Country Status (1)

Country Link
JP (1) JP3756668B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206141A (en) * 1999-01-20 2000-07-28 Miyota Kk Momentum sensor
JP2001050751A (en) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2007271498A (en) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp Acceleration sensor
JP2007298321A (en) * 2006-04-28 2007-11-15 Kyocera Kinseki Corp Acceleration sensor
JP2008051647A (en) * 2006-08-24 2008-03-06 Sumida Corporation Piezoelectric acceleration sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206141A (en) * 1999-01-20 2000-07-28 Miyota Kk Momentum sensor
JP2001050751A (en) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2007271498A (en) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp Acceleration sensor
JP2007298321A (en) * 2006-04-28 2007-11-15 Kyocera Kinseki Corp Acceleration sensor
JP2008051647A (en) * 2006-08-24 2008-03-06 Sumida Corporation Piezoelectric acceleration sensor

Also Published As

Publication number Publication date
JP3756668B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP3870895B2 (en) Angular velocity sensor
KR100327481B1 (en) Micro gyroscope
JP5560806B2 (en) Gyro element, gyro sensor, and electronic device
JP3307906B2 (en) Micro gyroscope
US20120216613A1 (en) Angular velocity sensor
JP2013096801A (en) Vibrating structure gyroscope with excellent output stability
JP2010237204A (en) Mems gyroscope with reduced magnetic sensitivity
JPH09196680A (en) Gyro apparatus and its manufacture
JP2000074673A (en) Compound movement sensor
JPH085382A (en) Angular-velocity sensor
JPH0654235B2 (en) Vibration type angular velocity meter
JPH11325912A (en) Composite sensor
JP2000337885A (en) Microgyroscope
JP2001194148A (en) Vibrating gyro
US6281619B1 (en) Vibration gyro
JP3734955B2 (en) Angular velocity sensor
KR100493149B1 (en) Symmetrical Z-axis gyroscope and fabricating method thereof
JPH08233582A (en) Vibration gyro
JP2003194543A (en) Angular velocity sensor
JP2869514B2 (en) 1-axis angular velocity / acceleration sensor
JP3561135B2 (en) Angular velocity sensor
JPH08201066A (en) Oscillatory gyroscope
JP2007178300A (en) Tuning-fork type vibrator
JP2926139B2 (en) 2-axis angular velocity / acceleration sensor
JP2008175679A (en) Vibration gyro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees