JP2000203995A - Growing method of compound semiconductor crystal, compound semiconductor crystal grown by the method and compound semiconductor device - Google Patents

Growing method of compound semiconductor crystal, compound semiconductor crystal grown by the method and compound semiconductor device

Info

Publication number
JP2000203995A
JP2000203995A JP11006277A JP627799A JP2000203995A JP 2000203995 A JP2000203995 A JP 2000203995A JP 11006277 A JP11006277 A JP 11006277A JP 627799 A JP627799 A JP 627799A JP 2000203995 A JP2000203995 A JP 2000203995A
Authority
JP
Japan
Prior art keywords
gan
compound semiconductor
semiconductor crystal
based compound
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11006277A
Other languages
Japanese (ja)
Inventor
Yoji Seki
洋二 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP11006277A priority Critical patent/JP2000203995A/en
Publication of JP2000203995A publication Critical patent/JP2000203995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Weting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a growing method of a GaN compd. semiconductor crystal in which the crystal can be grown along the 11-24} planer direction as the growing direction where the inner electric field is zero, and to provide a GaN compd. semiconductor crystal obtd. by this growing method, and a semiconductor device using the GaN compd. semiconductor crystal substrate. SOLUTION: In the growing method of a GaN compd. semiconductor crystal on a rare earth 13 (3B) perovskite crystal substrate containing one or more kinds of rare earth elements, the substrate is subjected to first cleaning with an org. solvent and to second cleaning with an inorg. acid as pretreatment so that the substrate surface has a surface state to grow the 11-24} plane of a GaN compd. semiconductor crystal. Concretely, the first cleaning process using an org. solvent is carried out (1) by boiling the substrate in trichloroethylene and then degreasing under untrasonics in acetone and methanol. Or, the process is carried out by (2) ultrasonic cleaning using acetone and methanol. In the second cleaning using an inorg. acid, the substrate is subjected to etching in a mixture soln. having the volume ratio of phosphoric acid to sulfuric acid of 1:3. The process (1) is preferably carried out in an environment over 80 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光デバイス、電子
デバイスなどの半導体デバイスに用いられるGaN系化合
物半導体結晶の成長方法及び当該成長方法で成長させた
GaN系化合物半導体結晶並びにGaN系化合物半導体装置に
関し、特に希土類13(3B)族ペロブスカイト結晶基板上
に半導体結晶を成長させるGaN系化合物半導体結晶の成
長方法および当該成長方法で成長させたGaN系化合物半
導体結晶ならびにGaN系化合物半導体装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a GaN-based compound semiconductor crystal used for a semiconductor device such as an optical device and an electronic device, and to a method for growing the same.
The present invention relates to a GaN-based compound semiconductor crystal and a GaN-based compound semiconductor device, and more particularly to a method of growing a GaN-based compound semiconductor crystal on a rare earth 13 (3B) group perovskite crystal substrate and a GaN-based compound semiconductor grown by the growth method. The present invention relates to a crystal and a GaN-based compound semiconductor device.

【0002】[0002]

【従来の技術】GaN系化合物半導体(InxGayAl1-x-yN、0
≦x,y:x+y≦1)は禁制帯幅が広く、短波長の発光およ
び受光素子、耐環境素子として期待され、広く研究され
てきた。しかし、GaN系にはまだ大型バルク結晶が無い
ため、サファイアを代表とする異種結晶基板上へのヘテ
ロエピタキシーによる薄膜結晶が用いられてきた。しか
し、多くの場合、基板に用いられる異種結晶板とその上
に成長するGaN系化合物半導体薄膜との格子不整合性が
大きいという問題があった。
BACKGROUND OF THE INVENTION GaN-based compound semiconductor (In x Ga y Al 1- xy N, 0
≦ x, y: x + y ≦ 1) is expected as a light-emitting and light-receiving element having a wide bandgap, a short wavelength, and an environment-resistant element, and has been widely studied. However, since there is no large bulk crystal in the GaN system, a thin film crystal by heteroepitaxy on a heterogeneous crystal substrate represented by sapphire has been used. However, in many cases, there is a problem that the lattice mismatch between the heterogeneous crystal plate used for the substrate and the GaN-based compound semiconductor thin film grown thereon is large.

【0003】そこで、GaN系化合物半導体のヘテロエピ
タキシー用の優れた異種結晶基板の一つとして、希土類
Gaペロブスカイトに代表される希土類13(3B)族ペロブ
スカイトが提案されている(特願平7-526233号)。この
系の結晶を基板に用いると、例えばNdGaO3とGaNの場
合、格子不整合が1.2%程度であり、サファイアに比べ
てはるかに小さく、また、サファイアの代替品として使
われているSiCと比べても格子定数差が小さくヘテロエ
ピタキシーに適している。
[0003] As one of the excellent hetero-crystal substrates for heteroepitaxy of GaN-based compound semiconductors, rare-earth
A rare earth 13 (3B) group perovskite represented by Ga perovskite has been proposed (Japanese Patent Application No. 7-526233). When this type of crystal is used for the substrate, for example, NdGaO 3 and GaN have a lattice mismatch of about 1.2%, which is much smaller than sapphire, and compared to SiC used as a substitute for sapphire. However, it has a small lattice constant difference and is suitable for heteroepitaxy.

【0004】こうして、希土類13(3B)族ペロブスカイ
ト結晶基板上にGaN系化合物半導体結晶を成長させる
と、成長した結晶面は通常(0001)となり、この(0001)面
に素子が組み込まれてGaN系化合物半導体を用いた種々
のデバイスが作製される。例えば、発光ダイオード(LE
D)やレーザダイオード(LD)では、発光層にInGaN/Ga
N等を材料系とする量子井戸構造が採用されている。
[0004] When a GaN-based compound semiconductor crystal is grown on a rare-earth 13 (3B) group perovskite crystal substrate, the grown crystal plane is usually (0001). Various devices using a compound semiconductor are manufactured. For example, a light emitting diode (LE
In D) and laser diodes (LD), InGaN / Ga
A quantum well structure using N or the like as a material system is employed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、(0001)
面上に歪量子井戸が形成された場合、面内2軸性応力の
存在によりピエゾ電界(内部電界)が発生し、このピエ
ゾ電界が発光効率や発光波長などの特性に影響を与える
という問題がある。すなわち、窒化物系半導体は圧電定
数が大きいために、内部電界により影響を受けやすく、
窒化物系半導体を用いた発光素子においては、発光効率
が低下したり発光波長が変動したりするという問題が生
ずる。
However, (0001)
When a strained quantum well is formed on a plane, a piezo electric field (internal electric field) is generated due to the presence of in-plane biaxial stress, and this piezo electric field affects characteristics such as luminous efficiency and luminous wavelength. is there. That is, since the nitride-based semiconductor has a large piezoelectric constant, it is easily affected by an internal electric field,
In a light-emitting element using a nitride-based semiconductor, there arises a problem that the light-emitting efficiency is reduced or the light-emitting wavelength is changed.

【0006】しかし、ピエゾ電界に関して、竹内らによ
れば成長面方位を制御することにより、ピエゾ電界の発
生を制御することが可能であることが報告されている
(第58回応用物理学会学術講演会予稿集No.1,秋田,1997
年p.255)。それによれば、{01-12}、{11-24}、{01-1
0}、{2-1-10}等の各面方位を成長方向にすることによ
り、ピエゾ電界の発生を0にまで低減することができ、
これらの面上に歪量子井戸を形成すれば、発光および受
光素子の大幅な特性改善が可能である。一方、現在成長
面として得られている(0001)面がピエゾ電界が最も大き
くなる面であることも明らかにしている。
However, regarding the piezo electric field, according to Takeuchi et al., It has been reported that it is possible to control the generation of the piezo electric field by controlling the orientation of the growth plane (the 58th Annual Meeting of the Japan Society of Applied Physics). Proceedings No.1, Akita, 1997
Year p.255). According to it, {01-12}, {11-24}, {01-1
By setting each plane orientation such as {0} and {2-1-10} to the growth direction, the generation of the piezoelectric field can be reduced to zero,
If strained quantum wells are formed on these surfaces, it is possible to greatly improve the characteristics of the light emitting and light receiving elements. On the other hand, it is also clear that the (0001) plane obtained as a growth plane is the plane where the piezo electric field is the largest.

【0007】ところが、理論的には検証が進んではいる
ものの、現実的な結晶成長技術としては成長面方位を的
確に制御することは難しく、これまで上記の理論に従っ
た面方位で結晶成長に成功した例はない。
However, although verification has progressed theoretically, it is difficult to accurately control the growth plane orientation as a practical crystal growth technique. There have been no successful cases.

【0008】そこで、本発明は内部電界が0となる{11-
24}面方位を成長方向として結晶を成長させることが可
能なGaN系化合物半導体結晶の成長方法およびこの成長
方法によって得られたGaN系化合物半導体結晶、ならび
に前記GaN系化合物半導体結晶の基板を用いた半導体装
置を提供することを目的とする。
Therefore, according to the present invention, the internal electric field becomes zero {11-
A method for growing a GaN-based compound semiconductor crystal capable of growing a crystal with the {24} plane orientation as a growth direction, a GaN-based compound semiconductor crystal obtained by the growth method, and a substrate of the GaN-based compound semiconductor crystal It is an object to provide a semiconductor device.

【0009】[0009]

【課題を解決するための手段】従来は、例えば(011)面N
dGaO3を基板に用いてGaNをエピタキシャル成長する場
合、その前処理工程としてトリクロロエチレンによる煮
沸洗浄とアセトンおよびメタノールによる超音波洗浄を
行い、続いて酸でエッチング処理を行った後、エピタキ
シャル成長装置内に設置して成長工程を行っていたが、
その場合はGaNの成長方位は(0001)であり、ピエゾ電界
の発生が最も大きくなっていた。
Means for Solving the Problems Conventionally, for example, the (011) plane N
When GaN is epitaxially grown by using dGaO 3 as a substrate, boiling cleaning with trichloroethylene and ultrasonic cleaning with acetone and methanol are performed as pretreatment steps, followed by etching with an acid, and then set in an epitaxial growth apparatus. Was doing the growth process,
In that case, the growth direction of GaN was (0001), and the generation of the piezoelectric field was largest.

【0010】そこで本発明者は、NdGaO3結晶を基板とし
て用いて成長させるときの前処理(洗浄およびエッチン
グ処理)に着目し、前処理の条件を変えることで、成長
方位が変化しピエゾ電界の発生が(0001)面の場合よりも
小さくし得るとの推論のもと鋭意実験を進めた。
Therefore, the present inventor focused on pretreatment (cleaning and etching treatment) when growing using an NdGaO 3 crystal as a substrate, and by changing the conditions of the pretreatment, the growth direction was changed and the piezo electric field was reduced. The intense experiment was conducted based on the inference that the generation could be smaller than that of the (0001) plane.

【0011】その結果、下記の成長方法によりピエゾ電
界の発生を抑制できるGaN系化合物半導体の結晶面を得
ることが可能であるとの結論に達し、本発明を完成した
ものである。
As a result, the inventors have concluded that it is possible to obtain a crystal plane of a GaN-based compound semiconductor capable of suppressing generation of a piezoelectric field by the following growth method, and have completed the present invention.

【0012】すなわち、1または2種類以上の希土類元素
を含む希土類13(3B)族ペロブスカイト結晶基板上にGa
N系化合物半導体結晶を成長させる方法において、上記
基板に有機溶媒による第1の洗浄と、無機酸による第2の
洗浄とを前処理として施し、上記基板表面がGaN系化合
物半導体結晶の{11-24}面を成長させる表面状態になる
ようにした。これにより、{11-24}面に素子を組み込む
ことが可能になり、そのGaN系化合物半導体装置におい
て、装置特性に悪影響を及ぼすピエゾ電界の発生を0に
まで低減することができる。
That is, Ga is deposited on a rare earth 13 (3B) group perovskite crystal substrate containing one or more kinds of rare earth elements.
In the method of growing an N-based compound semiconductor crystal, the substrate is subjected to a first cleaning with an organic solvent and a second cleaning with an inorganic acid as pretreatment, and the substrate surface has a {11- 24} plane was grown. This makes it possible to incorporate the element on the {11-24} plane, and in the GaN-based compound semiconductor device, it is possible to reduce the generation of a piezoelectric field that adversely affects the device characteristics to zero.

【0013】また、上記有機溶媒による第1の洗浄は、
トリクロロエチレン等による煮沸洗浄の後にアセトン
およびメタノール等による超音波洗浄を行う脱脂洗浄と
するか、アセトンおよびメタノール等による超音波洗
浄とすることができる。また、上記無機酸による第2の
洗浄は、リン酸:硫酸の容量比が1:3である混合溶液
によるエッチングであり、の場合、望ましくは80℃
を超える温度環境下で行われるのがよい。これにより、
良好な{11-24}面を成長面として得ることができる。
[0013] The first washing with the organic solvent is as follows.
Degreasing cleaning in which ultrasonic cleaning with acetone and methanol or the like is performed after boiling cleaning with trichloroethylene or the like, or ultrasonic cleaning with acetone and methanol or the like can be used. The second washing with the inorganic acid is etching with a mixed solution in which the volume ratio of phosphoric acid: sulfuric acid is 1: 3.
It is good to be carried out under a temperature environment exceeding. This allows
A good {11-24} plane can be obtained as a growth plane.

【0014】また、前記ペロブスカイト結晶の結晶面が
{011}面、{100}面、{101}面のいずれかであるように
し、かつ、前記ペロブスカイト結晶は前記希土類13(3
B)族元素としてAl,Ga,Inの少なくとも1種類を含むよう
にした。
Further, the crystal plane of the perovskite crystal is
Any one of {011}, {100}, and {101} planes, and the perovskite crystal is composed of the rare earth 13 (3
B) At least one of Al, Ga, and In is included as a group element.

【0015】さらに、上記GaN系化合物半導体結晶の成
長方法において、ハイドライド気相エピタキシャル成長
法により厚膜成長を行うとよい。これにより、成長した
GaN系化合物半導体結晶厚膜をペロブスカイト結晶基板
から剥離することが可能となり、フリースタンドの{11-
24}面GaN系化合物半導体結晶ウェハーを得ることができ
る。
Further, in the method of growing a GaN-based compound semiconductor crystal, it is preferable to grow a thick film by a hydride vapor phase epitaxial growth method. As a result, it grew
The GaN-based compound semiconductor crystal thick film can be separated from the perovskite crystal substrate, and the freestanding {11-
A 24} -plane GaN-based compound semiconductor crystal wafer can be obtained.

【0016】さらに、上記GaN系化合物半導体結晶の成
長方法を適用して成長させた{11-24}面を有するGaN系化
合物半導体結晶を得ることが可能となり、これを基板と
して半導体装置を構成することができる。これにより、
良好な特性を有する半導体装置を製造することができ
る。
Furthermore, it is possible to obtain a GaN-based compound semiconductor crystal having a {11-24} plane grown by applying the above-mentioned method for growing a GaN-based compound semiconductor crystal, and to configure a semiconductor device using this as a substrate. be able to. This allows
A semiconductor device having good characteristics can be manufactured.

【0017】なお、{11-24}面とは、ここでは(11-24)面
と等価な面を表す。また、トリクロロエチレン等とはト
リクロロエチレン、または、それと同様の効果を持つも
のを意味し、アセトンおよびメタノール等についても、
同様のことを意味している。
Here, the {11-24} plane represents a plane equivalent to the (11-24) plane. Further, trichlorethylene and the like means trichlorethylene or a substance having the same effect, and acetone and methanol are also referred to.
It means the same thing.

【0018】[0018]

【発明の実施の形態】以下、本発明の好適な実施形態を
実験に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below based on experiments.

【0019】基板として厚さ350μmの(011)面NdGaO3
晶基板を用い、この基板にGaNを成長させた。従来の前
処理は図1に示すようにトリクロロエチレンによる煮沸
洗浄S1を5分間、アセトンによる有機洗浄S2を5分間、
メタノールによる有機洗浄S3を5分間、流水による水洗
S4を5分間、リン酸と硫酸(容積比1:3)の混合溶液に
よるエッチング処理S5を1分間行った後、水洗S6し、乾
燥させていた。
A (011) plane NdGaO 3 crystal substrate having a thickness of 350 μm was used as a substrate, and GaN was grown on this substrate. As shown in FIG. 1, the conventional pretreatment is boiling washing S1 with trichloroethylene for 5 minutes, organic washing S2 with acetone for 5 minutes,
Organic washing with methanol S3 for 5 minutes, washing with running water
After performing S4 for 5 minutes and etching S5 with a mixed solution of phosphoric acid and sulfuric acid (volume ratio 1: 3) for 1 minute, washing with water S6 and drying.

【0020】本実験では、トリクロロエチレンによる煮
沸洗浄S1の有無とリン酸と硫酸(容積比1:3)の混合溶
液によるエッチングS5の処理温度とを表1に示す条件に
して前処理を行った後、GaN結晶を成長させた。
In this experiment, the pretreatment was performed under the conditions shown in Table 1 with the presence / absence of boiling washing S1 using trichloroethylene and the processing temperature of etching S5 using a mixed solution of phosphoric acid and sulfuric acid (volume ratio 1: 3). Then, a GaN crystal was grown.

【0021】[0021]

【表1】 GaN結晶の成長はすべて下記の通り行われた。[Table 1] All GaN crystal growth was performed as follows.

【0022】まず、前処理を行った基板を、ハイドライ
ドVPE(Vapor Phase Epitaxy、気相エピタキシャル
成長)装置内の石英製ウェハー保持具にセットし、窒素
ガスを流しながら、基板部の温度を600℃に、Ga原料の
温度を85O℃に昇温、保持した。その後、Ga原料の上流
側から窒素ガスで希釈されたHClガスを流し、同時にGa
原料をバイパスして基板の直上、近傍にNH3ガスを流
し、基板上にGaNの第1層を10分間成長させた。続いて、
基板部の温度を1000℃に昇温、保持し、GaNの第2層を12
0分間成長し、冷却後、ウェハーを取り出した。
First, the preprocessed substrate is set on a quartz wafer holder in a hydride VPE (Vapor Phase Epitaxy, vapor phase epitaxial growth) apparatus, and the temperature of the substrate is raised to 600 ° C. while flowing nitrogen gas. The temperature of the Ga raw material was raised to and maintained at 85 ° C. Then, HCl gas diluted with nitrogen gas is flowed from the upstream side of the Ga raw material,
An NH 3 gas was flowed immediately above and near the substrate, bypassing the raw material, and a first GaN layer was grown on the substrate for 10 minutes. continue,
The temperature of the substrate is raised to 1000 ° C. and maintained, and the second layer of GaN is
After growing for 0 minutes and cooling, the wafer was taken out.

【0023】第1層は第2層を成長させるための基板の保
護膜であり、厚さがnm単位の極薄いものである。第2層
の厚さは100μmであり、全体としては表面に異常成長が
見られない平坦な鏡面のエピタキシャル膜であった。
The first layer is a protective film for the substrate for growing the second layer, and has a very small thickness of the order of nm. The thickness of the second layer was 100 μm, and as a whole, it was a flat mirror-surface epitaxial film with no abnormal growth on the surface.

【0024】このエピタキシャル膜をX線回折観察した
結果を表2に示す。前処理を条件3,4,5,6で実施
することにより良好な膜質の(11-24)面を得ることがで
きた。
Table 2 shows the results of X-ray diffraction observation of this epitaxial film. By performing the pretreatment under the conditions 3, 4, 5, and 6, a (11-24) plane having good film quality could be obtained.

【0025】すなわち、前処理工程において、トリクロ
ロエチレンによる煮沸洗浄を行った場合には、リン酸+
硫酸の混合溶液によるエッチングS5を80℃より高温
の温度環境下で行うことにより、または、トリクロロエ
チレンによる煮沸洗浄を省略することにより、(11-24)
面を成長させることが判った。
That is, in the pretreatment step, when washing by boiling with trichloroethylene is performed, phosphoric acid +
By performing etching S5 with a mixed solution of sulfuric acid in a temperature environment higher than 80 ° C., or by omitting boiling washing with trichloroethylene, (11-24)
It turned out to grow the surface.

【0026】なお、従来の前処理は条件2によるもので
あり、得られる成長面は(0001)面の結晶であった。
The conventional pretreatment was performed under the condition 2, and the obtained growth plane was a (0001) crystal.

【0027】[0027]

【表2】 以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は上記実施例に限定されるも
のではない。例えば、煮沸洗浄に用いる有機溶剤はトリ
クロロエチレンに限らず乳酸エチルやリモネン等で代替
することができ、煮沸時間も1分以上であれば洗浄でき
る。また、有機洗浄に用いたアセトンやメタノールはエ
タノールやイソプロピルアルコール等の水溶性有機溶剤
で代替できる。また、リン酸と硫酸の混合溶液によるエ
ッチング処理時間も5分に制限されず1分以上であれば
同様の結果を得ることができる。
[Table 2] Although the invention made by the inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments. For example, the organic solvent used for boiling washing can be replaced with ethyl lactate, limonene or the like without being limited to trichlorethylene, and washing can be performed if the boiling time is 1 minute or more. Acetone or methanol used for organic cleaning can be replaced by a water-soluble organic solvent such as ethanol or isopropyl alcohol. Further, the etching time with the mixed solution of phosphoric acid and sulfuric acid is not limited to 5 minutes, and the same result can be obtained if it is 1 minute or more.

【0028】[0028]

【発明の効果】本願において開示される発明によって得
られる効果を簡単に説明すれば下記のとおりである。
The effects obtained by the invention disclosed in the present application will be briefly described as follows.

【0029】すなわち、{11-24}面GaN系化合物半導体結
晶を成長させることが可能となり、この{11-24}面GaN系
化合物半導体結晶を基板として用いて、{11-24}面に素
子を組み込み歪量子井戸構造を形成しても、ピエゾ電界
の発生を抑制でき、優れた特性の発光および受光素子を
作製することができる。
That is, it is possible to grow a {11-24} plane GaN-based compound semiconductor crystal, and use the {11-24} plane GaN-based compound semiconductor crystal as a substrate to form an element on the {11-24} plane. To form a strained quantum well structure, the generation of a piezoelectric field can be suppressed, and a light-emitting and light-receiving element having excellent characteristics can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 前処理工程のフロー図である。FIG. 1 is a flowchart of a pretreatment step.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA03 AB02 BE11 BE15 DB04 DB05 EC03 ED05 ED06 EE04 HA02 HA06 TB02 TB03 TK01 TK06 TK10 5F043 AA40 BB21 BB27 DD02 DD07 GG06 5F045 AB14 AC12 AC13 AC15 AD10 AD14 AF13 CA10 CA12 CA13 CB02 DA55 DQ08 EB13 GH08 HA01 HA04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G077 AA03 AB02 BE11 BE15 DB04 DB05 EC03 ED05 ED06 EE04 HA02 HA06 TB02 TB03 TK01 TK06 TK10 5F043 AA40 BB21 BB27 DD02 DD07 GG06 5F045 AB14 AC12 AC13 AC15 AD10 AD14 CA13 CB13 DQ08 EB13 GH08 HA01 HA04

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 1または2種類以上の希土類元素を含む希
土類13(3B)族ペロブスカイト結晶からなる基板上にGa
N系化合物半導体結晶を成長させる方法において、上記
基板の表面状態をGaN系化合物半導体結晶の{11-24}面を
成長させ得るように、有機溶媒による第1の洗浄と無機
酸による第2の洗浄とを前処理として施すことを特徴と
するGaN系化合物半導体結晶の成長方法。
1. A method according to claim 1, wherein the substrate is made of a rare earth 13 (3B) group perovskite crystal containing one or more rare earth elements.
In the method for growing an N-based compound semiconductor crystal, a first cleaning with an organic solvent and a second cleaning with an inorganic acid are performed so that the surface state of the substrate can grow the {11-24} plane of the GaN-based compound semiconductor crystal. A method for growing a GaN-based compound semiconductor crystal, wherein washing is performed as a pretreatment.
【請求項2】 上記有機溶媒による第1の洗浄は、トリ
クロロエチレン等による煮沸洗浄の後にアセトンおよび
メタノール等による超音波洗浄を行う脱脂洗浄であるこ
とを特徴とする請求項1に記載のGaN系化合物半導体結
晶の成長方法。
2. The GaN-based compound according to claim 1, wherein the first cleaning with an organic solvent is a degreasing cleaning in which boiling cleaning with trichloroethylene or the like is performed and then ultrasonic cleaning with acetone, methanol, or the like. A method for growing a semiconductor crystal.
【請求項3】 上記無機酸による第2の洗浄は、リン
酸:硫酸の容量比が1:3である混合溶液による80℃
を超える温度環境下でのエッチングであることを特徴と
する請求項2に記載のGaN系化合物半導体結晶の成長方
法。
3. The second washing with the inorganic acid is performed at 80 ° C. with a mixed solution having a phosphoric acid: sulfuric acid volume ratio of 1: 3.
The method of growing a GaN-based compound semiconductor crystal according to claim 2, wherein the etching is performed in a temperature environment exceeding 300 ° C.
【請求項4】 上記有機溶媒による第1の洗浄は、アセ
トンおよびメタノール等による超音波洗浄であることを
特徴とする請求項1に記載のGaN系化合物半導体結晶の
成長方法。
4. The method for growing a GaN-based compound semiconductor crystal according to claim 1, wherein the first cleaning with the organic solvent is ultrasonic cleaning with acetone, methanol, or the like.
【請求項5】 上記無機酸による第2の洗浄は、リン
酸:硫酸の容量比が1:3である混合溶液によるエッチ
ングであることを特徴とする請求項4に記載のGaN系化
合物半導体結晶の成長方法。
5. The GaN-based compound semiconductor crystal according to claim 4, wherein the second cleaning with the inorganic acid is etching with a mixed solution having a phosphoric acid: sulfuric acid volume ratio of 1: 3. Growth method.
【請求項6】 前記ペロブスカイト結晶の成長結晶面が
{011}面、{100}面、{101}面のいずれかであることを特
徴とする請求項1から請求項5のいずれかに記載のGaN
系化合物半導体結晶の成長方法。
6. The growth crystal plane of the perovskite crystal is
The GaN according to any one of claims 1 to 5, wherein the GaN is any one of a {011} plane, a {100} plane, and a {101} plane.
Method for growing compound semiconductor crystal.
【請求項7】 前記ペロブスカイト結晶は前記希土類13
(3B)族元素としてAl,Ga,Inの少なくとも1種類を含む
ことを特徴とする請求項1から請求項6のいずれかに記
載のGaN系化合物半導体結晶の成長方法。
7. The rare earth 13
The method for growing a GaN-based compound semiconductor crystal according to any one of claims 1 to 6, wherein at least one of Al, Ga, and In is included as the (3B) group element.
【請求項8】 請求項1から請求項7のいずれかに記載
のGaN系化合物半導体結晶の成長方法において、ハイド
ライド気相エピタキシャル成長法により厚膜成長を行う
ことを特徴とするGaN系化合物半導体結晶の成長方法。
8. The method of growing a GaN-based compound semiconductor crystal according to claim 1, wherein the thick film is grown by a hydride vapor phase epitaxial growth method. Growth method.
【請求項9】 請求項1から請求項8のいずれかに記載
のGaN系化合物半導体結晶の成長方法を適用して成長さ
せた{11-24}面を有することを特徴とするGaN系化合物半
導体結晶。
9. A GaN-based compound semiconductor having a {11-24} plane grown by applying the method of growing a GaN-based compound semiconductor crystal according to claim 1. Description: crystal.
【請求項10】 請求項9に記載のGaN系化合物半導体
結晶を基板とし、該基板に素子が形成されてなることを
特徴とするGaN系化合物半導体装置。
10. A GaN-based compound semiconductor device comprising the GaN-based compound semiconductor crystal according to claim 9 as a substrate, and an element formed on the substrate.
JP11006277A 1999-01-13 1999-01-13 Growing method of compound semiconductor crystal, compound semiconductor crystal grown by the method and compound semiconductor device Pending JP2000203995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11006277A JP2000203995A (en) 1999-01-13 1999-01-13 Growing method of compound semiconductor crystal, compound semiconductor crystal grown by the method and compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11006277A JP2000203995A (en) 1999-01-13 1999-01-13 Growing method of compound semiconductor crystal, compound semiconductor crystal grown by the method and compound semiconductor device

Publications (1)

Publication Number Publication Date
JP2000203995A true JP2000203995A (en) 2000-07-25

Family

ID=11633922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11006277A Pending JP2000203995A (en) 1999-01-13 1999-01-13 Growing method of compound semiconductor crystal, compound semiconductor crystal grown by the method and compound semiconductor device

Country Status (1)

Country Link
JP (1) JP2000203995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110062449A1 (en) * 2005-06-01 2011-03-17 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (ga,al,in,b)n thin films, heterostructures, and devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231376B2 (en) 2004-05-10 2016-01-05 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
US9793435B2 (en) 2004-05-10 2017-10-17 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
US20110062449A1 (en) * 2005-06-01 2011-03-17 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (ga,al,in,b)n thin films, heterostructures, and devices
US8686466B2 (en) * 2005-06-01 2014-04-01 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
US10529892B2 (en) 2005-06-01 2020-01-07 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices

Similar Documents

Publication Publication Date Title
US8415180B2 (en) Method for fabricating wafer product and method for fabricating gallium nitride based semiconductor optical device
JP2017195396A (en) Light-emitting device and fabrication method of the same
US8603898B2 (en) Method for forming group III/V conformal layers on silicon substrates
KR100449074B1 (en) Method for manufacturing semiconductor and semiconductor light emitting element
JPH10321911A (en) Method for manufacturing epitaxial layer of compound semiconductor on single-crystal silicon and light-emitting diode manufactured therewith
JP2828002B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2007106665A (en) Gallium nitride device substrate containing lattice parameter altering element
KR100691159B1 (en) Method For Manufacturing Gallium Nitride-Based Semiconductor Device
WO2005088687A1 (en) Method for manufacturing gallium nitride semiconductor substrate
KR100569796B1 (en) Recovery of surface-ready silicon carbide substrates
US7951694B2 (en) Semiconductor structure and method of manufacture of same
JP2003257854A (en) Method of manufacturing crystal
CN116941016A (en) Semiconductor substrate, method and apparatus for manufacturing the same, and template substrate
CN100547734C (en) Multilayered semiconductor substrate, semiconductor free-standing substrate and preparation method thereof and semiconductor device
JPH09194299A (en) Method for growing crystal of gallium nitride
US20050133798A1 (en) Nitride semiconductor template for light emitting diode and preparation thereof
JP2004288934A (en) Sapphire substrate and its manufacturing method, epitaxial substrate and semiconductor device, and its manufacturing method
US7696533B2 (en) Indium nitride layer production
JP3252779B2 (en) Semiconductor light emitting element and semiconductor light emitting device
JP2009190918A (en) Method for manufacturing nitride semiconductor substrate and method for manufacturing nitride semiconductor device
US20090114887A1 (en) Bulk, free-standing cubic III-N substrate and a method for forming same.
JP2002274997A (en) METHOD FOR MANUFACTURING GaN SEMICONDUCTOR CRYSTAL
JP5131889B2 (en) Method of manufacturing nitride compound semiconductor device
JP2005210066A (en) Thin film light emitting device and manufacturing method of the same
JP2000150388A (en) Iii nitride semiconductor thin film and manufacture thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040122