JP2000195505A - Manufacture of negative electrode material for nonaqueous electrolyte secondary battery - Google Patents

Manufacture of negative electrode material for nonaqueous electrolyte secondary battery

Info

Publication number
JP2000195505A
JP2000195505A JP10369577A JP36957798A JP2000195505A JP 2000195505 A JP2000195505 A JP 2000195505A JP 10369577 A JP10369577 A JP 10369577A JP 36957798 A JP36957798 A JP 36957798A JP 2000195505 A JP2000195505 A JP 2000195505A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
metal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10369577A
Other languages
Japanese (ja)
Other versions
JP4037975B2 (en
Inventor
Naoto Takahashi
直人 高橋
Hiroya Yamashita
博也 山下
Arata Kunii
新 国居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP36957798A priority Critical patent/JP4037975B2/en
Publication of JP2000195505A publication Critical patent/JP2000195505A/en
Application granted granted Critical
Publication of JP4037975B2 publication Critical patent/JP4037975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To decrease initial irreversible capacity, and to enhance the cycle characteristics and capacity by bringing a negative electrode raw material into contact with a solution prepared by dissolving alkali metals or an alkaline earth metals in an amine compound solvent to adsorb these metals. SOLUTION: As alkali metals or alkaline earth metals used, Li, Na, K, and Ca are preferable. As a solvent for dissolving these metals, use of an amine compound that does not lose a reducing function of metal by reaction is essential, and use of ethylamine and ethylene diamine is especially preferable. The concentration of metal in a metal solution is usually 2-10 wt.%. As a negative electrode raw material, composite tin oxide and composite silicon oxide are especially preferable. In order to bring the negative electrode raw material into contact with a solution of metal such as an alkali metal, for example, a reaction bath with stirring blades is used to mix a solid with liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は負極活物質として利
用される新規な非水電解液二次電池負極材料の製造方法
に関する。詳しくは、不可逆容量が低減されたリチウム
イオン電池等の非水電解液二次電池に好適に使用される
非水電解液二次電池負極材料の製造方法に関する。
The present invention relates to a method for producing a novel negative electrode material for a non-aqueous electrolyte secondary battery used as a negative electrode active material. More specifically, the present invention relates to a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery which is suitably used for a non-aqueous electrolyte secondary battery such as a lithium ion battery having a reduced irreversible capacity.

【0002】[0002]

【従来の技術】代表的な非水電解液二次電池であるリチ
ウムイオン電池は、リチウムイオンを吸蔵・放出するこ
とが可能な正極活物質と集電体などからなる正極、リチ
ウムイオンを吸蔵・放出することが可能な負極活物質と
集電体などからなる負極、リチウム塩を非水溶媒に溶解
してなる電解液、セパレータ、及び電池容器などから構
成されるものであるが、高エネルギー密度という優れた
特長を有するため、近年その需要が急激に高まってい
る。
2. Description of the Related Art A lithium ion battery, which is a typical non-aqueous electrolyte secondary battery, has a positive electrode made of a positive electrode active material capable of occluding and releasing lithium ions and a current collector. It is composed of a negative electrode composed of a negative electrode active material that can be released and a current collector, an electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent, a separator, a battery container, and the like. In recent years, the demand has been rapidly increasing.

【0003】該リチウムイオン電池においては、充電時
には正極活物質中から放出されたリチウムイオンは負極
活物質中に吸蔵され、放電時には負極活物質中に吸蔵さ
れたリチウムイオンが放出されて正極活物質中に吸蔵さ
れる。このため、リチウムイオン電池の重要な特性の一
つである充放電容量は、使用する負極活物質の影響を強
く受ける。現在実用化されているリチウムイオン電池
は、負極活物質としてカーボンを使用しており、その充
放電容量も600mAh/gという値を示すことが報告
されているが、カーボンはその比重が小さいため体積当
たりの容量では充放電容量が十分ではなく、より高い充
放電容量を達成するために、さらに高いリチウムイオン
吸蔵能及び放出能を有する負極活物質が検討されてい
る。
[0003] In the lithium ion battery, lithium ions released from the positive electrode active material during charging are occluded in the negative electrode active material, and lithium ions occluded in the negative electrode active material are discharged during discharging to form the positive electrode active material. It is occluded inside. For this reason, the charge / discharge capacity, which is one of the important characteristics of the lithium ion battery, is strongly affected by the negative electrode active material used. Lithium ion batteries currently in practical use use carbon as a negative electrode active material, and it has been reported that their charge / discharge capacity also shows a value of 600 mAh / g. The charge / discharge capacity is not sufficient in terms of the capacity per unit, and in order to achieve a higher charge / discharge capacity, a negative electrode active material having a higher lithium ion occlusion ability and release ability has been studied.

【0004】酸化錫はリチウムイオンを吸蔵・放出する
性質があることが知られており、古くからこの性質を利
用して酸化錫をリチウムイオン電池の電極活物質として
使用することが検討されている(DEJAN.P.IL
ICら、J.Serb.Chem.Soc.,51巻、
489−495頁、1986年)。そして、近年、Sn
O、SnO2等の酸化錫を負極活物質として使用したリ
チウムイオン電池の充放電容量が500〜600mAh
/gと高いことが報告され(特開平6−275268号
公報、特開平7−122274号公報など)、該酸化錫
はカーボンに比べて比重が約2〜4倍高いため体積当た
りの充放電容量が高いリチウムイオン電池を与える負極
活物質として注目され始めている。
[0004] It is known that tin oxide has a property of absorbing and releasing lithium ions, and it has been studied for a long time to use tin oxide as an electrode active material of a lithium ion battery using this property. (DEJAN.P.IL
IC et al. Serb. Chem. Soc. , 51 volumes,
489-495, 1986). And recently, Sn
The charge / discharge capacity of a lithium ion battery using tin oxide such as O or SnO2 as a negative electrode active material is 500 to 600 mAh.
/ G (for example, JP-A-6-275268 and JP-A-7-122274). Since the specific gravity of the tin oxide is about 2 to 4 times higher than that of carbon, the charge / discharge capacity per volume is increased. Has been attracting attention as a negative electrode active material that provides a lithium ion battery having a high density.

【0005】しかしながら、負極活物質としてSnOあ
るいはSnO2を用いた場合には、初回充放電時の充電
容量と放電容量の差(不可逆容量)が大きく、また初期
の充放電容量は高いが充放電を繰り返すにつれて充放電
容量が低下することが判明した。その後、この安定性
(サイクル特性)を改良したり充放電容量を更に高めた
りする目的で、酸化錫に第二元素を添加した種々の複合
酸化錫について検討が行われている。これまでSn−L
i−O系材料(特開平7−201318号公報)、Sn
−Si−O系材料(特開平7−230800号公報)、
あるいはSn−M−O系材料(ここでMはアルカリ土類
金属、周期律表13、14、15族元素又は亜鉛であ
る。特開平7−288123号公報)といった複合酸化
錫について検討されている。
However, when SnO or SnO 2 is used as the negative electrode active material, the difference between the charge capacity and the discharge capacity at the time of the first charge / discharge (irreversible capacity) is large, and the initial charge / discharge capacity is high but the charge / discharge capacity is high. It was found that the charge / discharge capacity was reduced as was repeated. After that, various composite tin oxides obtained by adding a second element to tin oxide have been studied for the purpose of improving the stability (cycle characteristics) and further increasing the charge / discharge capacity. Until now Sn-L
i-O-based materials (JP-A-7-201318), Sn
-Si-O-based materials (JP-A-7-230800),
Alternatively, composite tin oxides such as Sn-MO-based materials (where M is an alkaline earth metal, an element of Group 13, 14, 15 or zinc, as disclosed in JP-A-7-288123) are being studied. .

【0006】また、珪素等の第二元素を含有する複合酸
化錫粉末の製造方法として、酸化珪素粉末と酸化錫粉末
の混合物を原料粉末として用い、該原料粉末を高温で溶
融させてガラス化させ、冷却した後にガラス化した塊状
物を破砕して粉末化するという方法(溶融法)が検討さ
れており(特開平7−288123号公報)、該溶融法
で得られた複合酸化錫粉末は、リチウム二次電池の負極
活物質として使用した場合に充放電容量が高く、サイク
ル特性も向上すると言われている。しかしながら、該複
合酸化錫のサイクル特性はまだ十分満足できるほどでは
なかった。本発明者らは、特定のゾルゲル法により合成
した複合酸化錫はサイクル特性が向上することを見出し
提案した(特願平10−108608号)。
Further, as a method for producing a composite tin oxide powder containing a second element such as silicon, a mixture of silicon oxide powder and tin oxide powder is used as a raw material powder, and the raw material powder is melted at a high temperature to vitrify it. A method (melting method) of crushing a vitrified lump after cooling and pulverizing the mass has been studied (JP-A-7-288123), and the composite tin oxide powder obtained by the melting method is It is said that when used as a negative electrode active material of a lithium secondary battery, the charge / discharge capacity is high and the cycle characteristics are also improved. However, the cycle characteristics of the composite tin oxide were not yet sufficiently satisfactory. The present inventors have found and proposed that the composite tin oxide synthesized by a specific sol-gel method has improved cycle characteristics (Japanese Patent Application No. 10-108608).

【0007】しかしながら、上記の何れの酸化物・複合
酸化物も初期充放電時の不可逆容量がまだ大きい為に、
電池設計時に該不可逆容量に相当する量の正極活物質を
余計に添加する必要があり、電池の容量が低下し、コス
トが上昇することが問題となっている。
However, any of the above oxides / composite oxides still has a large irreversible capacity at the time of initial charge and discharge.
When designing the battery, it is necessary to add an extra amount of the positive electrode active material corresponding to the irreversible capacity, which causes a problem that the capacity of the battery decreases and the cost increases.

【0008】この不可逆容量を低減する方法として、液
体アンモニアにリチウムを溶解させた溶液やn−ブチル
リチウムをヘキサン等の有機溶剤に溶解した溶液に負極
活物質を浸漬させ、不可逆容量に相当する分のリチウム
を収着させる方法が検討されている(特開平10−29
4104)。
As a method for reducing the irreversible capacity, a negative electrode active material is immersed in a solution in which lithium is dissolved in liquid ammonia or a solution in which n-butyllithium is dissolved in an organic solvent such as hexane. A method for sorbing lithium has been studied (JP-A-10-29).
4104).

【0009】しかしながら、リチウムの液体アンモニア
溶液を用いる場合、アンモニアの沸点が低く、アンモニ
アの沸点である−33.4℃以下の低温にする必要があ
る為、取り扱いが困難であった。また、負極活物質をリ
チウムの液体アンモニア溶液に浸漬しても、溶解したリ
チウムの全てが負極活物質に収着するわけではなく、未
反応のリチウムがアンモニア中に残存する。このため、
温度がアンモニアの沸点以上となりアンモニアが揮発し
た場合には、アンモニアとリチウムが反応してリチウム
アミドが生成し、不純物として含まれると活物質の容量
が低下する上、リチウムアミドの生成反応は急激な水素
の発生を伴うために安全性の面でも問題があった。ま
た、n−ブチルリチウムを有機溶媒に溶解した溶液を用
いる場合、還元力が弱いために、十分にリチウムが収着
されないために、初回不可逆容量の低減効果が小さい。
However, when a liquid ammonia solution of lithium is used, the handling is difficult because the boiling point of ammonia is low and it is necessary to keep the temperature at a low temperature of −33.4 ° C. or lower, which is the boiling point of ammonia. Further, even when the negative electrode active material is immersed in a liquid ammonia solution of lithium, not all of the dissolved lithium is sorbed to the negative electrode active material, and unreacted lithium remains in the ammonia. For this reason,
When the temperature is equal to or higher than the boiling point of ammonia and ammonia evaporates, the ammonia and lithium react to generate lithium amide, and when contained as impurities, the capacity of the active material is reduced and the lithium amide generation reaction is rapid. There was also a problem in terms of safety due to the generation of hydrogen. In addition, when a solution in which n-butyllithium is dissolved in an organic solvent is used, since the reducing power is weak, lithium is not sufficiently absorbed, and the effect of reducing the initial irreversible capacity is small.

【0010】[0010]

【発明が解決しようとする課題】本発明は、初回不可逆
容量が小さく、サイクル特性に優れた高容量の非水電解
液二次電池負極材料の製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a high capacity nonaqueous electrolyte secondary battery negative electrode material having a small initial irreversible capacity and excellent cycle characteristics.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために、取り扱いが容易で安全な、化学的処
理によるアルカリ金属又はアルカリ土類金属の収着法に
ついて検討を行った。その結果、負極原料物質を、アル
カリ金属又はアルカリ土類金属をアミン化合物溶媒に溶
解した金属溶液と接触させることにより、金属溶液中に
溶解しているアルカリ金属又はアルカリ土類金属が負極
原料物質中に効率的に収着され、得られる非水電解液二
次電池負極材料の不可逆容量が低減することを見出し、
本発明を完成させるに至った。
Means for Solving the Problems In order to solve the above problems, the present inventors have studied an easy-to-handle and safe sorption method of alkali metal or alkaline earth metal by chemical treatment. . As a result, by bringing the negative electrode raw material into contact with a metal solution in which an alkali metal or an alkaline earth metal is dissolved in an amine compound solvent, the alkali metal or alkaline earth metal dissolved in the metal solution is contained in the negative electrode raw material. And found that the irreversible capacity of the obtained non-aqueous electrolyte secondary battery negative electrode material is reduced,
The present invention has been completed.

【0012】即ち、本発明は、非水電解液二次電池用負
極原料物質を、アルカリ金属又はアルカリ土類金属をア
ミン化合物溶媒に溶解した金属溶液と接触させて、前記
非水電解液二次電池用負極原料物質にアルカリ金属又は
アルカリ土類金属を収着させることを特徴とする非水電
解液二次電池用負極材料の製造方法に関し、他の発明
は、当該製造方法によって得られた非水電解液二次電池
用負極材料を負極の活物質として用いた非水電解液二次
電池に関する。
That is, the present invention provides a method for producing a non-aqueous electrolyte secondary battery by contacting a negative electrode raw material for a non-aqueous electrolyte secondary battery with a metal solution in which an alkali metal or an alkaline earth metal is dissolved in an amine compound solvent. The present invention relates to a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery, which comprises sorbing an alkali metal or an alkaline earth metal to a negative electrode raw material for a battery. The present invention relates to a non-aqueous electrolyte secondary battery using a negative electrode material for an aqueous electrolyte secondary battery as an active material of a negative electrode.

【0013】[0013]

【発明の実施の形態】本発明に用いるアルカリ金属又は
アルカリ土類金属の種類は特に限定されないが、好まし
いのはリチウム、ナトリウム、カリウム、カルシウム等
である。また、非水電解液二次電池の種類によって非水
電解液二次電池の電解液等に使用されている金属と同種
の金属を選択し、用いるのが特に好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The type of alkali metal or alkaline earth metal used in the present invention is not particularly limited, but lithium, sodium, potassium, calcium and the like are preferable. It is particularly preferable to select and use the same metal as the metal used for the electrolyte or the like of the nonaqueous electrolyte secondary battery depending on the type of the nonaqueous electrolyte secondary battery.

【0014】本発明においては、アルカリ金属又はアル
カリ土類金属を溶解させる溶媒として、溶媒との反応に
より金属の還元能を失うことなく金属を溶解可能なアミ
ン化合物溶媒を用いることが必須である。
In the present invention, it is essential to use, as a solvent for dissolving the alkali metal or the alkaline earth metal, an amine compound solvent capable of dissolving the metal without losing the reducing ability of the metal by the reaction with the solvent.

【0015】好ましいアミン化合物溶媒として、メチル
アミン、エチルアミン、エチレンジアミン、ヘキサメチ
ルホスホアミド、1,3−ジメチル−2−オキソヘキサ
ヒドロピリミジン等が挙げられ、エチルアミン,エチレ
ンジアミンは、沸点が高く取扱いが容易で、処理後の不
可逆容量も小さくなることからが特に好ましい。また、
これらのアミン化合物溶媒は有機溶剤を添加して混合溶
媒として用いてもよい(以下、アミン化合物単独溶媒及
び混合溶媒を総称して単に溶媒と呼ぶ)。混合する有機
溶剤の量は、その量が多いと金属の溶解度が低下する事
から、混合するときの体積比,即ち、[有機溶剤]/
[アミン化合物溶媒]体積比が2/3以下である事が好
ましい。混合する有機溶剤としては、水酸基やカルボニ
ル基等の上記金属との反応性が高い官能基を含まない化
合物、具体的にはジエチルエーテル、テトラヒドロフラ
ン等が好ましく用いられる。
Preferred amine compound solvents include methylamine, ethylamine, ethylenediamine, hexamethylphosphamide, 1,3-dimethyl-2-oxohexahydropyrimidine, etc. Ethylamine and ethylenediamine have a high boiling point and are easy to handle. It is particularly preferable because the irreversible capacity after the treatment also becomes small. Also,
These amine compound solvents may be used as a mixed solvent by adding an organic solvent (hereinafter, the amine compound single solvent and the mixed solvent are collectively referred to simply as a solvent). The amount of the organic solvent to be mixed is such that the larger the amount, the lower the solubility of the metal. Therefore, the volume ratio at the time of mixing, that is, [organic solvent] /
[Amine compound solvent] The volume ratio is preferably 2/3 or less. As the organic solvent to be mixed, a compound which does not contain a functional group having high reactivity with the metal such as a hydroxyl group or a carbonyl group, specifically, diethyl ether, tetrahydrofuran, or the like is preferably used.

【0016】金属溶液中のアルカリ金属又はアルカリ土
類金属の濃度は特に限定されないが、反応を効率よく進
行させる為にはより高濃度の溶液を用いるのが好まし
く、通常は2〜10wt%程度の溶液を用いる。
Although the concentration of the alkali metal or alkaline earth metal in the metal solution is not particularly limited, it is preferable to use a higher concentration solution in order to make the reaction proceed efficiently, usually about 2 to 10% by weight. Use solution.

【0017】アルカリ金属又はアルカリ土類金属を溶解
し金属溶液とする方法は特に限定されない。溶媒中に金
属を加えることもできるし、金属の入った容器に溶媒を
加えることもできる。しかしながら、溶解の際に発熱を
伴うために、溶媒中に徐々に金属を溶解させる事が好ま
しい。また、安全に金属溶液を調製する為に、上記溶媒
に溶解し得る上記金属の塩を該溶媒に溶解させた溶液に
電極を入れ、これをカソードとして電流を流すことによ
り溶存する金属イオンを還元し、金属溶液とすることも
できる。
The method for dissolving an alkali metal or an alkaline earth metal into a metal solution is not particularly limited. The metal can be added to the solvent, or the solvent can be added to a container containing the metal. However, since heat is generated during dissolution, it is preferable to gradually dissolve the metal in the solvent. In addition, in order to safely prepare a metal solution, an electrode is placed in a solution obtained by dissolving a salt of the above metal which can be dissolved in the above solvent in the solvent, and current is passed using the electrode as a cathode to reduce dissolved metal ions. However, a metal solution can also be used.

【0018】非水電解液二次電池用負極原料物質を、ア
ルカリ金属又はアルカリ土類の金属溶液と接触させる方
法としては特に限定されない。反応を効率よく進行させ
る為に撹拌翼の付いた反応層を用い、固・液混合するこ
ともできるし、流通式の反応器を用いて金属溶液を流通
させ、負極原料物質と接触させることもできる。また、
予め溶媒と負極原料物質を懸濁させておき、この懸濁液
に、金属を溶解させることもできるし、溶媒に金属を溶
かすのと同時に原料物質と溶媒を接触させることもでき
る。上記負極原料物質を、上記金属溶液と接触させる時
の温度は特に限定されないが溶媒の沸点以下にする事が
好ましい。
The method for bringing the negative electrode raw material for the nonaqueous electrolyte secondary battery into contact with an alkali metal or alkaline earth metal solution is not particularly limited. In order to promote the reaction efficiently, a solid-liquid mixture can be used using a reaction layer equipped with a stirring blade, or a metal solution can be circulated using a flow-type reactor and brought into contact with the negative electrode raw material. it can. Also,
The solvent may be suspended in advance with the solvent and the negative electrode raw material, and the metal may be dissolved in the suspension, or the raw material and the solvent may be brought into contact with the metal at the same time as the metal is dissolved in the solvent. The temperature at which the negative electrode raw material is brought into contact with the metal solution is not particularly limited, but is preferably set to be equal to or lower than the boiling point of the solvent.

【0019】本発明の製造方法において、溶液中の金属
の全てが負極原料物質に収着されずに、未反応の金属が
溶液中に残存する場合があるため、処理後、ろ過・洗浄
を行ったほうが好ましい。洗浄を行なう溶媒は、水分の
混入していない、水酸基やカルボニル基等の上記金属と
の反応性の高い官能基を含まない溶媒が好ましく、ジエ
チルエーテル、テトラヒドロフラン等のエーテル類が特
に好ましい。
In the production method of the present invention, since all of the metals in the solution are not sorbed to the negative electrode raw material and unreacted metals may remain in the solution, filtration and washing are performed after the treatment. Is preferred. The solvent to be washed is preferably a solvent that does not contain water and does not contain a functional group having high reactivity with the above-mentioned metals such as a hydroxyl group and a carbonyl group, and ethers such as diethyl ether and tetrahydrofuran are particularly preferable.

【0020】本発明において使用する金属溶液は非常に
還元力が大きく、大気中の窒素とも反応し窒化物を生成
するために、金属の溶解・原料物質との接触・ろ過・洗
浄の各工程は不活性ガス雰囲気下、特に好ましくはアル
ゴンガス雰囲気下で行うのがよい。
Since the metal solution used in the present invention has a very large reducing power and reacts with nitrogen in the atmosphere to form a nitride, the steps of dissolving the metal, contacting with the raw material, filtering and washing are carried out. It is preferable to carry out the reaction under an inert gas atmosphere, particularly preferably under an argon gas atmosphere.

【0021】本発明の製造方法に使用される非水電解液
二次電池用負極原料物質としては、SnO,SnO2
SiO,GeO,ZnO,CdO,PbO,PbO2
Sb23,複合酸化錫,複合酸化珪素,SnS,Si
C,カルコゲナイド,SiFe系合金,SiNi系合金
等の珪素系合金,SnNi系合金等の錫系合金,Mg2
Ge等のCaF2型合金等が挙げられるが、充放電のサ
イクルを繰り返したときの性能の劣化が小さいことか
ら、複合酸化錫・複合酸化珪素が特に好ましい。上記原
料物質の形態は特に限定されないが、金属溶液との固−
液反応を効率よく進行させる為に粉末状であることが好
ましい。
As the negative electrode raw material for the non-aqueous electrolyte secondary battery used in the production method of the present invention, SnO, SnO 2 ,
SiO, GeO, ZnO, CdO, PbO, PbO 2 ,
Sb 2 O 3 , composite tin oxide, composite silicon oxide, SnS, Si
C, chalcogenides, silicon alloys such as SiFe alloys, SiNi alloys, tin alloys such as SnNi alloys, Mg 2
A CaF 2 -type alloy such as Ge may be mentioned, but composite tin oxide / silicon oxide is particularly preferable because deterioration in performance when charge / discharge cycles are repeated is small. The form of the raw material is not particularly limited.
It is preferably in the form of a powder in order to allow the liquid reaction to proceed efficiently.

【0022】非水電解液二次電池負極原料物質が複合酸
化錫である場合について以下詳述する。
The case where the negative electrode raw material of the nonaqueous electrolyte secondary battery is a composite tin oxide will be described in detail below.

【0023】複合酸化錫とは、錫および錫と複合酸化物
を形成し得る第二元素の複合酸化物からなる。該複合酸
化物中の錫と第二元素との合計量に対する錫の割合は特
に限定されないが、30原子%以上が好ましい。該割合
が30原子%未満のときには、放電容量が小さくなる。
上記割合が30〜70原子%のときには、リチウムイオ
ンの吸蔵・放出量が多くて経時変化も小さく、非水電解
液二次電池用負極用活物質として使用するのに特に好適
である。
The composite tin oxide is composed of tin and a composite oxide of a second element capable of forming a composite oxide with tin. The ratio of tin to the total amount of tin and the second element in the composite oxide is not particularly limited, but is preferably 30 atomic% or more. When the ratio is less than 30 atomic%, the discharge capacity becomes small.
When the above ratio is 30 to 70 atomic%, the amount of lithium ions absorbed and released is large and the change with time is small, and it is particularly suitable for use as a negative electrode active material for a non-aqueous electrolyte secondary battery.

【0024】該第二元素とは、Ca、Sr、Ba等のア
ルカリ土類金属元素;La、Ce、Pr、Nd、Sm、
Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
u等の希土類元素;Sc、Ti、V、Cr、Mn、F
e、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、
Ru、Cd、Hf、Ta、W、Re、Os、Ir、P
t、Au、Hg等の遷移元素;B、Al、Ga、In、
Tl等の周期律表13族元素;Ge、Si、Pb等の炭
素及び錫を除く周期律表14族元素;P、As、Sb、
Bi等の周期律表15族元素;並びにS、Se、Te等
のカルコゲン元素である。ここで、周期律表14族元素
から炭素が除外されるのは、炭素は錫と酸素を介した複
合酸化物を形成し難いという理由による。
The second element is an alkaline earth metal element such as Ca, Sr or Ba; La, Ce, Pr, Nd, Sm,
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
rare earth elements such as u; Sc, Ti, V, Cr, Mn, F
e, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo,
Ru, Cd, Hf, Ta, W, Re, Os, Ir, P
transition elements such as t, Au, Hg; B, Al, Ga, In,
Group 13 elements of the periodic table such as Tl; elements of Group 14 of the periodic table excluding carbon and tin such as Ge, Si and Pb; P, As, Sb,
Bi and other chalcogen elements such as S, Se, and Te. Here, the reason why carbon is excluded from the Group 14 elements of the periodic table is that carbon is difficult to form a complex oxide via tin and oxygen.

【0025】複合酸化錫中に含まれる第二元素は、上記
各元素の1種類でも任意の2種類以上の組み合わせでも
良いが、錫−第二元素の組み合わせとして好適なものと
しては、Sn−Si、Sn−Si−Al、Sn−Si−
Zr、Sn−Si−B、Sn−Si−P、Sn−Si−
Ti、Sn−Si−Al−B、Sn−Si−Zr−B、
Sn−Si−B−P、Sn−Al、Sn−Al−B、S
n−Al−P、Sn−Al−Zr、Sn−Al−B−
P、Sn−Zr、Sn−Zr−B、Sn−Zr−P、S
n−Zr−B−P、Sn−B−P、Sn−Ti、Sn−
Ti−Al、Sn−Ti−B、Sn−Ti−P、Sn−
Ti−B−P、Sn−Ti−Zr等が挙げられる。これ
らの中でも該第二元素が珪素若しくは珪素と他の第二元
素との組み合わせである場合には、リチウムイオン電池
等の非水電解液二次電池用負極用活物質として用いた場
合、リチウムイオンの吸蔵・放出量が多くさらにサイク
ル特性も特に優れたものになるので好ましい。
The second element contained in the composite tin oxide may be one of the above-mentioned elements or a combination of any two or more of them. Sn-Si is preferably used as a tin-second element combination. , Sn-Si-Al, Sn-Si-
Zr, Sn-Si-B, Sn-Si-P, Sn-Si-
Ti, Sn-Si-Al-B, Sn-Si-Zr-B,
Sn-Si-BP, Sn-Al, Sn-Al-B, S
n-Al-P, Sn-Al-Zr, Sn-Al-B-
P, Sn-Zr, Sn-Zr-B, Sn-Zr-P, S
n-Zr-BP, Sn-BP, Sn-Ti, Sn-
Ti-Al, Sn-Ti-B, Sn-Ti-P, Sn-
Ti-BP, Sn-Ti-Zr, and the like. Among these, when the second element is silicon or a combination of silicon and another second element, when used as a negative electrode active material for a non-aqueous electrolyte secondary battery such as a lithium ion battery, lithium ion Is preferred because it has a large amount of occlusion and release, and also has particularly excellent cycle characteristics.

【0026】複合酸化錫は、前記したように錫と前記第
二元素との複合酸化物であるため、当然のこととして酸
素原子が含まれる。該酸素原子は、錫および第二元素と
結合して存在するため、その含有量は錫原子の含有量及
びその価数並びに第二元素の種類、含有量及びその価数
によってほぼ一義的に決定される。但し、錫および第二
元素の一部は未結合手(いわゆるダングリングボンド)
を有していても良く、酸素原子の10原子%程度はフッ
素、塩素、臭素、ヨウ素等のハロゲン原子で置換されて
いても良い。なお、複合酸化錫粒子中の錫及び第二元素
の価数は特に限定されない。
Since the composite tin oxide is a composite oxide of tin and the second element as described above, it naturally contains an oxygen atom. Since the oxygen atom is present in combination with tin and the second element, its content is almost uniquely determined by the tin atom content and its valence and the type, content and valence of the second element. Is done. However, tin and some of the second elements are unbonded (so-called dangling bonds)
And about 10 atomic% of oxygen atoms may be replaced by halogen atoms such as fluorine, chlorine, bromine and iodine. The valences of tin and the second element in the composite tin oxide particles are not particularly limited.

【0027】前記複合酸化錫は、上記のような組成を有
するものであればその結晶状態は特に限定されないが、
酸素原子を介して錫と結合する元素は錫原子よりも第二
元素である方がサイクル特性がより向上するため、Sn
OやSnO2等の酸化錫の結晶が存在しない方が好まし
く、その意味で結晶質よりも非晶質の方が好ましい。ま
た、非晶質である場合にも、いっそうリチウムイオンの
吸蔵・放出量が多くさらにサイクル特性も特に優れたも
のにするためには溶融させて製造した緻密なガラス質
(ここで、ガラス質とは溶融によって作られたものとい
う意である。)でなく、特定のゾルゲル反応によって得
られた複合酸化錫が好ましい。
The crystalline state of the composite tin oxide is not particularly limited as long as it has the above composition.
Since the element that bonds to tin via an oxygen atom is a second element more than a tin atom, the cycle characteristics are more improved.
It is preferable that tin oxide crystals such as O and SnO 2 do not exist, and in that sense, amorphous is more preferable than crystalline. In addition, even in the case of an amorphous material, in order to further increase the occlusion / release amount of lithium ions and to achieve particularly excellent cycle characteristics, a dense glass material produced by melting (here, glass material) Is a composite tin oxide obtained by a specific sol-gel reaction.

【0028】特定のゾルゲル法によって得られる複合酸
化錫はSn−O−Sn結合の割合が少なく、粒子に微細
な空孔等が多数存在し、該空孔等の存在が、リチウムイ
オンを吸蔵したり放出したりする際に起こる体積変化に
基づく応力を吸収(緩和)することができる。その結
果、リチウムイオンの吸蔵・放出を繰り返しても粒子が
割れたりすることがなく、さらに良好なサイクル特性を
示す。
The composite tin oxide obtained by a specific sol-gel method has a low Sn—O—Sn bond ratio, and has many fine pores and the like in the particles. It is possible to absorb (relax) a stress based on a volume change that occurs when releasing or releasing. As a result, even if lithium ions are repeatedly inserted and extracted, the particles are not cracked, and a better cycle characteristic is exhibited.

【0029】好ましい複合酸化錫の代表的な製造方法を
以下に述べる。メタノール,エタノール等のアルコール
にテトラエトキシシランおよびテトラエトキシシランの
20%モルのSnCl2を加え、攪はん下溶解させて透
明な均一溶液を得る。この溶液中に酸素を供給して液中
の錫を4価に酸化し、次いで窒素を供給し溶存した酸素
を十分に窒素に置換した後、窒素雰囲気下、テトラエト
キシシランの80%モルのSnCl2を溶解させて、透
明な均一溶液(以下、A液ともいう)を調製する。一
方、メタノール,エタノール等のアルコールに29%ア
ンモニア水をA液中のSnCl2とNH3とのモル比が
1.0〜1.4となるように加え均一溶液(以下、B液
ともいう)を得る。反応槽にメタノール,エタノール等
のアルコールを仕込み、窒素雰囲気下撹拌しながら、A
液とB液を滴下に要する時間が等しくなるように一定の
速度で同時に徐々に滴下する。滴下終了後生成した白色
沈澱を、濾別、水洗し、真空下、100℃に加熱して乾
燥し、更に、アルゴン雰囲気下、400℃で1時間焼成
して淡黄色の複合酸化錫粉末を得る。
A typical method for producing a preferred composite tin oxide is described below. Methanol, SnCl 2 alcohol 20% mole of tetraethoxysilane and tetraethoxysilane such as ethanol is added to obtain a clear homogeneous solution by dissolving Stirring under. Oxygen is supplied to this solution to oxidize tin in the solution to tetravalent, and then nitrogen is supplied to sufficiently dissolve the dissolved oxygen. Then, under a nitrogen atmosphere, 80% mol of SnCl in tetraethoxysilane is added. 2 is dissolved to prepare a transparent homogeneous solution (hereinafter, also referred to as solution A). On the other hand, 29% ammonia water is added to alcohols such as methanol and ethanol so that the molar ratio of SnCl 2 to NH 3 in solution A is 1.0 to 1.4, and a uniform solution (hereinafter also referred to as solution B). Get. A reaction tank is charged with alcohol such as methanol and ethanol, and stirred under a nitrogen atmosphere.
The solution and the solution B are gradually and simultaneously dropped at a constant speed so that the time required for dropping is equal. After completion of the dropwise addition, the white precipitate formed is separated by filtration, washed with water, dried by heating at 100 ° C. under vacuum, and further calcined at 400 ° C. for 1 hour in an argon atmosphere to obtain a pale yellow composite tin oxide powder. .

【0030】複合酸化珪素は組成式Si1−xMxOy
(但し、0<x<1,1≦y<2)で表される化合物で
あり、Mはアルカリ金属を除く金属もしくはSiを除く
類金属である。xの値は上記範囲内であれば良いが、値
が小さいすぎると負極活物質として用いたときのサイク
ル特性が悪く、また大きすぎるとMの種類によっては容
量が低下する場合がある。また、高容量という観点か
ら、yはより1に近い値であることが好ましい。
The composite silicon oxide has a composition formula of Si1-xMxOy.
(Where 0 <x <1, 1 ≦ y <2), and M is a metal excluding an alkali metal or a similar metal excluding Si. The value of x may be within the above range, but if the value is too small, the cycle characteristics when used as a negative electrode active material is poor, and if it is too large, the capacity may decrease depending on the type of M. From the viewpoint of high capacity, y is preferably a value closer to 1.

【0031】本発明によって製造された非水電解液二次
電池負極材料を用いた非水電解液二次電池の構成及び製
造は、公知の方法で実施することができ、代表的には次
のような方法で作製することができる。
The construction and production of a non-aqueous electrolyte secondary battery using the negative electrode material of the non-aqueous electrolyte secondary battery produced according to the present invention can be carried out by a known method. It can be manufactured by such a method.

【0032】まず混練機、混合機などを用いて、本発明
の製造方法によって得られた複合酸化錫をN−メチルピ
ロリドンなどの溶媒と混練し、ペーストを製造する。こ
のとき黒鉛やアセチレンブラックなどの導電性付与剤、
あるいはポリテトラフルオロエチレン、ポリフッ化ビニ
リデンなどの結着剤を適宜添加しても構わない。
First, using a kneader, a mixer or the like, the composite tin oxide obtained by the production method of the present invention is kneaded with a solvent such as N-methylpyrrolidone to produce a paste. At this time, a conductivity-imparting agent such as graphite or acetylene black,
Alternatively, a binder such as polytetrafluoroethylene and polyvinylidene fluoride may be appropriately added.

【0033】ペースト製造後、集電体にペーストを塗
布、充填あるいは含浸させ、溶媒を乾燥、除去した後、
加圧、切断などを行って所望の形状に加工して負極とす
る。該負極と、同様にして製造した正極をセパレータを
介して帯状に重ね、円筒型非水電解液二次電池であれば
円柱状に巻回し、また角型非水電解液二次電池であれば
折り重ねて、電極部分を製造する。その後、この電極部
分を所望の電池容器に挿入し、非水電解液を注入後、安
全装置などを挿入し、封缶する。
After the paste is manufactured, the current collector is coated, filled or impregnated with the paste, and the solvent is dried and removed.
Pressing, cutting, and the like are performed to form a desired shape to obtain a negative electrode. The negative electrode and the positive electrode manufactured in the same manner are stacked in a strip shape with a separator interposed therebetween, and if the battery is a cylindrical nonaqueous electrolyte secondary battery, it is wound in a columnar shape, and if it is a square nonaqueous electrolyte secondary battery, It is folded to produce an electrode part. Thereafter, the electrode portion is inserted into a desired battery container, a non-aqueous electrolyte is injected, a safety device or the like is inserted, and the can is sealed.

【0034】正極、集電体、非水電解液、セパレータな
どは、従来の非水電解液二次電池に用いられている材料
が何ら問題なく使用される。
For the positive electrode, the current collector, the non-aqueous electrolyte, the separator, and the like, materials used in conventional non-aqueous electrolyte secondary batteries are used without any problem.

【0035】正極活物質としては、TiS2、MoS2
FeS2などの硫化物、NbSe3などのセレン化物など
のカルコゲン化合物、あるいはCr25、Cr38、V
38、V25、V613などの遷移金属の酸化物、Li
Mn24、LiMnO2、LiV35、LiNiO2、L
iCoO2などのリチウムと遷移金属との複合酸化物、
あるいはポリアニリン、ポリアセチレン、ポリパラフェ
ニリン、ポリフェニレンビニレン、ポリピロール、ポリ
チオフェンなどの共役系高分子、ジスルフィド結合を有
する架橋高分子などのリチウムを吸蔵、放出することが
可能な材料を使用することができる。
As the positive electrode active material, TiS 2 , MoS 2 ,
Chalcogen compounds such as sulfides such as FeS 2 , selenides such as NbSe 3 , or Cr 2 O 5 , Cr 3 O 8 , V
Oxides of transition metals such as 3 O 8 , V 2 O 5 , V 6 O 13 , Li
Mn 2 O 4 , LiMnO 2 , LiV 3 O 5 , LiNiO 2 , L
a composite oxide of lithium and a transition metal, such as iCoO 2 ;
Alternatively, a material capable of inserting and extracting lithium, such as a conjugated polymer such as polyaniline, polyacetylene, polyparaphenylene, polyphenylenevinylene, polypyrrole, or polythiophene, or a crosslinked polymer having a disulfide bond, can be used.

【0036】集電体としては、銅、アルミニウムなどか
らなる帯形状の薄板あるいはメッシュなどを用いること
ができる。
As the current collector, a band-shaped thin plate or mesh made of copper, aluminum, or the like can be used.

【0037】非水電解液としては、プロピレンカーボネ
ート、エチレンカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチロラクトン、
テトラヒドロフラン、1,3−ジオキソラン、4−メチ
ル−1,3−ジオキソラン、ジエチルエーテル、スルホ
ラン、メチルスルホラン、アセトニトリル、プロピオニ
トリルなどの単独あるいは2種類以上の混合非水溶媒
に、LiClO4、LiPF6、LiAsF6、LiB
4、LiB(C654、LiCl、LiBr、CH3
SO3Li、CF3SO3Liなどのリチウム塩が溶解し
てなる非水電解液がいずれの組合せにおいても使用可能
である。
Examples of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone,
LiClO 4 , LiPF 6 may be used alone or in a mixture of two or more kinds of non-aqueous solvents such as tetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like. , LiAsF 6 , LiB
F 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3
SO 3 Li, CF 3 SO 3 Li nonaqueous electrolyte lithium salt is dissolved, such as can be also be used in any combination.

【0038】セパレータとしては、イオンの移動に対し
て低抵抗であり、かつ溶液保持性に優れたものを用いれ
ばよい。例えば、ポリプロピレン、ポリエチレン、ポリ
エステル、ポリフロンなどからなる高分子ポアフィルタ
ー、ガラス繊維フィルター、不織布、あるいはガラス繊
維とこれらの上記高分子からなる不織布が使用可能であ
る。更に、電池内部が高温になったとき、溶融して細孔
をふさぎ、正極及び負極のショートを防ぐ材料が好まし
い。
As the separator, a separator having low resistance to the movement of ions and having excellent solution retention may be used. For example, a polymer pore filter made of polypropylene, polyethylene, polyester, polyflon, or the like, a glass fiber filter, a nonwoven fabric, or a nonwoven fabric made of glass fibers and these polymers can be used. Further, when the temperature inside the battery becomes high, a material that melts to close the pores and prevent short circuit between the positive electrode and the negative electrode is preferable.

【0039】[0039]

【実施例】以下、本発明について実施例及び比較例を挙
げてより具体的に説明するが、本発明はこれら実施例に
限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0040】実施例1 メタノール920mlにテトラエトキシシラン41.9
3g(0.2モル)およびSnCl27.59g(0.0
4モル)を加え、攪はん下溶解させて透明な均一溶液を
得た。攪はん下、この溶液中に毎分500mlの酸素を
30分間供給して液中の錫を4価に酸化し、次いで毎分
500mlの窒素を50分間供給した後、SnCl2
0.34g(0.16モル)を溶解させて、透明な均一
溶液(以下、A液ともいう)を調製した。
Example 1 Tetraethoxysilane 41.9 in 920 ml of methanol
3 g (0.2 mol) and 27.59 g of SnCl (0.0
4 mol) and dissolved with stirring to obtain a clear homogeneous solution. Under stirring, 500 ml of oxygen per minute was supplied into this solution for 30 minutes to oxidize tin in the solution to tetravalent, and then 500 ml of nitrogen per minute was supplied for 50 minutes, and then SnCl 2 3 was added.
0.34 g (0.16 mol) was dissolved to prepare a transparent homogeneous solution (hereinafter also referred to as solution A).

【0041】一方、メタノール50.5mlに28%ア
ンモニア水34.28gを加え均一溶液(以下、B液と
もいう)を得た。
On the other hand, 34.28 g of 28% aqueous ammonia was added to 50.5 ml of methanol to obtain a uniform solution (hereinafter also referred to as solution B).

【0042】2つの側管それぞれにA液滴下用とB液滴
下用の一対のノズルを設置した1lの三口フラスコに、
メタノール80mlを仕込み、マグネティックスターラ
ーを用いて毎分750回転で攪はんしながら毎分500
mlの窒素を三口フラスコ中管よりメタノール中に10
分間供給した。次いで、攪はん及び窒素供給を続けなが
ら、ふたつの側管に設けた2対のノズルより、チューブ
ポンプを用いてA液とB液を各々ノズル当たり2.0m
l/分および0.18ml/分の滴下速度で三口フラス
コ内のメタノールに滴下した。この時、水浴を用いて三
口フラスコ内の溶液の温度は20℃とした。A液、B液
の滴下とともに沈澱が生成し、三口フラスコ内の溶液は
白濁した。A液及びB液の滴下が終了した後、攪はん及
び窒素供給を更に30分間続け、次いで生成した白色沈
澱を、濾別、水洗した。水洗した沈澱を、真空下、10
0℃に加熱して乾燥し、更に、アルゴン雰囲気下、40
0℃で1時間焼成して淡黄色の粉末を得た。なお、該焼
成中に粉末は溶融していなかった。
In a 1-liter three-necked flask in which a pair of nozzles for dropping A droplets and for dropping B droplets were respectively installed on two side tubes,
Charge 80 ml of methanol and stir at 750 rpm using a magnetic stirrer and 500
10 ml of nitrogen into methanol from the inner tube of a three-necked flask.
Minutes. Then, while continuously stirring and supplying nitrogen, the solution A and the solution B were each supplied to the two pipes using a pair of nozzles at a rate of 2.0 m / nozzle using a tube pump.
It was dropped into methanol in a three-necked flask at a dropping rate of 1 / min and 0.18 ml / min. At this time, the temperature of the solution in the three-necked flask was set to 20 ° C. using a water bath. A precipitate was formed with the addition of the solution A and the solution B, and the solution in the three-necked flask became cloudy. After the dropping of the solution A and the solution B was completed, the stirring and the supply of nitrogen were continued for another 30 minutes, and the formed white precipitate was separated by filtration and washed with water. The washed precipitate is removed under vacuum for 10 minutes.
It is dried by heating to 0 ° C.
Calcination at 0 ° C. for 1 hour gave a pale yellow powder. The powder was not melted during the firing.

【0043】得られた粉末について組成分析、および結
晶状態分析を行った結果、また、該粉末を構成する複合
酸化錫中の錫と珪素の原子数比Sn/Siは1.03で
あり、結晶状態は非晶質であった。
As a result of composition analysis and crystal state analysis of the obtained powder, the atomic ratio Sn / Si of tin to silicon in the composite tin oxide constituting the powder was 1.03, The state was amorphous.

【0044】なお、上記分析は次のようにして行った。The above analysis was performed as follows.

【0045】組成分析:蛍光X線分析により行った。Composition analysis: Conducted by X-ray fluorescence analysis.

【0046】結晶状態分析:粉末X線回折(対陰極は
銅)により2θが10〜40°の範囲における試料から
の回折を測定し、測定された結晶性のピークから試料中
の結晶相を同定した。結晶性のピークが観測されない場
合、その試料の結晶性は非晶質とした。
Crystal state analysis: Diffraction from the sample in the range of 2θ of 10 to 40 ° was measured by powder X-ray diffraction (copper is copper), and the crystal phase in the sample was identified from the measured crystallinity peak. did. When no crystalline peak was observed, the crystallinity of the sample was determined to be amorphous.

【0047】アルゴン雰囲気下、エチレンジアミン5m
lを入れたフラスコに金属リチウム0.15gを溶解さ
せ、これに複合酸化物1gを入れた。マグネティックス
ターラーで8時間撹拌を行ったのち、アルゴン雰囲気下
ろ過し、ジエチルエーテルによる洗浄後、真空中で乾燥
を行い黒色の粉末を得た。
Under an argon atmosphere, ethylenediamine 5 m
In a flask containing 1 l, 0.15 g of metallic lithium was dissolved, and 1 g of the composite oxide was added thereto. After stirring for 8 hours with a magnetic stirrer, the mixture was filtered under an argon atmosphere, washed with diethyl ether, and dried in vacuum to obtain a black powder.

【0048】実施例2 実施例1において負極原料物質として複合酸化スズの代
わりにSnOとし、リチウムの重量を0.2gに変える
他は実施例1と同様にしてリチウムを収着させ、粉末を
得た。
Example 2 In Example 1, lithium was sorbed in the same manner as in Example 1 except that SnO was used instead of the composite tin oxide as the negative electrode raw material, and the weight of lithium was changed to 0.2 g, to obtain a powder. Was.

【0049】実施例3 実施例1において負極原料物質として複合酸化スズの代
わりにSiOとし、リチウムの重量を0.6gに変える
他は実施例1と同様にしてリチウムを収着させ、粉末を
得た。
Example 3 In Example 1, lithium was sorbed in the same manner as in Example 1 except that SiO was used instead of the composite tin oxide as the negative electrode raw material, and the weight of lithium was changed to 0.6 g. Was.

【0050】実施例4 浴組成が、ピロリン酸カリウム200g/l,グリシン
20g/l,塩化ニッケル30g/l,塩化第一錫7g
/lで、アンモニアでpHを8.8に調整したメッキ浴
に、ニッケル電極を入れ、これにカソード電流を流して
電析を行った。このとき、電流密度を4A/dm2とし、
浴の温度を50℃とした。カソードに析出した金属を剥
ぎ取り、水洗後、乾燥を行った。得られた金属粉を王水
で溶解させ、誘導結合高周波プラズマ原子発光分析によ
り組成分析を行った結果、モル比がSn:Ni=1:1
であった。得られた金属粉を、実施例1において負極活
原料物質として複合酸化錫の代わりに用いた以外は実施
例1と同様にしてリチウムを収着させ、粉末を得た。
Example 4 The bath composition was 200 g / l potassium pyrophosphate, 20 g / l glycine, 30 g / l nickel chloride, 7 g stannous chloride.
The nickel electrode was put into a plating bath whose pH was adjusted to 8.8 with ammonia at / l, and a cathode current was passed through the nickel electrode to perform electrodeposition. At this time, the current density was 4 A / dm 2 ,
The bath temperature was 50 ° C. The metal deposited on the cathode was peeled off, washed with water, and dried. The obtained metal powder was dissolved in aqua regia, and the composition was analyzed by inductively coupled high frequency plasma atomic emission spectrometry. As a result, the molar ratio was Sn: Ni = 1: 1.
Met. Lithium was sorbed in the same manner as in Example 1 except that the obtained metal powder was used instead of the composite tin oxide as a negative electrode active material in Example 1, to obtain a powder.

【0051】実施例5〜8 上記各実施例1〜4で得られた粉末を負極活物質として
用い、リチウム電池を作製し、得られたリチウム電池の
充放電容量、サイクル特性について評価をおこなった。
Examples 5 to 8 Using the powders obtained in Examples 1 to 4 as negative electrode active materials, lithium batteries were prepared, and the charge / discharge capacities and cycle characteristics of the obtained lithium batteries were evaluated. .

【0052】なお、リチウム電池の作製、並びに初期充
放電容量及びサイクル特性の評価は次のようにして行っ
た。
The production of the lithium battery and the evaluation of the initial charge / discharge capacity and the cycle characteristics were performed as follows.

【0053】リチウム電池の作成: 各実施例の複合酸
化錫粉末、ポリフッ化ビニリデン(結着剤)およびアセ
チレンブラック(導電性付与剤)を70/5/25(重
量比)の割合で混合し、この混合物500mgに対し、
N−メチルピロリドン1mlを添加して混練し、ペース
トを作製し、これを銅箔に塗布し100℃の真空乾燥器
にて24時間乾燥した後、圧延し負極とした。非水電解
液には、LiPF6(1モル/リットルの濃度)をエチ
レンカーボネートとジエチルカーボネートの等体積混合
溶媒に溶解したものを使用し、リチウム金属を対極とし
て、コイン型電池を作製した。
Preparation of lithium battery: The composite tin oxide powder of each example, polyvinylidene fluoride (binder) and acetylene black (conductivity imparting agent) were mixed at a ratio of 70/5/25 (weight ratio). For 500 mg of this mixture,
1 ml of N-methylpyrrolidone was added and kneaded to prepare a paste, which was applied to a copper foil, dried in a vacuum drier at 100 ° C. for 24 hours, and then rolled to obtain a negative electrode. As the non-aqueous electrolyte, a solution in which LiPF 6 (concentration of 1 mol / liter) was dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate was used, and a coin-type battery was produced using lithium metal as a counter electrode.

【0054】充放電容量の測定: 充放電装置(北斗電
工製)を用いて、上記簡易型リチウム電池の充放電サイ
クル試験を行い、放電時間t(単位;時間)を測定する
ことにより負極活物質の第1サイクル目の充放電容量を
測定した。充放電サイクル試験は、48mA/gに相当
する電流値(一定)で行い、充放電は0〜2.0Vの範
囲内で行った。充放電容量は、ペースト中に添加した活
物質の単位重量当たりの量として、算出した。即ち、導
電性付与剤であるアセチレンブラックの充放電容量は0
として計算を行った。また、充放電1サイクル目の充電
容量と放電容量より不可逆容量を算出した。実施例1〜
4の負極活物質についての評価結果を表1に示す。本製
造法により処理を行った負極活物質は不可逆容量分のリ
チウムが活物質に収着されているために、未処理のもの
に比べて放電容量がリチウムの重量分だけ若干小さい
が、リチウムが収着されたことによって不可逆容量が大
幅に低減された。従って正極活物質としてLiCoO2
等を用いた実際の電池においては実質的な電池の容量は
大幅に向上する。
Measurement of charge / discharge capacity: Using a charge / discharge device (manufactured by Hokuto Denko), a charge / discharge cycle test of the simple lithium battery was performed, and a discharge time t (unit: time) was measured to obtain a negative electrode active material. Of the first cycle was measured. The charge / discharge cycle test was performed at a current value (constant) corresponding to 48 mA / g, and the charge / discharge was performed within a range of 0 to 2.0 V. The charge / discharge capacity was calculated as an amount per unit weight of the active material added to the paste. That is, the charge / discharge capacity of acetylene black as the conductivity imparting agent is 0.
The calculation was performed as follows. The irreversible capacity was calculated from the charge capacity and the discharge capacity in the first cycle of charge and discharge. Example 1
Table 1 shows the evaluation results of the negative electrode active material of No. 4. The negative electrode active material treated according to the present manufacturing method has a slightly smaller discharge capacity than the untreated one by the weight of lithium because the irreversible capacity of lithium is absorbed in the active material. The irreversible capacity has been significantly reduced by the sorption. Therefore, LiCoO 2 is used as the positive electrode active material.
In an actual battery using such a method, the substantial capacity of the battery is greatly improved.

【0055】比較例1〜4 実施例5において、負極活物質として用いる粉末を実施
例1で得た複合酸化スズ、SnO、SiO、及び実施例
4で得たSnNiに変える他は実施例5と同様にしてリ
チウム電池を作製し、実施例5と同様にして得られたリ
チウム電池の評価を行った。その結果を表1に併せて示
す。
Comparative Examples 1 to 4 The same procedures as in Example 5 were carried out except that the powder used as the negative electrode active material was changed to the composite tin oxide, SnO, SiO obtained in Example 1 and SnNi obtained in Example 4. A lithium battery was prepared in the same manner, and the lithium battery obtained in the same manner as in Example 5 was evaluated. The results are shown in Table 1.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【発明の効果】本発明によって得られる非水電解液二次
電池負極材料を負極活物質として利用することにより、
その不可逆容量の低減が可能であることから、余分に添
加していた正極活物質を低減できるために、高容量のリ
チウム二次電池の製造が可能となる。また、従来技術で
ある、リチウムの液体アンモニア溶液を用いる方法で
は、アンモニアの沸点が低いために取り扱いが困難であ
り、安全性にも問題があった。また、n−ブチルリチウ
ムを有機溶媒に溶解した溶液を用いる場合、還元力が弱
いために、十分にリチウムが収着されず初回不可逆容量
の低減効果は小さかった。しかしながら、本発明の製造
法を用いる事により、より安全で取り扱いも容易に、初
回不可逆容量を低減する事ができ、またその効果も大き
い。
By using the negative electrode material of the nonaqueous electrolyte secondary battery obtained by the present invention as a negative electrode active material,
Since the irreversible capacity can be reduced, the amount of the cathode active material that has been added extra can be reduced, so that a high-capacity lithium secondary battery can be manufactured. In addition, the method using a liquid ammonia solution of lithium, which is a conventional technique, is difficult to handle due to the low boiling point of ammonia, and has a problem in safety. Further, when a solution in which n-butyllithium was dissolved in an organic solvent was used, lithium was not sufficiently absorbed, and the effect of reducing the initial irreversible capacity was small because the reducing power was weak. However, by using the production method of the present invention, the initial irreversible capacity can be reduced more safely and easily, and the effect is large.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H014 AA01 AA06 BB08 CC01 EE05 EE10 HH01 5H029 AJ03 AJ05 AK02 AK03 AK05 AK16 AL03 AM03 AM04 AM05 AM07 CJ08 CJ22 DJ04 HJ02 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H014 AA01 AA06 BB08 CC01 EE05 EE10 HH01 5H029 AJ03 AJ05 AK02 AK03 AK05 AK16 AL03 AM03 AM04 AM05 AM07 CJ08 CJ22 DJ04 HJ02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非水電解液二次電池用負極原料物質を、
アルカリ金属又はアルカリ土類金属をアミン化合物溶媒
に溶解した金属溶液と接触させて、前記非水電解液二次
電池用負極原料物質にアルカリ金属又はアルカリ土類金
属を収着させることを特徴とする非水電解液二次電池用
負極材料の製造方法。
1. A negative electrode raw material for a non-aqueous electrolyte secondary battery,
Contacting a metal solution in which an alkali metal or an alkaline earth metal is dissolved in an amine compound solvent to cause the alkali metal or the alkaline earth metal to sorb to the negative electrode raw material for the nonaqueous electrolyte secondary battery. A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery.
【請求項2】 非水電解液二次電池負極原料物質が、S
nO,SnO2,SiO,GeO,ZnO,CdO,P
bO,PbO2,Sb23,複合酸化錫,複合酸化珪
素,SnS,SiC,またはカルコゲナイドであること
を特徴とする請求項1記載の非水電解液二次電池用負極
材料の製造方法。
2. The non-aqueous electrolyte secondary battery negative electrode raw material is S
nO, SnO 2 , SiO, GeO, ZnO, CdO, P
bO, PbO 2, Sb 2 O 3, composite tin oxide, composite oxide of silicon, SnS, SiC or method of manufacturing a non-aqueous electrolyte secondary battery negative electrode material according to claim 1, characterized in that the chalcogenide.
【請求項3】 非水電解液二次電池負極原料物質が、珪
素系合金,錫系合金,またはCaF2型合金であること
を特徴とする請求項1記載の非水電解液二次電池用負極
材料の製造方法。
3. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode raw material of the non-aqueous electrolyte secondary battery is a silicon-based alloy, a tin-based alloy, or a CaF2-type alloy. Material manufacturing method.
【請求項4】 正極、負極、非水電解液、及びセパレー
タを基本構成として容器内に収納してなる非水電解液二
次電池において、負極の活物質が請求項1〜3の製造方
法によって得られた非水電解液二次電池負極材料である
ことを特徴とする非水電解液二次電池。
4. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator as basic components and housed in a container, wherein the active material of the negative electrode is obtained by the method according to claim 1. A nonaqueous electrolyte secondary battery, which is the obtained nonaqueous electrolyte secondary battery negative electrode material.
JP36957798A 1998-12-25 1998-12-25 Nonaqueous electrolyte secondary battery negative electrode material manufacturing method Expired - Fee Related JP4037975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36957798A JP4037975B2 (en) 1998-12-25 1998-12-25 Nonaqueous electrolyte secondary battery negative electrode material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36957798A JP4037975B2 (en) 1998-12-25 1998-12-25 Nonaqueous electrolyte secondary battery negative electrode material manufacturing method

Publications (2)

Publication Number Publication Date
JP2000195505A true JP2000195505A (en) 2000-07-14
JP4037975B2 JP4037975B2 (en) 2008-01-23

Family

ID=18494790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36957798A Expired - Fee Related JP4037975B2 (en) 1998-12-25 1998-12-25 Nonaqueous electrolyte secondary battery negative electrode material manufacturing method

Country Status (1)

Country Link
JP (1) JP4037975B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2003059342A (en) * 2001-08-09 2003-02-28 Tokuyama Corp Conductive powder and its manufacturing method
JP2007188872A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2011010631A1 (en) * 2009-07-21 2011-01-27 三井金属鉱業株式会社 Tin oxide particles and process for production thereof
KR101353262B1 (en) * 2013-04-19 2014-01-23 주식회사 셀모티브 Metal foam for electrode of lithium secondary battery, preparing method thereof and lithium secondary battery including the metalfoam
WO2017006561A1 (en) * 2015-07-07 2017-01-12 信越化学工業株式会社 Method for manufacturing negative-electrode active material for non-aqueous-electrolyte secondary cell, method for manufacturing negative electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
WO2017043039A1 (en) * 2015-09-10 2017-03-16 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN109075330A (en) * 2016-04-13 2018-12-21 信越化学工业株式会社 The manufacturing method of anode for nonaqueous electrolyte secondary battery active material and the manufacturing method of anode for nonaqueous electrolyte secondary battery
CN113991084A (en) * 2021-10-27 2022-01-28 西安建筑科技大学 SnS-SnO2-GO @ C heterostructure composite material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102014579B1 (en) * 2016-01-13 2019-08-26 연세대학교 산학협력단 Negative electrode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110871A (en) * 1984-06-07 1986-01-18 アモコ・コーポレーシヨン Corroded metal electrode and use in nonaqueous battery
JPH0554887A (en) * 1991-08-28 1993-03-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH05275079A (en) * 1992-03-26 1993-10-22 Fuji Photo Film Co Ltd Secondary battery
JPH06275268A (en) * 1993-03-22 1994-09-30 Seiko Instr Inc Nonaqueous electrolyte secondary battery
JPH09232003A (en) * 1995-12-18 1997-09-05 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JPH10270018A (en) * 1997-03-26 1998-10-09 Yuasa Corp Non-aqueous electrolytic battery
JPH10294104A (en) * 1997-04-17 1998-11-04 Hitachi Maxell Ltd Manufacture of electrode of lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110871A (en) * 1984-06-07 1986-01-18 アモコ・コーポレーシヨン Corroded metal electrode and use in nonaqueous battery
JPH0554887A (en) * 1991-08-28 1993-03-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH05275079A (en) * 1992-03-26 1993-10-22 Fuji Photo Film Co Ltd Secondary battery
JPH06275268A (en) * 1993-03-22 1994-09-30 Seiko Instr Inc Nonaqueous electrolyte secondary battery
JPH09232003A (en) * 1995-12-18 1997-09-05 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JPH10270018A (en) * 1997-03-26 1998-10-09 Yuasa Corp Non-aqueous electrolytic battery
JPH10294104A (en) * 1997-04-17 1998-11-04 Hitachi Maxell Ltd Manufacture of electrode of lithium secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2003059342A (en) * 2001-08-09 2003-02-28 Tokuyama Corp Conductive powder and its manufacturing method
JP4559668B2 (en) * 2001-08-09 2010-10-13 株式会社トクヤマ Conductive powder and method for producing the same
JP2007188872A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2011010631A1 (en) * 2009-07-21 2011-01-27 三井金属鉱業株式会社 Tin oxide particles and process for production thereof
US8491822B2 (en) 2009-07-21 2013-07-23 Mitsui Mining & Smelting Co., Ltd. Tin oxide particles and process for producing the same
JP5373884B2 (en) * 2009-07-21 2013-12-18 三井金属鉱業株式会社 Tin oxide particles and method for producing the same
KR101353262B1 (en) * 2013-04-19 2014-01-23 주식회사 셀모티브 Metal foam for electrode of lithium secondary battery, preparing method thereof and lithium secondary battery including the metalfoam
WO2017006561A1 (en) * 2015-07-07 2017-01-12 信越化学工業株式会社 Method for manufacturing negative-electrode active material for non-aqueous-electrolyte secondary cell, method for manufacturing negative electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
KR20180026717A (en) * 2015-07-07 2018-03-13 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN107851783A (en) * 2015-07-07 2018-03-27 信越化学工业株式会社 The manufacture method and rechargeable nonaqueous electrolytic battery of anode for nonaqueous electrolyte secondary battery active material and negative pole
JPWO2017006561A1 (en) * 2015-07-07 2018-04-26 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11177501B2 (en) 2015-07-07 2021-11-16 Shin-Etsu Chemical Co., Ltd. Production method for non-aqueous electrolyte secondary battery active material providing lithium insertion and solution contact
KR102613728B1 (en) * 2015-07-07 2023-12-18 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2017043039A1 (en) * 2015-09-10 2017-03-16 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10637053B2 (en) 2015-09-10 2020-04-28 Shin-Etsu Chemical Co., Ltd. Production method of negative electrode active material for nonaqueous electrolyte secondary battery, production method of nonaqueous electrolyte secondary battery, production method of negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN109075330A (en) * 2016-04-13 2018-12-21 信越化学工业株式会社 The manufacturing method of anode for nonaqueous electrolyte secondary battery active material and the manufacturing method of anode for nonaqueous electrolyte secondary battery
US11024838B2 (en) 2016-04-13 2021-06-01 Shin-Etsu Chemical Co., Ltd. Production method of negative electrode active material for non-aqueous electrolyte secondary battery and production method of negative electrode for non-aqueous electrolyte secondary battery
CN113991084A (en) * 2021-10-27 2022-01-28 西安建筑科技大学 SnS-SnO2-GO @ C heterostructure composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4037975B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
US10756341B2 (en) Metallate electrodes
KR100458098B1 (en) Electrode Material for Negative Pole of Lithium Secondary Cell, Electrode Structure Using Said Electrode Material, Lithium Secondary Cell Using Said Electrode Structure, and Method for Manufacturing Said Electrode Structure and Said Lithium Secondary Cell
JP4613943B2 (en) Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR100691136B1 (en) Electrode active material with multi-element based oxide layers and preparation method thereof
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
CN104300138B (en) Positive active material and preparation method thereof, anode and lithium rechargeable battery
JP4270109B2 (en) battery
US20150194672A1 (en) Doped nickelate compounds
US9761863B2 (en) Doped nickelate compounds
JP2012043765A (en) Negative electrode active material for lithium secondary battery, method of producing the same, and lithium secondary battery including the negative electrode active material
WO1997001193A1 (en) Nonaqueous electrolyte secondary battery
JPH08153541A (en) Lithium secondary battery
WO2011039132A1 (en) Positive active electrode material for lithium secondary battery, process for preparing the same and lithium secondary battery
US20150207138A1 (en) Doped nickelate compounds
JP4839671B2 (en) battery
JP2000149948A (en) Positive active material, lithium ion secondary battery and manufacture of its positive active material
JP4199871B2 (en) Nonaqueous electrolyte secondary battery negative electrode material and nonaqueous electrolyte secondary battery
JP4037975B2 (en) Nonaqueous electrolyte secondary battery negative electrode material manufacturing method
JP4655453B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
EP3806202A1 (en) Positive electrode active material, preparing method therefor, and lithium secondary battery including same
JP2017188218A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP3540575B2 (en) Lithium secondary battery
JP2003157843A (en) Positive electrode material, its manufacturing method, and battery using it
JP6873404B2 (en) Negative electrode active material for sodium secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees