JPH10270018A - Non-aqueous electrolytic battery - Google Patents

Non-aqueous electrolytic battery

Info

Publication number
JPH10270018A
JPH10270018A JP9073084A JP7308497A JPH10270018A JP H10270018 A JPH10270018 A JP H10270018A JP 9073084 A JP9073084 A JP 9073084A JP 7308497 A JP7308497 A JP 7308497A JP H10270018 A JPH10270018 A JP H10270018A
Authority
JP
Japan
Prior art keywords
zeolite
negative electrode
metal
lithium
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9073084A
Other languages
Japanese (ja)
Other versions
JP3596578B2 (en
Inventor
Tokuo Inamasu
徳雄 稲益
Hiroyoshi Yoshihisa
洋悦 吉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP7308497A priority Critical patent/JP3596578B2/en
Publication of JPH10270018A publication Critical patent/JPH10270018A/en
Application granted granted Critical
Publication of JP3596578B2 publication Critical patent/JP3596578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery displaying charging/discharging cycle characteristics excellent in high voltage and high energy density by making the main composite substance of the negative electrode active substance out of minute porous aluminum-silicate (zeolite) having fine porous with a specific porous diameter. SOLUTION: Main composite substance of a negative electrode used in a non-aqueous electrolytic battery is designated to minute porous alumino silicate (zeolite) having fine porous with porous diameter 0.4 and 2.0 nm. This zeolite is represented by chemical equation Mx O.aAl2 O3 .bSiO2 .Ly, and M is at least one kind out of alkaline metal or alkaline earth metal. L stands for a metal or carbon, and it is preferable that x stays between 1 and 2, y is more than zero, (a) stays between 0.7 and 1.3 and b stays between 1.5 and 6.0. In addition, M is preferably a lithium salt type by independent Li, and as the material quality of this metal on which a porous metal or a carbon thin layer is arranged on its particle surface, iron, copper and nickel are desirable and its crystal configuration is preferably a cubic crystal. Accordingly, a secondary battery with high safety can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池に関
するもので、さらに詳しくはその負極活物質に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to a negative electrode active material thereof.

【0002】[0002]

【従来の技術】従来より非水電解質電池用の負極活物質
として、リチウムを用いることが代表的であったが、充
電時に生成するリチウムの樹枝状析出(デンドライト)
のため、サイクル寿命の点で問題があった。また、この
デンドライトはセパレーターを貫通し内部短絡を引き起
こしたり、発火の原因ともなっている。
2. Description of the Related Art Conventionally, lithium has been typically used as a negative electrode active material for a nonaqueous electrolyte battery. However, dendritic deposition of lithium generated during charging (dendrite)
Therefore, there was a problem in terms of cycle life. In addition, the dendrite penetrates through the separator, causing an internal short circuit and causing ignition.

【0003】また、上記のような充電時に生成するデン
ドライトを防止する目的でリチウム合金も用いられた
が、充電量が大きくなると負極の微細粉化や、負極活物
質の脱落などの問題があった。
Further, lithium alloys have been used for the purpose of preventing dendrite generated at the time of charging as described above. However, when the charge amount is increased, there are problems such as fine powdering of the negative electrode and falling off of the negative electrode active material. .

【0004】一方、長寿命化及び安全性のために負極に
炭素材料を用いる電池などが注目を集め一部実用化され
ている。
[0004] On the other hand, batteries using a carbon material for the negative electrode and the like have attracted attention and have been partially put into practical use for the purpose of prolonging the service life and safety.

【0005】しかしながら、負極に用いられる炭素材料
は、リチウムのドープ電位が0Vに近いため、急速充電
を行う場合、電位が0V以下になり電極上にリチウムを
析出することがあった。そのため、セルの内部短絡を引
き起こしたり、放電効率を低下させることがある。さら
に、この炭素材料は高エネルギー密度という点からは未
だ不十分である。さらなる高容量、高エネルギー密度
で、サイクル寿命が長く、安全な非水電解質電池用負極
材料の開発が望まれている。
However, since the carbon material used for the negative electrode has a lithium doping potential close to 0 V, the potential sometimes drops to 0 V or less when rapid charging is performed, and lithium is deposited on the electrode in some cases. Therefore, an internal short circuit of the cell may be caused or the discharge efficiency may be reduced. Furthermore, this carbon material is still insufficient in terms of high energy density. It is desired to develop a safe negative electrode material for a non-aqueous electrolyte battery having a higher capacity, a higher energy density, a longer cycle life, and a higher safety.

【0006】上記のような炭素材料を用いる負極活物質
は、サイクル寿命の点でかなりの改善がなされている
が、密度が比較的小さいため体積当たりの容量が低くな
ってしまうことになる。また、急速充電時、内部短絡や
充電効率の低下という問題があった。
Although the negative electrode active material using the above-described carbon material has been considerably improved in terms of cycle life, the capacity per volume is low due to its relatively small density. In addition, at the time of quick charging, there is a problem that an internal short circuit or a reduction in charging efficiency occurs.

【0007】さらに、金属リチウムやリチウム合金また
は炭素材料以外の負極活物質として、ケイ素とリチウム
を含有する複合酸化物Lix Si1-y y z (特開平
7−230800号公報)や、非晶質カルコゲン化合物
1 2 p 4 q (特開平7−288123号公報)を
用いることが提唱されており、高容量、高エネルギー密
度の点で改善されている。
Further, as a negative electrode active material other than lithium metal, a lithium alloy or a carbon material, a composite oxide Li x Si 1 -y My O z containing silicon and lithium (Japanese Patent Laid-Open No. 7-230800), It has been proposed to use an amorphous chalcogen compound M 1 M 2 p M 4 q (Japanese Patent Laid-Open No. 7-288123), which is improved in terms of high capacity and high energy density.

【0008】しかし乍、上記のような複合酸化物は、活
物質自身内部でのリチウムイオンの拡散が遅いこと、お
よび固液界面での反応の抵抗が大きいため、急速充電、
及び高負荷特性が劣るという問題があった。この問題を
解決する目的で活物質粒子の微細化や更には導電性を向
上させるために導電材の添加が試みられている。しかし
未だ満足のいく効果は得られていないばかりか、密度の
低い炭素材量を導電材として用いることにより、体積あ
たりの容量が低下することになる。さらに、導電材を添
加することにより、急速充電を行うと部分的に電流集中
が起こり導電剤からリチウムの析出が観測された。その
ため、セルの内部短絡を引き起こしたり、充放電効率を
低下させることがあった。
[0008] However, the above-mentioned composite oxide has a slow charge of lithium ions in the active material itself and a large resistance of the reaction at the solid-liquid interface.
And high load characteristics are inferior. For the purpose of solving this problem, attempts have been made to add a conductive material to reduce the size of the active material particles and further improve the conductivity. However, a satisfactory effect has not yet been obtained, and the use of a low-density carbon material as the conductive material results in a reduction in capacity per volume. Furthermore, by adding a conductive material, when rapid charging was performed, current concentration partially occurred, and precipitation of lithium from the conductive agent was observed. For this reason, an internal short circuit of the cell may be caused or the charge / discharge efficiency may be reduced.

【0009】また、前記従来提案されている複合酸化物
等は、酸化物の還元をへてリチウムとの反応が進行する
と考えられるため、特に初期での不可逆的な還元がおこ
り初期充放電効率が低くなる欠点があった。
[0009] Further, in the above-mentioned conventionally proposed complex oxides, it is considered that the reaction with lithium proceeds through the reduction of the oxides. Therefore, irreversible reduction occurs at the initial stage, and the initial charge / discharge efficiency is reduced. There was a drawback that it became lower.

【0010】[0010]

【発明が解決しようとする課題】前記の如く、負極とし
てリチウム金属やリチウム合金を用いる場合は高電圧
や、高容量、高エネルギー密度としての利点はあるもの
の、サイクル性や安全性の上で問題があり、炭素材料を
用いる場合、高電圧や、安全性の面で有利であるもの
の、高容量、高エネルギー密度の面で不十分である。さ
らに、酸化物負極を用いる場合、高容量、高エネルギー
密度の点は改善されているが、急速充電、高負荷放電特
性、充放電効率特性、サイクル寿命や安全性の点で満足
できるものが得られていない。
As described above, when lithium metal or lithium alloy is used as the negative electrode, there are advantages in terms of high voltage, high capacity, and high energy density, but there are problems in terms of cycleability and safety. When a carbon material is used, it is advantageous in terms of high voltage and safety, but is insufficient in terms of high capacity and high energy density. Furthermore, when an oxide negative electrode is used, high capacity and high energy density have been improved, but those which can be satisfied in terms of rapid charge, high load discharge characteristics, charge / discharge efficiency characteristics, cycle life and safety are obtained. Not been.

【0011】このため、高電圧、高エネルギー密度で、
優れた充放電サイクル特性を示し、安全性の高い二次電
池を得るには、充放電時のリチウムの吸蔵放出の際に結
晶系の変化や体積変化が少なく、できるだけリチウム電
位に近い作動領域で、かつ可逆的にリチウムを吸蔵放出
可能な導電性のある化合物が望まれている。
For this reason, at a high voltage and a high energy density,
In order to obtain a secondary battery with excellent charge-discharge cycle characteristics and high safety, there is little change in the crystal system or volume change during insertion and extraction of lithium during charging and discharging, and in an operating region as close to the lithium potential as possible. A conductive compound capable of reversibly inserting and extracting lithium has been desired.

【0012】[0012]

【課題を解決するための手段】本発明は前記問題点に鑑
みてなされたものであって、非水電解質電池に使用され
る負極の主構成物質が、孔径0.4〜2.0nmの細孔
を有する微多孔性アルミノ珪酸塩(ゼオライト)である
ことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a main constituent material of a negative electrode used in a non-aqueous electrolyte battery is a fine electrode having a pore size of 0.4 to 2.0 nm. It is a microporous aluminosilicate (zeolite) having pores.

【0013】前記に挙げたゼオライトは、化学式Mx
・aAl2 3 ・bSiO2 ・Lyで表され、Mはアル
カリ金属またはアルカリ土類金属の中の少なくとも1種
であり、Lは金属または炭素、xは1〜2、yは0以
上、aは0.7〜1.3、bは1.5〜6.0であるこ
とが望ましい。また、MはLi単独であるリチウム塩タ
イプであることが望ましい。さらに、その粒子表面に多
孔性の金属または炭素の薄層が配置されているものが好
ましい。この金属の材質としては鉄、ニッケル、銅が好
ましい。さらに、その結晶形態が立方晶に属するものが
望ましい。
The zeolites mentioned above have the chemical formula M x O
· AAl represented by 2 O 3 · bSiO 2 · L y, M is at least one among alkali metals or alkaline earth metals, L is a metal or carbon, x is 1 to 2, y is 0 or more, a is desirably 0.7 to 1.3, and b is desirably 1.5 to 6.0. Further, M is preferably a lithium salt type in which Li is solely Li. Further, it is preferable that a porous metal or carbon thin layer is disposed on the particle surface. As the material of the metal, iron, nickel, and copper are preferable. Further, it is desirable that the crystal form belongs to a cubic crystal.

【0014】ゼオライトは結晶性のアルミノケイ酸塩
で、その構造中に比較的大きな空間を有するところから
大量のリチウムを吸蔵する可能性を秘めた化合物として
着目された。種々のゼオライトを用いて負極としての特
性を評価したところ、組成が前記の内容を満足するもの
が放電容量が大きく優れていることが判った。また、一
般的なNa塩やCa塩では活物質単位重量当りの容量
(mAh/g)は大きいものの、1サイクル目のクーロ
ン効率が低かった。この理由は定かではないが、これら
一般的なタイプのゼオライトでは、リチウム電池の負極
として作用させようとする試みに際して、充電によって
ゼオライトにドープされたリチウムとゼオライトが有し
ていたナトリウム等のカチオンがイオン交換し、リチウ
ムがトラップされたためであろうと推定された。
Zeolite is a crystalline aluminosilicate, which has attracted attention as a compound having a relatively large space in its structure and having the potential to occlude a large amount of lithium. When the characteristics as a negative electrode were evaluated using various zeolites, it was found that those having a composition satisfying the above-mentioned contents had a large discharge capacity and were excellent. In addition, although the capacity per unit weight of the active material (mAh / g) is large in general Na salts and Ca salts, the coulomb efficiency in the first cycle was low. The reason for this is not clear, but in these general types of zeolites, in an attempt to act as the negative electrode of a lithium battery, lithium doped in the zeolite by charging and cations such as sodium that the zeolite had had, etc. It was presumed that ion exchange was performed and lithium was trapped.

【0015】そこで、ゼオライトを予めリチウム塩の水
溶液で処理して、イオン交換によりリチウム塩タイプに
変えて用いた。リチウム塩タイプに変えたゼオライトは
リチウム電池の負極として作用させた時に1サイクル目
のクーロン効率が高く、優れた特性を有することが確認
された。
Therefore, the zeolite was treated in advance with an aqueous solution of a lithium salt, and was changed to a lithium salt type by ion exchange. It was confirmed that the zeolite converted to the lithium salt type had a high coulomb efficiency in the first cycle and had excellent characteristics when used as a negative electrode of a lithium battery.

【0016】結晶形態の分類においてもゼオライトは幾
つかの種類に分類される。その代表的なものには、立方
晶、六方晶、斜方晶、単斜晶がある。これら結晶形態の
異なる代表的なゼオライトを負極として評価した結果、
単位体積当りの容量に於て、立方晶を有するもなが最も
優れていた。
In the classification of crystal forms, zeolites are classified into several types. Typical examples are cubic, hexagonal, orthorhombic, and monoclinic. As a result of evaluating these typical zeolites having different crystal forms as the negative electrode,
In terms of capacity per unit volume, those having cubic crystals were the best.

【0017】また、ゼオライトの粒径が急速充電性能と
高負荷放電特性に影響する。粒径は、5〜90μmが好
ましい。粒径が小さいと電子伝導性が劣り、逆に粒径が
大きいと粒子内でのリチウムイオンの拡散が劣るためと
推定される。電子伝導性とリチウムイオンの固相内拡散
のかねあいの良い範囲が5〜90μmと考えられる。ゼ
オライト自体は不導体であり、そのままでは電子伝導性
が低い。負極として作用させるには、炭素粉末等の導電
材を混合する必要がある。我々はゼオライト粒子表面に
多孔性の金属被膜を配することにより、電子伝導性を向
上させることができ、更に急速充電特性および高負荷放
電特性を向上できることを見い出した。被膜を形成する
金属には、伝導性が高く、リチウムと合金を形成しない
ところから、鉄、ニッケル、銅が適している。被膜の厚
さは0.3〜2μmが好ましい。被膜の厚さが小さいと
十分な電子伝導性が得られず、逆に大きいとリチウムイ
オンの拡散を阻害するためであろうと推定される。
Further, the particle size of the zeolite affects the rapid charging performance and the high-load discharge characteristics. The particle size is preferably from 5 to 90 μm. It is presumed that when the particle size is small, electron conductivity is poor, and when the particle size is large, diffusion of lithium ions in the particles is poor. It is considered that a good range between electron conductivity and diffusion of lithium ions in the solid phase is 5 to 90 μm. Zeolite itself is a nonconductor, and as such, has low electron conductivity. In order to function as a negative electrode, it is necessary to mix a conductive material such as carbon powder. We have found that by arranging a porous metal coating on the surface of zeolite particles, it is possible to improve the electron conductivity, and further to improve the rapid charge characteristics and the high load discharge characteristics. Iron, nickel, and copper are suitable for the metal forming the film because they have high conductivity and do not form an alloy with lithium. The thickness of the coating is preferably from 0.3 to 2 μm. It is presumed that if the thickness of the coating is small, sufficient electron conductivity cannot be obtained, and if it is large, the diffusion of lithium ions will be hindered.

【0018】被膜の形成方法には、蒸着、無電解メッ
キ、メカノケミカル等の方法が適している。
Suitable methods for forming the coating include vapor deposition, electroless plating, and mechanochemical methods.

【0019】以上記述した如く、リチウム塩タイプのゼ
オライトが高容量を有することに着目し、これに電子導
電性向上の改良を加えることで、リチウム二次電池の負
極として優れた特性を有することを見い出し、本発明に
至った。
As described above, focusing on the fact that the lithium salt type zeolite has a high capacity, and by adding an improvement in the electronic conductivity to this, it is expected that the zeolite has excellent characteristics as a negative electrode of a lithium secondary battery. Have found the present invention.

【0020】また、前記ゼオライトにリチウムや、リチ
ウムを吸蔵放出可能な物質を混合併用するのが有効であ
る。本発明の負極構成物質に併せて用いることができる
材料としては、リチウム金属、リチウム合金などや、リ
チウムイオンまたはリチウム金属を吸蔵放出できる焼成
炭素質化合物やカルコゲン化合物、n−ブチルリチウム
等のリチウムを含有する有機化合物等が挙げられる。ま
た、リチウム金属やリチウム合金、リチウムを含有する
有機化合物を併用することによって、本発明に用いるゼ
オライトにリチウムを電池内部で挿入することも可能で
ある。
It is effective to mix and use lithium and a substance capable of inserting and extracting lithium into the zeolite. Examples of the material that can be used in combination with the negative electrode constituent material of the present invention include lithium metal, a lithium alloy, and a fired carbonaceous compound or a chalcogen compound capable of inserting and extracting lithium ions or lithium metal, and lithium such as n-butyllithium. Organic compounds and the like. In addition, by using lithium metal, a lithium alloy, and an organic compound containing lithium in combination, lithium can be inserted into the zeolite used in the present invention inside the battery.

【0021】本発明のゼオライトの場合、電極合剤とし
て導電剤や結着剤やフィラー等を添加することができ
る。導電剤としては、電池性能に悪影響を及ぼさない電
子伝導性材料であれば何でも良い。通常、天然黒鉛(鱗
片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラッ
ク、アセチレンブラック、ケッチェンブラック、カーボ
ンウイスカー、炭素繊維や金属(銅、ニッケル、鉄、
銀、金など)粉、金属繊維、金属の蒸着、導電性セラミ
ックス材料等の導電性材料を1種またはそれらの混合物
として含ませることができる。これらの中で、黒鉛とア
セチレンブラックとケッチェンブラックの併用が望まし
い。その添加量は1〜50重量%が好ましく、特に2〜
30重量%が好ましい。
In the case of the zeolite of the present invention, a conductive agent, a binder, a filler or the like can be added as an electrode mixture. Any conductive material may be used as long as it does not adversely affect battery performance. Usually, natural graphite (flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fibers and metals (copper, nickel, iron,
Silver, gold, etc.), a conductive material such as powder, metal fiber, metal vapor deposition, and conductive ceramic material can be included as one type or a mixture thereof. Among these, the combined use of graphite, acetylene black and Ketjen black is desirable. The addition amount is preferably 1 to 50% by weight, particularly 2 to 50% by weight.
30% by weight is preferred.

【0022】結着剤としては、通常、テトラフルオロエ
チレン、ポリフッ化ビニリデン、ポリエチレン、ポリプ
ロピレン、エチレン−プロピレンジエンターポリマー
(EPDM)、スルホン化EPDM、スチレンブタジエ
ンゴム(SBR)、フッ素ゴム、カルボメトキシセルロ
ース等といった熱可塑性樹脂、ゴム弾性を有するポリマ
ー、多糖類等を1種または2種以上の混合物として用い
ることができる。また、多糖類の様にリチウムと反応す
る官能機を有する結着剤は、例えばメチル化するなどし
てその官能基を失活させておくことが望まし。その添加
量としては、1〜50重量%が好ましく、特に2〜30
重量%が好ましい。
As the binder, usually, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carbomethoxy cellulose And the like, a thermoplastic resin, a polymer having rubber elasticity, a polysaccharide and the like can be used as one kind or as a mixture of two or more kinds. Further, it is desirable that a binder having a functional unit that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly 2 to 30% by weight.
% By weight is preferred.

【0023】フィラーとしては、電池性能に悪影響を及
ぼさない材料であれば何でも良い。通常、ポリプロピレ
ン、ポリエチレン等のオレフィン系ポリマー、アエロジ
ル、アルミナ、炭素等が用いられる。フィラーの添加量
は0〜30重量%が好ましい。
As the filler, any material may be used as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, alumina, carbon and the like are used. The addition amount of the filler is preferably 0 to 30% by weight.

【0024】この様にして得られるゼオライトを負極活
物質として用いる。一方、正極活物質としては、MnO
2 ,MoO3 ,V2 5 ,Lix CoO2 ,Lix Ni
2,Lix Mn2 4 ,等の金属酸化物や、Ti
2 ,MoS2 ,NbSe3 等の金属カルコゲン化物、
ポリアセン、ポリパラフェニレン、ポリピロール、ポリ
アニリン等のグラファイト層間化合物、及び導電性高分
子等のアルカリ金属イオンや、アニオンを吸放出可能な
各種の物質を利用することができる。
The thus obtained zeolite is used as a negative electrode active material. On the other hand, as the positive electrode active material, MnO
2 , MoO 3 , V 2 O 5 , Li x CoO 2 , Li x Ni
Metal oxides such as O 2 , Li x Mn 2 O 4 , Ti
Metal chalcogenides such as S 2 , MoS 2 , NbSe 3 ,
Graphite intercalation compounds such as polyacene, polyparaphenylene, polypyrrole, and polyaniline; and alkali metal ions such as conductive polymers and various substances capable of absorbing and releasing anions can be used.

【0025】特に本発明のゼオライトを負極活物質とし
て用いる場合、高エネルギー密度という観点からV2
5 ,MnO2 ,Lix CoO2 ,Lix NiO2 ,Li
x Mn2 4 等の3〜4Vの電極電位を有するものが望
ましい。特にLix CoO2,Lix NiO2 ,Lix
Mn2 4 等のリチウム含有遷移金属酸化物が好まし
い。
In particular, when the zeolite of the present invention is used as a negative electrode active material, V 2 O is preferably used from the viewpoint of high energy density.
5 , MnO 2 , Li x CoO 2 , Li x NiO 2 , Li
having an electrode potential of 3~4V such x Mn 2 O 4 is preferred. In particular, Li x CoO 2 , Li x NiO 2 , Li x
Lithium-containing transition metal oxides such as Mn 2 O 4 are preferred.

【0026】また、電解質としては、例えば有機電解
液、高分子固体電解質、無機固体電解質、溶融塩等を用
いることができ、この中でも有機電解液を用いることが
好ましい。この有機電解液の有機溶媒として、プロピレ
ンカーボネート、エチレンカーボネート、ブチレンカー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、メチルエチルカーボネート、γ−ブチロラクトン等
のエステル類や、テトラヒドロフラン、2−メチルテト
ラヒドロフラン等の置換テトラヒドロフラン、ジオキソ
ラン、ジエチルエーテル、ジメトキシエタン、ジエトキ
シエタン、メトキシエトキシエタン等のエーテル類、ジ
メチルスルホキシド、スルホラン、メチルスルホラン、
アセトニトリル、ギ酸メチル、酢酸メチル、N−メチル
ピロリドン、ジメチルフォルムアミド等が挙げられ、こ
れらを単独又は混合溶媒として用い、ることができる。
また、支持電解質塩としては、LiClO4 、LiPF
6 、LiBF4 、LiAsF6 、LiCF3 SO3 、L
iN(CF3 SO2 2 、LiN(C2 5
2 2 、LiN(CF3 SO2 )(C4 9 SO2 )等
が挙げられる。一方、高分子固体電解質としては、上記
のような支持電解質塩をポリエチレンオキシドやその架
橋体、ポリフォスファゼンやその架橋体等といったポリ
マーの中に溶かし込んだものを用いることができる。さ
らに、Li3 N,LiI等の無機固体電解質も使用可能
である。つまり、リチウムイオン導伝性の非水電解質で
あればよい。
As the electrolyte, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used, and among them, an organic electrolyte is preferable. As the organic solvent of the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, esters such as γ-butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, Ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethylsulfoxide, sulfolane, methylsulfolane,
Acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide and the like can be mentioned, and these can be used alone or as a mixed solvent.
The supporting electrolyte salt includes LiClO 4 , LiPF
6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , L
iN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 S
O 2 ) 2 and LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ). On the other hand, as the polymer solid electrolyte, those obtained by dissolving the above-described supporting electrolyte salt in a polymer such as polyethylene oxide or a crosslinked product thereof, or polyphosphazene or a crosslinked product thereof can be used. Further, inorganic solid electrolytes such as Li 3 N and LiI can be used. That is, any non-aqueous electrolyte having lithium ion conductivity may be used.

【0027】セパレーターとしては、イオンの透過度が
優れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性からポリプロピレンやポリエ
チレンといったオレフィン系のポリマー、ガラス繊維、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン等
から成るシート、微孔膜、不織布が用いられる。セパレ
ーターの孔径は、一般に電池に用いられる範囲のもので
あり、例えば0.01〜10μmである。また、その厚
みについても同様で、一般に電池に用いられる範囲のも
のであり、例えば5〜300μmである。
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Olefin polymers such as polypropylene and polyethylene, glass fiber, and organic solvent resistant and hydrophobic
Sheets, microporous membranes, and nonwoven fabrics made of polyvinylidene fluoride, polytetrafluoroethylene, or the like are used. The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 10 μm. The same applies to the thickness, which is in the range generally used for batteries, for example, 5 to 300 μm.

【0028】この様な優れた充放電特性が得られる理由
として、必ずしも明確ではないが、以下のように考察さ
れる。すなわち、ゼオライトの結晶内に於けるリチウム
イオンの占めることが可能なサイト数が大きい。また、
ゼオライトの細孔内にリチウムを可逆的に吸蔵放出がで
きる。このような理由からゼオライトを用いた場合の容
量は大きいと推定される。容易にリチウムイオンを0価
のリチウムとして吸蔵し、電子を与えることができ、ま
た、吸蔵された0価のリチウムは電子を放出し、リチウ
ムイオンとして放出される。つまり、リチウムの吸蔵放
出に関わる膨脹収縮に追随し、活物質自身の微細化や脱
落といったことが見られず、充放電の可逆性を向上して
いるものと考えられる。
The reason why such excellent charge / discharge characteristics are obtained is not necessarily clear, but is considered as follows. That is, the number of sites that can be occupied by lithium ions in the zeolite crystal is large. Also,
Lithium can be stored and released reversibly in the pores of zeolite. For these reasons, it is estimated that the capacity when using zeolite is large. Lithium ions can be easily occluded as zero-valent lithium to give electrons, and the occluded zero-valent lithium emits electrons and is released as lithium ions. In other words, following the expansion and contraction associated with the insertion and extraction of lithium, the active material itself is not miniaturized or dropped, and the reversibility of charge and discharge is considered to be improved.

【0029】[0029]

【作用】本発明の、リチウム塩タイプのゼオライトを主
構成物質とする負極活物質は、非水電解質中において金
属リチウムに対し少なくとも0〜2Vの範囲でリチウム
イオンを吸蔵放出することができ、また構造内部に空間
を有するところから、リチウムの吸蔵量が大きく、放電
容量の大きな負極を実現できる。
The negative electrode active material of the present invention mainly comprising a lithium salt type zeolite can absorb and release lithium ions in a non-aqueous electrolyte in a range of at least 0 to 2 V with respect to metallic lithium. Since there is a space inside the structure, a negative electrode having a large lithium storage capacity and a large discharge capacity can be realized.

【0030】また、ゼオライトの粒径を規制することに
より急速充電特性および高負荷放電特性のすぐれた負極
を実現できる。さらに、ゼオライト粒子を金属製の多孔
性被膜で被覆することで電子伝導性を向上させ、前記同
様急速充電受け入れ特性および高負荷放電特性の優れた
負極を実現できる。
Further, by regulating the particle size of the zeolite, it is possible to realize a negative electrode having excellent quick charge characteristics and high load discharge characteristics. Furthermore, by coating the zeolite particles with a metal porous film, the electron conductivity is improved, and a negative electrode having excellent rapid charge receiving characteristics and high load discharge characteristics can be realized as described above.

【0031】このような負極活物質を電極材料として用
いることにより、サイクル可能な充放電特性の優れた二
次電池の負極として用いることができる。さらに負極電
位が卑であるため、電池としての電圧が高電圧となり、
またその容量が大きいことから高エネルギー密度が達成
される。
By using such a negative electrode active material as an electrode material, it can be used as a negative electrode of a secondary battery having excellent cyclable charge / discharge characteristics. Further, since the negative electrode potential is low, the voltage of the battery becomes high,
In addition, high energy density is achieved because of its large capacity.

【0032】[0032]

【発明の実施の形態】ゼオライト粒子は、粉砕されて平
均粒径約10μm、粒度範囲1〜90μmの粉末状にさ
れる。さらに好ましくは、粉砕される前にイオン交換に
より、リチウム塩タイプに変換される。具体的には、水
酸化リチウムの水溶液に浸漬される。本浸漬で陽イオン
交換によりリチウム塩に転換される。浸漬後水洗してア
ルカリが除去された後、乾燥される。乾燥したゼオライ
ト粉末に、炭素粉末等の導電性材料を混合することによ
り、導電性が付与される。導電性を付与するための、さ
らに望ましい方法としては、粒子表面に導電性の多孔性
被膜を形成する方法である。具体的には、無電解メッ
キ、蒸着、メカノケミカル等がある。被膜を構成する材
料には、鉄、ニッケル、銅等の金属の他、炭素も好適で
ある。導電性を付与されたゼオライトとポリフッカビニ
リデン(PVDF)等のバインダー樹脂のnーメチルピ
ロリドン(NMP)溶液の混合物を銅箔等の負極集電体
上に塗布する。塗布後乾燥し、ロールプレスして負極と
する。
DETAILED DESCRIPTION OF THE INVENTION Zeolite particles are ground to a powder having an average particle size of about 10 μm and a particle size range of 1 to 90 μm. More preferably, it is converted to a lithium salt type by ion exchange before being ground. Specifically, it is immersed in an aqueous solution of lithium hydroxide. In this immersion, it is converted to a lithium salt by cation exchange. After immersion, washing with water is carried out to remove the alkali, followed by drying. The conductivity is imparted by mixing a conductive material such as a carbon powder with the dried zeolite powder. A more desirable method for imparting conductivity is to form a conductive porous film on the particle surface. Specifically, there are electroless plating, vapor deposition, mechanochemical and the like. As a material for forming the coating, carbon, in addition to metals such as iron, nickel, and copper, is also suitable. A mixture of a zeolite provided with conductivity and a solution of a binder resin such as polyfukkavinylidene (PVDF) in n-methylpyrrolidone (NMP) is applied on a negative electrode current collector such as a copper foil. After application, the coating is dried and roll-pressed to form a negative electrode.

【0033】[0033]

【実施例】以下、本発明の実施例について以下に説明す
る。
Embodiments of the present invention will be described below.

【0034】(実施例1)平均粒径10μm、結晶系が
立方晶で、孔径0.5nmの多孔性で、式Na2O・A
2 3 ・2SiO2 で表される、ゼオライトを予め4
00℃で乾燥した。乾燥済みのゼオライト90gと同じ
く乾燥済みのアセチレンブラック10gの混合粉体に、
PVDFの10%NMP溶液50gを混練して得たペー
ストを、ドクターブレードにより銅箔上にコートした。
塗布厚さは150μmとした。これを乾燥しNMPを除
去して負極とした。コバルト酸リチウム90gとアセチ
レンブラック10gの混合粉体に、PVDFの10%N
MP溶液50gを混練し、Al箔上にコートした。塗布
厚さは150μmとした。これを乾燥して正極とした。
微孔性ポリプロピレン(PP)をセパレータとした。電
解液には、過塩素酸リチウム(LiClO4 )の1mo
l/リットルのプロピレンカーボネート溶液を使用し
た。図1に示したコイン型のセルを試作し、このセルを
用いて充放電試験を行った。充放電試験は室温で実施し
た。充電は3mA定電流で、終止電圧を4.1Vとし
た。放電は3mA定電流で、終止電圧を2.5Vとし
た。
(Example 1) A porous material having an average particle size of 10 µm, a cubic crystal system, a pore size of 0.5 nm, and a formula of Na 2 O · A
zeolite represented by l 2 O 3 · 2SiO 2
Dried at 00 ° C. 90 g of dried zeolite as well as 10 g of dried acetylene black mixed powder,
A paste obtained by kneading 50 g of a 10% NMP solution of PVDF was coated on a copper foil by a doctor blade.
The coating thickness was 150 μm. This was dried to remove NMP to obtain a negative electrode. To a mixed powder of 90 g of lithium cobaltate and 10 g of acetylene black, 10% N of PVDF was added.
50 g of the MP solution was kneaded and coated on an Al foil. The coating thickness was 150 μm. This was dried to obtain a positive electrode.
Microporous polypropylene (PP) was used as the separator. The electrolytic solution contains 1 mol of lithium perchlorate (LiClO 4 ).
A 1 / liter propylene carbonate solution was used. The coin-shaped cell shown in FIG. 1 was prototyped, and a charge / discharge test was performed using this cell. The charge / discharge test was performed at room temperature. The charging was performed at a constant current of 3 mA, and the final voltage was set to 4.1 V. Discharge was performed at a constant current of 3 mA, and the final voltage was set to 2.5 V.

【0035】(比較例1)負極に平均粒径約10μmの
人造黒鉛粉末を使用した以外、実施例1と同一の内容の
セルとした。評価試験は実施例1と同一の条件とした。
Comparative Example 1 A cell having the same contents as in Example 1 was used except that artificial graphite powder having an average particle size of about 10 μm was used for the negative electrode. The evaluation test was performed under the same conditions as in Example 1.

【0036】(比較例2)負極に平均粒径約10μm、
SiO2 粉末を使用した以外、実施例1と同一の内容の
セルとした。評価試験は実施例1と同一の条件とした。
Comparative Example 2 The negative electrode had an average particle size of about 10 μm,
A cell having the same contents as in Example 1 was used except that SiO 2 powder was used. The evaluation test was performed under the same conditions as in Example 1.

【0037】(実施例2)負極に平均粒径約10μm、
化学式Na2 O・0.5Al2 3 ・2SiO2を使用
した以外は、実施例1と同一とした。
Example 2 The negative electrode had an average particle size of about 10 μm,
Example 1 was the same as Example 1 except that the chemical formula Na 2 O.0.5Al 2 O 3 .2SiO 2 was used.

【0038】(実施例3)負極に平均粒径約10μm、
化学式Na2 O・1.5Al2 3 ・2SiO2を使用
した以外は、実施例1と同一とした。
Example 3 The negative electrode had an average particle size of about 10 μm,
Example 1 was the same as Example 1 except that the chemical formula Na 2 O.1.5Al 2 O 3 .2SiO 2 was used.

【0039】(実施例4)負極に平均粒径約10μm、
化学式Na2 O・Al2 3 ・SiO2 を使用した以外
は、実施例1と同一とした。
Example 4 The negative electrode had an average particle size of about 10 μm,
Example 1 was the same as Example 1 except that the chemical formula Na 2 O.Al 2 O 3 .SiO 2 was used.

【0040】(実施例5)負極に平均粒径約10μm、
化学式Na2 O・Al2 3 ・8SiO2 を使用した以
外は、実施例1と同一とした。
Example 5 The negative electrode had an average particle size of about 10 μm,
Example 1 was the same as Example 1 except that the chemical formula Na 2 O.Al 2 O 3 .8SiO 2 was used.

【0041】(実施例6)平均粒径約10μm、化学式
Na2 O・Al2 3 ・2SiO2 で表される立方晶の
ゼオライトを水酸化リチウム(LiOH)の水溶液に浸
漬処理を施し、リチウム塩タイプに変え、Li2 O・A
2 3 ・2SiO2 とした。浸漬処理品を水洗乾燥し
た。本処理品を使用して、実施例1と同様の組成の負極
を構成し、同一の条件でテストに供した。以上の実施例
および比較例について、試作試験を実施した結果を表1
に示す。試験は前記の通り、室温で実施した。充電は定
電流充電で、電流は3mA、終止電圧を4.1Vとし
た。放電は定電流放電で電流3mA、終止電圧は2.5
Vとした。
[0041] (Example 6) the average particle size of about 10 [mu] m, the immersion treatment in an aqueous solution of the chemical formula Na 2 O · Al 2 O 3 · 2SiO lithium hydroxide cubic zeolite represented by 2 (LiOH) subjected, lithium Change to salt type, Li 2 O ・ A
l 2 O 3 · 2SiO 2 . The immersion-treated product was washed with water and dried. Using this treated product, a negative electrode having the same composition as in Example 1 was constructed and subjected to a test under the same conditions. Table 1 shows the results of trial production tests performed on the above Examples and Comparative Examples.
Shown in The test was performed at room temperature as described above. The charging was constant current charging, the current was 3 mA, and the end voltage was 4.1 V. Discharge is a constant current discharge with a current of 3 mA and a cutoff voltage of 2.5.
V.

【0042】[0042]

【表1】 [Table 1]

【0043】表1に示した如く、本発明に係る電池の放
電容量は、比較例と比べていずれも大きな容量を示す。
これは負極の容量が大きいためである。
As shown in Table 1, the discharge capacity of the battery according to the present invention is larger than that of the comparative example.
This is because the capacity of the negative electrode is large.

【0044】また、実施例1と実施例2〜5の結果を比
べて判る如く、化学式Na2 O・aAl2 3 ・bSi
2 のaがほぼ1、0.7〜1.3の範囲にあることが
望ましい。また、bは1.5〜6の範囲にあることが望
ましい。実施例6の結果から判る如く、予めリチウム塩
タイプに変換した、ゼオライトを負極としたセルは、1
サイクル目のクーロン効率(放電容量/充電容量)が高
く、優れた特性を示す。
As can be seen from the comparison between the results of Example 1 and Examples 2 to 5, the chemical formula of Na 2 O.aAl 2 O 3 .bSi
It is desirable that a of O 2 be approximately 1, 0.7 to 1.3. Further, it is desirable that b is in the range of 1.5 to 6. As can be seen from the results of Example 6, the cell in which zeolite was used as the negative electrode, which was previously converted to the lithium salt type, had 1
High coulomb efficiency at cycle (discharge capacity / charge capacity) and excellent characteristics.

【0045】(実施例7)実施例6で用いたリチウム塩
タイプのゼオライトに無電解にてニッケルのメッキを施
した。ゼオライト1g当りのニッケルの析出量を200
mgとし、化学式Na2 O・Al2 3 ・2SiO2
0.968Niを得た。本ゼオライト100gとPVD
Fの10%NMP溶液30gから成るペーストを実施例
1と同様、銅箔上にコートした。塗布厚さは実施例1と
同様、150μmとした。これを乾燥して負極とした。
実施例6と同一の構成、サイズのコイン型セルを試作
し、同一の条件で試験に供した。
Example 7 The lithium salt type zeolite used in Example 6 was electrolessly plated with nickel. The amount of nickel deposited per gram of zeolite was 200
and mg, Formula Na 2 O · Al 2 O 3 · 2SiO 2 ·
0.968Ni was obtained. 100 g of this zeolite and PVD
A paste consisting of 30 g of a 10% NMP solution of F was coated on a copper foil in the same manner as in Example 1. The coating thickness was 150 μm, as in Example 1. This was dried to obtain a negative electrode.
A coin-shaped cell having the same configuration and size as in Example 6 was prototyped and subjected to a test under the same conditions.

【0046】(実施例8)実施例6で用いたゼオライト
95gに黒鉛粉末5gを混合し、メカノフュージョン法
にて、ゼオライト粒子の表面に黒鉛の層を形成させた。
本ゼオライトを使用して、実施例7と同一の評価を実施
した。
Example 8 95 g of the zeolite used in Example 6 was mixed with 5 g of graphite powder, and a graphite layer was formed on the surface of the zeolite particles by mechanofusion.
The same evaluations as in Example 7 were performed using this zeolite.

【0047】(実施例9)化学式Na2 O・Al2 3
・4.4SiO2 、結晶系が斜方晶および化学式Na2
O・Al2 3 ・5SiO2 、結晶系が単斜晶のゼオラ
イトを使用した以外は実施例3と同一組成の負極を作製
し、同一の試験に供した。
Example 9 Chemical formula Na 2 O.Al 2 O 3
• 4.4 SiO 2 , the crystal system is orthorhombic and the chemical formula is Na 2
A negative electrode having the same composition as in Example 3 was prepared and subjected to the same test, except that zeolite having O.Al 2 O 3 .5SiO 2 and a monoclinic crystal system was used.

【0048】実施例7〜9について、前記同様の評価を
実施した結果を表2に示す。なお、表2の実施例9の
(1)はゼオライトの結晶系が斜方晶、(2)は単斜晶
のゼオライトを負極としたセルの試験結果である。
Table 2 shows the results of the same evaluation as described above for Examples 7 to 9. In addition, (1) of Example 9 of Table 2 is a test result of a cell in which a zeolite crystal system is orthorhombic, and (2) is a test result of a cell in which monoclinic zeolite is used as a negative electrode.

【0049】[0049]

【表2】 [Table 2]

【0050】表2の実施例7、実施例8に示した結果を
前記実施例6の結果と比べて判る如く、メカノケミカル
な手法により、ゼオライト粒子表面に多孔性の金属また
は炭素の層を形成させた電池は、大きな容量を示す。こ
れは負極の導電剤が少量で優れた集電効果を示すことに
よる。実施例8または9の結果から、結晶系が斜方晶や
単斜晶のゼオライトを負極とする電池の容量は、立方晶
のゼオライトを負極とする電池の容量に比べ小さい。こ
のことから、立方晶のゼオライトが望ましい。また、本
発明に係る、ゼオライトを負極とする電池は10サイク
ル後の容量低下が無い。
As can be seen by comparing the results shown in Examples 7 and 8 in Table 2 with the results of Example 6, a porous metal or carbon layer was formed on the surface of the zeolite particles by a mechanochemical method. The discharged battery shows a large capacity. This is because a small amount of the negative electrode conductive agent exhibits an excellent current collecting effect. From the results of Example 8 or 9, the capacity of a battery using a zeolite having a crystal system of orthorhombic or monoclinic as a negative electrode is smaller than the capacity of a battery using a cubic zeolite as a negative electrode. For this reason, cubic zeolite is desirable. Moreover, the battery according to the present invention using zeolite as a negative electrode does not have a capacity decrease after 10 cycles.

【0051】なお、本発明は上記実施例に記載された活
物質の出発原料、製造方法、正極、負極、電解質、セパ
レータ及び電池形状などに限定されるものではない。ま
た、コイン型セルはあくまで本発明を説明するためのも
のであり、電池の形状はコイン型に限定されるものでは
無い。
The present invention is not limited to the starting materials, production methods, positive electrodes, negative electrodes, electrolytes, separators, battery shapes, etc. of the active materials described in the above embodiments. In addition, the coin type cell is only for describing the present invention, and the shape of the battery is not limited to the coin type.

【0052】[0052]

【発明の効果】本発明は上述の如く構成されているの
で、高電圧、高エネルギー密度で、優れた充放電サイク
ル特性を示し、安全性の高い非水電解質電池を提供でき
る。
Since the present invention is configured as described above, it is possible to provide a non-aqueous electrolyte battery having high voltage, high energy density, excellent charge / discharge cycle characteristics, and high safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明するためのコイン型リチウム二次
電池の断面図である。
FIG. 1 is a sectional view of a coin-type lithium secondary battery for explaining the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング REFERENCE SIGNS LIST 1 positive electrode 2 negative electrode 3 separator 4 positive electrode can 5 negative electrode can 6 positive electrode current collector 7 negative electrode current collector 8 insulating packing

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質の主構成物質が、少なくとも
ゼオライトを含んでいることを特徴とする非水電解質電
池。
1. A non-aqueous electrolyte battery, wherein the main constituent material of the negative electrode active material contains at least zeolite.
【請求項2】 前記ゼオライトが、化学式Mx O・aA
2 3 ・bSiO2・Ly (但し、M:アルカリ金属
またはアルカリ土類金属の少なくとも1種であり、Lは
金属または炭素、x=1〜2、y≧0、aは0.7〜
1.3、bは1.5〜6.0)で示されることを特徴と
する請求項1記載の非水電解質電池。
2. The method according to claim 1, wherein the zeolite has a chemical formula of M x O.aA.
l 2 O 3 .bSiO 2 .L y (where M: at least one kind of alkali metal or alkaline earth metal, L is metal or carbon, x = 1 to 2, y ≧ 0, a is 0.7 ~
The non-aqueous electrolyte battery according to claim 1, wherein 1.3 and b are represented by 1.5 to 6.0).
【請求項3】 前記ゼオライトの粒子表面に、金属また
は炭素の多孔性被膜が配されていることを特徴とする請
求項1記載の非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein a porous film of metal or carbon is provided on the surface of the zeolite particles.
【請求項4】 前記化学式のMが、Liであることを特
徴とする請求項2記載の非水電解質電池。
4. The non-aqueous electrolyte battery according to claim 2, wherein M in the chemical formula is Li.
【請求項5】 前記ゼオライトを構成するアルミノ硅酸
塩の結晶系が、立方晶であることを特徴とする請求項1
記載の非水電解質電池。
5. A cubic crystal system of the aluminosilicate constituting the zeolite.
The nonaqueous electrolyte battery according to any one of the preceding claims.
JP7308497A 1997-03-26 1997-03-26 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3596578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7308497A JP3596578B2 (en) 1997-03-26 1997-03-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7308497A JP3596578B2 (en) 1997-03-26 1997-03-26 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10270018A true JPH10270018A (en) 1998-10-09
JP3596578B2 JP3596578B2 (en) 2004-12-02

Family

ID=13508124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7308497A Expired - Fee Related JP3596578B2 (en) 1997-03-26 1997-03-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3596578B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185753A (en) * 1997-12-18 1999-07-09 Fuji Photo Film Co Ltd Nonaqueous electrolyte lithium secondary battery
JP2000011984A (en) * 1998-06-23 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000195505A (en) * 1998-12-25 2000-07-14 Tokuyama Corp Manufacture of negative electrode material for nonaqueous electrolyte secondary battery
JP2005216855A (en) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary cell and its manufacturing method as well as lithium secondary cell including above
JP2005243640A (en) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery comprising the negative active material
JP2005317266A (en) * 2004-04-27 2005-11-10 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte battery
JP2006179473A (en) * 2004-11-26 2006-07-06 Kyushu Univ Positive electrode active material for nonaqueous electrolyte secondary battery
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
US8110305B2 (en) 2007-02-15 2012-02-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2012003954A3 (en) * 2010-07-09 2012-10-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. New phosphate- and silicate-based electrode materials, more particularly for lithium ion batteries and lithium capacitors
US8367248B2 (en) 2006-11-22 2013-02-05 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same
JP2013246960A (en) * 2012-05-25 2013-12-09 Acr Co Ltd Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
US8623552B2 (en) 2007-06-07 2014-01-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery, and lithium secondary battery including same
US8685567B2 (en) 2007-09-12 2014-04-01 Samsung Sdi Co., Ltd. Rechargeable lithium battery
JP2014075183A (en) * 2012-10-02 2014-04-24 Hitachi Chemical Co Ltd Nonaqueous electrolyte secondary battery
US8835049B2 (en) 2006-11-22 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
JP2015018800A (en) * 2013-06-12 2015-01-29 日立化成株式会社 Conductive material
JP2015216089A (en) * 2014-04-23 2015-12-03 日立化成株式会社 Composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary, and lithium ion secondary battery
KR20160019452A (en) * 2013-06-12 2016-02-19 히타치가세이가부시끼가이샤 Aluminum silicate complex, conductive material, conductive material for lithium ion secondary cell, composition for forming lithium ion secondary cell negative electrode, composition for forming lithium ion secondary cell positive electrode, negative electrode for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2016115552A (en) * 2014-12-16 2016-06-23 日立化成株式会社 Conducive material
JP2016115553A (en) * 2014-12-16 2016-06-23 日立化成株式会社 Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016113324A (en) * 2014-12-16 2016-06-23 日立化成株式会社 Aluminum silicate composite
JP2019053860A (en) * 2017-09-13 2019-04-04 トヨタ自動車株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing the lithium ion secondary battery
CN116565364A (en) * 2023-07-10 2023-08-08 宁德时代新能源科技股份有限公司 Battery monomer, positive pole piece, negative pole piece, isolation film, battery and electric equipment

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185753A (en) * 1997-12-18 1999-07-09 Fuji Photo Film Co Ltd Nonaqueous electrolyte lithium secondary battery
JP2000011984A (en) * 1998-06-23 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000195505A (en) * 1998-12-25 2000-07-14 Tokuyama Corp Manufacture of negative electrode material for nonaqueous electrolyte secondary battery
JP2005216855A (en) * 2004-01-26 2005-08-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary cell and its manufacturing method as well as lithium secondary cell including above
JP2005243640A (en) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery comprising the negative active material
JP2005317266A (en) * 2004-04-27 2005-11-10 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte battery
JP2006179473A (en) * 2004-11-26 2006-07-06 Kyushu Univ Positive electrode active material for nonaqueous electrolyte secondary battery
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
JP2014013770A (en) * 2006-05-04 2014-01-23 Lg Chem Ltd Electrode active material with improved safety and electrochemical device using the same
US8835049B2 (en) 2006-11-22 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
US8367248B2 (en) 2006-11-22 2013-02-05 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same
US8110305B2 (en) 2007-02-15 2012-02-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8623552B2 (en) 2007-06-07 2014-01-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery, and lithium secondary battery including same
US8685567B2 (en) 2007-09-12 2014-04-01 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US9196902B2 (en) 2010-07-09 2015-11-24 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E. V. Phosphate- and silicate-based electrode materials, more particularly for lithium ion batteries and lithium capacitors
WO2012003954A3 (en) * 2010-07-09 2012-10-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V. New phosphate- and silicate-based electrode materials, more particularly for lithium ion batteries and lithium capacitors
JP2013246960A (en) * 2012-05-25 2013-12-09 Acr Co Ltd Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014075183A (en) * 2012-10-02 2014-04-24 Hitachi Chemical Co Ltd Nonaqueous electrolyte secondary battery
KR20160019452A (en) * 2013-06-12 2016-02-19 히타치가세이가부시끼가이샤 Aluminum silicate complex, conductive material, conductive material for lithium ion secondary cell, composition for forming lithium ion secondary cell negative electrode, composition for forming lithium ion secondary cell positive electrode, negative electrode for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2015018800A (en) * 2013-06-12 2015-01-29 日立化成株式会社 Conductive material
JP2015216089A (en) * 2014-04-23 2015-12-03 日立化成株式会社 Composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary, and lithium ion secondary battery
JP2019071290A (en) * 2014-04-23 2019-05-09 日立化成株式会社 Electroconductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016115552A (en) * 2014-12-16 2016-06-23 日立化成株式会社 Conducive material
JP2016115553A (en) * 2014-12-16 2016-06-23 日立化成株式会社 Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016113324A (en) * 2014-12-16 2016-06-23 日立化成株式会社 Aluminum silicate composite
JP2019053860A (en) * 2017-09-13 2019-04-04 トヨタ自動車株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing the lithium ion secondary battery
CN116565364A (en) * 2023-07-10 2023-08-08 宁德时代新能源科技股份有限公司 Battery monomer, positive pole piece, negative pole piece, isolation film, battery and electric equipment
CN116565364B (en) * 2023-07-10 2023-10-27 宁德时代新能源科技股份有限公司 Battery monomer, positive pole piece, negative pole piece, isolation film, battery and electric equipment

Also Published As

Publication number Publication date
JP3596578B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3596578B2 (en) Non-aqueous electrolyte secondary battery
KR101704103B1 (en) Porous silicon based anode active material and lithium secondary battery comprising the same
EP1291941B1 (en) Active material for battery and method of preparing the same
US7682741B2 (en) Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
US20150372294A1 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery using negative electrode active material, and nonaqueous electrolyte secondary battery using negative electrode
JPH103920A (en) Lithium secondary battery, and manufacture of the same
JP2008177346A (en) Energy storage device
JP4296580B2 (en) Nonaqueous electrolyte lithium secondary battery
KR20160141676A (en) Lithium ion secondary battery
KR101924035B1 (en) Silicon-carbon composite, preparation method thereof, and anode active material comprising the same
US20200274147A1 (en) Negative electrode active material for lithium secondary battery and method for preparing the same
JP4029224B2 (en) Non-aqueous electrolyte battery
JPH11204145A (en) Lithium secondary battery
KR100971746B1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous electrolyte secondary battery including same
JP4193008B2 (en) Lithium secondary battery
JP3824111B2 (en) Non-aqueous electrolyte battery
JP4320526B2 (en) Nonaqueous electrolyte secondary battery
JP2001176500A (en) Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
JP4355862B2 (en) Non-aqueous electrolyte battery
US20140065481A1 (en) Positive-Electrode Active Material, Manufacturing Method Of The Same, And Nonaqueous Electrolyte Rechargeable Battery Having The Same
CN115632113A (en) Negative electrode active material, method for producing same, negative electrode comprising same, and secondary battery
JP3720959B2 (en) Secondary battery electrode material
JP4110562B2 (en) battery
JP4624500B2 (en) Non-aqueous electrolyte battery
JP3972454B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees