JP4559668B2 - Conductive powder and method for producing the same - Google Patents

Conductive powder and method for producing the same Download PDF

Info

Publication number
JP4559668B2
JP4559668B2 JP2001242242A JP2001242242A JP4559668B2 JP 4559668 B2 JP4559668 B2 JP 4559668B2 JP 2001242242 A JP2001242242 A JP 2001242242A JP 2001242242 A JP2001242242 A JP 2001242242A JP 4559668 B2 JP4559668 B2 JP 4559668B2
Authority
JP
Japan
Prior art keywords
particles
conductive
powder
coating layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001242242A
Other languages
Japanese (ja)
Other versions
JP2003059342A (en
Inventor
一博 川口
昇二 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2001242242A priority Critical patent/JP4559668B2/en
Publication of JP2003059342A publication Critical patent/JP2003059342A/en
Application granted granted Critical
Publication of JP4559668B2 publication Critical patent/JP4559668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリカを主成分とする無機酸化物粒子を導電性酸化物により被覆した導電性粒子からなる導電性粉末、及びその製造方法に関する。
【0002】
【従来の技術】
近年、様々な分野で導電性フィラーが使用されている。例えば、静電気による各種プラスチック製品への埃の付着やプラスチック製容器内に収容された可燃性粉体の粉塵爆発を防止する目的で、その原料プラスチックに粉末状あるいは繊維状等の導電性フィラーを添加して各種プラスチック製品に導電性を付与して帯電防止能を持たせることが行われている。また、乾式プリンターやコピー機等の電子写真分野で使用される黒色トナーやカラートナーにおいても、これらトナー粒子自体の体積抵抗率や摩擦帯電量等の表面物性を制御するために、導電性フィラーが使用されている。更にトナー以外にも電子写真の感光ドラムや帯電部材に用いられる部材の体積抵抗率を制御するために、同様な導電性フィラーが必要となっている。
【0003】
このように、導電性フィラーは各種工業分野で使用され、その用途も拡大・多様化しているが、各用途毎に求められる導電性の程度(体積抵抗率の値)が異なったり、また、導電性以外にも様々な性能が要求されるようになっている。その要求の一つとして薄色化が挙げられる。例えば、ICやLSI等の製造において使用する電子部品搬送用トレイや、小麦粉などの可燃性粉体用包装袋においては、内容物を識別するために透明性が要求されるため、このような用途に使用する導電性フィラーとしては薄色系であることが望まれている。また、トナー用においても、近年カラー電子写真向けの用途が急増しつつあることから、トナーの着色の自由度を高めるために薄色系の導電性フィラーが求められている。
【0004】
従来汎用的に使用されている導電性フィラーとしては、カーボンブラックや金属粉末があるが、これらを用いると、自由な着色ができず、上記のような要求に応えることは困難である。特に金属粉末を用いた場合には、空気中の水分によって徐々に酸化されるためにその導電性が経時的に低下するという問題があり、トナー用の導電性フィラーとして用いると画質が不均一になることがある。
【0005】
このような薄色化が可能な導電性物質としては、酸化インジウム系、酸化亜鉛系、二酸化錫系などの酸化物系フィラーが考えられるが、中でも二酸化錫系フィラーは比較的安価で、毒性も低いため有望である。しかし、一般に二酸化錫の導電性は低くその制御可能な幅も小さいため、アンチモンやフッ素、リン、ヒ素、ビスマス、セレン、テルル、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステンなどの体積抵抗率を低下させる(導電性を向上させる)作用を有するドーパント(以下、導電性向上用ドーパントともいう。)を添加して導電性を高める必要がある。ところが、これら導電性向上用ドーパントを多量に添加した場合には着色が起り上記薄色化を達成することができなくなることがあるばかりでなく、上記導電性向上用ドーパントは一般に有害であるものが多いため、その用途が制限されたり、製造時、使用時、又は廃棄時に注意が必要となる。よって上記導電性向上用ドーパントの添加量をなるべく低減するか、用途によっては、有害性の低いドーパントを用いなければならない。
【0006】
上記要求を満足させるため、例えば特公昭62−1572号公報、特公昭62−1573号公報、特公昭62−1574号公報、及び特開平2−3221号公報には、導電性向上用ドーパントを含有しない二酸化錫粉末においてその体積抵抗率が10〜10Ωcmであることが記載されている。また、特開平6−345429号公報には、第二錫塩を含有する溶液を中和処理して沈殿物を析出させた後に、沈殿物を不活性又は弱還元性雰囲気中で焼成することにより、2.0X10Paと非常に高いプレス圧で圧粉法により測定したときの体積抵抗率が10−1〜10Ωcmの二酸化錫粉末が得られる旨が記載されている。
【0007】
しかしながら、これら二酸化錫粉末では、体積抵抗率の低いものについては前記特開平6−345429号公報中にも説明されているように二酸化錫粉末の表面が局部的に金属錫に還元されるために、得られる二酸化錫粉末は金属錫を含むために着色したり、金属錫の酸化によって経時的に体積抵抗率が大きく上昇して、各種プラスチックやトナー添加用途では体積抵抗率の制御が困難になることが予想される。また導電性向上用ドーパントを含有しない二酸化錫粉末の体積抵抗率は高いため、導電性フィラーとして用いるためには各種プラスチックに多量に添加する必要があり、プラスチックの特性を損なうという問題がある。よって、前記有害性も考慮した上で、なるべく導電性向上用ドーパントの添加量を低減し、かつ導電性が高く、(体積抵抗率が低く)その導電性の経時変化が少ない二酸化錫粉末が求められている。
【0008】
また、静電気の発生を嫌う電子部品用プラスチック製品においては、導電性フィラーを添加することによって、プラスチック製品同士、あるいは他の物質との摩擦により発生した静電気を効率よく逃がすことも大切であるが、用途によっては導電性フィラーの添加量が制限されることもあるので、できれば静電気は発生させない方が好ましい。静電気は、2つ以上の物質が接触、摩擦することによって、これらの物質間で電荷の移動が起り、正又は負の電荷を帯びることにより発生する。例えばロール状に巻回したプラスチックフィルムのように同じ物質が接触、摩擦する場合、静電気の発生を極力防止するためには、摩擦帯電特性が中性に近い、即ちファラデーケージなどを用いて測定される摩擦帯電量がゼロに近いプラスチックフィルムが好ましく、そのためには、摩擦帯電量を制御し、且つ万が一静電気が発生したとしてもその静電気を効率よく逃がすための導電性フィラーが望まれている。例えば、電子部品搬送用トレイや可燃性粉体用包装袋などに用いられているプラスチック製品は、可塑剤やシリカなどの他の添加剤を添加しているためと思われるが、ファラデーケージなどで測定された摩擦帯電量が−数100μC/g以下、即ち絶対値が非常に大きなマイナス値をとることが多いため、静電気の発生を抑制することは難しい。よって導電性フィラーとしてはなるべく絶対値の小さなもの、即ちゼロに近い値をとるもの(具体的にはおよそ−100〜0μC/g)を添加するか、又は上記トレイや包装袋の摩擦帯電量と逆極性の導電性フィラーを添加して、全体として摩擦帯電量をゼロに近づけることが望ましい。
【0009】
また、電子写真装置においては高画質の印刷物を得るために、トナー自体の摩擦帯電量を厳しく制御する必要がある。しかしトナーには別の特性を制御するための添加剤、即ち色材、外添剤などが添加されているが、各種添加剤を添加するとトナーの摩擦帯電量に影響を与えるため、電荷制御剤を添加し、トナーの摩擦帯電量を制御している。近年、電子写真装置を小型化したり、廃トナーをなくすなどの目的で、所謂クリーナレスシステム方式の電子写真装置(例えば、特開平11−212337号、特開2000−162849号、特開2000−267337号など)が提案されているが、該方式においては、トナーの摩擦帯電量を特に厳しく制御する必要がある。
【0010】
クリーナレスシステムとは、トナー像を転写材に転写後、感光ドラム上に転写されずに残った転写残トナーを帯電部の帯電部材(磁性粒子など)によって掻き取り、帯電部にいったん収納した後、再び感光ドラム上に戻し、その後トナーを有する現像部内に回収し、再利用するシステムである。本システムは、新たにクリーナ部を設ける必要がないので、装置を小型化できるメリットがあり、また廃トナーを出さないので環境保護の観点から好ましいシステムである。該クリーナレスシステムでは、帯電部にいったん収納された転写残トナーが帯電部材との摺擦によって必要以上に帯電する現象、即ちチャージアップを防止するために、トナーにおよそ(10〜10Ωcm程度)の体積抵抗率を有する微粉末(以下、導電性制御粉末ともいう。)を含有させ、電荷を逃がす機能を持たせる必要があるが、トナーに新たに導電性制御粉末を添加するため、トナーの摩擦帯電量制御を複雑化している。現像方式にはいくつかの方式があり、感光ドラム側をプラスに帯電させてマイナスに帯電させたトナーで現像する方式を採用した場合には、導電性制御粉末をトナーに添加しても、トナーが、マイナスに帯電できるように導電性制御粉末もゼロからマイナスに帯電する性質を有している必要がある。
但し、トナーの摩擦帯電量になるべく影響を与えないようにするため、摩擦帯電量の絶対値が小さなもの(具体的には−100〜0μC/g程度のもの)が好ましく、トナーメーカーにおいて二酸化錫粉末をトナーに添加することが試みられている(前述、特開平11−212337号、特開2000−162849号、特開2000−267337号など)。しかしながら通常二酸化錫粉末の摩擦帯電量は−120μC/g程度であるため(小口.表面.320.vol23.No.6[1985])、トナーに二酸化錫粉末を添加すると、トナーの摩擦帯電量に大きな影響を与えてしまう。さらには二酸化錫粉末の比重は約7前後であり、非常に重いため、プラスチック製品やトナーに添加する導電性フィラーとしては、より軽いものが求められている。さらにまた、粉末の取り扱いを容易にするため、あるいはトナーの流動性を高めるためには球状、又は略球状の方が好適である。
【0011】
このような要求に対して、例えば特開昭56−114215号、特開昭56−114216号、特開昭56−114217号、特開昭56−114218号には二酸化錫を被覆した金属酸化物粉末の製造方法が開示されている。しかしながら、この方法で作製された粉末はある程度薄色度の高く、比重の軽い粉末となるが、被覆層が非常にはがれやすいため、各種プラスチックやトナーに混練した際に導電性の低下が見られたり、摩擦帯電量が−数100μC/gを示すシリカなどの金属酸化物が表面に露出することによる摩擦帯電量の大幅なマイナス値化がみられるなどの問題があった。
【0012】
【発明が解決しようとする課題】
このように、二酸化錫を主成分とする錫系酸化物は、工業的に有用な導電性フィラーとなり得ると考えられるが、安全性が高く、薄色系で、より体積抵抗率が低く、該体積抵抗率が変化せず、且つ摩擦帯電量がゼロに近いマイナス値を有し、更には比重が軽く、また更には球状又は略球状の形状を有するものはこれまで知られていない。本発明はこのような導電性粒子又は導電性粉末及びその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するため鋭意検討を行った。その結果、シリカを主成分とする無機酸化物粒子の表面に導電性酸化物からなる被覆層を形成さする際に、該被覆層に珪素原子を含ませ、且つ該被覆層内の珪素原子濃度が粒子の中心側から外側に向かって減少するようにした場合には、上記のような要求を満足する導電性粉末が得られることを見出し、本発明を完成するに至った。
【0014】
即ち、本発明は、シリカを主成分とする無機酸化物粒子の表面に導電性酸化物からなる被覆層が形成されてなる導電性粒子及び/又はその凝集体からなる導電性粉末であって、前記導電性粒子の被覆層が珪素原子を含み、且つ該被覆層内の珪素原子濃度が粒子の中心側から外側に向かって減少していることを特徴とする導電性粉末である。
【0015】
上記本発明の導電性粉末を構成する導電性粒子は、シリカを主成分とする無機酸化物粒子(以下、コア粒子ともいう。)の表面に珪素原子を含む導電性酸化物からなる特定の被覆層が形成されたものであるが、該被覆層中の珪素原子濃度はコア粒子の表面から被覆層の表面に向かって連続的に、あるいは段階的に減少しているため、コア粒子と被覆層の明確な境界がなく、その密着性は非常に高くなっている。また、本発明の導電性粉末は、その理由は不明であるが、従来の二酸化錫粉末と比較して摩擦帯電量がよりゼロに近い値を有するため、各種プラスチック製品への埃の付着やプラスチック製容器内に収容された可燃性粉体の粉塵爆発を防止する目的で添加される導電性フィラーとして、あるいは電子写真装置のトナー用の導電性制御粉末などとして、様々な用途に使用可能である。さらに、本発明の導電性粉末を各種プラスチックに混練した際に、各導電性粒子において前記被覆層がはがれて摩擦帯電量が−数100μC/gを示すコア粒子が露出することがなくなり、導電性の低下や摩擦帯電量の大幅なマイナス値化が起り難くい。また、上記本発明の導電性粉末の中でも、これを構成する導電性粒子が球状又は略球状であるものは、粒子同士の凝集が少なく良好な流動性を有して取り扱い易いという特徴があるためトナー用の導電性制御粉末などの用途では特に好適である。
【0016】
また、他の本発明は、シリカを主成分とする無機酸化物粒子の懸濁液に、加水分解・重縮合反応によりポリシロキサン結合を形成し得る含珪素化合物および加水分解・重縮合反応により−M−O−M−結合(但し、Mはその酸化物が導電性を示す金属原子又は半金属原子を意味する。)を形成し得る金属原子又は半金属原子含有化合物を、実質的に同時に連続的又は断続的に、且つ添加時における含珪素化合物重量の金属原子又は半金属原子含有化合物重量に対する割合が添加開始時から添加終了時にかけて連続的又は段階的に減少するようにして添加し、前記シリカを主成分とする無機酸化物粒子の表面にこれら化合物の加水分解物の重縮合物を析出させ、次いで表面に該重縮合物が析出した該粒子を熱処理することを特徴とする、本発明の導電性粉末の製造方法である。該方法によれば、本発明の導電性粉末を効率よく製造することができる。
【0017】
【発明の実施の形態】
本発明の導電性粉末は、コア粒子の表面に珪素原子を含む導電性酸化物からなる特定の被覆層が形成された導電性粒子及び/又はその凝集体からなる。上記コア粒子は、シリカを主成分とする無機酸化物粒子であれば特に限定されず、シリカのみからなっていても、シリカ以外の無機酸化物を含んでいてもよい。なお、ここで、シリカを主成分とするとは、コア粒子中においてシリカ成分が最も含有量の多い成分であることを意味する。コア粒子がシリカを主成分とすることにより、最終的に得られる導電性粉末の薄色度を高くしたり、比重を小さくしたりすることが可能になるばかりでなく、製造コストが低くなり、更には球状又は略球状の導電性粒子粒子が作り易くなるといったメリットがある。このようなメリットが大きいという観点から、コア粒子中のシリカ成分の含有率は、50〜100重量%、特に80〜100重量%であるのが好適であり、90〜100重量%であるのが最も好ましい。
【0018】
コア粒子中に含まれていてもよいシリカ以外の無機酸化物成分としては、薄色度を低下させないものであれば特に限定されない。好適に用いられる無機酸化物成分を具体的に例示すれば、二酸化錫や一酸化錫などの酸化錫、酸化亜鉛、酸化アンチモン、酸化インジウム、アルミナ、ジルコニア、チタニア、酸化ホウ素、酸化リン、マグネシア、酸化カルシウム、希土類酸化物等が挙げられる。これら無機酸化物成分は、複数種類含まれていてもかまわない。コア粒子中にこれら無機酸化物成分、特に被覆層に含まれる導電性無機酸化物と同種の無機酸化物成分が含まれる場合には、該被覆層を形成し易くなる傾向がある。これらの中でも、被覆層を形成し易いという理由から、酸化錫、酸化亜鉛、酸化インジウム等の導電性酸化物、あるいはアルミナ、ジルコニア、チタニアなどを使用するのが特に好適である。コア粒子がこれらシリカ以外の無機酸化物成分を含む場合、これら無機酸化物成分はシリカに固溶していても、分相して微結晶としてシリカのマトリックス中に分散していてもよい。
【0019】
前記コア粒子の大きさは特に制限されず、用途に応じて適宜決定すればよいが、あまりにも大きいとコア粒子に均一な被覆をすることが困難となるため、コア粒子の平均粒子径は30μm以下であるのが好適である。粒子径の下限値は特に限定されず、透過型電子顕微鏡(TEM)観察などで判別可能ならば、いくら小さいものでも構わない。また、コア粒子の形状は特に限定されないが、球状又は略球状であるのが好ましい。ここでいう球状又は略球状とは、導電性粒子が球あるいはそれに近い形状を有し、その平均均斉度が0.66〜1.00であることをいう。このような球状又は略球状のコア粒子を用いて導電性粒子を製造した場合には、同じく球状又は略球状の導電性粒子を容易に得ることができる。このような導電性粒子は、流動性が高いため取り扱いが容易であり、各種プラスチックに充填しやすいため特に有用である。なお、上述の平均均斉度とは導電性粒子のn(n>30)個について、それぞれの最大幅(長径:L)および長径に直交する方向での最大幅(短径:B)により計算されるB/Lの値を平均したものである。これら長径および短径は、例えば電子顕微鏡(SEMやTEM)による写真を撮影し、その写真の単位視野内に観察される粒子について長径および短径を測定することにより求めることができる。
【0020】
本発明の導電性粉末を構成する前記導電性粒子において、コア粒子上に形成される被覆層は、珪素原子を含む導電性酸化物からなり、しかも該被覆層内の珪素原子濃度は粒子の中心側から外側に向かって減少している必要がある。即ち、上記被覆層において、珪素原子は通常酸化物となって存在するが、該被覆層中の珪素原子は均一な濃度で分散しているのではなく、コア粒子表面から被覆層の表面に向かって珪素原子濃度(あるいは珪素酸化物濃度)連続的、又は段階的に減少している、別言すれば濃度勾配が存在することが重要である。被覆層がこのような構造をとることによって、コア粒子と被覆層間との間の付着力を増すことができ、被覆層が非常にはがれにくいものとなる。被覆層の外表面では珪素原子の濃度はゼロであっても、またわずかに残っていてもよい。但し、本発明の導電性粒子の体積抵抗率を低減し、且つ摩擦帯電量をよりゼロに近づけるという観点から、被覆層の外表面部分の珪素原子濃度は、被覆層を構成する他の酸化物成分の金属原子又は半金属原子及び珪素原子の合計モル数に対して20モル%以下、特に10モル%以下であるのが好適である。また、上記被覆層におけるコア粒子との界面近傍における珪素原子濃度は、コア粒子との密着性が高いという観点からコア粒子における珪素原子濃度の99〜80%の範囲であるのが好ましい。
【0021】
なお、コア粒子及び被覆層中の珪素原子濃度は、導電性粒子をそのままか、あるいは導電性粒子を切断したり、化学エッチング又は物理エッチングにより表面を少しずつ除去して前処理したものについて、元素分析が可能な透過型電子顕微鏡(TEM)や走査型電子顕微鏡、蛍光X線分析、あるいはICP発光分光分析などの手法を用いて、測定することができる。また、コア粒子と被覆層との界面近傍において両者の組成が近い場合には両者の境界が不明瞭となるが、導電性粒子について粒子中心から外側に向かって元素分析したときに珪素原子の濃度が減少し始める箇所として確認することができる。
【0022】
また、被覆層がはがれやすいかどうかについては、樹脂などに混錬した後の導電性粒子をSEM観察し、表面の変化を見たり、導電性粒子を乳鉢などで粉砕した後の摩擦帯電量を測定することで明らかにすることができる。後者の摩擦帯電量を測定する方法では、粉砕後、被覆層がはがれているときはシリカが多く表面に露出し、その摩擦帯電量が大きくマイナス側にシフトするため、被覆層の剥離の有無がわかる。
【0023】
前記被覆層を構成する導電性酸化物は、少なくともその一部が珪素原子を含む複合酸化物であって全体として導電性を有するものであれば特に限定されない。
該被覆層を形成する珪素酸化物成分以外の酸化物成分を例示すれば、酸化錫、酸化亜鉛、酸化アンチモン、酸化インジウム等の導電性酸化物、これら酸化物に導電性向上用ドーパントを添加したもの、及びこれらの複合酸化物が挙げられる。
これらの中でも、酸化錫、酸化インジウム、酸化亜鉛、これら酸化物に導電性向上用ドーパントを添加したもの、またはこれらの複合酸化物を用いるのが好適である。特に、比較的安価であり、被覆層のコア粒子への付着力も高いといった理由から、酸化錫及び/又は酸化亜鉛を使用するのが好適であり、更には毒性の低さからは酸化錫を使用するのが好適である。なお、これら酸化物(又は複合酸化物)に導電性向上用ドーパントを添加する場合には、安全性や粉末の色調などを考慮した上で、その種類や量を決定すればよい。一般的なドーパントの添加量は、導電性酸化物との合計量に対して5重量%以下である。なお、導電性向上用ドーパントとしては、アンチモン、ニオブ、タンタル、モリブデン、タングステン、リン、バナジウム等の5価又は6価イオンとなり得る元素が使用できる。但し、安全性を考慮し、アンチモン、バナジウムなどの毒性の高い元素は量的に少ない方が好ましい。
【0024】
本発明の導電性粉末を構成する前記導電性粒子における前記被覆層の厚さは特に限定されないが、あまりにも薄いと高い導電性が得られず、また極端に厚いものは安定的に製造することが困難となため、コア粒子の平均粒子径の1/300〜1/2とするのが好ましい。なお、被覆層の厚さは、製造時において被覆する前のコア粒子の粒子及び被覆後に得られる導電性粒子の粒子径をTEMやSEMで測定し、その差から求めることができる。コア粒子の場合と同じ理由により、上記導電性粒子の平均粒子径は、40μm以下、特に0.01〜30μmであるのが好適であり、その形状は球状又は略球状であるのが好適である。
【0025】
本発明の導電性粉末は上記した導電性粒子及び/又はその凝集体からなる。一般に粒子径の非常に小さな独立粒子のみからなる粉末を得ることは困難であり、製造時の乾燥工程等により凝集することが多く、このような凝集粒子を完全な独立粒子に戻すことは困難である。本発明の導電性粉末においても、導電性粒子の粒子径が大きい場合は該導電性粒子がそれぞれ独立した状態で存在する粉末を得ることもできるが、導電性粒子の粒子径が小さい場合には上記のような凝集粒子を含むのが一般的である。用途によっては、凝集粒子を含んでいても構わないが、例えばトナー用の導電性制御粉末などの用途では、トナー粒子の大きさを考慮して、凝集粒子を含む場合の平均粒子径は0.01〜5μm、より好ましくは0.01〜2μmがよい。また、フィルム添加用途では、フィルムの厚さにもよるが、平滑な面が得られ易いように、凝集粒子を含む場合の平均粒子径は0.01〜20μm、より好ましくは0.01〜10μmがよい。
【0026】
本発明の導電性粉末の製造方法は特に限定されないが、次のような方法により好適に製造することができる。即ちシリカを主成分とする無機酸化物粒子を含む懸濁液に、加水分解・重縮合反応によりポリシロキサン結合を形成し得る含珪素化合物および加水分解・重縮合反応により−M−O−M−結合{但し、Mはその酸化物が導電性を示す金属原子又は半金属原子を意味する。なお、該結合はオキソ基に注目したものであり、Mの価数は2以上であれば特に限定されず、例えばM(−O)−(但しnは2以上の整数である。)のような結合も含まれる。}を形成し得る金属原子又は半金属原子含有化合物を、実質的に同時に連続的又は断続的に、且つ添加時における含珪素化合物重量の金属原子又は半金属原子含有化合物重量に対する割合が添加開始時から添加終了時にかけて連続的又は段階的に減少するようにして添加し、前記シリカを主成分とする無機酸化物粒子の表面にこれら化合物の加水分解物の重縮合物を析出させ、次いで表面に該重縮合物が析出した該粒子を熱処理することによって好適に製造することができる。
【0027】
ここでシリカを主成分とする無機酸化物粒子(コア粒子)を含む懸濁液は、加水分解・重縮合反応によりポリシロキサン結合を形成し得る含珪素化合物を溶媒中で加水分解・重縮合反応させることにより得られる球状又は略球状のシリカ粒子が懸濁したものを使用するのが好適である。該シリカ粒子は、前述したようにシリカ以外の無機酸化物、即ち酸化錫、酸化亜鉛、酸化アンチモン、酸化インジウム、アルミナ、ジルコニア、チタニア、酸化ホウ素、酸化リン、マグネシア、酸化カルシウム、希土類酸化物などの成分を含んでも構わない。
【0028】
また上記方法で得られるシリカ粒子をそのまま溶媒中に分散した状態のものを懸濁液として用いてもよいし、ろ過などによって一度取り出し、水洗、焼成などの工程を経てから、再度後述の溶媒に懸濁させた懸濁液としてもよい。例えば、特開昭58−110414号に記載されているように、アンモニア水などの塩基性水溶液とアルコールの混合溶媒中に珪素アルコキシドや他の金属アルコキシド、又はこれらアルコキシドを溶媒中に溶解したものを滴下する方法や、珪酸ソーダを酸性溶媒中に滴下あるいは混合する方法が好ましく用いられる。
【0029】
通常、上記のような溶媒中に滴下する方法で生成したコア粒子の形状は球状又は略球状であり、そのような形状を有するコア粒子を使用すると、懸濁液中のコア粒子の凝集が少ないので均一な被覆層が得られるため、また被覆層がはがれにくいという特徴や、被覆層で被覆した導電性粒子の流動性が向上するなどの特徴があるため好ましい。またコア粒子中の成分がシリカ単独の方が、球状又は略球状の粒子が得られ易いため好ましい場合もある。
【0030】
更にシリカを主成分とする無機酸化物の前駆体などを原料として溶融法や噴霧熱分解法など他の方法で製造されたコア粒子を後述の溶媒中に懸濁させた懸濁液を使用することもできるが、その場合はコア粒子の形状が球状又は略球状である方が上記理由で好ましい。
【0031】
上記懸濁液の溶媒は、後述の含珪素化合物、及び金属原子又は半金属原子含有化合物が加水分解・重縮合反応してコア粒子表面にこれら化合物の加水分解物の重縮合物が析出するものであれば特に限定されない。具体的には、水、あるいはメタノール、エタノール、プロパノール、ブタノールなどのアルコール、ジエチルケトン、メチルn−ブチルケトン、ジn―プロピルケトン、メチルイソブチルケトン、ジイソブチルケトンなどのケトン、イソプロピルエーテル、n−ブチルエーテルなどのエーテルなどがある。これらの中ではアルコールが手に入れ易いため好ましく、特にメタノール、エタノール、イソプロピルアルコールは比較的安価で取り扱いが容易であるため好ましい。なお、有機溶媒を使用する場合には、加水分解反応を起こすのに充分な量の水を添加する必要がある。また上記溶媒中に、更にアンモニア水、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどの塩基性水溶液、あるいは塩酸、硫酸、硝酸、酢酸などの酸性水溶液を混合すると、加水分解・重縮合反応が効率よく且つ短時間で進行するため特に好ましい。
【0032】
上記懸濁液中のコア粒子と溶媒の比率は特には限定されないが、コア粒子があまりにも多いと、懸濁液の粘度が高くなり、被覆層が均一に形成されないし、溶媒があまりにも多いと、効率が悪くなり生産性が低下する。好ましいコア粒子と溶媒の比率は、目的とする被覆層の組成や厚さなどによっても異なるため一概には言えないが、コア粒子と溶媒の合計重量に対するコア粒子の重量比率が0.1〜10%がよい場合が多く、より好ましくは0.5〜8%、更には0.8〜5%である。
【0033】
本発明において使用される含珪素化合物としては、加水分解・重縮合反応によりポリシロキサン結合を形成し得るものであれば公知のものが制限なく使用できる。このような含珪素化合物を具体的に例示すると、Si(OCH、Si(OCHCH等の珪素のアルコキシド単量体や、これらの単量体が2〜6分子縮合したオリゴマー、あるいはCHSi(OCH、CHSi(OCHCH、CHCHSi(OCHCH等のアルキルアルコキシシラン化合物を挙げることができる。また珪酸ナトリウムや珪酸カリウム、珪酸アンモニウムなどの珪酸塩、あるいはテトラクロロシラン、トリクロロシランなどのクロロシラン類も用いることができる。
【0034】
また本発明において、使用される金属原子又は半金属原子含有化合物としては、加水分解・重縮合反応により−M−O−M−結合を形成し得るものであれば特には限定されないが、懸濁液に添加しやすくしたり、加水分解・重縮合反応の速度を制御する目的で、水または水溶性有機溶媒に溶解させて用いることが多いため、水又は水溶性有機溶媒に可溶なものが好ましい。例えば塩化第一錫、塩化第二錫、オキシ塩化錫などの塩化錫、臭化第一錫、あるいはこれらの水和物などの錫含有化合物、塩化亜鉛、酢酸亜鉛などの亜鉛含有化合物、五塩化アンチモン、三塩化アンチモンなどの塩化アンチモン、三臭化アンチモンなどのアンチモン含有化合物、三塩化インジウム(以下、塩化インジウムともいう)、硫酸インジウム、硝酸インジウムなどのインジウム含有化合物、錫メトキシド、亜鉛イソプロポキシド、インジウムエトキシドなどの金属アルコキシド等が挙げられる。上記したものの中でも、塩化物は水又は水溶性有機溶媒に溶解しやすく、取り扱いも容易で安価であるため好ましい。但し、安全性の観点から毒性を有するアンチモン含有化合物の使用量はなるべく少なくした方がよい。
【0035】
通常、含珪素化合物と、金属原子又は半金属原子含有化合物は同一の溶媒に混合しても沈殿物を生成しないものが好適に用いられ、故にこれら化合物のいずれかが塩基性の性質を有する場合、加水分解・重縮合反応を効率よく進行させるために、上記懸濁液の溶液は酸性の性質を有するものが好ましい。逆にこれら化合物のいずれかが酸性の性質を有する場合は、上記懸濁液の溶液は塩基性の性質を有するものが好ましい。例えば、含珪素化合物としてテトラメトキシシランやテトラエトキシシランなどの珪素アルコキシドを用い、金属原子又は半金属原子含有化合物として塩化亜鉛、塩化錫、塩化アンチモン、塩化インジウムなどの金属塩化物を用いて溶液が酸性の性質を有する場合、上記懸濁液の溶液には水酸化ナトリウムやアンモニアなどの塩基性化合物を溶解させたアルコール/水混合溶液などを用いるのが好ましい。上記例では、珪素アルコキシドは酸性水溶液あるいは塩基性水溶液のいずれでも加水分解・重縮合物が析出する可能性があるが、金属原子又は半金属原子含有化合物である塩化亜鉛、塩化錫、塩化アンチモン、塩化インジウムなどの金属塩化物が塩基存在下で加水分解・重縮合反応が進行し易いため、本例ではアンモニア水やアンモニア含有アルコール/水混合溶液などの塩基性化合物が存在する溶媒が好ましい。
【0036】
含珪素化合物、及び金属原子又は半金属原子含有化合物は懸濁液中にそのままの状態で添加してもよいが、水または水溶性有機溶媒などの適当な溶媒に溶解させた溶液を懸濁液中に添加した方が、加水分解・重縮合反応の速度を制御し、均一な厚さの被覆層が形成されるため好ましい。該溶液の溶媒に対する金属原子又は半金属原子含有化合物の濃度は溶解する範囲内であれば特に制限されないが、濃度が低すぎると生産性が低下し、また高すぎると不均一な厚さの被覆層となることがあるので、上記濃度は溶液1リットル当たり0.01〜10モル、特に0.1〜5モルとするのが好ましい。
【0037】
本発明の製造方法においては、含珪素化合物および金属原子又は半金属原子含有化合物を、実質的に同時に連続的又は断続的に、且つ添加時における含珪素化合物重量の金属原子又は半金属原子含有化合物重量に対する割合が添加開始時から添加終了時にかけて連続的又は段階的に減少するようにして該懸濁液中に添加する方法を用いる。このような添加方法としては、例えば、含珪素化合物を溶解した溶液(溶液Aとする)と金属原子又は半金属原子含有化合物を溶解した溶液(溶液Bとする)を準備し、懸濁液中に溶液Aを連続的に又は段階的に添加し始め、同時にあるいは所定の時間後、連続的に又は段階的に溶液Bを溶液A中に添加し始め、混合液を懸濁液に添加してコア粒子表面にこれら化合物の加水分解物の重縮合物を析出させる方法が採用できる。このとき加える溶液Aの溶液Bに対する割合を経時的に少なくなるように変化させると、時間の経過と共に含珪素化合物の割合が減少し、代わりに金属原子又は半金属原子含有化合物の割合が増加していく。従って、コア粒子の周りに径方向外側に向かって珪素原子濃度が連続的若しくは断続的に減少した導電性酸化物からなる被覆層を形成することができる。なお、上記方法では懸濁液に添加した時に局所的に溶液A又は溶液Bの濃度が高くなることを防止するために予め溶液Aに溶液Bを添加して混合液を得、それを懸濁液に添加する態様を示したが、攪拌を充分に行えば両溶液をそれぞれ別々に添加しても差支えない。
【0038】
表面に上記重縮合物が析出したコア粒子は、通常、ろ過などによって含珪素化合物等を添加した後の懸濁液(以下、添加後の懸濁液ともいう。)中の溶媒を分離した後、熱処理されるが、熱処理時に昇華しにくい反応生成物が中和反応によって生成する場合には、体積抵抗率と摩擦帯電量を制御するため、該中和液に存在する、原料の錫化合物などに由来する塩素イオン、酢酸イオン、硝酸イオン、硫酸イオン、アンモニウムイオン、ナトリウムイオン、カリウムイオンやこれらの反応生成物などを除去してから加熱処理してもよい。塩素イオン、酢酸イオン、硝酸イオン、硫酸イオン、アンモニウムイオン、ナトリウムイオン、カリウムイオンやこれらの反応生成物などを除去する方法は特には制限されない。具体例を挙げると、添加後の懸濁液を一度ろ過し、ろ別されたケーキ状の析出物を水系溶液や有機溶媒系の溶液中に再分散させて洗浄した後に、再度ろ過するという洗浄工程を繰り返す方法あるいはデカンテーションなどがある。上記洗浄工程やデカンテーションにより、上記イオン類を除去することは、後述の熱処理後にも被覆層の厚さが均一な導電性粒子となりやすいので好ましい。
【0039】
上記方法で回収したケーキ状の析出物は、乾燥させた後、導電性を向上させたり、摩擦帯電量を制御する目的で熱処理される。熱処理方法は特に制限されず、上記ゲル粉末や析出物をアルミナ製あるいは石英ガラス製などの高温で析出物との反応性が低い容器などに入れて、市販の電気炉を用いて熱処理したり、噴霧熱分解装置、スプレードライなどの熱処理装置を用いてもよい。熱処理温度および時間、熱処理雰囲気などの熱処理条件も特に限定されないが、熱処理条件は体積抵抗率や摩擦帯電量などに大きな影響を与える場合がある。好ましくは300℃〜1500℃、さらには400℃〜1200℃の温度が好ましい。熱処理温度が300℃未満の場合には水酸基が多く残留し、体積抵抗率が経時変化することがある。また、1500℃を越える場合には焼結して粗大粒子が生じたりするので好ましくない。熱処理時間は、熱処理装置の種類や熱処理温度によっても異なるが、体積抵抗率の制御と省エネルギーの観点から0.1秒〜100時間以下が望ましい。熱処理雰囲気は特に制限ないが、還元による被覆層における金属の析出をなるべく防止するという観点から、酸素を含む雰囲気が望ましい。特に空気雰囲気で行うことが大規模な装置を用いなくて済むという観点から好ましい。但し、より低い体積抵抗率の導電性粒子が要求されている場合は、金属の析出が起らない範囲で、窒素やアルゴンなどの不活性雰囲気で焼成することがよいこともある。金属の析出の有無は、粉末の色調や、X線回折分析、あるいは電子線回折分析などの手法で分析することができる。
【0040】
【実施例】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの内容に限定されるものではない。なお、実施例及び比較例における導電性粒子又は導電性粉末の各評価は、以下のようにして行った。
【0041】
即ち、体積抵抗率は、ダイスとポンチからなる治具を用いて粉末(乳鉢で3分間粉砕後の試料を使用)を圧粉成型して測定した。即ち、銅製の下ポンチ(φ15mm×高さ10mm)を付属した中空(穴直径φ15mm)の円筒形のダイス(絶縁体、φ50mm×高さ50mm)の中に試料を入れて、その上端に銅製の上ポンチ(φ15mm×高さ50mm)を入れて5.6×10Paの圧力(1トンの荷重)で試料を加圧成型し、ペレット状の試験片を作製した。次いで試験片を加圧した状態で、上ポンチと下ポンチ間の抵抗値をヒューレット・パッカード(HEWLETT PACKARD)社製3478Aマルチメーターを用いて4端子法で測定し、試験片の断面積と高さから体積抵抗率を算出した。なお、本測定法での測定上限は、10Ωcmであり、この値を超えた試料は測定不能と判断した。また体積抵抗率の経時変化は、試料を空気中120℃で200時間放置した後に室温に冷却し、再度乳鉢で3分間粉砕した後、上記の方法で体積抵抗率を測定した。高温放置後の体積抵抗率を高温放置前の体積抵抗率で除した値を、体積抵抗率の経時変化の指標とした。
【0042】
また、摩擦帯電量は、装置として東芝ケミカル社製ブローオフ帯電量測定装置TB−200型、またキャリアとしてパウダーテック社製キャリア用鉄粉TEFV−200/300を用いて測定した。試料は予めキャリアと混合し、該混合物を35℃、85%湿度下で調湿を行ったのち、日本画像学会標準トナー帯電量測定法(ブローオフ法)に準じて行った。
【0043】
また、色調は試料を目視にて観察した。
【0044】
さらに、比重は、液浸法によって測定した。即ち、ピクノメーターに純水を満たした場合の全質量(W)を秤量し、次いで試料(質量M)をピクノメーターに入れて純水を満たし加熱して気泡を充分に除去し、冷却した後秤量(W)し、粉体の比重dをd=M/(W+M−W)から算出した。
【0045】
また、導電性粒子が球状あるいは略球状かどうかをあらわす指標として平均均斉度を求めた。平均均斉度は、前述の通り、導電性粒子のSEM写真をとり、その中の任意の50個について最大幅(長径;L)とそれに直交する方向での最大幅(短径;B)を測定し、B/Lを平均した。
【0046】
さらに、導電性粒子の被覆層内の珪素原子濃度が中心側から外側に向かって減少しているかどうかについては、以下の方法で確かめた。即ち、まず、導電性粒子を2%フッ酸含有30%塩酸溶液中に入れ、1分、10分、60分の各時間で加圧酸分解し、被覆層を外側から段階的に溶解除去した後、ICP発光分光分析によって各溶液のろ液中に含まれる珪素原子、錫原子、及び添加した他の金属原子又は半金属原子の分析を行った。該分析より珪素原子(モル)/[珪素原子(モル)+錫原子(モル)+他の金属原子又は半金属原子(モル)]の値(単位:%)を算出し、導電性粒子の外側から中心方向への珪素原子濃度変化を見た。
【0047】
実施例1
メタノール120mlにテトラエトキシシラン83.3gを添加した後、0.1N塩酸7.2mlを添加し、室温で30分攪拌を行い、含珪素化合物溶液(A液とする)を調製した。また、メタノール600mlに無水塩化第一錫(SnCl)36.7g、三塩化アンチモン(SbCl)0.22gを添加した後、乾燥酸素を液中に導入して攪拌を行い、錫及びアンチモン含有化合物溶液(B液とする)を調製した。別途メタノール1200mlとアンモニア水(28wt%品)の混合溶液(C液とする)を作製し、攪拌しながら上記A液を徐々にC液に添加していき、コア粒子を作製した。A液を150ml添加した時に添加中のA液にB液を徐々に添加、混合していった。A液、B液の添加終了後、生成した析出物をろ過によって分離し、得られたケーキ状の析出物を真空乾燥器を用いて乾燥し、乾燥ゲル粉末を得た。市販の電気炉を用いて該乾燥ゲル粉末を空気中にて500℃で焼成し、導電性粉末を得た。該粉末のSEM観察を行った結果、球状粒子及びその凝集粒子が観察され、その一次粒子(球状粒子)の平均粒子径は0.3μmであった。該球状粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は該球状粒子の外側から中心方向へ向けて順に3%、20%、34%と増加していたことから、被覆層において、中心から外側に珪素濃度が連続的に減少していることがわかった。その他の評価結果を表1に示す。
【0048】
【表1】

Figure 0004559668
【0049】
実施例2
実施例1において、三塩化アンチモン(SbCl)2.32gを用いた他は全て実施例1と同様にして、導電性粉末を得た。該粉末のSEM観察を行った結果、球状粒子及びその凝集粒子が観察され、球状粒子の平均粒子径は0.3μmであった。該球状粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は該球状粒子の外側から中心方向へ向けて、順に3%、20%、34%と増加していたことから、被覆層において、中心から外側に珪素濃度が連続的に減少していることがわかった。その他の評価結果を表1に示す。
【0050】
実施例3
実施例1において、三塩化アンチモンの代わりに五塩化タンタル(TaCl)0.71gを用いた他は全て実施例1と同様にして、導電性粉末を得た。該粉末のSEM観察を行った結果、球状粒子及びその凝集粒子が観察され、球状粒子の平均粒子径は0.3μmであった。該球状粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は該球状粒子の外側から中心方向へ向けて、順に3%、20%、34%と増加していたことから、被覆層において、中心から外側に珪素濃度が連続的に減少していることがわかった。その他の評価結果を表1に示す。
【0051】
実施例4
実施例3において、B液にさらに塩化マグネシウム(MgCl)0.34gを加えた他は全て実施例3と同様にして、導電性粉末を得た。該粉末のSEM観察を行った結果、球状粒子及びその凝集粒子が観察され、球状粒子の平均粒子径は0.3μmであった。該球状粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は該球状粒子の外側から中心方向へ向けて、順に3%、20%、34%と増加していたことから、被覆層において、中心から外側に珪素濃度が連続的に減少していることがわかった。その他の評価結果を表1に示す。
【0052】
実施例5
実施例1において、A液にさらに三塩化アルミニウム6水和物(AlCl・6HO)0.98gを添加した以外は全て実施例1と同様にして、導電性粉末を得た。該粉末のSEM観察を行った結果、球状粒子及びその凝集粒子が観察され、球状粒子の平均粒子径は0.3μmであった。該球状粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は該球状粒子の外側から中心方向へ向けて、順に3%、20%、34%と増加していたことから、被覆層において、中心から外側に珪素濃度が連続的に減少していることがわかった。その他の評価結果を表1に示す。
【0053】
実施例6
実施例1において、メタノール13mlに無水塩化第一錫(SnCl)0.77gを添加して乾燥酸素を液中に導入して攪拌を行った錫含有化合物溶液をA液にさらに添加した以外は全て実施例1と同様にして、導電性粉末を得た。該粉末のSEM観察を行った結果、球状粒子及びその凝集粒子が観察され、球状粒子の平均粒子径は0.3μmであった。該球状粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は該球状粒子の外側から中心方向へ向けて、順に3%、20%、34%と増加していたことから、被覆層において、中心から外側に珪素濃度が連続的に減少していることがわかった。その他の評価結果を表1に示す。
【0054】
実施例7
メタノール54mlにテトラエトキシシラン62.5gを添加した後、0.1N塩酸10.8mlを添加し、攪拌して加水分解を行い、70℃に保持した。1昼夜後、寒天状に固化した湿潤ゲルが得られた。乾燥器に入れ200℃で乾燥した後、乳鉢とジェットミルで粉砕し、800℃で焼成した。その後分級して平均粒子径1μmの不定形シリカ粉末を得た。その不定形シリカ粉末を実施例1記載のC液に入れて分散させた。メタノール30mlにテトラエトキシシラン20.8gを添加した後、0.1N塩酸1.8mlを添加し、室温で30分攪拌を行った含珪素化合物溶液(D液とする)と、実施例1記載のB液を調製した。上記不定形シリカ分散液にD液を徐々に添加すると同時にB液をD液へ徐々に添加、混合していった。全溶液の添加終了後、生成した析出物を実施例1と同様の処理を行うことによって導電性粉末を得た。該粉末のSEM観察を行った結果、被覆前の不定形粒子の滑らかなシリカ表面は存在せず、被覆前の不定形粒子よりもわずかに大きな不定形粒子及びその凝集粒子が観察されたことから、不定形粒子の表面全体が被覆層で覆われていると考えられる。該粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は該球状粒子の外側から中心方向へ向けて、順に3%、20%、34%と増加していたことから、被覆層において、中心から外側に珪素濃度が連続的に減少していることがわかった。その他の評価結果を表1に示す。
【0055】
また、得られた導電性粉末50重量部をポリプロピレン樹脂50重量部に添加し、230℃で二軸押し出し機を用いて混錬し、ペレットを得、得られたペレットの破断面をSEM観察したところ、被覆前の不定形粒子のシリカ表面と思われる滑らかな表面は全く観察されなかったことから、破断面に存在する導電性粒子の被覆層の剥離はなかったものと考えられる。
【0056】
実施例8
実施例1において、焼成時の雰囲気を窒素にしたこと以外は全て実施例1と同様にして導電性粉末を得た。該粉末のSEM観察を行った結果、球状粒子及びその凝集粒子が観察され、球状粒子の平均粒子径は0.3μmであった。該球状粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は該球状粒子の外側から中心方向へ向けて、順に3%、20%、34%と増加していたことから、被覆層において、中心から外側に珪素濃度が連続的に減少していることがわかった。その他の評価結果を表1に示す。
【0057】
比較例1
実施例1と同様にしてA液、B液、C液を調製し、まず、A液とB液を混合、攪拌し、含珪素化合物、錫含有化合物、アンチモン含有化合物を溶解した溶液(E液とする)を作製した。該D液をC液に徐々に添加して、析出物を得た。得られた析出物を実施例1と同様にして導電性粉末を得た。該粉末のSEM観察を行った結果、略球状粒子が凝集し、平均粒子径8μmの粒子であった。該粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は33%、33%、34%であり、変化はほとんどなかった。その他の評価結果を表2に示す。
【0058】
【表2】
Figure 0004559668
【0059】
比較例2
実施例1と同様にしてA液とC液を調製し、A液150mlをC液に添加した時点で、添加を終了した。得られた析出物を実施例1と同様にしてろ過、乾燥、焼成を行い、球状シリカ粉末を得た。該粉末のSEM観察を行った結果、球状粒子のみが観察され、その平均粒子径は0.27μmであった。該球状シリカ粒子の半径方向の珪素原子濃度を前述の方法で測定した結果、珪素原子濃度は該球状粒子の外側から中心方向へ向けて、順に100%、100%、100%であり、変化はなかった。なお、錫原子、アンチモン原子についてもICP発光分光分析を行ったが、検出限界以下であった。その他の評価結果を表2に示す。
【0060】
比較例3
実施例7において、D液を用いないこと以外は全て同様にして導電性粉末を得た。該粉末のSEM観察を行った結果、表面の一部に0.01〜0.05μm前後の微細粒子が島状に付着した約1μmの不定形粒子と、0.01〜0.05μm前後の微細粒子が凝集した粗大粒子が観察された。大きさから判断して、不定形粒子はシリカ粒子であり、表面の微細粒子は酸化錫−アンチモンの複合酸化物と考えられる。また、凝集した粗大粒子の元素分析を行った結果、珪素原子は検出されず、錫原子とアンチモン原子が検出されたことから、不定形シリカ粒子の表面の一部にしか被覆層が形成されずに、酸化錫−アンチモンの複合酸化物が単独で微細粒子として析出したものと考えられる。その他の評価結果を表2に示す。
【0061】
また、得られた導電性粉末50重量部をポリプロピレン樹脂50重量部に添加し、230℃で二軸押し出し機を用いて混錬し、ペレットを得、得られたペレットの破断面をSEM観察したところ、破断面に存在する導電性粒子の表面には被覆層が存在しない、滑らかなシリカ表面が多く観察されたことから、いったん不定形シリカ粒子上に形成された被覆層は大部分が剥離したものと考えられる。
【0062】
【発明の効果】
本発明の導電性粒子は、コア粒子表面上に形成された被覆層内の珪素原子濃度が粒子の中心側から外側に向かって減少している、即ち傾斜組成構造を有するため、粒子間や外物と摩擦しても被覆層がはがれにくいという特徴がある。よって、例えば樹脂等に練り込んで使用した場合にも体積抵抗率の変化がなく、安定した導電性を発揮することができる。また、粉末の色調が薄色であり、比重が軽く、且つ摩擦帯電量がゼロから小さなマイナス値を示すことから、各種プラスチックやトナーなどの導電性フィラーとして好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive powder composed of conductive particles obtained by coating inorganic oxide particles mainly composed of silica with a conductive oxide, and a method for producing the same.
[0002]
[Prior art]
In recent years, conductive fillers have been used in various fields. For example, in order to prevent dust from adhering to various plastic products due to static electricity or dust explosion of combustible powder contained in plastic containers, conductive fillers such as powder or fiber are added to the raw plastic Thus, various plastic products are imparted with electrical conductivity to have an antistatic ability. In addition, in black toners and color toners used in the electrophotographic field such as dry printers and copiers, in order to control surface properties such as volume resistivity and triboelectric charge amount of these toner particles themselves, a conductive filler is used. in use. Further, in addition to toner, in order to control the volume resistivity of members used for electrophotographic photosensitive drums and charging members, similar conductive fillers are required.
[0003]
In this way, conductive fillers are used in various industrial fields, and their applications are expanding and diversifying. However, the degree of conductivity (volume resistivity value) required for each application varies, Various performances are required in addition to sex. One of the requirements is lightening. For example, in the case of electronic component transport trays used in the manufacture of ICs and LSIs, and packaging bags for combustible powders such as flour, transparency is required to identify the contents. It is desired that the conductive filler used in the above is a light color system. Also, for toners, the use for color electrophotography is rapidly increasing in recent years, and therefore, a light-colored conductive filler is required to increase the degree of freedom in coloring the toner.
[0004]
Conventionally used conductive fillers include carbon black and metal powder. However, when these are used, free coloring cannot be achieved and it is difficult to meet the above requirements. In particular, when metal powder is used, there is a problem that its conductivity decreases with time because it is gradually oxidized by moisture in the air. When used as a conductive filler for toner, the image quality becomes uneven. May be.
[0005]
Examples of such conductive materials that can be lightened include oxide fillers such as indium oxide, zinc oxide, and tin dioxide. Of these, tin dioxide fillers are relatively inexpensive and toxic. It is promising because it is low. However, since tin dioxide is generally low in conductivity and its controllable width is small, volume resistivity of antimony, fluorine, phosphorus, arsenic, bismuth, selenium, tellurium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, etc. It is necessary to increase the conductivity by adding a dopant (hereinafter also referred to as a dopant for improving conductivity) having a function of lowering (improving conductivity). However, when these dopants for improving conductivity are added in a large amount, coloring may occur and it may not be possible to achieve the above thinning, and the dopant for improving conductivity is generally harmful. Because of its large number, its application is limited, and care must be taken during manufacture, use, or disposal. Therefore, the addition amount of the dopant for improving conductivity should be reduced as much as possible, or a less harmful dopant should be used depending on the application.
[0006]
In order to satisfy the above requirements, for example, JP-B-62-1572, JP-B-62-1573, JP-B-62-1574, and JP-A-2-3221 contain a dopant for improving conductivity. The volume resistivity of the tin dioxide powder which is not 10 4 -10 7 It is described that it is Ωcm. JP-A-6-345429 discloses that a solution containing a stannic salt is neutralized to precipitate a precipitate, and then the precipitate is fired in an inert or weakly reducing atmosphere. 2.0X10 8 The volume resistivity measured by the compacting method at a press pressure as high as Pa is 10 -1 -10 4 It is described that an Ωcm tin dioxide powder can be obtained.
[0007]
However, in these tin dioxide powders, those having a low volume resistivity are because the surface of the tin dioxide powder is locally reduced to metallic tin as described in Japanese Patent Laid-Open No. 6-345429. The resulting tin dioxide powder is colored because it contains metallic tin, or the volume resistivity rises over time due to oxidation of metallic tin, making it difficult to control the volume resistivity in various plastic and toner additive applications. It is expected that. Moreover, since the volume resistivity of the tin dioxide powder not containing the dopant for improving conductivity is high, in order to use it as a conductive filler, it is necessary to add a large amount to various plastics, and there is a problem that the properties of the plastic are impaired. Accordingly, in consideration of the above-mentioned harmfulness, a tin dioxide powder is desired that reduces the addition amount of the dopant for improving conductivity as much as possible and has high conductivity (low volume resistivity) and little change with time in the conductivity. It has been.
[0008]
In addition, in plastic products for electronic parts that do not like the generation of static electricity, it is important to efficiently release static electricity generated by friction between plastic products or other substances by adding conductive fillers. Depending on the application, the amount of conductive filler added may be limited, so it is preferable not to generate static electricity if possible. Static electricity is generated when two or more substances come into contact with each other and rub against each other, causing charge to move between these substances and having a positive or negative charge. For example, when the same material contacts and rubs like a plastic film wound in a roll, the triboelectric charge characteristics are close to neutrality, that is, measured using a Faraday cage, etc., in order to prevent the generation of static electricity as much as possible. A plastic film having a triboelectric charge amount close to zero is preferable. For this purpose, a conductive filler is desired that controls the triboelectric charge amount and efficiently releases static electricity even if it occurs. For example, plastic products used in trays for transporting electronic components and packaging bags for combustible powders may be due to the addition of other additives such as plasticizers and silica. Since the measured triboelectric charge amount is −several hundred μC / g or less, that is, the absolute value often takes a very large negative value, it is difficult to suppress the generation of static electricity. Therefore, as the conductive filler, one having as small an absolute value as possible, that is, one having a value close to zero (specifically, about −100 to 0 μC / g) is added, or the triboelectric charge amount of the tray or the packaging bag It is desirable to add a conductive filler having a reverse polarity so that the triboelectric charge amount approaches zero as a whole.
[0009]
Further, in the electrophotographic apparatus, it is necessary to strictly control the triboelectric charge amount of the toner itself in order to obtain a high-quality printed matter. However, additives for controlling other characteristics, that is, coloring materials, external additives, and the like are added to the toner. However, since the addition of various additives affects the triboelectric charge amount of the toner, the charge control agent. Is added to control the triboelectric charge amount of the toner. In recent years, so-called cleanerless system type electrophotographic apparatuses (for example, JP-A-11-212337, JP-A-2000-162849, JP-A-2000-267337) have been proposed for the purpose of reducing the size of the electrophotographic apparatus and eliminating waste toner. In this method, the triboelectric charge amount of the toner needs to be controlled particularly strictly.
[0010]
A cleanerless system is a system in which after a toner image is transferred to a transfer material, residual toner remaining without being transferred onto the photosensitive drum is scraped off by a charging member (magnetic particles, etc.) of the charging unit and temporarily stored in the charging unit. In this system, the toner is returned again onto the photosensitive drum, and then collected in the developing unit having toner and reused. This system is advantageous from the viewpoint of environmental protection because there is no need to newly provide a cleaner section, and there is an advantage that the apparatus can be miniaturized and waste toner is not emitted. In the cleaner-less system, in order to prevent the phenomenon that the transfer residual toner once stored in the charging unit is charged more than necessary due to the friction with the charging member, that is, charge-up, approximately (10 2 -10 9 It is necessary to contain a fine powder (hereinafter also referred to as “conductive control powder”) having a volume resistivity of about Ωcm and to have a function of releasing electric charge, but in order to newly add the conductive control powder to the toner. The control of the toner triboelectric charge amount is complicated. There are several development methods. If a method of developing the toner with positively charged toner and developing with negatively charged toner is adopted, the toner can be added even if the conductive control powder is added to the toner. However, the conductive control powder needs to have a property of being charged from zero to minus so that it can be charged negatively.
However, in order not to affect the triboelectric charge amount of the toner as much as possible, it is preferable that the absolute value of the triboelectric charge amount is small (specifically, about −100 to 0 μC / g). Attempts have been made to add powder to the toner (see, for example, JP-A-11-212337, JP-A-2000-162849, and JP-A-2000-267337). However, since the triboelectric charge amount of tin dioxide powder is usually about −120 μC / g (Koguchi. Surface. 320. vol. 23. No. 6 [1985]), adding tin dioxide powder to the toner results in the triboelectric charge amount of the toner. It will have a big impact. Furthermore, the specific gravity of the tin dioxide powder is about 7, which is very heavy, and therefore, a lighter conductive filler is required as a conductive filler added to plastic products and toners. Furthermore, in order to facilitate the handling of the powder or to improve the fluidity of the toner, a spherical shape or a substantially spherical shape is preferable.
[0011]
In response to such demands, for example, Japanese Patent Laid-Open Nos. 56-114215, 56-114216, 56-114217, and 56-114218 disclose metal oxides coated with tin dioxide. A method for producing a powder is disclosed. However, although the powder produced by this method has a high degree of lightness and a light specific gravity, the coating layer is very easy to peel off, so that a decrease in conductivity is observed when kneaded into various plastics and toners. In addition, there is a problem that a significant negative value of the triboelectric charge amount is observed due to exposure of a metal oxide such as silica having a triboelectric charge amount of −several hundred μC / g.
[0012]
[Problems to be solved by the invention]
Thus, it is considered that a tin-based oxide containing tin dioxide as a main component can be an industrially useful conductive filler, but is highly safe, light-colored, and has a lower volume resistivity. A volume resistivity does not change, a triboelectric charge amount has a minus value close to zero, a specific gravity is light, and a spherical or substantially spherical shape has not been known so far. An object of this invention is to provide such electroconductive particle or electroconductive powder, and its manufacturing method.
[0013]
[Means for Solving the Problems]
The present inventors have intensively studied to achieve the above object. As a result, when forming a coating layer made of a conductive oxide on the surface of inorganic oxide particles mainly composed of silica, the coating layer contains silicon atoms, and the silicon atom concentration in the coating layer It has been found that a conductive powder satisfying the above requirements can be obtained when the particle size decreases from the center side to the outside of the particle, and the present invention has been completed.
[0014]
That is, the present invention is a conductive powder comprising conductive particles and / or aggregates thereof formed by forming a coating layer made of a conductive oxide on the surface of inorganic oxide particles mainly composed of silica, The conductive powder is characterized in that the coating layer of conductive particles contains silicon atoms, and the silicon atom concentration in the coating layer decreases from the center side of the particles toward the outside.
[0015]
The conductive particles constituting the conductive powder of the present invention are specific coatings comprising a conductive oxide containing silicon atoms on the surface of inorganic oxide particles (hereinafter also referred to as core particles) mainly composed of silica. Since the silicon atom concentration in the coating layer decreases continuously or stepwise from the surface of the core particle toward the surface of the coating layer, the core particle and the coating layer are formed. There is no clear boundary, and the adhesion is very high. In addition, the reason for the conductive powder of the present invention is unknown, but since the triboelectric charge has a value closer to zero compared to conventional tin dioxide powder, dust adhesion to various plastic products and plastic Can be used in various applications as a conductive filler added for the purpose of preventing dust explosion of combustible powder contained in a container, or as a conductive control powder for toner of an electrophotographic apparatus. . Furthermore, when the conductive powder of the present invention is kneaded into various plastics, the coating layer is not peeled off in each conductive particle, and the core particles having a triboelectric charge amount of −several 100 μC / g are not exposed, and the It is difficult to cause a decrease in friction and a significant negative value of triboelectric charge. In addition, among the conductive powders of the present invention, those in which the conductive particles constituting the particles are spherical or substantially spherical are characterized in that the particles are less aggregated and have good fluidity and are easy to handle. It is particularly suitable for applications such as conductive control powder for toner.
[0016]
In another aspect of the present invention, a silicon-containing compound capable of forming a polysiloxane bond by a hydrolysis / polycondensation reaction to a suspension of inorganic oxide particles mainly composed of silica and a hydrolysis / polycondensation reaction— A metal atom or metalloid atom-containing compound capable of forming an M-O-M- bond (wherein M represents a metal atom or a metalloid atom whose oxide exhibits conductivity) is substantially continuously formed. The ratio of the silicon-containing compound weight at the time of addition to the weight of the metal atom or metalloid atom-containing compound is added continuously or stepwise from the start of addition to the end of addition, The present invention is characterized by depositing a polycondensate of a hydrolyzate of these compounds on the surface of inorganic oxide particles mainly composed of silica, and then heat-treating the particles having the polycondensate deposited on the surface. A method for producing a conductive powder. According to this method, the conductive powder of the present invention can be produced efficiently.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The conductive powder of the present invention comprises conductive particles in which a specific coating layer made of a conductive oxide containing silicon atoms is formed on the surface of core particles and / or aggregates thereof. If the said core particle is an inorganic oxide particle which has a silica as a main component, it will not specifically limit, Even if it consists only of silica and may contain inorganic oxides other than a silica. Here, silica as a main component means that the silica component is the component with the highest content in the core particles. When the core particles are mainly composed of silica, not only can the thinness of the conductive powder finally obtained be increased or the specific gravity can be decreased, but also the production cost is reduced. Furthermore, there is an advantage that spherical or substantially spherical conductive particle particles can be easily produced. From the viewpoint that such merit is great, the content of the silica component in the core particles is preferably 50 to 100% by weight, particularly preferably 80 to 100% by weight, and 90 to 100% by weight. Most preferred.
[0018]
The inorganic oxide component other than silica that may be contained in the core particles is not particularly limited as long as it does not decrease the lightness. Specific examples of suitably used inorganic oxide components include tin oxide such as tin dioxide and tin monoxide, zinc oxide, antimony oxide, indium oxide, alumina, zirconia, titania, boron oxide, phosphorus oxide, magnesia, Examples include calcium oxide and rare earth oxides. A plurality of these inorganic oxide components may be contained. If the core particles contain these inorganic oxide components, particularly the same inorganic oxide component as the conductive inorganic oxide contained in the coating layer, the coating layer tends to be easily formed. Among these, it is particularly preferable to use a conductive oxide such as tin oxide, zinc oxide, indium oxide, alumina, zirconia, titania, or the like because it is easy to form a coating layer. When the core particles contain an inorganic oxide component other than these silicas, these inorganic oxide components may be dissolved in silica or phase-separated and dispersed as fine crystals in a silica matrix.
[0019]
The size of the core particles is not particularly limited and may be determined appropriately according to the use. However, if the size is too large, it is difficult to uniformly coat the core particles, so the average particle size of the core particles is 30 μm. The following is preferred. The lower limit of the particle diameter is not particularly limited, and may be as small as possible as long as it can be determined by observation with a transmission electron microscope (TEM). The shape of the core particles is not particularly limited, but is preferably spherical or substantially spherical. The term “spherical” or “substantially spherical” as used herein means that the conductive particles have a sphere shape or a shape close thereto, and the average uniformity thereof is 0.66 to 1.00. When conductive particles are produced using such spherical or substantially spherical core particles, the same spherical or substantially spherical conductive particles can be easily obtained. Such conductive particles are particularly useful because they have high fluidity and are easy to handle and can be easily filled into various plastics. In addition, the above-mentioned average uniformity is calculated by the maximum width (minor axis: L) and the maximum width (minor axis: B) in the direction perpendicular to the major axis for n (n> 30) conductive particles. B / L values are averaged. These major axis and minor axis can be obtained, for example, by taking a photograph with an electron microscope (SEM or TEM) and measuring the major axis and minor axis of particles observed in the unit field of view of the photograph.
[0020]
In the conductive particles constituting the conductive powder of the present invention, the coating layer formed on the core particles is made of a conductive oxide containing silicon atoms, and the silicon atom concentration in the coating layer is the center of the particles. It needs to decrease from the side toward the outside. That is, in the coating layer, silicon atoms are usually present as oxides, but the silicon atoms in the coating layer are not dispersed at a uniform concentration, but are directed from the core particle surface toward the coating layer surface. It is important that the silicon atom concentration (or silicon oxide concentration) decreases continuously or stepwise, in other words, there is a concentration gradient. When the coating layer has such a structure, the adhesion force between the core particle and the coating layer can be increased, and the coating layer becomes very difficult to peel off. On the outer surface of the coating layer, the concentration of silicon atoms may be zero or may remain slightly. However, from the viewpoint of reducing the volume resistivity of the conductive particles of the present invention and making the triboelectric charge amount closer to zero, the silicon atom concentration in the outer surface portion of the coating layer is different from other oxides constituting the coating layer. It is preferably 20 mol% or less, particularly 10 mol% or less, based on the total number of moles of the component metal atom or metalloid atom and silicon atom. The silicon atom concentration in the vicinity of the interface with the core particle in the coating layer is preferably in the range of 99 to 80% of the silicon atom concentration in the core particle from the viewpoint of high adhesion to the core particle.
[0021]
Note that the silicon atom concentration in the core particles and the coating layer is the same as that of the pretreated by leaving the conductive particles as they are or by cutting the conductive particles or removing the surface little by little by chemical etching or physical etching. The measurement can be performed using a technique such as a transmission electron microscope (TEM) capable of analysis, a scanning electron microscope, fluorescent X-ray analysis, or ICP emission spectroscopic analysis. In addition, when the composition of both is close in the vicinity of the interface between the core particle and the coating layer, the boundary between the two becomes unclear, but the concentration of silicon atoms when conducting elemental analysis of the conductive particle from the particle center toward the outside Can be confirmed as a point where the decrease starts.
[0022]
Also, as to whether or not the coating layer is easily peeled off, the conductive particles after kneading with resin or the like are observed with an SEM, the change in surface is observed, or the triboelectric charge after pulverizing the conductive particles with a mortar or the like is used. It can be clarified by measuring. In the latter method of measuring the triboelectric charge amount, when the coating layer is peeled off after pulverization, a large amount of silica is exposed on the surface, and the triboelectric charge amount is greatly shifted to the negative side. Recognize.
[0023]
The conductive oxide constituting the coating layer is not particularly limited as long as at least a part thereof is a composite oxide containing silicon atoms and has conductivity as a whole.
Examples of oxide components other than the silicon oxide component forming the coating layer include conductive oxides such as tin oxide, zinc oxide, antimony oxide, and indium oxide, and a dopant for improving conductivity is added to these oxides. And complex oxides thereof.
Among these, it is preferable to use tin oxide, indium oxide, zinc oxide, those obtained by adding a dopant for improving conductivity to these oxides, or composite oxides thereof. In particular, it is preferable to use tin oxide and / or zinc oxide because it is relatively inexpensive and has high adhesion to the core particles of the coating layer. Furthermore, tin oxide is preferred because of its low toxicity. It is preferred to use. In addition, what is necessary is just to determine the kind and quantity in consideration of safety | security, the color tone of a powder, etc., when adding the dopant for electroconductivity improvement to these oxides (or complex oxide). The addition amount of a general dopant is 5% by weight or less based on the total amount with the conductive oxide. In addition, as the dopant for improving conductivity, an element that can be a pentavalent or hexavalent ion such as antimony, niobium, tantalum, molybdenum, tungsten, phosphorus, or vanadium can be used. However, in consideration of safety, it is preferable that the amount of highly toxic elements such as antimony and vanadium is small.
[0024]
The thickness of the coating layer in the conductive particles constituting the conductive powder of the present invention is not particularly limited, but if it is too thin, high conductivity cannot be obtained, and extremely thick ones should be manufactured stably. Therefore, the average particle diameter of the core particles is preferably 1/300 to 1/2. The thickness of the coating layer can be determined from the difference between the core particle particles before coating and the conductive particle size obtained after coating, measured by TEM or SEM. For the same reason as in the case of the core particles, the average particle size of the conductive particles is preferably 40 μm or less, particularly 0.01 to 30 μm, and the shape is preferably spherical or substantially spherical. .
[0025]
The conductive powder of the present invention comprises the above-described conductive particles and / or aggregates thereof. In general, it is difficult to obtain a powder consisting only of independent particles having a very small particle diameter, and it is often agglomerated by a drying process or the like at the time of manufacture. is there. Also in the conductive powder of the present invention, when the particle size of the conductive particles is large, it is possible to obtain a powder in which the conductive particles exist independently, but when the particle size of the conductive particles is small It is common to include aggregated particles as described above. Depending on the application, it may contain aggregated particles. However, in applications such as toner conductive control powder, the average particle size when aggregated particles are included is 0. 01-5 micrometers is preferable, More preferably, 0.01-2 micrometers is good. In addition, depending on the thickness of the film, the average particle diameter in the case of containing aggregated particles is 0.01 to 20 μm, more preferably 0.01 to 10 μm so that a smooth surface can be easily obtained. Is good.
[0026]
Although the manufacturing method of the electroconductive powder of this invention is not specifically limited, It can manufacture suitably by the following methods. That is, a silicon-containing compound capable of forming a polysiloxane bond by a hydrolysis / polycondensation reaction and a -MOMM- by a hydrolysis / polycondensation reaction to a suspension containing inorganic oxide particles mainly composed of silica. Bond {wherein M represents a metal atom or a metalloid atom whose oxide exhibits conductivity. The bond is focused on an oxo group, and is not particularly limited as long as the valence of M is 2 or more. For example, M (—O) n A bond such as-(where n is an integer of 2 or more) is also included. }, The ratio of the weight of the silicon-containing compound to the weight of the metal atom or metalloid-containing compound at the time of addition is substantially continuously or intermittently at the same time. To the end of the addition until it is continuously or stepwise reduced, and the polycondensate of the hydrolyzate of these compounds is deposited on the surface of the inorganic oxide particles mainly composed of silica, and then on the surface. It can manufacture suitably by heat-processing this particle | grains which this polycondensate precipitated.
[0027]
Here, the suspension containing inorganic oxide particles (core particles) mainly composed of silica is hydrolyzed / polycondensed in a solvent with a silicon-containing compound capable of forming a polysiloxane bond by hydrolysis / polycondensation. It is preferable to use a suspended spherical or substantially spherical silica particle. As described above, the silica particles include inorganic oxides other than silica, that is, tin oxide, zinc oxide, antimony oxide, indium oxide, alumina, zirconia, titania, boron oxide, phosphorus oxide, magnesia, calcium oxide, rare earth oxide, and the like. May be included.
[0028]
Further, the silica particles obtained by the above method may be used as a suspension in a state of being dispersed in a solvent, or once taken out by filtration or the like, subjected to steps such as washing with water and firing, and then again into the solvent described later. It may be a suspended suspension. For example, as described in JP-A No. 58-110414, a silicon alkoxide or other metal alkoxide or a solution obtained by dissolving these alkoxides in a solvent in a mixed solvent of a basic aqueous solution such as aqueous ammonia and alcohol. The method of dripping and the method of dripping or mixing sodium silicate in an acidic solvent are used preferably.
[0029]
Usually, the shape of the core particles produced by the method of dropping in the solvent as described above is spherical or substantially spherical, and when the core particles having such a shape are used, there is little aggregation of the core particles in the suspension. Therefore, it is preferable because a uniform coating layer can be obtained, and the coating layer is difficult to peel off and the fluidity of the conductive particles coated with the coating layer is improved. In addition, it may be preferable that the component in the core particles is silica alone because spherical or substantially spherical particles are easily obtained.
[0030]
Furthermore, a suspension obtained by suspending core particles produced by other methods such as a melting method and a spray pyrolysis method using an inorganic oxide precursor mainly containing silica as a raw material is used. In this case, the core particles are preferably spherical or substantially spherical for the above reasons.
[0031]
The solvent of the suspension is one in which a silicon-containing compound described later and a metal atom or metalloid atom-containing compound undergo a hydrolysis / polycondensation reaction to precipitate a polycondensate of the hydrolyzate of these compounds on the core particle surface. If it is, it will not specifically limit. Specifically, water or alcohols such as methanol, ethanol, propanol and butanol, ketones such as diethyl ketone, methyl n-butyl ketone, di n-propyl ketone, methyl isobutyl ketone and diisobutyl ketone, isopropyl ether and n-butyl ether Of ether. Among these, alcohol is preferable because it is easy to obtain, and methanol, ethanol, and isopropyl alcohol are particularly preferable because they are relatively inexpensive and easy to handle. When an organic solvent is used, it is necessary to add a sufficient amount of water to cause a hydrolysis reaction. In addition, when a basic aqueous solution such as aqueous ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, or an acidic aqueous solution such as hydrochloric acid, sulfuric acid, nitric acid or acetic acid is further mixed in the above solvent, hydrolysis / polycondensation occurs. This is particularly preferable because the reaction proceeds efficiently and in a short time.
[0032]
The ratio of the core particles to the solvent in the suspension is not particularly limited. However, if there are too many core particles, the viscosity of the suspension becomes high, the coating layer is not uniformly formed, and the solvent is too much. And efficiency becomes worse and productivity decreases. The preferred ratio between the core particles and the solvent varies depending on the composition and thickness of the target coating layer, and cannot be generally stated. % Is often good, more preferably 0.5 to 8%, and even more preferably 0.8 to 5%.
[0033]
As the silicon-containing compound used in the present invention, known compounds can be used without limitation as long as they can form a polysiloxane bond by hydrolysis / polycondensation reaction. A specific example of such a silicon-containing compound is Si (OCH 3 ) 4 , Si (OCH 2 CH 3 ) 4 Silicon alkoxide monomers, oligomers obtained by condensation of these monomers with 2 to 6 molecules, or CH 3 Si (OCH 3 ) 3 , CH 3 Si (OCH 2 CH 3 ) 3 , CH 3 CH 2 Si (OCH 2 CH 3 ) 3 And alkylalkoxysilane compounds such as Further, silicates such as sodium silicate, potassium silicate, and ammonium silicate, or chlorosilanes such as tetrachlorosilane and trichlorosilane can also be used.
[0034]
In the present invention, the metal atom or metalloid atom-containing compound to be used is not particularly limited as long as it can form a -MOMM bond by hydrolysis / polycondensation reaction, but it is suspended. Since it is often used by dissolving it in water or a water-soluble organic solvent for the purpose of facilitating addition to the liquid or controlling the rate of hydrolysis / polycondensation reaction, it is soluble in water or a water-soluble organic solvent. preferable. For example, tin-containing compounds such as stannous chloride, stannous chloride and tin oxychloride, stannous bromide, or hydrates thereof, zinc-containing compounds such as zinc chloride and zinc acetate, pentachloride Antimony, antimony trichloride and other antimony chloride, antimony-containing compounds such as antimony tribromide, indium trichloride (hereinafter also referred to as indium chloride), indium sulfate, indium nitrate and other indium-containing compounds, tin methoxide, zinc isopropoxide And metal alkoxides such as indium ethoxide. Among those described above, chloride is preferable because it is easily dissolved in water or a water-soluble organic solvent, is easy to handle, and is inexpensive. However, from the viewpoint of safety, it is preferable to reduce the amount of the toxic antimony-containing compound as much as possible.
[0035]
Usually, silicon-containing compounds and metal atom or metalloid atom-containing compounds that do not produce precipitates even when mixed in the same solvent are suitably used. Therefore, when any of these compounds has basic properties In order to allow the hydrolysis / polycondensation reaction to proceed efficiently, the suspension solution is preferably acidic. Conversely, when any of these compounds has an acidic property, the suspension solution preferably has a basic property. For example, a silicon alkoxide such as tetramethoxysilane or tetraethoxysilane is used as the silicon-containing compound, and a metal chloride such as zinc chloride, tin chloride, antimony chloride, or indium chloride is used as the metal atom or metalloid atom-containing compound. In the case of an acidic property, an alcohol / water mixed solution in which a basic compound such as sodium hydroxide or ammonia is dissolved is preferably used as the solution of the suspension. In the above example, the silicon alkoxide may precipitate a hydrolysis / polycondensation product in either an acidic aqueous solution or a basic aqueous solution, but a metal atom or metalloid atom-containing compound such as zinc chloride, tin chloride, antimony chloride, Since a metal chloride such as indium chloride easily undergoes hydrolysis / polycondensation reaction in the presence of a base, a solvent containing a basic compound such as aqueous ammonia or an ammonia-containing alcohol / water mixed solution is preferable in this example.
[0036]
The silicon-containing compound and the metal atom or metalloid atom-containing compound may be added as they are in the suspension, but a solution dissolved in an appropriate solvent such as water or a water-soluble organic solvent is suspended. The addition to the inside is preferable because the rate of hydrolysis and polycondensation reaction is controlled and a coating layer having a uniform thickness is formed. The concentration of the metal atom or metalloid atom-containing compound with respect to the solvent of the solution is not particularly limited as long as it is within the range of dissolution, but if the concentration is too low, the productivity decreases, and if it is too high, the coating with a nonuniform thickness In order to form a layer, the concentration is preferably 0.01 to 10 mol, particularly 0.1 to 5 mol per liter of the solution.
[0037]
In the production method of the present invention, the silicon-containing compound and the metal atom or metalloid atom-containing compound are substantially simultaneously, continuously or intermittently, and the metal atom or metalloid atom-containing compound in the weight of the silicon-containing compound at the time of addition. A method of adding to the suspension such that the ratio to the weight decreases continuously or stepwise from the start of addition to the end of addition is used. As such an addition method, for example, a solution in which a silicon-containing compound is dissolved (referred to as solution A) and a solution in which a metal atom or metalloid atom-containing compound is dissolved (referred to as solution B) are prepared. The solution A begins to be added continuously or stepwise, and simultaneously or after a predetermined time, the solution B begins to be added continuously or stepwise into the solution A, and the mixture is added to the suspension. A method of depositing a polycondensate of a hydrolyzate of these compounds on the surface of the core particle can be employed. If the ratio of the solution A to the solution B added at this time is changed so as to decrease with time, the ratio of the silicon-containing compound decreases with time, and the ratio of the metal atom or metalloid atom-containing compound increases instead. To go. Therefore, it is possible to form a coating layer made of a conductive oxide in which the silicon atom concentration continuously or intermittently decreases toward the outer side in the radial direction around the core particle. In addition, in the above method, in order to prevent the concentration of the solution A or the solution B from being locally increased when added to the suspension, the solution B is added to the solution A in advance to obtain a mixed solution, which is suspended. Although the mode of adding to the liquid is shown, both solutions may be added separately if stirring is sufficiently performed.
[0038]
The core particles having the polycondensate deposited on the surface are usually separated from a solvent in a suspension after adding a silicon-containing compound or the like by filtration or the like (hereinafter also referred to as a suspension after the addition). In the case where a reaction product that is heat-treated but hardly sublimated during the heat-treatment is produced by the neutralization reaction, the raw material tin compound, etc. present in the neutralization solution in order to control the volume resistivity and the triboelectric charge amount Heat treatment may be carried out after removing chlorine ions, acetate ions, nitrate ions, sulfate ions, ammonium ions, sodium ions, potassium ions, reaction products thereof and the like derived from the above. The method for removing chlorine ions, acetate ions, nitrate ions, sulfate ions, ammonium ions, sodium ions, potassium ions and their reaction products is not particularly limited. To give a specific example, the suspension after the addition is once filtered, and the cake-like precipitate separated by filtration is washed again by redispersing in an aqueous solution or an organic solvent solution, and then filtered again. There is a method of repeating the process or decantation. It is preferable to remove the ions by the washing step or decantation because the coating layer tends to be conductive particles having a uniform thickness even after the heat treatment described later.
[0039]
The cake-like precipitate collected by the above method is dried and then heat-treated for the purpose of improving the conductivity or controlling the triboelectric charge amount. The heat treatment method is not particularly limited, and the gel powder or the precipitate is put in a container having low reactivity with the precipitate at a high temperature such as alumina or quartz glass, and heat-treated using a commercially available electric furnace, A heat treatment apparatus such as a spray pyrolysis apparatus or spray drying may be used. The heat treatment conditions such as the heat treatment temperature and time and the heat treatment atmosphere are not particularly limited, but the heat treatment conditions may greatly affect the volume resistivity, the triboelectric charge amount, and the like. The temperature is preferably 300 ° C to 1500 ° C, more preferably 400 ° C to 1200 ° C. When the heat treatment temperature is less than 300 ° C., many hydroxyl groups remain and the volume resistivity may change with time. On the other hand, if the temperature exceeds 1500 ° C., coarse particles are produced by sintering, which is not preferable. The heat treatment time varies depending on the type of heat treatment apparatus and the heat treatment temperature, but is preferably 0.1 second to 100 hours or less from the viewpoint of control of volume resistivity and energy saving. The heat treatment atmosphere is not particularly limited, but an atmosphere containing oxygen is desirable from the viewpoint of preventing metal precipitation in the coating layer due to reduction as much as possible. In particular, it is preferable to perform in an air atmosphere from the viewpoint that a large-scale apparatus is not required. However, when conductive particles having a lower volume resistivity are required, it may be fired in an inert atmosphere such as nitrogen or argon as long as metal deposition does not occur. Presence or absence of metal precipitation can be analyzed by a technique such as powder color tone, X-ray diffraction analysis, or electron beam diffraction analysis.
[0040]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these contents. In addition, each evaluation of the electroconductive particle or electroconductive powder in an Example and a comparative example was performed as follows.
[0041]
That is, the volume resistivity was measured by compacting a powder (using a sample after pulverization for 3 minutes in a mortar) using a jig composed of a die and a punch. That is, a sample is put in a hollow (hole diameter φ15 mm) cylindrical die (insulator, φ50 mm × height 50 mm) attached with a copper lower punch (φ15 mm × height 10 mm), and the upper end is made of copper. 5.6 × 10 with top punch (φ15mm × height 50mm) 7 The sample was pressure-molded at a Pa pressure (1 ton load) to produce a pellet-shaped test piece. Next, in a state where the test piece is pressurized, the resistance value between the upper punch and the lower punch is measured by a four-terminal method using a 3478A multimeter manufactured by Hewlett Packard Co., and the cross-sectional area and height of the test piece are measured. From this, the volume resistivity was calculated. The upper limit of measurement in this measurement method is 10 8 A sample exceeding Ωcm was judged to be unmeasurable. The change in volume resistivity over time was measured by the above method after the sample was left in air at 120 ° C. for 200 hours, cooled to room temperature, ground again in a mortar for 3 minutes. A value obtained by dividing the volume resistivity after being left at high temperature by the volume resistivity before being left at high temperature was used as an index of the change in volume resistivity with time.
[0042]
Further, the triboelectric charge amount was measured using a blow-off charge amount measuring device TB-200 type manufactured by Toshiba Chemical Co. as a device, and iron powder TEFV-200 / 300 for carriers manufactured by Powder Tech Co. as a carrier. The sample was mixed with a carrier in advance, and the mixture was conditioned at 35 ° C. and 85% humidity. Then, the sample was measured according to the standard image charge measurement method (blow-off method) of the Imaging Society of Japan.
[0043]
Moreover, the color tone observed the sample visually.
[0044]
Furthermore, the specific gravity was measured by a liquid immersion method. That is, the total mass (W when the pycnometer is filled with pure water) 1 ), And then put the sample (mass M) into a pycnometer, fill with pure water and heat to remove bubbles sufficiently, cool, and weigh (W 2 ), And the specific gravity d of the powder is d = M / (W 1 + M-W 2 ).
[0045]
The average uniformity was determined as an index indicating whether the conductive particles are spherical or substantially spherical. As described above, the average homogeneity is obtained by taking an SEM photograph of conductive particles, and measuring the maximum width (major axis; L) and the maximum width (minor axis; B) in the direction perpendicular to the arbitrary 50 particles. And B / L was averaged.
[0046]
Further, whether or not the silicon atom concentration in the coating layer of the conductive particles decreases from the center side toward the outside was confirmed by the following method. That is, first, the conductive particles are placed in a 30% hydrochloric acid solution containing 2% hydrofluoric acid, and subjected to pressure acid decomposition in each time of 1 minute, 10 minutes, and 60 minutes, and the coating layer is dissolved and removed stepwise from the outside. Thereafter, analysis of silicon atoms, tin atoms, and other added metal atoms or metalloid atoms contained in the filtrate of each solution was performed by ICP emission spectroscopic analysis. From the analysis, the value (unit:%) of silicon atom (mol) / [silicon atom (mol) + tin atom (mol) + other metal atom or metalloid atom (mol)] is calculated, and the outside of the conductive particles The change in silicon atom concentration from the center to the center was observed.
[0047]
Example 1
After adding 83.3 g of tetraethoxysilane to 120 ml of methanol, 7.2 ml of 0.1N hydrochloric acid was added and stirred at room temperature for 30 minutes to prepare a silicon-containing compound solution (referred to as solution A). In addition, anhydrous stannous chloride (SnCl) was added to 600 ml of methanol. 2 36.7 g, antimony trichloride (SbCl) 3 ) After 0.22 g was added, dry oxygen was introduced into the solution and stirred to prepare a tin and antimony-containing compound solution (referred to as solution B). Separately, a mixed solution of 1200 ml of methanol and aqueous ammonia (28 wt% product) (referred to as liquid C) was prepared, and the liquid A was gradually added to liquid C while stirring to prepare core particles. When 150 ml of liquid A was added, liquid B was gradually added to and mixed with liquid A being added. After the addition of liquid A and liquid B was completed, the produced precipitate was separated by filtration, and the resulting cake-like precipitate was dried using a vacuum dryer to obtain a dried gel powder. The dried gel powder was baked in air at 500 ° C. using a commercially available electric furnace to obtain a conductive powder. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle diameter of the primary particles (spherical particles) was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-described method, the silicon atom concentration was increased from 3%, 20%, and 34% in order from the outside of the spherical particles toward the center. In the coating layer, it was found that the silicon concentration continuously decreased from the center to the outside. The other evaluation results are shown in Table 1.
[0048]
[Table 1]
Figure 0004559668
[0049]
Example 2
In Example 1, antimony trichloride (SbCl 3 ) A conductive powder was obtained in the same manner as in Example 1 except that 2.32 g was used. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle size of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-described method, the silicon atom concentration was increased to 3%, 20%, and 34% in order from the outside of the spherical particles toward the center. From the above, it was found that the silicon concentration continuously decreased from the center to the outside in the coating layer. The other evaluation results are shown in Table 1.
[0050]
Example 3
In Example 1, tantalum pentachloride (TaCl) was used instead of antimony trichloride. 5 ) A conductive powder was obtained in the same manner as in Example 1 except that 0.71 g was used. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle size of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-described method, the silicon atom concentration was increased to 3%, 20%, and 34% in order from the outside of the spherical particles toward the center. From the above, it was found that the silicon concentration continuously decreased from the center to the outside in the coating layer. The other evaluation results are shown in Table 1.
[0051]
Example 4
In Example 3, the B solution was further added with magnesium chloride (MgCl 2 ) A conductive powder was obtained in the same manner as in Example 3 except that 0.34 g was added. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle size of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-described method, the silicon atom concentration was increased to 3%, 20%, and 34% in order from the outside of the spherical particles toward the center. From the above, it was found that the silicon concentration continuously decreased from the center to the outside in the coating layer. The other evaluation results are shown in Table 1.
[0052]
Example 5
In Example 1, aluminum trichloride hexahydrate (AlCl 3 ・ 6H 2 O) A conductive powder was obtained in the same manner as in Example 1 except that 0.98 g was added. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle size of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-described method, the silicon atom concentration was increased to 3%, 20%, and 34% in order from the outside of the spherical particles toward the center. From the above, it was found that the silicon concentration continuously decreased from the center to the outside in the coating layer. The other evaluation results are shown in Table 1.
[0053]
Example 6
In Example 1, anhydrous stannous chloride (SnCl) was added to 13 ml of methanol. 2 ) A conductive powder was obtained in the same manner as in Example 1 except that 0.77 g was added, dry oxygen was introduced into the liquid, and the tin-containing compound solution which was stirred was further added to the liquid A. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle size of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-described method, the silicon atom concentration was increased to 3%, 20%, and 34% in order from the outside of the spherical particles toward the center. From the above, it was found that the silicon concentration continuously decreased from the center to the outside in the coating layer. The other evaluation results are shown in Table 1.
[0054]
Example 7
After adding 62.5 g of tetraethoxysilane to 54 ml of methanol, 10.8 ml of 0.1N hydrochloric acid was added, and the mixture was stirred and hydrolyzed, and kept at 70 ° C. After one day and night, a wet gel solidified in the form of agar was obtained. After putting in a dryer and drying at 200 ° C., the mixture was pulverized with a mortar and a jet mill and baked at 800 ° C. Thereafter, classification was performed to obtain amorphous silica powder having an average particle diameter of 1 μm. The amorphous silica powder was dispersed in the liquid C described in Example 1. 20.8 g of tetraethoxysilane was added to 30 ml of methanol, 1.8 ml of 0.1N hydrochloric acid was added, and the mixture was stirred at room temperature for 30 minutes. B liquid was prepared. The liquid D was gradually added to the amorphous silica dispersion, and the liquid B was gradually added to the liquid D and mixed. After the addition of all the solutions was completed, the produced precipitate was treated in the same manner as in Example 1 to obtain a conductive powder. As a result of SEM observation of the powder, there was no smooth silica surface of the amorphous particles before coating, and amorphous particles slightly larger than the amorphous particles before coating and aggregated particles thereof were observed. The entire surface of the amorphous particles is considered to be covered with the coating layer. As a result of measuring the silicon atom concentration in the radial direction of the particles by the above-mentioned method, the silicon atom concentration increased from 3%, 20%, and 34% in order from the outside of the spherical particles toward the center. In the coating layer, it was found that the silicon concentration continuously decreased from the center to the outside. The other evaluation results are shown in Table 1.
[0055]
Further, 50 parts by weight of the obtained conductive powder was added to 50 parts by weight of polypropylene resin, kneaded using a biaxial extruder at 230 ° C. to obtain pellets, and the fracture surface of the obtained pellets were observed by SEM. However, since the smooth surface which seems to be the silica surface of the amorphous particles before coating was not observed at all, it is considered that there was no peeling of the coating layer of the conductive particles existing on the fracture surface.
[0056]
Example 8
In Example 1, electroconductive powder was obtained in the same manner as in Example 1 except that the atmosphere during firing was changed to nitrogen. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle size of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-described method, the silicon atom concentration was increased to 3%, 20%, and 34% in order from the outside of the spherical particles toward the center. From the above, it was found that the silicon concentration continuously decreased from the center to the outside in the coating layer. The other evaluation results are shown in Table 1.
[0057]
Comparative Example 1
Liquid A, liquid B and liquid C were prepared in the same manner as in Example 1. First, liquid A and liquid B were mixed and stirred to dissolve a silicon-containing compound, a tin-containing compound, and an antimony-containing compound (liquid E). And). The solution D was gradually added to the solution C to obtain a precipitate. The obtained precipitate was treated in the same manner as in Example 1 to obtain a conductive powder. As a result of SEM observation of the powder, substantially spherical particles were aggregated, and the particles had an average particle diameter of 8 μm. As a result of measuring the silicon atom concentration in the radial direction of the particles by the method described above, the silicon atom concentration was 33%, 33%, and 34%, and there was almost no change. The other evaluation results are shown in Table 2.
[0058]
[Table 2]
Figure 0004559668
[0059]
Comparative Example 2
Liquid A and liquid C were prepared in the same manner as in Example 1, and the addition was completed when 150 ml of liquid A was added to liquid C. The obtained precipitate was filtered, dried and fired in the same manner as in Example 1 to obtain spherical silica powder. As a result of SEM observation of the powder, only spherical particles were observed, and the average particle size was 0.27 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical silica particles by the above-described method, the silicon atom concentration was 100%, 100%, 100% in order from the outside of the spherical particles toward the center, and the change was There wasn't. ICP emission spectroscopic analysis was also performed on tin atoms and antimony atoms, but they were below the detection limit. The other evaluation results are shown in Table 2.
[0060]
Comparative Example 3
In Example 7, electroconductive powder was obtained in the same manner except that the liquid D was not used. As a result of SEM observation of the powder, it was found that about 1 μm of irregularly shaped particles in which fine particles of about 0.01 to 0.05 μm adhered to part of the surface in an island shape, and fine of about 0.01 to 0.05 μm. Coarse particles with aggregated particles were observed. Judging from the size, the amorphous particles are silica particles, and the fine particles on the surface are considered to be a composite oxide of tin oxide-antimony. In addition, as a result of elemental analysis of the aggregated coarse particles, silicon atoms were not detected, and tin atoms and antimony atoms were detected, so that a coating layer was formed only on a part of the surface of the amorphous silica particles. In addition, it is considered that the composite oxide of tin oxide-antimony was precipitated as fine particles alone. The other evaluation results are shown in Table 2.
[0061]
Further, 50 parts by weight of the obtained conductive powder was added to 50 parts by weight of polypropylene resin, kneaded using a biaxial extruder at 230 ° C. to obtain pellets, and the fracture surface of the obtained pellets were observed by SEM. However, since there were many smooth silica surfaces on the surface of the conductive particles present on the fracture surface, there was no coating layer, and most of the coating layer once formed on the amorphous silica particles was peeled off. It is considered a thing.
[0062]
【The invention's effect】
In the conductive particles of the present invention, the silicon atom concentration in the coating layer formed on the surface of the core particles decreases from the center side to the outside of the particles, that is, has a gradient composition structure. The coating layer is difficult to peel off even when it rubs against an object. Therefore, for example, even when kneaded into a resin or the like, the volume resistivity does not change and stable conductivity can be exhibited. In addition, since the color tone of the powder is light, the specific gravity is light, and the triboelectric charge amount is from zero to a small negative value, it is suitable as a conductive filler for various plastics and toners.

Claims (4)

シリカ成分の含有率が50〜100重量%の無機酸化物粒子の表面に導電性酸化物からなる被覆層が形成されてなる導電性粒子及び/又はその凝集体からなる導電性粉末であって、前記導電性粒子の被覆層が珪素原子を含み、且つ該被覆層内の珪素原子濃度が粒子の中心側から外側に向かって減少していることを特徴とする導電性粉末。A conductive powder comprising conductive particles and / or aggregates thereof formed by forming a coating layer comprising a conductive oxide on the surface of inorganic oxide particles having a silica component content of 50 to 100% by weight , A conductive powder, wherein the coating layer of the conductive particles contains silicon atoms, and the concentration of silicon atoms in the coating layer decreases from the center side of the particles toward the outside. 前記導電性粒子が球状又は略球状であることを特徴とする請求項1に記載の導電性粉末。  The conductive powder according to claim 1, wherein the conductive particles are spherical or substantially spherical. シリカ成分の含有率が50〜100重量%の無機酸化物粒子の懸濁液に、加水分解・重縮合反応によりポリシロキサン結合を形成し得る含珪素化合物および加水分解・重縮合反応により−M−O−M−結合(但し、Mはその酸化物が導電性を示す金属原子又は半金属原子を意味する。)を形成し得る金属原子又は半金属原子含有化合物を同時に連続的又は断続的に、且つ添加時における含珪素化合物重量の金属原子又は半金属原子含有化合物重量に対する割合が添加開始時から添加終了時にかけて連続的又は段階的に減少するようにして添加し、前記シリカを主成分とする無機酸化物粒子の表面にこれら化合物の加水分解物の重縮合物を析出させ、次いで表面に該重縮合物が析出した該粒子を熱処理することを特徴とする請求項1又は2に記載の導電性粉末の製造方法。A silicon-containing compound capable of forming a polysiloxane bond by hydrolysis / polycondensation reaction, and -M- by hydrolysis / polycondensation reaction to a suspension of inorganic oxide particles having a silica component content of 50 to 100% by weight. O-M- bonds (where, M is the oxide means a metal atom or metalloid atom exhibits conductivity.) at the metal atom capable of forming a or metalloid atom-containing compound same, continuously or intermittently And the ratio of the weight of the silicon-containing compound at the time of addition to the weight of the metal atom or metalloid-containing compound is decreased continuously or stepwise from the start of addition to the end of addition, and the silica is the main component. 3. The polycondensate of a hydrolyzate of these compounds is deposited on the surface of the inorganic oxide particles to be obtained, and then the particles on which the polycondensate is deposited are heat-treated. Method for producing a conductive powder of the mounting. シリカ成分の含有率が50〜100重量%の無機酸化物粒子を含む懸濁液として加水分解・重縮合反応によりポリシロキサン結合を形成し得る含珪素化合物を溶媒中で加水分解・重縮合反応させることにより得られる球状又は略球状のシリカ粒子が懸濁した懸濁液を使用することを特徴とする請求項3に記載の製造方法。Hydrolysis / polycondensation reaction of a silicon-containing compound capable of forming a polysiloxane bond by hydrolysis / polycondensation reaction as a suspension containing inorganic oxide particles having a silica component content of 50 to 100% by weight in a solvent 4. The production method according to claim 3, wherein a suspension in which spherical or substantially spherical silica particles obtained by suspension are suspended is used.
JP2001242242A 2001-08-09 2001-08-09 Conductive powder and method for producing the same Expired - Fee Related JP4559668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242242A JP4559668B2 (en) 2001-08-09 2001-08-09 Conductive powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242242A JP4559668B2 (en) 2001-08-09 2001-08-09 Conductive powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003059342A JP2003059342A (en) 2003-02-28
JP4559668B2 true JP4559668B2 (en) 2010-10-13

Family

ID=19072550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242242A Expired - Fee Related JP4559668B2 (en) 2001-08-09 2001-08-09 Conductive powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4559668B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284632B2 (en) * 2007-12-12 2013-09-11 日揮触媒化成株式会社 Conductive fibrous hollow silica fine particle dispersoid and process for producing the same
JP6019214B2 (en) * 2013-10-25 2016-11-02 三井金属鉱業株式会社 Conductive particles and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195505A (en) * 1998-12-25 2000-07-14 Tokuyama Corp Manufacture of negative electrode material for nonaqueous electrolyte secondary battery
JP2001184949A (en) * 1999-12-24 2001-07-06 Asahi Kasei Corp Anisotropy conductive material
JP2002121023A (en) * 2000-10-06 2002-04-23 Tokuyama Corp Tin-based double oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195505A (en) * 1998-12-25 2000-07-14 Tokuyama Corp Manufacture of negative electrode material for nonaqueous electrolyte secondary battery
JP2001184949A (en) * 1999-12-24 2001-07-06 Asahi Kasei Corp Anisotropy conductive material
JP2002121023A (en) * 2000-10-06 2002-04-23 Tokuyama Corp Tin-based double oxide

Also Published As

Publication number Publication date
JP2003059342A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
JP4712288B2 (en) White conductive powder and its application
JP5618229B2 (en) ITO powder, method for producing ITO particles, coating for transparent conductive material and transparent conductive film
JP5301370B2 (en) Tin oxide particles and method for producing the same
JP4617499B2 (en) ITO powder and manufacturing method thereof, coating material for transparent conductive material, and transparent conductive film
KR101290909B1 (en) External additive for toner and process for producing the same
JP2018536962A (en) Structured surface manufacturing method
JP4994068B2 (en) Oxide conductive material and manufacturing method thereof
JP4559668B2 (en) Conductive powder and method for producing the same
JPH06345429A (en) Electrically conductive ultrafine-powdered tin dioxide and production thereof
JP5285412B2 (en) Tin-doped indium oxide particles and method for producing the same
JP4105861B2 (en) Tin-based oxide and method for producing the same
JP2011141542A (en) Carrier for electrostatic latent image development and developer for electrostatic latent image development
JP5051566B2 (en) Transparent conductive fine powder, method for producing the same, dispersion, and paint
JP4540213B2 (en) Tin-based oxide and method for producing the same
JP5007970B2 (en) Method for producing transparent conductive powder
JP3774481B2 (en) Method for producing highly conductive ultrafine tin dioxide
JP5592067B2 (en) Method for producing conductive tin oxide powder
JP6557556B2 (en) Conductive particles and conductive composition containing the same
JP6511329B2 (en) Conductive particle and conductive composition containing the same
JP2003300727A (en) Conductive tin dioxide superfine powder
JP7229814B2 (en) Electrophotographic pigment and method for producing the same
JP6577327B2 (en) Conductive particles and conductive composition containing the same
JP4629849B2 (en) Conductive tin oxide
JP2011054508A (en) White conductive powder
JP2020129030A (en) toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160730

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees