JP2003059342A - Conductive powder and its manufacturing method - Google Patents

Conductive powder and its manufacturing method

Info

Publication number
JP2003059342A
JP2003059342A JP2001242242A JP2001242242A JP2003059342A JP 2003059342 A JP2003059342 A JP 2003059342A JP 2001242242 A JP2001242242 A JP 2001242242A JP 2001242242 A JP2001242242 A JP 2001242242A JP 2003059342 A JP2003059342 A JP 2003059342A
Authority
JP
Japan
Prior art keywords
particles
conductive
coating layer
silicon
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001242242A
Other languages
Japanese (ja)
Other versions
JP4559668B2 (en
Inventor
Kazuhiro Kawaguchi
一博 川口
Shoji Tachibana
昇二 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2001242242A priority Critical patent/JP4559668B2/en
Publication of JP2003059342A publication Critical patent/JP2003059342A/en
Application granted granted Critical
Publication of JP4559668B2 publication Critical patent/JP4559668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide conductive powder usable as an industrially useful filler, not causing performance degradation when using it by kneading it with resin or the like, having a friction static charge quantity nearly equal to zero, light- colored and having a small specific gravity. SOLUTION: This conductive powder comprises conductive particles and/or aggregates thereof obtained by making silicon atom concentration in a coating layer of each conductive particle continuously or gradually reduce toward the outside from the center side of the particle in the radial direction of the particle when the coating layer formed of a conductive oxide containing silicon atoms such as a tin-based composite oxide containing a silica constituent is formed on the surface of each inorganic oxide particle containing silica as a main constituent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリカを主成分と
する無機酸化物粒子を導電性酸化物により被覆した導電
性粒子からなる導電性粉末、及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive powder composed of conductive particles obtained by coating inorganic oxide particles containing silica as a main component with a conductive oxide, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、様々な分野で導電性フィラーが使
用されている。例えば、静電気による各種プラスチック
製品への埃の付着やプラスチック製容器内に収容された
可燃性粉体の粉塵爆発を防止する目的で、その原料プラ
スチックに粉末状あるいは繊維状等の導電性フィラーを
添加して各種プラスチック製品に導電性を付与して帯電
防止能を持たせることが行われている。また、乾式プリ
ンターやコピー機等の電子写真分野で使用される黒色ト
ナーやカラートナーにおいても、これらトナー粒子自体
の体積抵抗率や摩擦帯電量等の表面物性を制御するため
に、導電性フィラーが使用されている。更にトナー以外
にも電子写真の感光ドラムや帯電部材に用いられる部材
の体積抵抗率を制御するために、同様な導電性フィラー
が必要となっている。
2. Description of the Related Art In recent years, conductive fillers have been used in various fields. For example, in order to prevent dust from adhering to various plastic products due to static electricity or dust explosion of flammable powder contained in a plastic container, powdered or fibrous conductive filler is added to the raw material plastic. Then, various plastic products have been given conductivity to have antistatic ability. Further, also in black toner and color toner used in the electrophotographic field such as dry printers and copiers, in order to control surface physical properties such as volume resistivity and triboelectric charge amount of the toner particles themselves, a conductive filler is used. It is used. Further, in addition to the toner, a similar conductive filler is required in order to control the volume resistivity of the member used for the electrophotographic photosensitive drum and the charging member.

【0003】このように、導電性フィラーは各種工業分
野で使用され、その用途も拡大・多様化しているが、各
用途毎に求められる導電性の程度(体積抵抗率の値)が
異なったり、また、導電性以外にも様々な性能が要求さ
れるようになっている。その要求の一つとして薄色化が
挙げられる。例えば、ICやLSI等の製造において使
用する電子部品搬送用トレイや、小麦粉などの可燃性粉
体用包装袋においては、内容物を識別するために透明性
が要求されるため、このような用途に使用する導電性フ
ィラーとしては薄色系であることが望まれている。ま
た、トナー用においても、近年カラー電子写真向けの用
途が急増しつつあることから、トナーの着色の自由度を
高めるために薄色系の導電性フィラーが求められてい
る。
As described above, conductive fillers are used in various industrial fields and their applications are expanding and diversifying, but the degree of conductivity (value of volume resistivity) required for each application is different, Further, various performances are required in addition to conductivity. One of the demands is to reduce the color. For example, in a tray for transporting electronic parts used in the manufacture of ICs, LSIs, etc., and in a packaging bag for flammable powders such as wheat flour, transparency is required to identify the contents, and thus such applications are required. It is desired that the conductive filler used in the above is a light color system. Also, for toners, the use for color electrophotography has been rapidly increasing in recent years, and therefore, a light-colored conductive filler is required in order to increase the degree of freedom in coloring the toner.

【0004】従来汎用的に使用されている導電性フィラ
ーとしては、カーボンブラックや金属粉末があるが、こ
れらを用いると、自由な着色ができず、上記のような要
求に応えることは困難である。特に金属粉末を用いた場
合には、空気中の水分によって徐々に酸化されるために
その導電性が経時的に低下するという問題があり、トナ
ー用の導電性フィラーとして用いると画質が不均一にな
ることがある。
Carbon black and metal powders have been used as the conductive fillers generally used in the past, but when these are used, it is difficult to freely color them and it is difficult to meet the above requirements. . In particular, when a metal powder is used, there is a problem that its conductivity decreases over time because it is gradually oxidized by moisture in the air, and when it is used as a conductive filler for toner, the image quality becomes uneven. May be.

【0005】このような薄色化が可能な導電性物質とし
ては、酸化インジウム系、酸化亜鉛系、二酸化錫系など
の酸化物系フィラーが考えられるが、中でも二酸化錫系
フィラーは比較的安価で、毒性も低いため有望である。
しかし、一般に二酸化錫の導電性は低くその制御可能な
幅も小さいため、アンチモンやフッ素、リン、ヒ素、ビ
スマス、セレン、テルル、バナジウム、ニオブ、タンタ
ル、クロム、モリブデン、タングステンなどの体積抵抗
率を低下させる(導電性を向上させる)作用を有するド
ーパント(以下、導電性向上用ドーパントともいう。)
を添加して導電性を高める必要がある。ところが、これ
ら導電性向上用ドーパントを多量に添加した場合には着
色が起り上記薄色化を達成することができなくなること
があるばかりでなく、上記導電性向上用ドーパントは一
般に有害であるものが多いため、その用途が制限された
り、製造時、使用時、又は廃棄時に注意が必要となる。
よって上記導電性向上用ドーパントの添加量をなるべく
低減するか、用途によっては、有害性の低いドーパント
を用いなければならない。
As such a light-colorable conductive substance, oxide-based fillers such as indium oxide-based, zinc oxide-based, and tin dioxide-based fillers are considered. Among them, tin dioxide-based fillers are relatively inexpensive. , Because it has low toxicity, it is promising.
However, since tin dioxide is generally low in conductivity and has a small controllable width, it is possible to control the volume resistivity of antimony, fluorine, phosphorus, arsenic, bismuth, selenium, tellurium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, etc. Dopant having an action of decreasing (improving conductivity) (hereinafter, also referred to as conductivity improving dopant).
Need to be added to enhance conductivity. However, when a large amount of these conductivity-improving dopants are added, not only can the coloring be reduced and the above-described lightening cannot be achieved, but the conductivity-improving dopant is generally harmful. Due to the large number of them, their uses are limited, and caution is required during production, use, or disposal.
Therefore, it is necessary to reduce the amount of the conductivity improving dopant added as much as possible, or to use a dopant having low toxicity depending on the application.

【0006】上記要求を満足させるため、例えば特公昭
62−1572号公報、特公昭62−1573号公報、
特公昭62−1574号公報、及び特開平2−3221
号公報には、導電性向上用ドーパントを含有しない二酸
化錫粉末においてその体積抵抗率が10〜10Ωc
mであることが記載されている。また、特開平6−34
5429号公報には、第二錫塩を含有する溶液を中和処
理して沈殿物を析出させた後に、沈殿物を不活性又は弱
還元性雰囲気中で焼成することにより、2.0X10
Paと非常に高いプレス圧で圧粉法により測定したとき
の体積抵抗率が10−1〜10Ωcmの二酸化錫粉末
が得られる旨が記載されている。
In order to satisfy the above requirements, for example, Japanese Patent Publication No. 62-1572, Japanese Patent Publication No. 62-1573,
Japanese Examined Patent Publication No. 62-1574 and Japanese Patent Laid-Open No. 3221
Japanese Patent Laid-Open Publication No. 2004-242242 discloses that tin dioxide powder containing no dopant for improving conductivity has a volume resistivity of 10 4 to 10 7 Ωc.
m is described. In addition, JP-A-6-34
No. 5429 discloses that a solution containing a stannic salt is neutralized to deposit a precipitate, and then the precipitate is fired in an inert or weakly reducing atmosphere to obtain 2.0 × 10 8.
It is described that a tin dioxide powder having a volume resistivity of 10 −1 to 10 4 Ωcm when measured by a powder compacting method with a very high pressing pressure of Pa is obtained.

【0007】しかしながら、これら二酸化錫粉末では、
体積抵抗率の低いものについては前記特開平6−345
429号公報中にも説明されているように二酸化錫粉末
の表面が局部的に金属錫に還元されるために、得られる
二酸化錫粉末は金属錫を含むために着色したり、金属錫
の酸化によって経時的に体積抵抗率が大きく上昇して、
各種プラスチックやトナー添加用途では体積抵抗率の制
御が困難になることが予想される。また導電性向上用ド
ーパントを含有しない二酸化錫粉末の体積抵抗率は高い
ため、導電性フィラーとして用いるためには各種プラス
チックに多量に添加する必要があり、プラスチックの特
性を損なうという問題がある。よって、前記有害性も考
慮した上で、なるべく導電性向上用ドーパントの添加量
を低減し、かつ導電性が高く、(体積抵抗率が低く)そ
の導電性の経時変化が少ない二酸化錫粉末が求められて
いる。
However, with these tin dioxide powders,
Regarding the one having a low volume resistivity, the above-mentioned JP-A-6-345 is used.
As described in Japanese Patent No. 429, the surface of tin dioxide powder is locally reduced to metallic tin, so that the resulting tin dioxide powder contains metallic tin and is colored, or the metallic tin is oxidized. The volume resistivity greatly increases with time,
It is expected that it will be difficult to control the volume resistivity in various plastic and toner addition applications. Further, since tin dioxide powder which does not contain a dopant for improving conductivity has a high volume resistivity, it is necessary to add a large amount to various plastics in order to use it as a conductive filler, which causes a problem of impairing the properties of the plastic. Therefore, in consideration of the above-mentioned harmfulness, tin dioxide powder in which the addition amount of the conductivity improving dopant is reduced as much as possible, the conductivity is high (the volume resistivity is low), and the conductivity is less likely to change over time is sought. Has been.

【0008】また、静電気の発生を嫌う電子部品用プラ
スチック製品においては、導電性フィラーを添加するこ
とによって、プラスチック製品同士、あるいは他の物質
との摩擦により発生した静電気を効率よく逃がすことも
大切であるが、用途によっては導電性フィラーの添加量
が制限されることもあるので、できれば静電気は発生さ
せない方が好ましい。静電気は、2つ以上の物質が接
触、摩擦することによって、これらの物質間で電荷の移
動が起り、正又は負の電荷を帯びることにより発生す
る。例えばロール状に巻回したプラスチックフィルムの
ように同じ物質が接触、摩擦する場合、静電気の発生を
極力防止するためには、摩擦帯電特性が中性に近い、即
ちファラデーケージなどを用いて測定される摩擦帯電量
がゼロに近いプラスチックフィルムが好ましく、そのた
めには、摩擦帯電量を制御し、且つ万が一静電気が発生
したとしてもその静電気を効率よく逃がすための導電性
フィラーが望まれている。例えば、電子部品搬送用トレ
イや可燃性粉体用包装袋などに用いられているプラスチ
ック製品は、可塑剤やシリカなどの他の添加剤を添加し
ているためと思われるが、ファラデーケージなどで測定
された摩擦帯電量が−数100μC/g以下、即ち絶対
値が非常に大きなマイナス値をとることが多いため、静
電気の発生を抑制することは難しい。よって導電性フィ
ラーとしてはなるべく絶対値の小さなもの、即ちゼロに
近い値をとるもの(具体的にはおよそ−100〜0μC
/g)を添加するか、又は上記トレイや包装袋の摩擦帯
電量と逆極性の導電性フィラーを添加して、全体として
摩擦帯電量をゼロに近づけることが望ましい。
In addition, in a plastic product for electronic parts, which is averse to static electricity, it is also important to add a conductive filler to efficiently dissipate static electricity generated by friction between plastic products or other substances. However, since the amount of the conductive filler added may be limited depending on the application, it is preferable not to generate static electricity if possible. Static electricity is generated when two or more substances come into contact with each other and rub against each other, whereby electric charges are transferred between these substances and a positive or negative charge is applied. For example, when the same substance contacts and rubs like a plastic film wound in a roll, the triboelectrification characteristics are close to neutral, that is, measured using a Faraday cage in order to prevent the generation of static electricity as much as possible. A plastic film having a triboelectrification amount close to zero is preferable, and for that purpose, a conductive filler for controlling the triboelectrification amount and efficiently dissipating the static electricity even if static electricity should occur is desired. For example, plastic products used in trays for transporting electronic parts and packaging bags for flammable powders are thought to be due to the addition of other additives such as plasticizers and silica. It is difficult to suppress the generation of static electricity because the measured triboelectric charge amount is −several hundred μC / g or less, that is, the absolute value often takes a very large negative value. Therefore, as the conductive filler, one having an absolute value as small as possible, that is, one having a value close to zero (specifically, about −100 to 0 μC)
/ G) or a conductive filler having a polarity opposite to the triboelectric charge amount of the tray or the packaging bag described above is preferably added to bring the triboelectric charge amount close to zero as a whole.

【0009】また、電子写真装置においては高画質の印
刷物を得るために、トナー自体の摩擦帯電量を厳しく制
御する必要がある。しかしトナーには別の特性を制御す
るための添加剤、即ち色材、外添剤などが添加されてい
るが、各種添加剤を添加するとトナーの摩擦帯電量に影
響を与えるため、電荷制御剤を添加し、トナーの摩擦帯
電量を制御している。近年、電子写真装置を小型化した
り、廃トナーをなくすなどの目的で、所謂クリーナレス
システム方式の電子写真装置(例えば、特開平11−2
12337号、特開2000−162849号、特開2
000−267337号など)が提案されているが、該
方式においては、トナーの摩擦帯電量を特に厳しく制御
する必要がある。
Further, in the electrophotographic apparatus, it is necessary to strictly control the triboelectric charge amount of the toner itself in order to obtain a high quality printed matter. However, the toner contains additives for controlling other characteristics, such as coloring materials and external additives. However, addition of various additives affects the triboelectric charge amount of the toner. Is added to control the triboelectric charge amount of the toner. In recent years, for the purpose of downsizing an electrophotographic apparatus and eliminating waste toner, a so-called cleanerless system type electrophotographic apparatus (for example, Japanese Patent Laid-Open No. 11-2
12337, JP 2000-162849 A, JP 2
No. 000-267337) has been proposed, but in this method, it is necessary to strictly control the triboelectric charge amount of the toner.

【0010】クリーナレスシステムとは、トナー像を転
写材に転写後、感光ドラム上に転写されずに残った転写
残トナーを帯電部の帯電部材(磁性粒子など)によって
掻き取り、帯電部にいったん収納した後、再び感光ドラ
ム上に戻し、その後トナーを有する現像部内に回収し、
再利用するシステムである。本システムは、新たにクリ
ーナ部を設ける必要がないので、装置を小型化できるメ
リットがあり、また廃トナーを出さないので環境保護の
観点から好ましいシステムである。該クリーナレスシス
テムでは、帯電部にいったん収納された転写残トナーが
帯電部材との摺擦によって必要以上に帯電する現象、即
ちチャージアップを防止するために、トナーにおよそ
(10〜10Ωcm程度)の体積抵抗率を有する微
粉末(以下、導電性制御粉末ともいう。)を含有させ、
電荷を逃がす機能を持たせる必要があるが、トナーに新
たに導電性制御粉末を添加するため、トナーの摩擦帯電
量制御を複雑化している。現像方式にはいくつかの方式
があり、感光ドラム側をプラスに帯電させてマイナスに
帯電させたトナーで現像する方式を採用した場合には、
導電性制御粉末をトナーに添加しても、トナーが、マイ
ナスに帯電できるように導電性制御粉末もゼロからマイ
ナスに帯電する性質を有している必要がある。但し、ト
ナーの摩擦帯電量になるべく影響を与えないようにする
ため、摩擦帯電量の絶対値が小さなもの(具体的には−
100〜0μC/g程度のもの)が好ましく、トナーメ
ーカーにおいて二酸化錫粉末をトナーに添加することが
試みられている(前述、特開平11−212337号、
特開2000−162849号、特開2000−267
337号など)。しかしながら通常二酸化錫粉末の摩擦
帯電量は−120μC/g程度であるため(小口.表
面.320.vol23.No.6[1985])、ト
ナーに二酸化錫粉末を添加すると、トナーの摩擦帯電量
に大きな影響を与えてしまう。さらには二酸化錫粉末の
比重は約7前後であり、非常に重いため、プラスチック
製品やトナーに添加する導電性フィラーとしては、より
軽いものが求められている。さらにまた、粉末の取り扱
いを容易にするため、あるいはトナーの流動性を高める
ためには球状、又は略球状の方が好適である。
In the cleanerless system, after the toner image is transferred onto the transfer material, the transfer residual toner left untransferred on the photosensitive drum is scraped off by the charging member (magnetic particles etc.) of the charging section, and once transferred to the charging section. After storing it, return it to the photosensitive drum again, and then collect it in the developing unit containing toner.
It is a reuse system. Since this system does not need to newly provide a cleaner part, it has an advantage that the apparatus can be downsized, and since it does not generate waste toner, it is a preferable system from the viewpoint of environmental protection. In the cleanerless system, in order to prevent a phenomenon in which the transfer residual toner once stored in the charging unit is unnecessarily charged by sliding friction with the charging member, that is, charge-up, the toner is approximately (10 2 to 10 9 Ωcm). Fine powder (hereinafter, also referred to as conductivity control powder) having a volume resistivity of
Although it is necessary to have a function of releasing the electric charge, the frictional charge amount control of the toner is complicated because a conductive control powder is newly added to the toner. There are several developing methods. If you adopt the method of developing with the toner charged positively on the photosensitive drum side and negatively charged,
Even if the conductive control powder is added to the toner, it is necessary that the conductive control powder also has the property of being charged from zero to minus so that the toner can be charged negatively. However, in order to minimize the influence on the triboelectric charge amount of the toner, a toner whose triboelectric charge amount has a small absolute value (specifically,
(About 100 to 0 μC / g) is preferable, and it has been attempted to add tin dioxide powder to the toner by a toner maker (for example, JP-A-11-212337,
JP-A-2000-162849, JP-A-2000-267
337). However, the triboelectric charge amount of tin dioxide powder is usually about −120 μC / g (Small.Surface.320.vol23.No.6 [1985]). Therefore, when tin dioxide powder is added to the toner, the triboelectric charge amount of the toner is reduced. It will have a big impact. Further, tin dioxide powder has a specific gravity of about 7 and is very heavy, so that a lighter conductive filler to be added to plastic products and toners is required. Furthermore, in order to facilitate the handling of the powder or to improve the fluidity of the toner, a spherical shape or a substantially spherical shape is preferable.

【0011】このような要求に対して、例えば特開昭5
6−114215号、特開昭56−114216号、特
開昭56−114217号、特開昭56−114218
号には二酸化錫を被覆した金属酸化物粉末の製造方法が
開示されている。しかしながら、この方法で作製された
粉末はある程度薄色度の高く、比重の軽い粉末となる
が、被覆層が非常にはがれやすいため、各種プラスチッ
クやトナーに混練した際に導電性の低下が見られたり、
摩擦帯電量が−数100μC/gを示すシリカなどの金
属酸化物が表面に露出することによる摩擦帯電量の大幅
なマイナス値化がみられるなどの問題があった。
In response to such a request, for example, Japanese Patent Laid-Open No.
6-114215, JP-A-56-114216, JP-A-56-114217, and JP-A-56-114218.
JP-A No. 1994-242 discloses a method for producing a metal oxide powder coated with tin dioxide. However, although the powder produced by this method has a high degree of lightness and a low specific gravity, the coating layer is very easily peeled off, so that the conductivity is reduced when kneaded with various plastics and toners. Or
There is a problem in that a metal oxide such as silica having a triboelectric charge amount of −100 μC / g is exposed on the surface, so that the triboelectric charge amount is significantly reduced.

【0012】[0012]

【発明が解決しようとする課題】このように、二酸化錫
を主成分とする錫系酸化物は、工業的に有用な導電性フ
ィラーとなり得ると考えられるが、安全性が高く、薄色
系で、より体積抵抗率が低く、該体積抵抗率が変化せ
ず、且つ摩擦帯電量がゼロに近いマイナス値を有し、更
には比重が軽く、また更には球状又は略球状の形状を有
するものはこれまで知られていない。本発明はこのよう
な導電性粒子又は導電性粉末及びその製造方法を提供す
ることを目的とする。
As described above, although it is considered that the tin-based oxide containing tin dioxide as a main component can be an industrially useful conductive filler, it is highly safe and is a light-colored type. , The volume resistivity is lower, the volume resistivity does not change, the triboelectric charge amount has a negative value close to zero, the specific gravity is light, and the spherical or substantially spherical shape is So far unknown. An object of the present invention is to provide such conductive particles or conductive powder and a method for producing the same.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するため鋭意検討を行った。その結果、シリカ
を主成分とする無機酸化物粒子の表面に導電性酸化物か
らなる被覆層を形成さする際に、該被覆層に珪素原子を
含ませ、且つ該被覆層内の珪素原子濃度が粒子の中心側
から外側に向かって減少するようにした場合には、上記
のような要求を満足する導電性粉末が得られることを見
出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made extensive studies to achieve the above object. As a result, when a coating layer made of a conductive oxide is formed on the surface of inorganic oxide particles containing silica as a main component, the coating layer contains silicon atoms and the concentration of silicon atoms in the coating layer is increased. It was found that a conductive powder satisfying the above-mentioned requirements can be obtained when the number of particles is decreased from the center side to the outside, and the present invention has been completed.

【0014】即ち、本発明は、シリカを主成分とする無
機酸化物粒子の表面に導電性酸化物からなる被覆層が形
成されてなる導電性粒子及び/又はその凝集体からなる
導電性粉末であって、前記導電性粒子の被覆層が珪素原
子を含み、且つ該被覆層内の珪素原子濃度が粒子の中心
側から外側に向かって減少していることを特徴とする導
電性粉末である。
That is, the present invention relates to a conductive powder comprising conductive particles and / or aggregates thereof, in which a coating layer made of a conductive oxide is formed on the surface of inorganic oxide particles containing silica as a main component. The conductive powder is characterized in that the coating layer of the conductive particles contains silicon atoms and the concentration of silicon atoms in the coating layer decreases from the center side of the particles toward the outside.

【0015】上記本発明の導電性粉末を構成する導電性
粒子は、シリカを主成分とする無機酸化物粒子(以下、
コア粒子ともいう。)の表面に珪素原子を含む導電性酸
化物からなる特定の被覆層が形成されたものであるが、
該被覆層中の珪素原子濃度はコア粒子の表面から被覆層
の表面に向かって連続的に、あるいは段階的に減少して
いるため、コア粒子と被覆層の明確な境界がなく、その
密着性は非常に高くなっている。また、本発明の導電性
粉末は、その理由は不明であるが、従来の二酸化錫粉末
と比較して摩擦帯電量がよりゼロに近い値を有するた
め、各種プラスチック製品への埃の付着やプラスチック
製容器内に収容された可燃性粉体の粉塵爆発を防止する
目的で添加される導電性フィラーとして、あるいは電子
写真装置のトナー用の導電性制御粉末などとして、様々
な用途に使用可能である。さらに、本発明の導電性粉末
を各種プラスチックに混練した際に、各導電性粒子にお
いて前記被覆層がはがれて摩擦帯電量が−数100μC
/gを示すコア粒子が露出することがなくなり、導電性
の低下や摩擦帯電量の大幅なマイナス値化が起り難く
い。また、上記本発明の導電性粉末の中でも、これを構
成する導電性粒子が球状又は略球状であるものは、粒子
同士の凝集が少なく良好な流動性を有して取り扱い易い
という特徴があるためトナー用の導電性制御粉末などの
用途では特に好適である。
The conductive particles constituting the conductive powder of the present invention are inorganic oxide particles containing silica as a main component (hereinafter,
Also called core particles. ) Has a specific coating layer formed of a conductive oxide containing a silicon atom,
Since the silicon atom concentration in the coating layer decreases continuously or stepwise from the surface of the core particle to the surface of the coating layer, there is no clear boundary between the core particle and the coating layer, and the adhesion Is very high. Further, the conductive powder of the present invention, although the reason is unknown, has a triboelectric charge amount closer to zero as compared with the conventional tin dioxide powder, so that dust adhesion to various plastic products and plastic It can be used for various purposes, such as conductive filler added for the purpose of preventing dust explosion of flammable powder contained in a container, or conductivity control powder for toner of electrophotographic devices. . Furthermore, when the conductive powder of the present invention is kneaded into various plastics, the coating layer is peeled off from each conductive particle, and the triboelectric charge amount is −several hundred μC.
The core particles exhibiting / g are not exposed, and it is difficult for the conductivity to decrease and the triboelectric charge amount to significantly decrease. Further, among the above-mentioned conductive powder of the present invention, the conductive particles forming the spherical particles or spherical particles have a characteristic that particles have less aggregation and have good fluidity and are easy to handle. It is particularly suitable for applications such as conductivity control powder for toner.

【0016】また、他の本発明は、シリカを主成分とす
る無機酸化物粒子の懸濁液に、加水分解・重縮合反応に
よりポリシロキサン結合を形成し得る含珪素化合物およ
び加水分解・重縮合反応により−M−O−M−結合(但
し、Mはその酸化物が導電性を示す金属原子又は半金属
原子を意味する。)を形成し得る金属原子又は半金属原
子含有化合物を、実質的に同時に連続的又は断続的に、
且つ添加時における含珪素化合物重量の金属原子又は半
金属原子含有化合物重量に対する割合が添加開始時から
添加終了時にかけて連続的又は段階的に減少するように
して添加し、前記シリカを主成分とする無機酸化物粒子
の表面にこれら化合物の加水分解物の重縮合物を析出さ
せ、次いで表面に該重縮合物が析出した該粒子を熱処理
することを特徴とする、本発明の導電性粉末の製造方法
である。該方法によれば、本発明の導電性粉末を効率よ
く製造することができる。
Another aspect of the present invention is that a silicon-containing compound capable of forming a polysiloxane bond by a hydrolysis / polycondensation reaction and a hydrolysis / polycondensation in a suspension of inorganic oxide particles containing silica as a main component. A metal atom or a metalloid atom-containing compound capable of forming a -MOMM bond (where M means a metal atom or metalloid atom whose oxide exhibits conductivity) by a reaction, At the same time continuously or intermittently,
Further, it is added such that the ratio of the weight of the silicon-containing compound at the time of addition to the weight of the metal atom- or metalloid atom-containing compound is continuously or stepwise reduced from the start of the addition to the end of the addition, and the silica is the main component. Production of a conductive powder of the present invention, which comprises depositing a polycondensate of a hydrolyzate of these compounds on the surface of inorganic oxide particles, and then heat-treating the particles on which the polycondensate is deposited. Is the way. According to this method, the conductive powder of the present invention can be efficiently produced.

【0017】[0017]

【発明の実施の形態】本発明の導電性粉末は、コア粒子
の表面に珪素原子を含む導電性酸化物からなる特定の被
覆層が形成された導電性粒子及び/又はその凝集体から
なる。上記コア粒子は、シリカを主成分とする無機酸化
物粒子であれば特に限定されず、シリカのみからなって
いても、シリカ以外の無機酸化物を含んでいてもよい。
なお、ここで、シリカを主成分とするとは、コア粒子中
においてシリカ成分が最も含有量の多い成分であること
を意味する。コア粒子がシリカを主成分とすることによ
り、最終的に得られる導電性粉末の薄色度を高くした
り、比重を小さくしたりすることが可能になるばかりで
なく、製造コストが低くなり、更には球状又は略球状の
導電性粒子粒子が作り易くなるといったメリットがあ
る。このようなメリットが大きいという観点から、コア
粒子中のシリカ成分の含有率は、50〜100重量%、
特に80〜100重量%であるのが好適であり、90〜
100重量%であるのが最も好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive powder of the present invention comprises conductive particles in which a specific coating layer made of a conductive oxide containing silicon atoms is formed on the surface of core particles, and / or aggregates thereof. The core particle is not particularly limited as long as it is an inorganic oxide particle containing silica as a main component, and may be made of only silica or may contain an inorganic oxide other than silica.
In addition, here, having silica as a main component means that a silica component is a component with the largest content in a core particle. By using silica as the main component of the core particles, it is possible not only to increase the dichroism of the conductive powder finally obtained or to reduce the specific gravity, but also to reduce the manufacturing cost, Further, there is an advantage that spherical or substantially spherical conductive particles can be easily produced. From the viewpoint that such a merit is large, the content of the silica component in the core particles is 50 to 100% by weight,
It is particularly preferably 80 to 100% by weight, and 90 to
Most preferably 100% by weight.

【0018】コア粒子中に含まれていてもよいシリカ以
外の無機酸化物成分としては、薄色度を低下させないも
のであれば特に限定されない。好適に用いられる無機酸
化物成分を具体的に例示すれば、二酸化錫や一酸化錫な
どの酸化錫、酸化亜鉛、酸化アンチモン、酸化インジウ
ム、アルミナ、ジルコニア、チタニア、酸化ホウ素、酸
化リン、マグネシア、酸化カルシウム、希土類酸化物等
が挙げられる。これら無機酸化物成分は、複数種類含ま
れていてもかまわない。コア粒子中にこれら無機酸化物
成分、特に被覆層に含まれる導電性無機酸化物と同種の
無機酸化物成分が含まれる場合には、該被覆層を形成し
易くなる傾向がある。これらの中でも、被覆層を形成し
易いという理由から、酸化錫、酸化亜鉛、酸化インジウ
ム等の導電性酸化物、あるいはアルミナ、ジルコニア、
チタニアなどを使用するのが特に好適である。コア粒子
がこれらシリカ以外の無機酸化物成分を含む場合、これ
ら無機酸化物成分はシリカに固溶していても、分相して
微結晶としてシリカのマトリックス中に分散していても
よい。
The inorganic oxide component other than silica which may be contained in the core particles is not particularly limited as long as it does not reduce the lightness. Specific examples of suitable inorganic oxide components include tin oxide such as tin dioxide and tin monoxide, zinc oxide, antimony oxide, indium oxide, alumina, zirconia, titania, boron oxide, phosphorus oxide, magnesia, Examples thereof include calcium oxide and rare earth oxides. Plural kinds of these inorganic oxide components may be contained. When the core particles contain these inorganic oxide components, especially the same kind of inorganic oxide component as the conductive inorganic oxide contained in the coating layer, the coating layer tends to be easily formed. Among these, tin oxide, zinc oxide, conductive oxides such as indium oxide, or alumina, zirconia, because of the ease of forming the coating layer,
It is particularly preferable to use titania or the like. When the core particles contain an inorganic oxide component other than silica, these inorganic oxide components may be solid-dissolved in silica or may be phase-separated and dispersed in the silica matrix as fine crystals.

【0019】前記コア粒子の大きさは特に制限されず、
用途に応じて適宜決定すればよいが、あまりにも大きい
とコア粒子に均一な被覆をすることが困難となるため、
コア粒子の平均粒子径は30μm以下であるのが好適で
ある。粒子径の下限値は特に限定されず、透過型電子顕
微鏡(TEM)観察などで判別可能ならば、いくら小さ
いものでも構わない。また、コア粒子の形状は特に限定
されないが、球状又は略球状であるのが好ましい。ここ
でいう球状又は略球状とは、導電性粒子が球あるいはそ
れに近い形状を有し、その平均均斉度が0.66〜1.
00であることをいう。このような球状又は略球状のコ
ア粒子を用いて導電性粒子を製造した場合には、同じく
球状又は略球状の導電性粒子を容易に得ることができ
る。このような導電性粒子は、流動性が高いため取り扱
いが容易であり、各種プラスチックに充填しやすいため
特に有用である。なお、上述の平均均斉度とは導電性粒
子のn(n>30)個について、それぞれの最大幅(長
径:L)および長径に直交する方向での最大幅(短径:
B)により計算されるB/Lの値を平均したものであ
る。これら長径および短径は、例えば電子顕微鏡(SE
MやTEM)による写真を撮影し、その写真の単位視野
内に観察される粒子について長径および短径を測定する
ことにより求めることができる。
The size of the core particles is not particularly limited,
It may be appropriately determined depending on the application, but if it is too large, it becomes difficult to coat the core particles uniformly,
The average particle diameter of the core particles is preferably 30 μm or less. The lower limit of the particle diameter is not particularly limited, and may be any small value as long as it can be discriminated by observation with a transmission electron microscope (TEM). The shape of the core particles is not particularly limited, but it is preferably spherical or substantially spherical. The spherical or substantially spherical shape as used herein means that the conductive particles have a spherical shape or a shape close thereto, and the average degree of uniformity is 0.66 to 1.
It is 00. When conductive particles are produced using such spherical or substantially spherical core particles, similarly spherical or substantially spherical conductive particles can be easily obtained. Such conductive particles are particularly useful because they have high fluidity, are easy to handle, and can be easily filled into various plastics. The above-mentioned average uniformity is the maximum width (major axis: L) and the maximum width (minor axis: minor axis: n) of each of n (n> 30) conductive particles.
It is the average of the values of B / L calculated in B). These major axis and minor axis are, for example, electron microscope (SE
It can be determined by taking a photograph with M or TEM) and measuring the major axis and the minor axis of particles observed in the unit visual field of the photograph.

【0020】本発明の導電性粉末を構成する前記導電性
粒子において、コア粒子上に形成される被覆層は、珪素
原子を含む導電性酸化物からなり、しかも該被覆層内の
珪素原子濃度は粒子の中心側から外側に向かって減少し
ている必要がある。即ち、上記被覆層において、珪素原
子は通常酸化物となって存在するが、該被覆層中の珪素
原子は均一な濃度で分散しているのではなく、コア粒子
表面から被覆層の表面に向かって珪素原子濃度(あるい
は珪素酸化物濃度)連続的、又は段階的に減少してい
る、別言すれば濃度勾配が存在することが重要である。
被覆層がこのような構造をとることによって、コア粒子
と被覆層間との間の付着力を増すことができ、被覆層が
非常にはがれにくいものとなる。被覆層の外表面では珪
素原子の濃度はゼロであっても、またわずかに残ってい
てもよい。但し、本発明の導電性粒子の体積抵抗率を低
減し、且つ摩擦帯電量をよりゼロに近づけるという観点
から、被覆層の外表面部分の珪素原子濃度は、被覆層を
構成する他の酸化物成分の金属原子又は半金属原子及び
珪素原子の合計モル数に対して20モル%以下、特に1
0モル%以下であるのが好適である。また、上記被覆層
におけるコア粒子との界面近傍における珪素原子濃度
は、コア粒子との密着性が高いという観点からコア粒子
における珪素原子濃度の99〜80%の範囲であるのが
好ましい。
In the conductive particles constituting the conductive powder of the present invention, the coating layer formed on the core particles is made of a conductive oxide containing silicon atoms, and the concentration of silicon atoms in the coating layer is It must decrease from the center of the particle toward the outside. That is, although silicon atoms usually exist as oxides in the coating layer, the silicon atoms in the coating layer do not disperse at a uniform concentration, but move from the core particle surface toward the surface of the coating layer. Therefore, it is important that the silicon atom concentration (or silicon oxide concentration) is continuously or stepwise reduced, in other words, that there is a concentration gradient.
When the coating layer has such a structure, the adhesive force between the core particle and the coating layer can be increased, and the coating layer is very unlikely to come off. On the outer surface of the coating layer, the concentration of silicon atoms may be zero or may remain slightly. However, from the viewpoint of reducing the volume resistivity of the conductive particles of the present invention and making the triboelectric charge amount closer to zero, the silicon atom concentration of the outer surface portion of the coating layer is set to the value of another oxide constituting the coating layer. 20 mol% or less, especially 1 with respect to the total number of moles of the metal atom or metalloid atom and silicon atom of the component
It is preferably 0 mol% or less. Further, the silicon atom concentration in the vicinity of the interface with the core particle in the coating layer is preferably in the range of 99 to 80% of the silicon atom concentration in the core particle from the viewpoint of high adhesion to the core particle.

【0021】なお、コア粒子及び被覆層中の珪素原子濃
度は、導電性粒子をそのままか、あるいは導電性粒子を
切断したり、化学エッチング又は物理エッチングにより
表面を少しずつ除去して前処理したものについて、元素
分析が可能な透過型電子顕微鏡(TEM)や走査型電子
顕微鏡、蛍光X線分析、あるいはICP発光分光分析な
どの手法を用いて、測定することができる。また、コア
粒子と被覆層との界面近傍において両者の組成が近い場
合には両者の境界が不明瞭となるが、導電性粒子につい
て粒子中心から外側に向かって元素分析したときに珪素
原子の濃度が減少し始める箇所として確認することがで
きる。
The concentration of silicon atoms in the core particles and the coating layer is obtained by pre-treating the conductive particles as they are, or by cutting the conductive particles, or gradually removing the surface by chemical etching or physical etching. Can be measured using a technique such as a transmission electron microscope (TEM) capable of elemental analysis, a scanning electron microscope, fluorescent X-ray analysis, or ICP emission spectroscopic analysis. When the composition of the core particles and the coating layer are close to each other in the vicinity of the interface, the boundary between the two becomes unclear, but when conducting elemental analysis from the particle center toward the outside of the conductive particles, the concentration of silicon atoms Can be confirmed as the point where the number starts to decrease.

【0022】また、被覆層がはがれやすいかどうかにつ
いては、樹脂などに混錬した後の導電性粒子をSEM観
察し、表面の変化を見たり、導電性粒子を乳鉢などで粉
砕した後の摩擦帯電量を測定することで明らかにするこ
とができる。後者の摩擦帯電量を測定する方法では、粉
砕後、被覆層がはがれているときはシリカが多く表面に
露出し、その摩擦帯電量が大きくマイナス側にシフトす
るため、被覆層の剥離の有無がわかる。
Further, regarding whether the coating layer is easily peeled off, the conductive particles after kneading with a resin or the like are observed with a SEM to observe the change of the surface, or the friction after crushing the conductive particles in a mortar or the like. It can be clarified by measuring the charge amount. In the latter method of measuring the triboelectric charge amount, after grinding, a large amount of silica is exposed on the surface when the coating layer is peeled off, and the triboelectric charge amount largely shifts to the negative side. Recognize.

【0023】前記被覆層を構成する導電性酸化物は、少
なくともその一部が珪素原子を含む複合酸化物であって
全体として導電性を有するものであれば特に限定されな
い。該被覆層を形成する珪素酸化物成分以外の酸化物成
分を例示すれば、酸化錫、酸化亜鉛、酸化アンチモン、
酸化インジウム等の導電性酸化物、これら酸化物に導電
性向上用ドーパントを添加したもの、及びこれらの複合
酸化物が挙げられる。これらの中でも、酸化錫、酸化イ
ンジウム、酸化亜鉛、これら酸化物に導電性向上用ドー
パントを添加したもの、またはこれらの複合酸化物を用
いるのが好適である。特に、比較的安価であり、被覆層
のコア粒子への付着力も高いといった理由から、酸化錫
及び/又は酸化亜鉛を使用するのが好適であり、更には
毒性の低さからは酸化錫を使用するのが好適である。な
お、これら酸化物(又は複合酸化物)に導電性向上用ド
ーパントを添加する場合には、安全性や粉末の色調など
を考慮した上で、その種類や量を決定すればよい。一般
的なドーパントの添加量は、導電性酸化物との合計量に
対して5重量%以下である。なお、導電性向上用ドーパ
ントとしては、アンチモン、ニオブ、タンタル、モリブ
デン、タングステン、リン、バナジウム等の5価又は6
価イオンとなり得る元素が使用できる。但し、安全性を
考慮し、アンチモン、バナジウムなどの毒性の高い元素
は量的に少ない方が好ましい。
The conductive oxide forming the coating layer is not particularly limited as long as it is a composite oxide containing at least a part of silicon atoms and has conductivity as a whole. Examples of oxide components other than the silicon oxide component forming the coating layer include tin oxide, zinc oxide, antimony oxide,
Examples thereof include conductive oxides such as indium oxide, those obtained by adding a conductivity improving dopant to these oxides, and composite oxides thereof. Among these, tin oxide, indium oxide, zinc oxide, those obtained by adding a conductivity improving dopant to these oxides, or composite oxides of these are preferably used. In particular, it is preferable to use tin oxide and / or zinc oxide because they are relatively inexpensive and have high adhesiveness to the core particles of the coating layer. Furthermore, tin oxide is preferable because of its low toxicity. It is preferably used. When the conductivity improving dopant is added to these oxides (or composite oxides), the type and amount thereof may be determined in consideration of safety and powder color tone. A general amount of the dopant added is 5% by weight or less based on the total amount of the conductive oxide. The conductivity improving dopant may be pentavalent or hexavalent such as antimony, niobium, tantalum, molybdenum, tungsten, phosphorus, vanadium.
Elements that can be valence ions can be used. However, in consideration of safety, it is preferable that the amount of highly toxic elements such as antimony and vanadium is small in quantity.

【0024】本発明の導電性粉末を構成する前記導電性
粒子における前記被覆層の厚さは特に限定されないが、
あまりにも薄いと高い導電性が得られず、また極端に厚
いものは安定的に製造することが困難となため、コア粒
子の平均粒子径の1/300〜1/2とするのが好まし
い。なお、被覆層の厚さは、製造時において被覆する前
のコア粒子の粒子及び被覆後に得られる導電性粒子の粒
子径をTEMやSEMで測定し、その差から求めること
ができる。コア粒子の場合と同じ理由により、上記導電
性粒子の平均粒子径は、40μm以下、特に0.01〜
30μmであるのが好適であり、その形状は球状又は略
球状であるのが好適である。
The thickness of the coating layer in the conductive particles constituting the conductive powder of the present invention is not particularly limited,
If it is too thin, high conductivity cannot be obtained, and if it is extremely thick, it is difficult to stably manufacture it. Therefore, it is preferably 1/300 to 1/2 of the average particle diameter of the core particles. The thickness of the coating layer can be determined from the difference between the particle diameters of the core particles before coating and the conductive particles obtained after coating, which are measured by TEM or SEM during production. For the same reason as in the case of the core particles, the average particle diameter of the conductive particles is 40 μm or less, particularly 0.01 to
It is preferably 30 μm, and its shape is preferably spherical or substantially spherical.

【0025】本発明の導電性粉末は上記した導電性粒子
及び/又はその凝集体からなる。一般に粒子径の非常に
小さな独立粒子のみからなる粉末を得ることは困難であ
り、製造時の乾燥工程等により凝集することが多く、こ
のような凝集粒子を完全な独立粒子に戻すことは困難で
ある。本発明の導電性粉末においても、導電性粒子の粒
子径が大きい場合は該導電性粒子がそれぞれ独立した状
態で存在する粉末を得ることもできるが、導電性粒子の
粒子径が小さい場合には上記のような凝集粒子を含むの
が一般的である。用途によっては、凝集粒子を含んでい
ても構わないが、例えばトナー用の導電性制御粉末など
の用途では、トナー粒子の大きさを考慮して、凝集粒子
を含む場合の平均粒子径は0.01〜5μm、より好ま
しくは0.01〜2μmがよい。また、フィルム添加用
途では、フィルムの厚さにもよるが、平滑な面が得られ
易いように、凝集粒子を含む場合の平均粒子径は0.0
1〜20μm、より好ましくは0.01〜10μmがよ
い。
The conductive powder of the present invention comprises the above-mentioned conductive particles and / or aggregates thereof. Generally, it is difficult to obtain a powder consisting of only independent particles having a very small particle size, and it is often agglomerated due to a drying step or the like during production, and it is difficult to return such aggregated particles to complete independent particles. is there. Also in the conductive powder of the present invention, when the particle size of the conductive particles is large, it is possible to obtain a powder in which the conductive particles exist in an independent state, but when the particle size of the conductive particles is small It is common to include agglomerated particles as described above. Depending on the application, the particles may contain agglomerated particles, but in the case of applications such as conductive control powders for toner, the average particle size in the case of containing agglomerated particles is 0. The thickness is preferably 01 to 5 μm, more preferably 0.01 to 2 μm. In addition, in the film addition application, the average particle size in the case of containing agglomerated particles is 0.0 so that a smooth surface is easily obtained, though it depends on the thickness of the film.
The thickness is preferably 1 to 20 μm, more preferably 0.01 to 10 μm.

【0026】本発明の導電性粉末の製造方法は特に限定
されないが、次のような方法により好適に製造すること
ができる。即ちシリカを主成分とする無機酸化物粒子を
含む懸濁液に、加水分解・重縮合反応によりポリシロキ
サン結合を形成し得る含珪素化合物および加水分解・重
縮合反応により−M−O−M−結合{但し、Mはその酸
化物が導電性を示す金属原子又は半金属原子を意味す
る。なお、該結合はオキソ基に注目したものであり、M
の価数は2以上であれば特に限定されず、例えばM(−
O)−(但しnは2以上の整数である。)のような結
合も含まれる。}を形成し得る金属原子又は半金属原子
含有化合物を、実質的に同時に連続的又は断続的に、且
つ添加時における含珪素化合物重量の金属原子又は半金
属原子含有化合物重量に対する割合が添加開始時から添
加終了時にかけて連続的又は段階的に減少するようにし
て添加し、前記シリカを主成分とする無機酸化物粒子の
表面にこれら化合物の加水分解物の重縮合物を析出さ
せ、次いで表面に該重縮合物が析出した該粒子を熱処理
することによって好適に製造することができる。
The method for producing the conductive powder of the present invention is not particularly limited, but it can be suitably produced by the following method. That is, in a suspension containing inorganic oxide particles containing silica as a main component, a silicon-containing compound capable of forming a polysiloxane bond by a hydrolysis / polycondensation reaction and -MOM-M- by a hydrolysis / polycondensation reaction. Bond (However, M means a metal atom or a metalloid atom whose oxide exhibits conductivity. The bond is focused on the oxo group, and M
The valence of is not particularly limited as long as it is 2 or more, for example, M (-
O) n − (where n is an integer of 2 or more) is also included. } The metal atom- or metalloid atom-containing compound capable of forming the above-mentioned compound is added substantially simultaneously, continuously or intermittently, and the ratio of the weight of the silicon-containing compound to the weight of the metal atom- or metalloid atom-containing compound at the start of addition is large. From the addition at such a time as to be continuously or stepwise reduced over the end of the addition, to deposit a polycondensate of a hydrolyzate of these compounds on the surface of the inorganic oxide particles containing silica as a main component, and then on the surface. It can be suitably produced by heat-treating the particles on which the polycondensate is deposited.

【0027】ここでシリカを主成分とする無機酸化物粒
子(コア粒子)を含む懸濁液は、加水分解・重縮合反応
によりポリシロキサン結合を形成し得る含珪素化合物を
溶媒中で加水分解・重縮合反応させることにより得られ
る球状又は略球状のシリカ粒子が懸濁したものを使用す
るのが好適である。該シリカ粒子は、前述したようにシ
リカ以外の無機酸化物、即ち酸化錫、酸化亜鉛、酸化ア
ンチモン、酸化インジウム、アルミナ、ジルコニア、チ
タニア、酸化ホウ素、酸化リン、マグネシア、酸化カル
シウム、希土類酸化物などの成分を含んでも構わない。
Here, the suspension containing inorganic oxide particles (core particles) containing silica as a main component is obtained by hydrolyzing a silicon-containing compound capable of forming a polysiloxane bond by a hydrolysis / polycondensation reaction in a solvent. It is preferable to use a suspension of spherical or substantially spherical silica particles obtained by a polycondensation reaction. As described above, the silica particles are inorganic oxides other than silica, that is, tin oxide, zinc oxide, antimony oxide, indium oxide, alumina, zirconia, titania, boron oxide, phosphorus oxide, magnesia, calcium oxide, rare earth oxides, etc. You may include the ingredient of.

【0028】また上記方法で得られるシリカ粒子をその
まま溶媒中に分散した状態のものを懸濁液として用いて
もよいし、ろ過などによって一度取り出し、水洗、焼成
などの工程を経てから、再度後述の溶媒に懸濁させた懸
濁液としてもよい。例えば、特開昭58−110414
号に記載されているように、アンモニア水などの塩基性
水溶液とアルコールの混合溶媒中に珪素アルコキシドや
他の金属アルコキシド、又はこれらアルコキシドを溶媒
中に溶解したものを滴下する方法や、珪酸ソーダを酸性
溶媒中に滴下あるいは混合する方法が好ましく用いられ
る。
The silica particles obtained by the above method may be used as they are in a state of being dispersed in a solvent as a suspension, or may be taken out once by filtration, washed with water, calcined and the like, and then described later again. It may be a suspension obtained by suspending in the solvent of. For example, JP-A-58-110414
As described in No. 3, a method of adding a silicon alkoxide or other metal alkoxide, or a solution of these alkoxides dissolved in a solvent in a mixed solvent of a basic aqueous solution such as aqueous ammonia and an alcohol, or sodium silicate. A method of dropping or mixing in an acidic solvent is preferably used.

【0029】通常、上記のような溶媒中に滴下する方法
で生成したコア粒子の形状は球状又は略球状であり、そ
のような形状を有するコア粒子を使用すると、懸濁液中
のコア粒子の凝集が少ないので均一な被覆層が得られる
ため、また被覆層がはがれにくいという特徴や、被覆層
で被覆した導電性粒子の流動性が向上するなどの特徴が
あるため好ましい。またコア粒子中の成分がシリカ単独
の方が、球状又は略球状の粒子が得られ易いため好まし
い場合もある。
Usually, the shape of the core particles produced by the method of dropping in the solvent as described above is spherical or substantially spherical, and when the core particles having such a shape are used, the core particles in the suspension are It is preferable because the amount of agglomeration is small and a uniform coating layer can be obtained, and the coating layer is less likely to peel off and the fluidity of the conductive particles coated with the coating layer is improved. In some cases, silica alone as the component in the core particles is preferable because spherical or substantially spherical particles can be easily obtained.

【0030】更にシリカを主成分とする無機酸化物の前
駆体などを原料として溶融法や噴霧熱分解法など他の方
法で製造されたコア粒子を後述の溶媒中に懸濁させた懸
濁液を使用することもできるが、その場合はコア粒子の
形状が球状又は略球状である方が上記理由で好ましい。
Further, a suspension obtained by suspending core particles produced by another method such as a melting method or a spray pyrolysis method from a precursor of an inorganic oxide containing silica as a raw material in a solvent described later. However, in this case, it is preferable that the shape of the core particles is spherical or substantially spherical for the above reason.

【0031】上記懸濁液の溶媒は、後述の含珪素化合
物、及び金属原子又は半金属原子含有化合物が加水分解
・重縮合反応してコア粒子表面にこれら化合物の加水分
解物の重縮合物が析出するものであれば特に限定されな
い。具体的には、水、あるいはメタノール、エタノー
ル、プロパノール、ブタノールなどのアルコール、ジエ
チルケトン、メチルn−ブチルケトン、ジn―プロピル
ケトン、メチルイソブチルケトン、ジイソブチルケトン
などのケトン、イソプロピルエーテル、n−ブチルエー
テルなどのエーテルなどがある。これらの中ではアルコ
ールが手に入れ易いため好ましく、特にメタノール、エ
タノール、イソプロピルアルコールは比較的安価で取り
扱いが容易であるため好ましい。なお、有機溶媒を使用
する場合には、加水分解反応を起こすのに充分な量の水
を添加する必要がある。また上記溶媒中に、更にアンモ
ニア水、水酸化ナトリウム、水酸化カリウム、炭酸ナト
リウム、炭酸カリウムなどの塩基性水溶液、あるいは塩
酸、硫酸、硝酸、酢酸などの酸性水溶液を混合すると、
加水分解・重縮合反応が効率よく且つ短時間で進行する
ため特に好ましい。
As the solvent of the above suspension, a silicon-containing compound described below and a compound containing a metal atom or a metalloid atom undergo a hydrolysis / polycondensation reaction to form a polycondensate of a hydrolyzate of these compounds on the core particle surface. There is no particular limitation as long as it precipitates. Specifically, water or alcohols such as methanol, ethanol, propanol and butanol, diethyl ketone, methyl n-butyl ketone, di-n-propyl ketone, methyl isobutyl ketone, diisobutyl ketone and other ketones, isopropyl ether, n-butyl ether, etc. Such as ether. Of these, alcohol is preferable because it is easy to obtain, and methanol, ethanol, and isopropyl alcohol are particularly preferable because they are relatively inexpensive and easy to handle. When using an organic solvent, it is necessary to add water in an amount sufficient to cause a hydrolysis reaction. Further, if a basic aqueous solution of ammonia water, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, or an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, acetic acid, or the like is mixed in the solvent,
It is particularly preferable because the hydrolysis / polycondensation reaction proceeds efficiently and in a short time.

【0032】上記懸濁液中のコア粒子と溶媒の比率は特
には限定されないが、コア粒子があまりにも多いと、懸
濁液の粘度が高くなり、被覆層が均一に形成されない
し、溶媒があまりにも多いと、効率が悪くなり生産性が
低下する。好ましいコア粒子と溶媒の比率は、目的とす
る被覆層の組成や厚さなどによっても異なるため一概に
は言えないが、コア粒子と溶媒の合計重量に対するコア
粒子の重量比率が0.1〜10%がよい場合が多く、よ
り好ましくは0.5〜8%、更には0.8〜5%であ
る。
The ratio of the core particles to the solvent in the above suspension is not particularly limited, but if the amount of the core particles is too large, the viscosity of the suspension becomes high, the coating layer is not uniformly formed, and the solvent is If it is too large, the efficiency will be poor and the productivity will be reduced. The preferable ratio of the core particles to the solvent cannot be generally stated because it varies depending on the composition and thickness of the target coating layer, but the weight ratio of the core particles to the total weight of the core particles and the solvent is from 0.1 to 10. % Is often good, more preferably 0.5 to 8%, and further 0.8 to 5%.

【0033】本発明において使用される含珪素化合物と
しては、加水分解・重縮合反応によりポリシロキサン結
合を形成し得るものであれば公知のものが制限なく使用
できる。このような含珪素化合物を具体的に例示する
と、Si(OCH、Si(OCHCH
の珪素のアルコキシド単量体や、これらの単量体が2〜
6分子縮合したオリゴマー、あるいはCHSi(OC
、CHSi(OCHCH、CH
Si(OCHCH等のアルキルアルコキシ
シラン化合物を挙げることができる。また珪酸ナトリウ
ムや珪酸カリウム、珪酸アンモニウムなどの珪酸塩、あ
るいはテトラクロロシラン、トリクロロシランなどのク
ロロシラン類も用いることができる。
As the silicon-containing compound used in the present invention, known compounds can be used without limitation as long as they can form a polysiloxane bond by a hydrolysis / polycondensation reaction. As a specific example of such a silicon-containing compound, silicon alkoxide monomers such as Si (OCH 3 ) 4 and Si (OCH 2 CH 3 ) 4 and these monomers are 2 to
6 molecules condensed oligomer or CH 3 Si (OC
H 3) 3, CH 3 Si (OCH 2 CH 3) 3, CH 3 C
Examples thereof include alkylalkoxysilane compounds such as H 2 Si (OCH 2 CH 3 ) 3 . Further, silicates such as sodium silicate, potassium silicate, and ammonium silicate, or chlorosilanes such as tetrachlorosilane and trichlorosilane can also be used.

【0034】また本発明において、使用される金属原子
又は半金属原子含有化合物としては、加水分解・重縮合
反応により−M−O−M−結合を形成し得るものであれ
ば特には限定されないが、懸濁液に添加しやすくした
り、加水分解・重縮合反応の速度を制御する目的で、水
または水溶性有機溶媒に溶解させて用いることが多いた
め、水又は水溶性有機溶媒に可溶なものが好ましい。例
えば塩化第一錫、塩化第二錫、オキシ塩化錫などの塩化
錫、臭化第一錫、あるいはこれらの水和物などの錫含有
化合物、塩化亜鉛、酢酸亜鉛などの亜鉛含有化合物、五
塩化アンチモン、三塩化アンチモンなどの塩化アンチモ
ン、三臭化アンチモンなどのアンチモン含有化合物、三
塩化インジウム(以下、塩化インジウムともいう)、硫
酸インジウム、硝酸インジウムなどのインジウム含有化
合物、錫メトキシド、亜鉛イソプロポキシド、インジウ
ムエトキシドなどの金属アルコキシド等が挙げられる。
上記したものの中でも、塩化物は水又は水溶性有機溶媒
に溶解しやすく、取り扱いも容易で安価であるため好ま
しい。但し、安全性の観点から毒性を有するアンチモン
含有化合物の使用量はなるべく少なくした方がよい。
In the present invention, the metal atom or metalloid atom-containing compound used is not particularly limited as long as it can form a -MOMM bond through a hydrolysis / polycondensation reaction. Soluble in water or water-soluble organic solvent because it is often used by dissolving it in water or water-soluble organic solvent for the purpose of easy addition to suspension or controlling the rate of hydrolysis / polycondensation reaction. What is preferable. For example, tin chlorides such as stannous chloride, stannic chloride, tin oxychloride, stannous bromide, tin-containing compounds such as hydrates thereof, zinc-containing compounds such as zinc chloride and zinc acetate, pentachloride Antimony, antimony chloride such as antimony trichloride, antimony-containing compounds such as antimony tribromide, indium trichloride (hereinafter also referred to as indium chloride), indium-containing compounds such as indium sulfate and indium nitrate, tin methoxide, zinc isopropoxide And metal alkoxides such as indium ethoxide.
Among the above, chloride is preferable because it is easily dissolved in water or a water-soluble organic solvent, easy to handle, and inexpensive. However, from the viewpoint of safety, it is preferable to use the toxic antimony-containing compound in an amount as small as possible.

【0035】通常、含珪素化合物と、金属原子又は半金
属原子含有化合物は同一の溶媒に混合しても沈殿物を生
成しないものが好適に用いられ、故にこれら化合物のい
ずれかが塩基性の性質を有する場合、加水分解・重縮合
反応を効率よく進行させるために、上記懸濁液の溶液は
酸性の性質を有するものが好ましい。逆にこれら化合物
のいずれかが酸性の性質を有する場合は、上記懸濁液の
溶液は塩基性の性質を有するものが好ましい。例えば、
含珪素化合物としてテトラメトキシシランやテトラエト
キシシランなどの珪素アルコキシドを用い、金属原子又
は半金属原子含有化合物として塩化亜鉛、塩化錫、塩化
アンチモン、塩化インジウムなどの金属塩化物を用いて
溶液が酸性の性質を有する場合、上記懸濁液の溶液には
水酸化ナトリウムやアンモニアなどの塩基性化合物を溶
解させたアルコール/水混合溶液などを用いるのが好ま
しい。上記例では、珪素アルコキシドは酸性水溶液ある
いは塩基性水溶液のいずれでも加水分解・重縮合物が析
出する可能性があるが、金属原子又は半金属原子含有化
合物である塩化亜鉛、塩化錫、塩化アンチモン、塩化イ
ンジウムなどの金属塩化物が塩基存在下で加水分解・重
縮合反応が進行し易いため、本例ではアンモニア水やア
ンモニア含有アルコール/水混合溶液などの塩基性化合
物が存在する溶媒が好ましい。
Usually, a silicon-containing compound and a compound containing a metal atom or a metalloid atom are preferably used so that they do not form a precipitate even when mixed in the same solvent. Therefore, any of these compounds has a basic property. In the case of containing, the solution of the above suspension preferably has an acidic property in order to efficiently proceed the hydrolysis / polycondensation reaction. On the contrary, when any of these compounds has an acidic property, the solution of the above suspension preferably has a basic property. For example,
A silicon alkoxide such as tetramethoxysilane or tetraethoxysilane is used as the silicon-containing compound, and a metal chloride such as zinc chloride, tin chloride, antimony chloride or indium chloride is used as the compound containing a metal atom or a semimetal atom, and the solution is acidic. In the case where it has properties, it is preferable to use an alcohol / water mixed solution in which a basic compound such as sodium hydroxide or ammonia is dissolved, as the solution of the suspension. In the above example, the silicon alkoxide may precipitate a hydrolyzed / polycondensate in either an acidic aqueous solution or a basic aqueous solution, but zinc chloride, tin chloride, antimony chloride, which is a compound containing a metal atom or a metalloid atom, In the present example, a solvent containing a basic compound such as ammonia water or an ammonia-containing alcohol / water mixed solution is preferable because the hydrolysis / polycondensation reaction of metal chloride such as indium chloride easily proceeds in the presence of a base.

【0036】含珪素化合物、及び金属原子又は半金属原
子含有化合物は懸濁液中にそのままの状態で添加しても
よいが、水または水溶性有機溶媒などの適当な溶媒に溶
解させた溶液を懸濁液中に添加した方が、加水分解・重
縮合反応の速度を制御し、均一な厚さの被覆層が形成さ
れるため好ましい。該溶液の溶媒に対する金属原子又は
半金属原子含有化合物の濃度は溶解する範囲内であれば
特に制限されないが、濃度が低すぎると生産性が低下
し、また高すぎると不均一な厚さの被覆層となることが
あるので、上記濃度は溶液1リットル当たり0.01〜
10モル、特に0.1〜5モルとするのが好ましい。
The silicon-containing compound and the compound containing a metal atom or a metalloid atom may be added to the suspension as they are, but a solution prepared by dissolving in a suitable solvent such as water or a water-soluble organic solvent may be added. Addition to the suspension is preferable because the rate of hydrolysis / polycondensation reaction is controlled and a coating layer having a uniform thickness is formed. The concentration of the metal atom- or metalloid atom-containing compound in the solvent of the solution is not particularly limited as long as it is within the range of dissolution, but if the concentration is too low, the productivity decreases, and if it is too high, the coating with a non-uniform thickness. Since it may form a layer, the concentration is 0.01 to 1 liter of solution.
It is preferably 10 moles, particularly preferably 0.1 to 5 moles.

【0037】本発明の製造方法においては、含珪素化合
物および金属原子又は半金属原子含有化合物を、実質的
に同時に連続的又は断続的に、且つ添加時における含珪
素化合物重量の金属原子又は半金属原子含有化合物重量
に対する割合が添加開始時から添加終了時にかけて連続
的又は段階的に減少するようにして該懸濁液中に添加す
る方法を用いる。このような添加方法としては、例え
ば、含珪素化合物を溶解した溶液(溶液Aとする)と金
属原子又は半金属原子含有化合物を溶解した溶液(溶液
Bとする)を準備し、懸濁液中に溶液Aを連続的に又は
段階的に添加し始め、同時にあるいは所定の時間後、連
続的に又は段階的に溶液Bを溶液A中に添加し始め、混
合液を懸濁液に添加してコア粒子表面にこれら化合物の
加水分解物の重縮合物を析出させる方法が採用できる。
このとき加える溶液Aの溶液Bに対する割合を経時的に
少なくなるように変化させると、時間の経過と共に含珪
素化合物の割合が減少し、代わりに金属原子又は半金属
原子含有化合物の割合が増加していく。従って、コア粒
子の周りに径方向外側に向かって珪素原子濃度が連続的
若しくは断続的に減少した導電性酸化物からなる被覆層
を形成することができる。なお、上記方法では懸濁液に
添加した時に局所的に溶液A又は溶液Bの濃度が高くな
ることを防止するために予め溶液Aに溶液Bを添加して
混合液を得、それを懸濁液に添加する態様を示したが、
攪拌を充分に行えば両溶液をそれぞれ別々に添加しても
差支えない。
In the production method of the present invention, the silicon-containing compound and the compound containing a metal atom or a metalloid atom are continuously or intermittently substantially simultaneously, and at the time of addition, the weight of the metal-containing compound or the metalloid is equal to that of the metal-containing compound. A method is used in which the ratio with respect to the weight of the atom-containing compound is added to the suspension so that it decreases continuously or stepwise from the start of addition to the end of addition. As such an addition method, for example, a solution in which a silicon-containing compound is dissolved (referred to as a solution A) and a solution in which a metal atom or metalloid atom-containing compound is dissolved (referred to as a solution B) are prepared and suspended in a suspension. Solution A is added continuously or stepwise, and at the same time or after a predetermined time, solution B is added into Solution A, and the mixed solution is added to the suspension. A method of depositing a polycondensate of a hydrolyzate of these compounds on the surface of the core particles can be adopted.
When the ratio of the solution A to be added to the solution B is changed so as to decrease with time, the ratio of the silicon-containing compound decreases with the passage of time, and instead the ratio of the metal atom or metalloid atom-containing compound increases. To go. Therefore, it is possible to form a coating layer made of a conductive oxide in which the concentration of silicon atoms is continuously or intermittently reduced toward the outer side in the radial direction around the core particles. In the above method, in order to prevent the concentration of the solution A or the solution B from locally increasing when added to the suspension, the solution B is added to the solution A in advance to obtain a mixed solution, which is suspended. Although the mode of adding to the liquid is shown,
If the solution is sufficiently stirred, both solutions may be added separately.

【0038】表面に上記重縮合物が析出したコア粒子
は、通常、ろ過などによって含珪素化合物等を添加した
後の懸濁液(以下、添加後の懸濁液ともいう。)中の溶
媒を分離した後、熱処理されるが、熱処理時に昇華しに
くい反応生成物が中和反応によって生成する場合には、
体積抵抗率と摩擦帯電量を制御するため、該中和液に存
在する、原料の錫化合物などに由来する塩素イオン、酢
酸イオン、硝酸イオン、硫酸イオン、アンモニウムイオ
ン、ナトリウムイオン、カリウムイオンやこれらの反応
生成物などを除去してから加熱処理してもよい。塩素イ
オン、酢酸イオン、硝酸イオン、硫酸イオン、アンモニ
ウムイオン、ナトリウムイオン、カリウムイオンやこれ
らの反応生成物などを除去する方法は特には制限されな
い。具体例を挙げると、添加後の懸濁液を一度ろ過し、
ろ別されたケーキ状の析出物を水系溶液や有機溶媒系の
溶液中に再分散させて洗浄した後に、再度ろ過するとい
う洗浄工程を繰り返す方法あるいはデカンテーションな
どがある。上記洗浄工程やデカンテーションにより、上
記イオン類を除去することは、後述の熱処理後にも被覆
層の厚さが均一な導電性粒子となりやすいので好まし
い。
The core particles having the above-mentioned polycondensate deposited on the surface thereof are usually the solvent in the suspension after the addition of the silicon-containing compound or the like by filtration or the like (hereinafter also referred to as the suspension after addition). After separation, it is heat treated, but if a reaction product that is difficult to sublime during heat treatment is generated by the neutralization reaction,
In order to control the volume resistivity and the triboelectric charge amount, chlorine ions, acetate ions, nitrate ions, sulfate ions, ammonium ions, sodium ions, potassium ions and the like, which are present in the neutralization liquid and are derived from the starting tin compound, etc. You may heat-process after removing the reaction product etc. of. The method for removing chlorine ions, acetate ions, nitrate ions, sulfate ions, ammonium ions, sodium ions, potassium ions and reaction products thereof is not particularly limited. To give a specific example, the suspension after addition is filtered once,
There is a method of repeating a washing step of re-dispersing the filtered cake-like precipitate in a water-based solution or an organic solvent-based solution, followed by washing, or decantation. It is preferable to remove the ions by the washing step or decantation because conductive particles having a uniform coating layer thickness can be obtained even after the heat treatment described below.

【0039】上記方法で回収したケーキ状の析出物は、
乾燥させた後、導電性を向上させたり、摩擦帯電量を制
御する目的で熱処理される。熱処理方法は特に制限され
ず、上記ゲル粉末や析出物をアルミナ製あるいは石英ガ
ラス製などの高温で析出物との反応性が低い容器などに
入れて、市販の電気炉を用いて熱処理したり、噴霧熱分
解装置、スプレードライなどの熱処理装置を用いてもよ
い。熱処理温度および時間、熱処理雰囲気などの熱処理
条件も特に限定されないが、熱処理条件は体積抵抗率や
摩擦帯電量などに大きな影響を与える場合がある。好ま
しくは300℃〜1500℃、さらには400℃〜12
00℃の温度が好ましい。熱処理温度が300℃未満の
場合には水酸基が多く残留し、体積抵抗率が経時変化す
ることがある。また、1500℃を越える場合には焼結
して粗大粒子が生じたりするので好ましくない。熱処理
時間は、熱処理装置の種類や熱処理温度によっても異な
るが、体積抵抗率の制御と省エネルギーの観点から0.
1秒〜100時間以下が望ましい。熱処理雰囲気は特に
制限ないが、還元による被覆層における金属の析出をな
るべく防止するという観点から、酸素を含む雰囲気が望
ましい。特に空気雰囲気で行うことが大規模な装置を用
いなくて済むという観点から好ましい。但し、より低い
体積抵抗率の導電性粒子が要求されている場合は、金属
の析出が起らない範囲で、窒素やアルゴンなどの不活性
雰囲気で焼成することがよいこともある。金属の析出の
有無は、粉末の色調や、X線回折分析、あるいは電子線
回折分析などの手法で分析することができる。
The cake-like precipitate recovered by the above method is
After drying, it is heat-treated for the purpose of improving conductivity and controlling the triboelectric charge amount. The heat treatment method is not particularly limited, and the gel powder or the precipitate is placed in a container having low reactivity with the precipitate at a high temperature such as alumina or quartz glass, and heat treated using a commercially available electric furnace, or A heat treatment device such as a spray pyrolysis device or spray dry may be used. The heat treatment conditions such as heat treatment temperature and time and heat treatment atmosphere are not particularly limited, but the heat treatment conditions may greatly affect the volume resistivity, the triboelectric charge amount, and the like. Preferably from 300 ° C to 1500 ° C, further from 400 ° C to 12
A temperature of 00 ° C is preferred. When the heat treatment temperature is lower than 300 ° C, a large amount of hydroxyl groups remain, and the volume resistivity may change with time. Further, if it exceeds 1500 ° C., coarse particles may be generated by sintering, which is not preferable. The heat treatment time varies depending on the type of heat treatment apparatus and the heat treatment temperature, but is 0. 0 from the viewpoint of volume resistivity control and energy saving.
It is preferably 1 second to 100 hours or less. The heat treatment atmosphere is not particularly limited, but an atmosphere containing oxygen is desirable from the viewpoint of preventing metal deposition in the coating layer due to reduction as much as possible. It is particularly preferable to carry out the treatment in an air atmosphere from the viewpoint that a large-scale device is not required. However, when conductive particles having a lower volume resistivity are required, it may be preferable to perform firing in an inert atmosphere such as nitrogen or argon as long as metal precipitation does not occur. The presence or absence of metal precipitation can be analyzed by a method such as powder color tone, X-ray diffraction analysis, or electron beam diffraction analysis.

【0040】[0040]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明はこれらの内容に限定されるものではな
い。なお、実施例及び比較例における導電性粒子又は導
電性粉末の各評価は、以下のようにして行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these contents. In addition, each evaluation of the electroconductive particle or electroconductive powder in an Example and a comparative example was performed as follows.

【0041】即ち、体積抵抗率は、ダイスとポンチから
なる治具を用いて粉末(乳鉢で3分間粉砕後の試料を使
用)を圧粉成型して測定した。即ち、銅製の下ポンチ
(φ15mm×高さ10mm)を付属した中空(穴直径
φ15mm)の円筒形のダイス(絶縁体、φ50mm×
高さ50mm)の中に試料を入れて、その上端に銅製の
上ポンチ(φ15mm×高さ50mm)を入れて5.6
×10Paの圧力(1トンの荷重)で試料を加圧成型
し、ペレット状の試験片を作製した。次いで試験片を加
圧した状態で、上ポンチと下ポンチ間の抵抗値をヒュー
レット・パッカード(HEWLETT PACKAR
D)社製3478Aマルチメーターを用いて4端子法で
測定し、試験片の断面積と高さから体積抵抗率を算出し
た。なお、本測定法での測定上限は、10Ωcmであ
り、この値を超えた試料は測定不能と判断した。また体
積抵抗率の経時変化は、試料を空気中120℃で200
時間放置した後に室温に冷却し、再度乳鉢で3分間粉砕
した後、上記の方法で体積抵抗率を測定した。高温放置
後の体積抵抗率を高温放置前の体積抵抗率で除した値
を、体積抵抗率の経時変化の指標とした。
That is, the volume resistivity was measured by compacting powder (using a sample after crushing for 3 minutes in a mortar) using a jig consisting of a die and a punch. That is, a hollow (hole diameter φ15 mm) cylindrical die (insulator, φ50 mm ×) attached with a copper lower punch (φ15 mm × height 10 mm)
The sample is placed in a height of 50 mm, and an upper punch made of copper (φ15 mm × height 50 mm) is placed at the upper end of the sample to be 5.6.
The sample was pressure-molded at a pressure of × 10 7 Pa (load of 1 ton) to produce a pellet-shaped test piece. Then, while the test piece is being pressed, the resistance value between the upper punch and the lower punch is measured by Hewlett Packard (HEWLETT PACKAR).
D) The volume resistivity was calculated from the cross-sectional area and height of the test piece by measurement with a 3478A multimeter manufactured by the company by the four-terminal method. The upper limit of measurement in this measurement method was 10 8 Ωcm, and a sample exceeding this value was determined to be unmeasurable. In addition, the change in volume resistivity with time is 200 at 120 ° C in air.
After standing for a period of time, it was cooled to room temperature, pulverized again in a mortar for 3 minutes, and then the volume resistivity was measured by the above method. The value obtained by dividing the volume resistivity after leaving at high temperature by the volume resistivity before leaving at high temperature was used as an index of the change in volume resistivity with time.

【0042】また、摩擦帯電量は、装置として東芝ケミ
カル社製ブローオフ帯電量測定装置TB−200型、ま
たキャリアとしてパウダーテック社製キャリア用鉄粉T
EFV−200/300を用いて測定した。試料は予め
キャリアと混合し、該混合物を35℃、85%湿度下で
調湿を行ったのち、日本画像学会標準トナー帯電量測定
法(ブローオフ法)に準じて行った。
As for the triboelectric charge amount, a blow-off charge amount measuring device TB-200 manufactured by Toshiba Chemical Co., Ltd. is used as a device, and a carrier iron powder T manufactured by Powder Tech Co. is used as a carrier.
It was measured using EFV-200 / 300. The sample was mixed with a carrier in advance, and the mixture was conditioned at 35 ° C. and 85% humidity, and then subjected to the standard toner charge amount measurement method (blow-off method) of the Japan Imaging Society.

【0043】また、色調は試料を目視にて観察した。The color tone of the sample was visually observed.

【0044】さらに、比重は、液浸法によって測定し
た。即ち、ピクノメーターに純水を満たした場合の全質
量(W)を秤量し、次いで試料(質量M)をピクノメ
ーターに入れて純水を満たし加熱して気泡を充分に除去
し、冷却した後秤量(W)し、粉体の比重dをd=M
/(W+M−W)から算出した。
Further, the specific gravity was measured by the liquid immersion method. That is, the total mass (W 1 ) when the pycnometer was filled with pure water was weighed, and then the sample (mass M) was put into the pycnometer and filled with pure water to heat it to sufficiently remove air bubbles, and then cooled. rear weighed (W 2), and the specific gravity d of powder d = M
It was calculated from / (W 1 + M−W 2 ).

【0045】また、導電性粒子が球状あるいは略球状か
どうかをあらわす指標として平均均斉度を求めた。平均
均斉度は、前述の通り、導電性粒子のSEM写真をと
り、その中の任意の50個について最大幅(長径;L)
とそれに直交する方向での最大幅(短径;B)を測定
し、B/Lを平均した。
The average degree of uniformity was determined as an index showing whether the conductive particles are spherical or substantially spherical. As described above, the average degree of uniformity is obtained by taking a SEM photograph of conductive particles and determining the maximum width (major axis; L) for any 50 of them.
And the maximum width (minor axis; B) in the direction orthogonal thereto was measured, and B / L was averaged.

【0046】さらに、導電性粒子の被覆層内の珪素原子
濃度が中心側から外側に向かって減少しているかどうか
については、以下の方法で確かめた。即ち、まず、導電
性粒子を2%フッ酸含有30%塩酸溶液中に入れ、1
分、10分、60分の各時間で加圧酸分解し、被覆層を
外側から段階的に溶解除去した後、ICP発光分光分析
によって各溶液のろ液中に含まれる珪素原子、錫原子、
及び添加した他の金属原子又は半金属原子の分析を行っ
た。該分析より珪素原子(モル)/[珪素原子(モル)
+錫原子(モル)+他の金属原子又は半金属原子(モ
ル)]の値(単位:%)を算出し、導電性粒子の外側か
ら中心方向への珪素原子濃度変化を見た。
Further, it was confirmed by the following method whether or not the silicon atom concentration in the coating layer of the conductive particles decreased from the center side to the outside. That is, first, put the conductive particles in a 30% hydrochloric acid solution containing 2% hydrofluoric acid, and
Minutes, 10 minutes, 60 minutes under pressure acid decomposition, the coating layer is gradually dissolved and removed from the outside, and then silicon atoms and tin atoms contained in the filtrate of each solution are analyzed by ICP emission spectroscopy.
And, analysis of other added metal atoms or metalloid atoms was performed. From the analysis, silicon atom (mol) / [silicon atom (mol)
+ Tin atom (mol) + other metal atom or metalloid atom (mol)] (unit:%) was calculated, and the change in silicon atom concentration from the outside to the center of the conductive particle was observed.

【0047】実施例1 メタノール120mlにテトラエトキシシラン83.3
gを添加した後、0.1N塩酸7.2mlを添加し、室
温で30分攪拌を行い、含珪素化合物溶液(A液とす
る)を調製した。また、メタノール600mlに無水塩
化第一錫(SnCl)36.7g、三塩化アンチモン
(SbCl)0.22gを添加した後、乾燥酸素を液
中に導入して攪拌を行い、錫及びアンチモン含有化合物
溶液(B液とする)を調製した。別途メタノール120
0mlとアンモニア水(28wt%品)の混合溶液(C
液とする)を作製し、攪拌しながら上記A液を徐々にC
液に添加していき、コア粒子を作製した。A液を150
ml添加した時に添加中のA液にB液を徐々に添加、混
合していった。A液、B液の添加終了後、生成した析出
物をろ過によって分離し、得られたケーキ状の析出物を
真空乾燥器を用いて乾燥し、乾燥ゲル粉末を得た。市販
の電気炉を用いて該乾燥ゲル粉末を空気中にて500℃
で焼成し、導電性粉末を得た。該粉末のSEM観察を行
った結果、球状粒子及びその凝集粒子が観察され、その
一次粒子(球状粒子)の平均粒子径は0.3μmであっ
た。該球状粒子の半径方向の珪素原子濃度を前述の方法
で測定した結果、珪素原子濃度は該球状粒子の外側から
中心方向へ向けて順に3%、20%、34%と増加して
いたことから、被覆層において、中心から外側に珪素濃
度が連続的に減少していることがわかった。その他の評
価結果を表1に示す。
Example 1 Tetraethoxysilane 83.3 in 120 ml of methanol
After adding g, 7.2 ml of 0.1N hydrochloric acid was added, and the mixture was stirred at room temperature for 30 minutes to prepare a silicon-containing compound solution (referred to as solution A). Further, 36.7 g of anhydrous stannous chloride (SnCl 2 ) and 0.22 g of antimony trichloride (SbCl 3 ) were added to 600 ml of methanol, and then dry oxygen was introduced into the liquid and stirred to contain tin and antimony. A compound solution (referred to as solution B) was prepared. Separately methanol 120
0 ml and ammonia water (28 wt% product) mixed solution (C
Liquid), and gradually add C to the above liquid A while stirring.
Core particles were prepared by adding to the liquid. Liquid A 150
When ml was added, solution B was gradually added to solution A being added and mixed. After the addition of the liquids A and B was completed, the produced precipitate was separated by filtration, and the obtained cake-like precipitate was dried using a vacuum dryer to obtain a dry gel powder. Using a commercially available electric furnace, the dry gel powder was heated to 500 ° C in air.
Was fired to obtain a conductive powder. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle diameter of the primary particles (spherical particles) was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-mentioned method, the silicon atom concentration was increased from the outside of the spherical particles toward the center in the order of 3%, 20% and 34%. It was found that in the coating layer, the silicon concentration continuously decreased from the center to the outside. Other evaluation results are shown in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】実施例2 実施例1において、三塩化アンチモン(SbCl
2.32gを用いた他は全て実施例1と同様にして、導
電性粉末を得た。該粉末のSEM観察を行った結果、球
状粒子及びその凝集粒子が観察され、球状粒子の平均粒
子径は0.3μmであった。該球状粒子の半径方向の珪
素原子濃度を前述の方法で測定した結果、珪素原子濃度
は該球状粒子の外側から中心方向へ向けて、順に3%、
20%、34%と増加していたことから、被覆層におい
て、中心から外側に珪素濃度が連続的に減少しているこ
とがわかった。その他の評価結果を表1に示す。
Example 2 In Example 1, antimony trichloride (SbCl 3 ) was used.
Conductive powder was obtained in the same manner as in Example 1 except that 2.32 g was used. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle diameter of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the method described above, the silicon atom concentration was 3% in order from the outside of the spherical particles toward the center,
Since it increased to 20% and 34%, it was found that the silicon concentration in the coating layer continuously decreased from the center to the outside. Other evaluation results are shown in Table 1.

【0050】実施例3 実施例1において、三塩化アンチモンの代わりに五塩化
タンタル(TaCl)0.71gを用いた他は全て実
施例1と同様にして、導電性粉末を得た。該粉末のSE
M観察を行った結果、球状粒子及びその凝集粒子が観察
され、球状粒子の平均粒子径は0.3μmであった。該
球状粒子の半径方向の珪素原子濃度を前述の方法で測定
した結果、珪素原子濃度は該球状粒子の外側から中心方
向へ向けて、順に3%、20%、34%と増加していた
ことから、被覆層において、中心から外側に珪素濃度が
連続的に減少していることがわかった。その他の評価結
果を表1に示す。
Example 3 A conductive powder was obtained in the same manner as in Example 1, except that 0.71 g of tantalum pentachloride (TaCl 5 ) was used instead of antimony trichloride. SE of the powder
As a result of M observation, spherical particles and aggregated particles thereof were observed, and the average particle diameter of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-mentioned method, the silicon atom concentration was increased from the outside of the spherical particles toward the center in the order of 3%, 20% and 34%. From the results, it was found that in the coating layer, the silicon concentration continuously decreased from the center to the outside. Other evaluation results are shown in Table 1.

【0051】実施例4 実施例3において、B液にさらに塩化マグネシウム(M
gCl)0.34gを加えた他は全て実施例3と同様
にして、導電性粉末を得た。該粉末のSEM観察を行っ
た結果、球状粒子及びその凝集粒子が観察され、球状粒
子の平均粒子径は0.3μmであった。該球状粒子の半
径方向の珪素原子濃度を前述の方法で測定した結果、珪
素原子濃度は該球状粒子の外側から中心方向へ向けて、
順に3%、20%、34%と増加していたことから、被
覆層において、中心から外側に珪素濃度が連続的に減少
していることがわかった。その他の評価結果を表1に示
す。
Example 4 In Example 3, the solution B was further mixed with magnesium chloride (M
Conductive powder was obtained in the same manner as in Example 3 except that 0.34 g of gCl 2 ) was added. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle diameter of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the method described above, the silicon atom concentration was measured from the outside of the spherical particles toward the center,
Since it increased in order of 3%, 20%, and 34%, it was found that the silicon concentration in the coating layer continuously decreased from the center to the outside. Other evaluation results are shown in Table 1.

【0052】実施例5 実施例1において、A液にさらに三塩化アルミニウム6
水和物(AlCl・6HO)0.98gを添加した
以外は全て実施例1と同様にして、導電性粉末を得た。
該粉末のSEM観察を行った結果、球状粒子及びその凝
集粒子が観察され、球状粒子の平均粒子径は0.3μm
であった。該球状粒子の半径方向の珪素原子濃度を前述
の方法で測定した結果、珪素原子濃度は該球状粒子の外
側から中心方向へ向けて、順に3%、20%、34%と
増加していたことから、被覆層において、中心から外側
に珪素濃度が連続的に減少していることがわかった。そ
の他の評価結果を表1に示す。
Example 5 In Example 1, the solution A was further supplemented with aluminum trichloride 6
A conductive powder was obtained in the same manner as in Example 1 except that 0.98 g of a hydrate (AlCl 3 .6H 2 O) was added.
As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle diameter of the spherical particles was 0.3 μm.
Met. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-mentioned method, the silicon atom concentration was increased from the outside of the spherical particles toward the center in the order of 3%, 20% and 34%. From the results, it was found that in the coating layer, the silicon concentration continuously decreased from the center to the outside. Other evaluation results are shown in Table 1.

【0053】実施例6 実施例1において、メタノール13mlに無水塩化第一
錫(SnCl)0.77gを添加して乾燥酸素を液中
に導入して攪拌を行った錫含有化合物溶液をA液にさら
に添加した以外は全て実施例1と同様にして、導電性粉
末を得た。該粉末のSEM観察を行った結果、球状粒子
及びその凝集粒子が観察され、球状粒子の平均粒子径は
0.3μmであった。該球状粒子の半径方向の珪素原子
濃度を前述の方法で測定した結果、珪素原子濃度は該球
状粒子の外側から中心方向へ向けて、順に3%、20
%、34%と増加していたことから、被覆層において、
中心から外側に珪素濃度が連続的に減少していることが
わかった。その他の評価結果を表1に示す。
Example 6 In Example 1, 13 ml of methanol was added with 0.77 g of anhydrous stannous chloride (SnCl 2 ), dry oxygen was introduced into the solution, and the mixture was stirred. Conductive powder was obtained in the same manner as in Example 1 except that the above was further added. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle diameter of the spherical particles was 0.3 μm. The concentration of silicon atoms in the radial direction of the spherical particles was measured by the above-mentioned method. As a result, the concentration of silicon atoms was 3%, 20% in order from the outside of the spherical particles toward the center.
%, 34%, so in the coating layer,
It was found that the silicon concentration continuously decreased from the center to the outside. Other evaluation results are shown in Table 1.

【0054】実施例7 メタノール54mlにテトラエトキシシラン62.5g
を添加した後、0.1N塩酸10.8mlを添加し、攪
拌して加水分解を行い、70℃に保持した。1昼夜後、
寒天状に固化した湿潤ゲルが得られた。乾燥器に入れ2
00℃で乾燥した後、乳鉢とジェットミルで粉砕し、8
00℃で焼成した。その後分級して平均粒子径1μmの
不定形シリカ粉末を得た。その不定形シリカ粉末を実施
例1記載のC液に入れて分散させた。メタノール30m
lにテトラエトキシシラン20.8gを添加した後、
0.1N塩酸1.8mlを添加し、室温で30分攪拌を
行った含珪素化合物溶液(D液とする)と、実施例1記
載のB液を調製した。上記不定形シリカ分散液にD液を
徐々に添加すると同時にB液をD液へ徐々に添加、混合
していった。全溶液の添加終了後、生成した析出物を実
施例1と同様の処理を行うことによって導電性粉末を得
た。該粉末のSEM観察を行った結果、被覆前の不定形
粒子の滑らかなシリカ表面は存在せず、被覆前の不定形
粒子よりもわずかに大きな不定形粒子及びその凝集粒子
が観察されたことから、不定形粒子の表面全体が被覆層
で覆われていると考えられる。該粒子の半径方向の珪素
原子濃度を前述の方法で測定した結果、珪素原子濃度は
該球状粒子の外側から中心方向へ向けて、順に3%、2
0%、34%と増加していたことから、被覆層におい
て、中心から外側に珪素濃度が連続的に減少しているこ
とがわかった。その他の評価結果を表1に示す。
Example 7 62.5 g of tetraethoxysilane in 54 ml of methanol
Was added, 10.8 ml of 0.1N hydrochloric acid was added, and the mixture was stirred, hydrolyzed, and kept at 70 ° C. After one day and night,
A wet gel solidified in agar was obtained. Put in the dryer 2
After drying at 00 ℃, crush with a mortar and jet mill,
It was baked at 00 ° C. Then, classification was performed to obtain an amorphous silica powder having an average particle diameter of 1 μm. The amorphous silica powder was put into the liquid C described in Example 1 and dispersed. 30m methanol
After adding 20.8 g of tetraethoxysilane to 1
A silicon-containing compound solution (referred to as solution D) prepared by adding 1.8 ml of 0.1N hydrochloric acid and stirring at room temperature for 30 minutes, and solution B described in Example 1 were prepared. Liquid D was gradually added to the amorphous silica dispersion, and liquid B was gradually added to and mixed with liquid D at the same time. After the addition of all the solutions was completed, the resulting precipitate was treated in the same manner as in Example 1 to obtain a conductive powder. As a result of SEM observation of the powder, there was no smooth silica surface of the amorphous particles before coating, and amorphous particles slightly larger than the amorphous particles before coating and aggregated particles thereof were observed. It is considered that the entire surface of the amorphous particles is covered with the coating layer. The concentration of silicon atoms in the radial direction of the particles was measured by the above-mentioned method.
Since it increased to 0% and 34%, it was found that the silicon concentration in the coating layer continuously decreased from the center to the outside. Other evaluation results are shown in Table 1.

【0055】また、得られた導電性粉末50重量部をポ
リプロピレン樹脂50重量部に添加し、230℃で二軸
押し出し機を用いて混錬し、ペレットを得、得られたペ
レットの破断面をSEM観察したところ、被覆前の不定
形粒子のシリカ表面と思われる滑らかな表面は全く観察
されなかったことから、破断面に存在する導電性粒子の
被覆層の剥離はなかったものと考えられる。
Further, 50 parts by weight of the obtained conductive powder was added to 50 parts by weight of polypropylene resin and kneaded at 230 ° C. by using a twin-screw extruder to obtain pellets. As a result of SEM observation, no smooth surface, which was considered to be the silica surface of the amorphous particles before coating, was not observed at all, and therefore it is considered that the coating layer of the conductive particles existing on the fracture surface was not peeled off.

【0056】実施例8 実施例1において、焼成時の雰囲気を窒素にしたこと以
外は全て実施例1と同様にして導電性粉末を得た。該粉
末のSEM観察を行った結果、球状粒子及びその凝集粒
子が観察され、球状粒子の平均粒子径は0.3μmであ
った。該球状粒子の半径方向の珪素原子濃度を前述の方
法で測定した結果、珪素原子濃度は該球状粒子の外側か
ら中心方向へ向けて、順に3%、20%、34%と増加
していたことから、被覆層において、中心から外側に珪
素濃度が連続的に減少していることがわかった。その他
の評価結果を表1に示す。
Example 8 A conductive powder was obtained in the same manner as in Example 1 except that the atmosphere during firing was nitrogen. As a result of SEM observation of the powder, spherical particles and aggregated particles thereof were observed, and the average particle diameter of the spherical particles was 0.3 μm. As a result of measuring the silicon atom concentration in the radial direction of the spherical particles by the above-mentioned method, the silicon atom concentration was increased from the outside of the spherical particles toward the center in the order of 3%, 20% and 34%. From the results, it was found that in the coating layer, the silicon concentration continuously decreased from the center to the outside. Other evaluation results are shown in Table 1.

【0057】比較例1 実施例1と同様にしてA液、B液、C液を調製し、ま
ず、A液とB液を混合、攪拌し、含珪素化合物、錫含有
化合物、アンチモン含有化合物を溶解した溶液(E液と
する)を作製した。該D液をC液に徐々に添加して、析
出物を得た。得られた析出物を実施例1と同様にして導
電性粉末を得た。該粉末のSEM観察を行った結果、略
球状粒子が凝集し、平均粒子径8μmの粒子であった。
該粒子の半径方向の珪素原子濃度を前述の方法で測定し
た結果、珪素原子濃度は33%、33%、34%であ
り、変化はほとんどなかった。その他の評価結果を表2
に示す。
Comparative Example 1 Liquid A, liquid B and liquid C were prepared in the same manner as in Example 1. First, liquid A and liquid B were mixed and stirred to obtain a silicon-containing compound, a tin-containing compound and an antimony-containing compound. A dissolved solution (referred to as solution E) was prepared. The liquid D was gradually added to the liquid C to obtain a precipitate. The obtained precipitate was treated in the same manner as in Example 1 to obtain a conductive powder. As a result of SEM observation of the powder, substantially spherical particles were aggregated, and the particles had an average particle diameter of 8 μm.
As a result of measuring the silicon atom concentration in the radial direction of the particles by the above-mentioned method, the silicon atom concentrations were 33%, 33% and 34%, and there was almost no change. Other evaluation results are shown in Table 2.
Shown in.

【0058】[0058]

【表2】 [Table 2]

【0059】比較例2 実施例1と同様にしてA液とC液を調製し、A液150
mlをC液に添加した時点で、添加を終了した。得られ
た析出物を実施例1と同様にしてろ過、乾燥、焼成を行
い、球状シリカ粉末を得た。該粉末のSEM観察を行っ
た結果、球状粒子のみが観察され、その平均粒子径は
0.27μmであった。該球状シリカ粒子の半径方向の
珪素原子濃度を前述の方法で測定した結果、珪素原子濃
度は該球状粒子の外側から中心方向へ向けて、順に10
0%、100%、100%であり、変化はなかった。な
お、錫原子、アンチモン原子についてもICP発光分光
分析を行ったが、検出限界以下であった。その他の評価
結果を表2に示す。
Comparative Example 2 Liquid A and liquid C were prepared in the same manner as in Example 1, and liquid A 150
The addition was terminated when ml was added to the liquid C. The obtained precipitate was filtered, dried and calcined in the same manner as in Example 1 to obtain spherical silica powder. As a result of SEM observation of the powder, only spherical particles were observed and the average particle diameter was 0.27 μm. The concentration of silicon atoms in the radial direction of the spherical silica particles was measured by the above-mentioned method. As a result, the concentration of silicon atoms was 10 in order from the outside of the spherical particles toward the center.
It was 0%, 100%, 100%, and there was no change. ICP emission spectroscopic analysis was performed on tin atoms and antimony atoms, but the results were below the detection limit. Other evaluation results are shown in Table 2.

【0060】比較例3 実施例7において、D液を用いないこと以外は全て同様
にして導電性粉末を得た。該粉末のSEM観察を行った
結果、表面の一部に0.01〜0.05μm前後の微細
粒子が島状に付着した約1μmの不定形粒子と、0.0
1〜0.05μm前後の微細粒子が凝集した粗大粒子が
観察された。大きさから判断して、不定形粒子はシリカ
粒子であり、表面の微細粒子は酸化錫−アンチモンの複
合酸化物と考えられる。また、凝集した粗大粒子の元素
分析を行った結果、珪素原子は検出されず、錫原子とア
ンチモン原子が検出されたことから、不定形シリカ粒子
の表面の一部にしか被覆層が形成されずに、酸化錫−ア
ンチモンの複合酸化物が単独で微細粒子として析出した
ものと考えられる。その他の評価結果を表2に示す。
Comparative Example 3 A conductive powder was obtained in the same manner as in Example 7, except that the liquid D was not used. As a result of SEM observation of the powder, irregular particles of about 1 μm in which fine particles of about 0.01 to 0.05 μm adhered in an island shape on a part of the surface, 0.0
Coarse particles in which fine particles of about 1 to 0.05 μm were aggregated were observed. Judging from the size, it is considered that the irregular particles are silica particles and the fine particles on the surface are tin oxide-antimony composite oxides. As a result of elemental analysis of the agglomerated coarse particles, silicon atoms were not detected, and tin atoms and antimony atoms were detected, so that the coating layer was formed only on a part of the surface of the amorphous silica particles. It is considered that the tin oxide-antimony composite oxide was independently deposited as fine particles. Other evaluation results are shown in Table 2.

【0061】また、得られた導電性粉末50重量部をポ
リプロピレン樹脂50重量部に添加し、230℃で二軸
押し出し機を用いて混錬し、ペレットを得、得られたペ
レットの破断面をSEM観察したところ、破断面に存在
する導電性粒子の表面には被覆層が存在しない、滑らか
なシリカ表面が多く観察されたことから、いったん不定
形シリカ粒子上に形成された被覆層は大部分が剥離した
ものと考えられる。
Further, 50 parts by weight of the obtained conductive powder was added to 50 parts by weight of polypropylene resin and kneaded at 230 ° C. using a twin-screw extruder to obtain pellets. As a result of SEM observation, many smooth silica surfaces were observed in which the coating layer did not exist on the surface of the conductive particles present on the fracture surface. Therefore, most of the coating layer once formed on the amorphous silica particles was observed. Is considered to have peeled off.

【0062】[0062]

【発明の効果】本発明の導電性粒子は、コア粒子表面上
に形成された被覆層内の珪素原子濃度が粒子の中心側か
ら外側に向かって減少している、即ち傾斜組成構造を有
するため、粒子間や外物と摩擦しても被覆層がはがれに
くいという特徴がある。よって、例えば樹脂等に練り込
んで使用した場合にも体積抵抗率の変化がなく、安定し
た導電性を発揮することができる。また、粉末の色調が
薄色であり、比重が軽く、且つ摩擦帯電量がゼロから小
さなマイナス値を示すことから、各種プラスチックやト
ナーなどの導電性フィラーとして好適である。
EFFECT OF THE INVENTION Since the conductive particles of the present invention have a concentration of silicon atoms in the coating layer formed on the surface of the core particle decreasing from the center side to the outside of the particle, that is, they have a graded composition structure. The characteristic is that the coating layer does not easily peel off even if it is rubbed between particles or with external materials. Therefore, for example, even when it is kneaded into a resin or the like and used, the volume resistivity does not change and stable conductivity can be exhibited. Further, since the powder has a light color tone, a low specific gravity, and a triboelectric charge amount of zero to a small negative value, it is suitable as a conductive filler for various plastics and toners.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G072 AA38 BB05 BB07 GG03 HH28 JJ38 QQ06 RR05 RR07 UU07 UU30 4J002 CQ011 CQ021 CQ031 DJ016 FA081 FD016 GQ02 5G307 AA08    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G072 AA38 BB05 BB07 GG03 HH28                       JJ38 QQ06 RR05 RR07 UU07                       UU30                 4J002 CQ011 CQ021 CQ031 DJ016                       FA081 FD016 GQ02                 5G307 AA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリカを主成分とする無機酸化物粒子の
表面に導電性酸化物からなる被覆層が形成されてなる導
電性粒子及び/又はその凝集体からなる導電性粉末であ
って、前記導電性粒子の被覆層が珪素原子を含み、且つ
該被覆層内の珪素原子濃度が粒子の中心側から外側に向
かって減少していることを特徴とする導電性粉末。
1. A conductive powder comprising conductive particles and / or an agglomerate thereof, wherein a coating layer made of a conductive oxide is formed on the surface of inorganic oxide particles containing silica as a main component, said conductive powder comprising: A conductive powder, wherein the coating layer of the conductive particles contains silicon atoms, and the concentration of silicon atoms in the coating layer decreases from the center side of the particles toward the outside.
【請求項2】 前記導電性粒子が球状又は略球状である
ことを特徴とする請求項1に記載の導電性粉末。
2. The conductive powder according to claim 1, wherein the conductive particles are spherical or substantially spherical.
【請求項3】 シリカを主成分とする無機酸化物粒子の
懸濁液に、加水分解・重縮合反応によりポリシロキサン
結合を形成し得る含珪素化合物および加水分解・重縮合
反応により−M−O−M−結合(但し、Mはその酸化物
が導電性を示す金属原子又は半金属原子を意味する。)
を形成し得る金属原子又は半金属原子含有化合物を、実
質的に同時に連続的又は断続的に、且つ添加時における
含珪素化合物重量の金属原子又は半金属原子含有化合物
重量に対する割合が添加開始時から添加終了時にかけて
連続的又は段階的に減少するようにして添加し、前記シ
リカを主成分とする無機酸化物粒子の表面にこれら化合
物の加水分解物の重縮合物を析出させ、次いで表面に該
重縮合物が析出した該粒子を熱処理することを特徴とす
る請求項1又は2に記載の導電性粉末の製造方法。
3. A silicon-containing compound capable of forming a polysiloxane bond by a hydrolysis / polycondensation reaction in a suspension of inorganic oxide particles containing silica as a main component, and -MO by a hydrolysis / polycondensation reaction. -M- bond (however, M means a metal atom or a metalloid atom whose oxide shows conductivity)
The metal atom- or metalloid atom-containing compound capable of forming a compound is continuously or intermittently substantially simultaneously, and the ratio of the silicon-containing compound weight to the metal atom- or metalloid atom-containing compound weight at the time of addition is from the start of addition. It is added so as to decrease continuously or stepwise at the end of the addition, to deposit a polycondensate of a hydrolyzate of these compounds on the surface of the inorganic oxide particles containing silica as a main component, and then to add the polycondensate to the surface. The method for producing a conductive powder according to claim 1 or 2, wherein the particles in which the polycondensate is deposited are heat-treated.
【請求項4】 シリカを主成分とする無機粒子を含む懸
濁液として加水分解・重縮合反応によりポリシロキサン
結合を形成し得る含珪素化合物を溶媒中で加水分解・重
縮合反応させることにより得られる球状又は略球状のシ
リカ粒子が懸濁した懸濁液を使用することを特徴とする
請求項3に記載の製造方法。
4. A suspension containing silica-based inorganic particles, which is obtained by subjecting a silicon-containing compound capable of forming a polysiloxane bond by a hydrolysis / polycondensation reaction to a hydrolysis / polycondensation reaction in a solvent. The method according to claim 3, wherein a suspension in which the spherical or substantially spherical silica particles are suspended is used.
JP2001242242A 2001-08-09 2001-08-09 Conductive powder and method for producing the same Expired - Fee Related JP4559668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242242A JP4559668B2 (en) 2001-08-09 2001-08-09 Conductive powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242242A JP4559668B2 (en) 2001-08-09 2001-08-09 Conductive powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003059342A true JP2003059342A (en) 2003-02-28
JP4559668B2 JP4559668B2 (en) 2010-10-13

Family

ID=19072550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242242A Expired - Fee Related JP4559668B2 (en) 2001-08-09 2001-08-09 Conductive powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4559668B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143754A (en) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd Conductive, fibrous, hollow silica particulate dispersoid and method for producing the same
WO2015060232A1 (en) * 2013-10-25 2015-04-30 三井金属鉱業株式会社 Conductive particles and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195505A (en) * 1998-12-25 2000-07-14 Tokuyama Corp Manufacture of negative electrode material for nonaqueous electrolyte secondary battery
JP2001184949A (en) * 1999-12-24 2001-07-06 Asahi Kasei Corp Anisotropy conductive material
JP2002121023A (en) * 2000-10-06 2002-04-23 Tokuyama Corp Tin-based double oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195505A (en) * 1998-12-25 2000-07-14 Tokuyama Corp Manufacture of negative electrode material for nonaqueous electrolyte secondary battery
JP2001184949A (en) * 1999-12-24 2001-07-06 Asahi Kasei Corp Anisotropy conductive material
JP2002121023A (en) * 2000-10-06 2002-04-23 Tokuyama Corp Tin-based double oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143754A (en) * 2007-12-12 2009-07-02 Jgc Catalysts & Chemicals Ltd Conductive, fibrous, hollow silica particulate dispersoid and method for producing the same
WO2015060232A1 (en) * 2013-10-25 2015-04-30 三井金属鉱業株式会社 Conductive particles and method for producing same

Also Published As

Publication number Publication date
JP4559668B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP4712288B2 (en) White conductive powder and its application
JP4594010B2 (en) toner
JP5629344B2 (en) Tin oxide particles and method for producing the same
JP4617499B2 (en) ITO powder and manufacturing method thereof, coating material for transparent conductive material, and transparent conductive film
JP5400307B2 (en) White conductive powder and its use
WO2004058645A1 (en) Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition
JP4778139B2 (en) White conductive powder and its application
EP2565160B1 (en) Filler particles, resin composition, grease, and coating composition
JP2003059342A (en) Conductive powder and its manufacturing method
JP5400306B2 (en) White conductive powder and its use
JP2006059806A (en) Fine powder of surface-modified transparent conductive tin oxide, its manufacturing method, and its dispersion body
JP5051566B2 (en) Transparent conductive fine powder, method for producing the same, dispersion, and paint
WO2007086450A1 (en) External additive for toner and process for producing the same
JP4105861B2 (en) Tin-based oxide and method for producing the same
JP2011141542A (en) Carrier for electrostatic latent image development and developer for electrostatic latent image development
JP4540213B2 (en) Tin-based oxide and method for producing the same
JP2005330163A (en) Electroconductive tin oxide powder, manufacturing method thereof, and electroconductive-paste and -paint
JP3365883B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP2007039282A (en) Method and apparatus for manufacturing conductive tin oxide powder
JP3774481B2 (en) Method for producing highly conductive ultrafine tin dioxide
JP6557556B2 (en) Conductive particles and conductive composition containing the same
JP3515625B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
JP2003300727A (en) Conductive tin dioxide superfine powder
JP6577327B2 (en) Conductive particles and conductive composition containing the same
JP6511329B2 (en) Conductive particle and conductive composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160730

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees