JP2000192184A - Cubic boron nitride-containing hard member and its production - Google Patents

Cubic boron nitride-containing hard member and its production

Info

Publication number
JP2000192184A
JP2000192184A JP10367011A JP36701198A JP2000192184A JP 2000192184 A JP2000192184 A JP 2000192184A JP 10367011 A JP10367011 A JP 10367011A JP 36701198 A JP36701198 A JP 36701198A JP 2000192184 A JP2000192184 A JP 2000192184A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
hard member
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10367011A
Other languages
Japanese (ja)
Inventor
Hideki Moriguchi
秀樹 森口
Akihiko Ikegaya
明彦 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10367011A priority Critical patent/JP2000192184A/en
Publication of JP2000192184A publication Critical patent/JP2000192184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a dense and inexpensive cubic boron nitride-contg. hard member in which deterioration in the quality of cubic born nitride can be reduced to some degree and excellent in wear resistance and to provide a method for producing the same. SOLUTION: This invention is a cubic boron nitride-contg. hard member produced, under the condition in which cubic boron nitride is metastable, by subjecting powder having a compsn. composed of cubic boron nitride, and the balance at least either cemented carbide or cermet to electric pressure sintering. The particle size of cubic boron nitride is controlled to 1 to 1000 μm. Moreover, the content of the cubic boron nitride particles is 5 to 70 vol.%. The content of impurities in the cubic boron nitride particles is controlled to <=0.3 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は硬質合金に立方晶窒
化硼素粒子を複合化した硬質部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard member in which cubic boron nitride particles are combined with a hard alloy.

【0002】[0002]

【従来の技術】近年、WC基超硬合金はその優れた靭
性、耐摩耗性によりその適用分野を大幅に広げてきてい
る。また、立方晶窒化硼素焼結体も超硬合金を大幅に上
回る耐摩耗性により、その適用分野を増やしてきてい
る。しかしながら従来の立方晶窒化硼素焼結体は超高圧
発生容器により製造されるため、製造コストが高く、ま
た形状面でも制約が大きい上、その強度、靭性は超硬合
金と比較して劣るので、限定された用途でしかその優れ
た性能を発揮することが出来なかった。
2. Description of the Related Art In recent years, the application field of WC-based cemented carbide has been greatly expanded due to its excellent toughness and wear resistance. Further, the application field of the cubic boron nitride sintered body has been increasing due to its wear resistance which is much higher than that of cemented carbide. However, since the conventional cubic boron nitride sintered body is manufactured in an ultra-high pressure generating vessel, the manufacturing cost is high, and the shape is also greatly restricted, and its strength and toughness are inferior to cemented carbide, Its superior performance could only be demonstrated in limited applications.

【0003】これに対して、特開昭60-33336号公報、特
開昭63-11414号公報では立方晶窒化硼素含有硬質部材を
超高圧容器を用いずに製造することが提案されている。
On the other hand, JP-A-60-33336 and JP-A-63-11414 propose to manufacture a cubic boron nitride-containing hard member without using an ultrahigh-pressure vessel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この超
高圧装置を用いずに製造した立方晶窒化硼素含有硬質部
材は、その組織の緻密性が十分でなく、立方晶窒化硼素
粒子が破壊、脱落しやすいといった問題点を有してい
た。
However, the cubic boron nitride-containing hard member manufactured without using the ultrahigh-pressure apparatus has insufficient structure of the structure, and the cubic boron nitride particles are broken and fall off. There was a problem that it was easy.

【0005】本発明者らは上記問題点を解決するため、
超硬合金マトリックス中に立方晶窒化硼素を分散した焼
結体を通電加圧焼結により超硬合金に液相が生成する条
件下で製造する方法を提案(特開平9-194978号公報)し
た。この技術によれば、緻密である程度立方晶窒化硼素
品質劣化を小さくでき、安価で耐摩耗性に優れた焼結体
を作製することが出来るようになった。
[0005] To solve the above problems, the present inventors have
We have proposed a method for producing a sintered body in which cubic boron nitride is dispersed in a cemented carbide matrix under conditions where a liquid phase is formed in the cemented carbide by current pressure sintering (Japanese Patent Application Laid-Open No. 9-194978). . According to this technique, it is possible to reduce the quality deterioration of cubic boron nitride densely and to some extent, and to manufacture a sintered body which is inexpensive and has excellent wear resistance.

【0006】その後、本発明者らは、硬質部材における
耐摩耗性の一層の改善を目的として、さらにこの硬質部
材の開発研究を継続した。
[0006] Thereafter, the present inventors continued the research and development of this hard member for the purpose of further improving the wear resistance of the hard member.

【0007】[0007]

【課題を解決するための手段】本発明は、上記研究の結
果、原料粉末として用いた立方晶窒化硼素粒子中の不純
物量をある量以下に制御することにより、硬質部材の耐
摩耗性をさらに向上させることができるという知見に基
づくものである。
According to the present invention, as a result of the above research, the wear resistance of the hard member is further improved by controlling the amount of impurities in the cubic boron nitride particles used as the raw material powder to a certain amount or less. It is based on the finding that it can be improved.

【0008】すなわち、本発明の硬質部材は立方晶窒化
硼素が準安定な条件で、立方晶窒化硼素と残部が超硬合
金およびサーメットの少なくとも一方からなる組成の粉
末とを通電加圧焼結して作製した立方晶窒化硼素含有硬
質部材である。立方晶窒化硼素の粒子径は1〜1000μm
であり、立方晶窒化硼素粒子の含有量は5〜70体積%で
あり、立方晶窒化硼素粒子中の不純物含有量が0.3wt%
以下であることを特徴とする。
That is, the hard member of the present invention is obtained by subjecting cubic boron nitride to a powder having a composition comprising at least one of a cemented carbide and a cermet by current-pressure sintering under the condition that cubic boron nitride is metastable. This is a cubic boron nitride-containing hard member manufactured by the above method. Particle diameter of cubic boron nitride is 1 ~ 1000μm
The content of the cubic boron nitride particles is 5 to 70% by volume, and the content of impurities in the cubic boron nitride particles is 0.3% by weight.
It is characterized by the following.

【0009】ここで、立方晶窒化硼素の粒径を1〜1000
μmとしたのは、1μm未満では立方晶窒化硼素を添加
した効果が得られにくいためで、1000μmを越えると強
度の低下が大きくなるためである。特に好ましいのは、
3〜300μmのときである。また、立方晶窒化硼素の含有
量を5〜70体積%としたのは、5体積%未満では耐摩耗性
向上の効果が小さく、70体積%よりも多いと強度の低下
が著しくなる。特に好ましいのは、20〜40体積%のとき
である。さらに、立方晶窒化硼素粒子中の不純物含有量
を0.3wt%以下としたのは、この範囲にあると特に優れ
た耐摩耗性を得ることができるからで、特に好ましいの
は0.2wt%以下のときである。
Here, the particle size of the cubic boron nitride is 1 to 1000
The reason why the thickness is set to μm is that if the thickness is less than 1 μm, it is difficult to obtain the effect of adding cubic boron nitride, and if it exceeds 1000 μm, the strength is greatly reduced. Particularly preferred is
It is the case of 3 to 300 μm. Further, the content of cubic boron nitride is set to 5 to 70% by volume. When the content is less than 5% by volume, the effect of improving the wear resistance is small, and when the content is more than 70% by volume, the strength is remarkably reduced. Especially preferred is 20 to 40% by volume. Further, the reason why the impurity content in the cubic boron nitride particles is set to 0.3 wt% or less is that when the content is within this range, particularly excellent wear resistance can be obtained, and particularly preferable is 0.2 wt% or less. It is time.

【0010】なお、本硬質材料のマトリックスとなる超
硬合金もしくはサーメットの組成は周期律表IVa、Va、V
Ia族元素の炭化物、窒化物および炭窒化物から選択され
た少なくとも一種の硬質相および鉄族金属を主とする結
合相より構成されると強度、靭性、硬度に優れるため好
ましい。特にWCを主たる硬質相として際にはヤング率が
大きくなり、変形抵抗を大きくできるため、耐磨耗性材
料として優れた性能が期待できる。
The composition of the cemented carbide or cermet serving as the matrix of the present hard material depends on the periodic table IVa, Va, V
It is preferable to be composed of at least one hard phase selected from carbides, nitrides and carbonitrides of Group Ia elements and a binder phase mainly composed of an iron group metal because of excellent strength, toughness and hardness. In particular, when WC is used as the main hard phase, the Young's modulus increases and the deformation resistance can be increased, so that excellent performance can be expected as a wear-resistant material.

【0011】立方晶窒化硼素粒子中の不純物含有量を0.
3wt%以下に限定することにより、耐摩耗性が向上した
理由は良くわからないが次のように推定している。本硬
質材料は立方晶窒化硼素が準安定な条件で製造するた
め、立方晶窒化硼素の熱的な劣化を防ぐため、通電加圧
焼結法を用いて急速な昇温、短時間焼結、急速冷却によ
って製造している。このため、立方晶窒化硼素中に含ま
れる不純物成分が0.3wt%を越える立方晶窒化硼素粒子
は、0.3wt%以下の不純物含有量の立方晶窒化硼素粒子
と比較して熱的に不安定で、焼結工程での急加熱、急冷
却により立方晶窒化硼素粒子内に歪みが生じやすく、こ
れが原因となって耐摩材料として使用するとき、もしく
は研削加工時に立方晶窒化硼素粒子の割れが生じやすく
なるのに対して、立方晶窒化硼素粒子中の不純物含有量
が0.3wt%以下の場合には、急加熱、急冷却による立方
晶窒化硼素粒子内の歪み生成が抑制でき、立方晶窒化硼
素粒子が割れにくくなることにより、立方晶窒化硼素粒
子の脱落が抑制できた結果、優れた耐摩耗性を実現でき
たものと考えられた。主に含まれる不純物元素はAl、S
i、Fe、Ni、Co、Mg、Li、C、Oなどである。但し、Oに関
しては立方晶窒化硼素粒子の粒径の影響を受けやすく、
本発明では規定量から除外して考えたが、例えば1/2-2
μmの粉末で0.5wt%以下、2-8μmの粉末で0.2wt%以下
とすることが好ましい。
The content of impurities in the cubic boron nitride particles is reduced to 0.
The reason why the wear resistance is improved by limiting the content to 3 wt% or less is not well understood, but is estimated as follows. Because this hard material is manufactured under cubic boron nitride metastable conditions, in order to prevent thermal deterioration of cubic boron nitride, rapid temperature rise and short-time Manufactured by rapid cooling. Therefore, cubic boron nitride particles having an impurity component exceeding 0.3 wt% in cubic boron nitride are more thermally unstable than cubic boron nitride particles having an impurity content of 0.3 wt% or less. Due to rapid heating and rapid cooling in the sintering process, distortion is likely to occur in the cubic boron nitride particles, which causes cracks in the cubic boron nitride particles when used as a wear-resistant material or during grinding. On the other hand, when the content of impurities in the cubic boron nitride particles is 0.3 wt% or less, strain generation in the cubic boron nitride particles due to rapid heating and rapid cooling can be suppressed, and the cubic boron nitride particles can be suppressed. It was considered that, by making the particles hard to break, the falling of the cubic boron nitride particles could be suppressed, and as a result, excellent wear resistance could be realized. The main impurity elements are Al and S
i, Fe, Ni, Co, Mg, Li, C, O and the like. However, O is easily affected by the particle size of the cubic boron nitride particles,
In the present invention, it was considered to be excluded from the specified amount, for example, 1 / 2-2
It is preferred that the content be 0.5 wt% or less for a powder of μm and 0.2 wt% or less for a powder of 2-8 μm.

【0012】なお、立方晶窒化硼素粒子の表面には1300
℃以上の融点を有する金属、合金およびセラミックスか
ら選択された少なくとも一種が被覆されていることが好
ましい。これは、このような被覆層が設けられている
と、本硬質部材のマトリックスとなる超硬合金およびま
たはサーメットと立方晶窒化硼素の間で焼結中に起こる
反応、特にマトリックスに液相が生成した場合の液相と
立方晶窒化硼素間の反応を防止でき、立方晶窒化硼素の
劣化を防止することができるためである。被覆層として
はCr、W、Mo、Ti−Ta、Ti−Mo、Nb−V、TiC、TiN、Al2O
3、SiC、TiBN、TiAlN、TiZrNなどが好ましい。また、被
覆層の厚みとしては、0.01〜10μmが好ましい。特に好
ましいのは0.1〜5μmのときである。このような被覆
層を形成する方法としては、スパッタリング法やイオン
プレーティング法などの物理蒸着法(PVD法)や、化学
蒸着法(CVD法)の他、めっき法、浸漬法が挙げられ
る。
The surface of the cubic boron nitride particles is 1300
It is preferable that at least one selected from metals, alloys, and ceramics having a melting point of not less than ° C is coated. This is because, when such a coating layer is provided, the reaction occurring during sintering between the cemented carbide and / or cermet and cubic boron nitride that forms the matrix of the present hard member, in particular, the formation of a liquid phase in the matrix This is because a reaction between the liquid phase and the cubic boron nitride in the case of the above can be prevented, and deterioration of the cubic boron nitride can be prevented. Cr, W, Mo, Ti-Ta, Ti-Mo, Nb-V, TiC, TiN, Al 2 O
3 , SiC, TiBN, TiAlN, TiZrN and the like are preferable. The thickness of the coating layer is preferably from 0.01 to 10 μm. Particularly preferred is a time of 0.1 to 5 μm. Examples of the method for forming such a coating layer include a physical vapor deposition method (PVD method) such as a sputtering method and an ion plating method, a chemical vapor deposition method (CVD method), a plating method, and an immersion method.

【0013】本発明の硬質部材は原料粉末を混合して黒
鉛型内に装填する工程と、この原料粉末を通電加圧焼結
する工程とにより製造される。つまり、原料粉末には、
粒子中の不純物含有量が0.3wt%以下である立方晶窒化
硼素粒子を5〜70体積%と、残部が周期律表IVa、Va、VI
a族元素の炭化物、窒化物および炭窒化物から選択され
た少なくとも一種の硬質原料粉末および鉄族金属を主と
する金属原料粉末を用いる。通電加圧焼結の条件は、昇
温速度が20〜500℃/min、焼結温度が1000〜1400℃、焼
結温度での保持時間が10秒以上30分以内、冷却速度が15
℃/min〜400℃/min、加圧力が10〜100MPaとする。
[0013] The hard member of the present invention is manufactured by a process of mixing raw material powders and loading them into a graphite mold, and a process of sintering the raw material powders under electric pressure. In other words, the raw material powder
5 to 70% by volume of cubic boron nitride particles having an impurity content of 0.3% by weight or less in the particles, and the balance being the periodic table IVa, Va, VI
At least one hard raw material powder selected from carbides, nitrides and carbonitrides of group a elements and a metal raw material powder mainly composed of iron group metals are used. The conditions of the current pressure sintering are as follows: a temperature rise rate of 20 to 500 ° C / min, a sintering temperature of 1000 to 1400 ° C, a holding time at the sintering temperature of 10 seconds to 30 minutes, and a cooling rate of 15 seconds.
℃ / min ~ 400 ℃ / min, pressure is 10 ~ 100MPa.

【0014】ここで、焼結温度を1000〜1400℃と限定し
たのは1000℃よりも低いと緻密化が不十分となりやす
く、1400℃を越えると立方晶窒化硼素粒子の劣化が激し
くなるためである。次に、保持時間を10秒以上30分以内
としたのは、10秒よりも焼結時間が短いと緻密化が不十
分であり、30分よりも長いと立方晶窒化硼素の六方晶へ
の変態が起こりやすいためである。特に好ましいのは1
分以上10分以内である。また、加圧力を10〜100MPaとし
たのは、10MPa未満では緻密化の促進が起こりにくく、1
00MPaよりも高い圧力であると特殊な焼結型が必要とな
り製造コストが増大するためである。また、昇温速度を
20〜500℃/mim、冷却速度を15℃/min〜400℃/min、
と限定したのは、昇温速度が20℃/min、冷却速度が15
℃/minよりも遅いと立方晶窒化硼素の六方晶への変態
が起こりやすく、昇温速度が500℃/min、冷却速度が40
0℃/minよりも早いと焼結体に割れや立方晶窒化硼素中
での歪み発生が著しくなり、耐摩耗性が低下するためで
ある。そして、電流ON時間が1〜100msec、電流OFF時間
が1msec以上である矩形パルス電流を用いて通電加圧焼
結すると、焼結体が非常に緻密となり、さらに立方晶窒
化硼素粒子とマトリックスとの濡れ性が向上して結合力
が向上し、立方晶窒化硼素が脱落しにくい耐摩耗性に優
れた硬質部材とできるため好ましい。
Here, the reason why the sintering temperature is limited to 1000 to 1400 ° C. is that if the temperature is lower than 1000 ° C., the densification tends to be insufficient, and if it exceeds 1400 ° C., the cubic boron nitride particles are greatly deteriorated. is there. Next, the reason for setting the holding time to 10 seconds or more and 30 minutes or less is that if the sintering time is shorter than 10 seconds, densification is insufficient, and if it is longer than 30 minutes, the cubic boron nitride is converted to hexagonal. This is because metamorphosis is likely to occur. Particularly preferred is 1
Minutes and up to 10 minutes. Further, the reason why the pressing force is set to 10 to 100 MPa is that if the pressure is less than 10 MPa, the promotion of densification hardly occurs, and 1
If the pressure is higher than 00 MPa, a special sintering die is required, and the production cost increases. Also, the heating rate
20 ~ 500 ℃ / min, cooling rate 15 ℃ / min ~ 400 ℃ / min,
Were limited to a heating rate of 20 ° C / min and a cooling rate of 15
If the temperature is lower than ℃ / min, transformation of cubic boron nitride into hexagonal crystal tends to occur, and the temperature rise rate is 500 ° C / min and the cooling rate is 40
If the rate is higher than 0 ° C./min, cracks in the sintered body and strain generation in cubic boron nitride become remarkable, and wear resistance decreases. Then, when the current ON time is 1 to 100 msec, and the current OFF time is 1 msec or more, and the current pressure sintering is performed using a rectangular pulse current, the sintered body becomes very dense, and furthermore, the cubic boron nitride particles and the matrix It is preferable because the wettability is improved, the bonding force is improved, and a hard member having excellent abrasion resistance, in which cubic boron nitride is less likely to fall off, can be obtained.

【0015】なお、立方晶窒化硼素粒子を覆う前記被覆
層中にはCo、C、Wから選ばれた少なくとも一種の元素が
拡散していると、立方晶窒化硼素とWC基超硬合金の結
合力が向上する。特にCoが拡散した効果は大きく、これ
らの拡散は1〜100msecの矩形パルス電流を用いた通電加
圧焼結により得られやすい。
When at least one element selected from the group consisting of Co, C, and W is diffused in the coating layer covering the cubic boron nitride particles, the bonding between the cubic boron nitride and the WC-based cemented carbide is considered. Power improves. In particular, the effect of diffusion of Co is great, and these diffusions are easily obtained by current pressure sintering using a rectangular pulse current of 1 to 100 msec.

【0016】前記硬質部材がWC基超硬合金および金属
材料の少なくとも一方に接合されていると、硬質部材に
圧縮残留応力が生じて硬質部材が強靭化するとともに、
ロウづけや溶接施工、半田接合が簡単となり、本材料の
適用分野を広げることができる。
When the hard member is bonded to at least one of a WC-based cemented carbide and a metal material, a compressive residual stress is generated in the hard member, and the hard member is toughened.
Brazing, welding, and soldering are simplified, and the field of application of the material can be expanded.

【0017】また、前記硬質部材にダイヤモンド、ダイ
ヤモンドライクカーボン、立方晶窒化硼素の少なくとも
一つが被覆されると、硬質部材全面がこれらの被覆膜で
覆われることにより、非常に優れた耐摩耗性、潤滑性を
示す。この被覆膜は硬質部材中の立方晶窒化硼素粒子を
核として成膜されるため、非常に密着力に優れた被覆と
できる。
Further, when the hard member is coated with at least one of diamond, diamond-like carbon and cubic boron nitride, the entire hard member is covered with these coating films, so that very excellent wear resistance is obtained. Shows lubricity. Since this coating film is formed by using cubic boron nitride particles in the hard member as nuclei, it is possible to obtain a coating having extremely excellent adhesion.

【0018】特に、ダイヤモンドライクカーボンを被覆
した際には、膜が平滑で潤滑性に優れるため剥難が生じ
にくく、耐摩耗部材として非常に優れた性能が得られ
る。この優れた密着力は硬質部材中の立方晶窒化硼素粒
子とマトリックスである硬質合金の結合力が本発明によ
り高められていることで、特に優れた性能を得ることが
できたものである。
In particular, when diamond-like carbon is coated, the film is smooth and has excellent lubricity, so that it is hard to peel off and very excellent performance as a wear-resistant member can be obtained. This excellent adhesion is achieved by particularly high performance because the bonding force between the cubic boron nitride particles in the hard member and the hard alloy as the matrix is enhanced by the present invention.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)平均粒径が15μmで不純物含有量の異なる
人工合成立方晶窒化硼素粒子を準備し、立方晶窒化硼素
粒子中の不純物含有量は誘導結合プラズマ発光分析法、
Cは燃焼赤外吸収法により求めた。さらに、平均粒径が
5μmのWC、2μmのCo粉末、1μmのNi粉末、2μmのCr
3C2粉末を準備し、これらを表1の組成に秤量し、ボー
ルミルを用いて混合し、焼結用粉末とした。
Embodiments of the present invention will be described below. (Example 1) Artificially synthesized cubic boron nitride particles having an average particle size of 15 µm and different impurity contents were prepared, and the impurity content in the cubic boron nitride particles was determined by inductively coupled plasma emission spectrometry.
C was determined by a combustion infrared absorption method. Furthermore, the average particle size
5μm WC, 2μm Co powder, 1μm Ni powder, 2μm Cr
3 C 2 powders were prepared, weighed to the compositions shown in Table 1, and mixed using a ball mill to obtain sintering powders.

【0020】[0020]

【表1】 [Table 1]

【0021】このようにして準備した粉末をφ30mmの黒
鉛型に充填し、0.01Torrの真空中で圧力30MPaを付加し
ながら、電流ON時間が30msec、電流OFF時間が2msecの矩
形パルス電流を流して通電加圧焼結した。昇温パターン
は昇温速度100℃/minで1350℃まで昇温、その温度で1
分間保持して、その後30℃/minの速度で冷却とした。
このようにして得られた焼結体のサイズはφ30mm、厚み
10mmの焼結体で、割れもなく良好な外観を呈していた。
これらNo.1-1〜1-6の焼結体の黒皮を除去後、アルキメ
デス法で比重を測定した。No.1-1〜1-6の焼結体は理論
密度比99%以上の緻密度を有していた。
The thus prepared powder is filled in a graphite mold of φ30 mm, and a rectangular pulse current having a current ON time of 30 msec and a current OFF time of 2 msec is applied while applying a pressure of 30 MPa in a vacuum of 0.01 Torr. Electric current pressure sintering was performed. The temperature rise pattern was 1350 ° C at a rate of 100 ° C / min.
The temperature was kept for 30 minutes and then cooled at a rate of 30 ° C./min.
The size of the sintered body thus obtained is φ30 mm, thickness
The 10 mm sintered body had a good appearance without cracks.
After removing the black scale of the sintered bodies of Nos. 1-1 to 1-6, the specific gravity was measured by the Archimedes method. The sintered bodies of Nos. 1-1 to 1-6 had a dense density of 99% or more of the theoretical density ratio.

【0022】次に、これら焼結体から15×15×9mmの焼
結体を放電ワイヤカットおよび♯200のダイヤモンド砥
石を用いた平面研削で作製し、この焼結体の15×15mmの
面に平均粒径10μmのSiCを5kg/cmの圧力で60分間サ
ンドブラストし、耐摩試験を行った。No.1の焼結体の摩
耗量を100として、No.1-1〜1-6の焼結体の摩耗量を表1
中に記載した。
Next, a sintered body of 15 × 15 × 9 mm was prepared from these sintered bodies by discharge wire cutting and surface grinding using a # 200 diamond grindstone. Abrasion resistance test was performed by sandblasting SiC having an average particle diameter of 10 μm at a pressure of 5 kg / cm 2 for 60 minutes. Table 1 shows the wear amount of No.1-1 to 1-6 sintered bodies, with the wear amount of No.1 sintered body being 100.
It was described in.

【0023】表1の結果より、立方晶窒化硼素中の不純
物含有量が0.3wt%以下であるNo.1-3〜1-6の試料は優れ
た耐摩耗性を示し、特に不純物含有量が0.2wt%以下で
あるときに特に優れた耐摩耗性を示すことが確認でき
た。
From the results shown in Table 1, the samples of Nos. 1-3 to 1-6 in which the content of impurities in the cubic boron nitride is 0.3% by weight or less show excellent wear resistance, It was confirmed that particularly excellent wear resistance was exhibited when the content was 0.2 wt% or less.

【0024】また、耐摩耗性を評価したサンプルの摩耗
部を垂直に切断し、摩耗部を詳細に観察したところ、立
方晶窒化硼素中の不純物量が0.3 wt%を超えるNo.1-1と
1-2の試料では立方晶窒化硼素粒子中に生成したクラッ
クがNo.1-3〜1-6の試料よりも多く観察された。No.1-1
と1-2の試料の耐摩耗性がNo.1-3〜1-6の試料よりも悪か
ったのは、立方晶窒化硼素粒子中に発生したクラックが
原因で立方晶窒化硼素のフレーク状の脱落が多くなり、
表1の結果を招いたものと考えられる。
Further, when the wear portion of the sample for which the wear resistance was evaluated was cut vertically, and the wear portion was observed in detail, it was found that the amount of impurities in cubic boron nitride exceeded 0.3 wt%, and that the sample was No. 1-1.
In samples 1-2, more cracks were formed in the cubic boron nitride particles than in samples Nos. 1-3 to 1-6. No.1-1
The abrasion resistance of the samples of Nos. 1-3 and 1-2 was worse than the samples of Nos. 1-3 to 1-6 because of the cracks generated in the cubic boron nitride particles. More dropouts,
It is considered that the result of Table 1 was caused.

【0025】なお、各焼結体の立方晶窒化硼素中に含ま
れる不純物量を、マトリックスである硬質合金を酸で溶
かして除去後、立方晶窒化硼素粒子を溶融塩を用いて溶
解し、さらに酸を加えて水溶液とし、誘導結合プラズマ
発光分析法により測定したが、原料時に含まれていた不
純物量と大きな変化がないことも確認できた。
The amount of impurities contained in the cubic boron nitride of each sintered body is removed by dissolving the hard alloy as a matrix with an acid, and then dissolving the cubic boron nitride particles using a molten salt. An aqueous solution was prepared by adding an acid, and the solution was measured by inductively coupled plasma emission spectrometry. As a result, it was confirmed that the amount of impurities contained in the raw material did not change much.

【0026】(実施例2)平均粒径が200μmで不純物
含有量が異なる立方晶窒化硼素粒子を準備し、この粒子
表面にTiNをPVD法で2μm被覆した。さらに、平均粒経
が3μmのTiCNを80体積%、平均粒径2μmのNi、Co粉末
をそれぞれ15、5体積%を準備してボールミルで混合
し、サーメット粉末を作製した。このサーメット粉末に
前記立方晶窒化硼素粒子が35体積%となるように配合
し、乾式で混合後、焼結用粉末とした。
Example 2 Cubic boron nitride particles having an average particle size of 200 μm and different impurity contents were prepared, and the surface of the particles was coated with TiN by 2 μm by a PVD method. Further, 80% by volume of TiCN having an average particle diameter of 3 μm, and 15 and 5% by volume of Ni and Co powders having an average particle diameter of 2 μm were prepared and mixed by a ball mill to prepare a cermet powder. This cermet powder was blended with the cubic boron nitride particles in an amount of 35% by volume and mixed in a dry system to obtain a sintering powder.

【0027】次に、最下層に径が50mm、厚み5mmの鋼(S
45C)、中間層にWC−30wt%Co超硬粉末、最上層に前
記立方晶窒化硼素粒子を混合したサーメット粉末となる
ように積層してφ50mmの黒鉛型に充填し、0.01Torr以下
の真空中で圧力50MPaを付加しながら、電流ON時間が100
msec、電流OFF時間が2msecの矩形パルス電流を流して11
50℃まで昇温、その温度で6分間保持して通電加圧焼結
した。なお、昇温速度と冷却速度は表2に記載の通りと
した。
Next, in the lowermost layer, a steel (S
45C), WC-30wt% Co cemented carbide powder in the intermediate layer, cermet powder mixed with the cubic boron nitride particles in the uppermost layer, filled in a graphite mold of φ50mm, and filled in a vacuum of 0.01 Torr or less. Current ON time is 100
msec, current OFF time is 2msec.
The temperature was raised to 50 ° C., and the temperature was maintained for 6 minutes, followed by current pressure sintering. The heating rate and the cooling rate were as shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】このようにして得られた焼結体のサイズは
φ50mm、厚み10mmの焼結体である。試料No.2-1、2-2、2
-3、2-4は割れもなく良好な外観を呈していたが、昇温
速度が800℃/minと早い試料No.2-5、2-6には積層体に割
れが生じ、実施例1に示した耐摩試験が実施できなかっ
た。また、各試料における立方晶窒化硼素の六方晶への
変態の有無をX線回折により評価したところ、試料No.2
-3、2-4には立方晶窒化硼素の六方晶への変態は確認さ
れないのに対し、試料No.2-1、2-2は立方晶窒化硼素の
一部に六方晶への変態が進行していることが確認され
た。これは昇温速度、冷却速度が試料No.2-3、2-4と比
較して遅いためと考えられた。
The sintered body thus obtained is a sintered body having a diameter of 50 mm and a thickness of 10 mm. Sample No.2-1, 2-2, 2
-3 and 2-4 had good appearance without cracks, but samples No. 2-5 and 2-6, which had a rapid temperature rise of 800 ° C / min, had cracks in the laminate, The abrasion resistance test shown in No. 1 could not be performed. Further, the presence or absence of transformation of cubic boron nitride to hexagonal in each sample was evaluated by X-ray diffraction.
No transformation of cubic boron nitride to hexagonal crystal was observed in -3 and 2-4, whereas in sample Nos. 2-1 and 2-2, a part of cubic boron nitride was transformed to hexagonal crystal. It was confirmed that it was progressing. This was considered because the heating rate and cooling rate were slower than those of Sample Nos. 2-3 and 2-4.

【0030】次に、このようにして鋼に焼結接合したN
o.2-1〜2-4の試験片から30×30×9mmの焼結体を放電ワ
イヤカットおよび♯200のダイヤモンド砥石を用いた平
面研削で作製し、実施例1と同様にして、耐摩試験を行
った。試験結果は試料No.2-1の焼結体の摩耗量を100と
して、No.2-1〜2-4の焼結体の摩耗量を表2中に記載し
た。
Next, the N 2 sintered and bonded to the steel
o. A 30 × 30 × 9 mm sintered body was prepared from the test specimens of 2-1 to 2-4 by discharge wire cutting and surface grinding using a # 200 diamond grindstone. The test was performed. The test results are shown in Table 2 with the wear amount of the sintered bodies of Nos. 2-1 to 2-4 assuming that the wear amount of the sintered body of sample No. 2-1 is 100.

【0031】表2の結果より、立方晶窒化硼素中の不純
物含有量が0.3wt%以下であり、昇温速度が20〜500℃/m
in、冷却速度が15〜400℃/minの範囲にある試料No.2-4
の試料は特に優れた耐摩耗性を示すことが確認できた。
From the results shown in Table 2, the content of impurities in the cubic boron nitride is 0.3 wt% or less, and the temperature rise rate is 20 to 500 ° C./m
in, sample No.2-4 whose cooling rate is in the range of 15 to 400 ° C / min
It was confirmed that the sample of Example 1 exhibited particularly excellent wear resistance.

【0032】(実施例3)実施例2で作製した試料No.2
-4の立方晶窒化硼素含有側の焼結体表面にCVD法でダ
イヤモンド、立方晶窒化硼素を5μm被覆したNo.3-1、N
o.3-2と、PVD法でダイヤモンドライクカーボンを5μ
m被覆したNo.3-3を用い、実施例2と同様の条件で耐摩
試験を行なった。本試験ではダイヤモンド、立方晶窒化
硼素およびダイヤモンドライクカーボン膜は基材にしっ
かりと密着し、剥離部などは観察されなかった。
Example 3 Sample No. 2 prepared in Example 2
No. 3-1 and N in which the surface of the sintered body on the cubic boron nitride-containing side of No. -4 was coated with diamond and cubic boron nitride by 5 μm by CVD method.
o.3-2 and 5μm diamond-like carbon by PVD method
Using No. 3-3 coated with m, an abrasion resistance test was performed under the same conditions as in Example 2. In this test, the diamond, cubic boron nitride and diamond-like carbon films adhered firmly to the substrate, and no peeled portions were observed.

【0033】また、耐摩試験結果を表3に記載するが、
No.3-1、No.3-2、No.3-3の試料はいずれも未被覆の試料
No.2-4に対し、優れた耐摩耗性を有していることが確認
できた。
Table 3 shows the results of the abrasion test.
No.3-1, No.3-2 and No.3-3 are all uncoated samples
No.2-4 was confirmed to have excellent wear resistance.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【発明の効果】以上説明したように、本発明硬質部材に
よれば、硬質部材における立方晶窒化硼素粒子中の不純
物含有量を特定することで耐摩耗性を改善することがで
きる。
As described above, according to the hard member of the present invention, the wear resistance can be improved by specifying the impurity content in the cubic boron nitride particles in the hard member.

【0036】また、本発明製造方法によれば、所定の通
電加圧焼結とすることで、立方晶窒化硼素粒子とマトリ
ックスとの濡れ性が向上して結合力が向上し、立方晶窒
化硼素の強度が高く、かつ脱落しにくい耐摩耗性に優れ
た硬質部材を得ることができる。
According to the production method of the present invention, the sintering is carried out under a predetermined current and pressure, whereby the wettability between the cubic boron nitride particles and the matrix is improved, and the bonding force is improved. A hard member having high strength and excellent in abrasion resistance that is difficult to fall off can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 立方晶窒化硼素が準安定な条件で、立方
晶窒化硼素と残部が超硬合金およびサーメットの少なく
とも一方からなる組成の粉末とを通電加圧焼結して作製
した立方晶窒化硼素含有硬質部材において、 前記立方晶窒化硼素の粒子径が1〜1000μmであり、 前記立方晶窒化硼素粒子の含有量が5〜70体積%であ
り、 前記立方晶窒化硼素粒子中の不純物含有量が0.3wt%以下
であることを特徴とする立方晶窒化硼素含有硬質部材。
1. A cubic nitride produced by current-pressure sintering of cubic boron nitride and a powder having a composition consisting of at least one of a cemented carbide and a cermet under the condition that cubic boron nitride is metastable. In the boron-containing hard member, the particle diameter of the cubic boron nitride is 1 to 1000 μm, the content of the cubic boron nitride particles is 5 to 70% by volume, and the impurity content in the cubic boron nitride particles. Is not more than 0.3% by weight.
【請求項2】 前記不純物含有量が0.2wt%以下であるこ
とを特徴とする請求項1に記載の立方晶窒化硼素含有硬
質部材。
2. The cubic boron nitride-containing hard member according to claim 1, wherein the impurity content is 0.2 wt% or less.
【請求項3】 前記立方晶窒化硼素粒子の表面には1300
℃以上の融点を有する金属、合金およびセラミックスか
ら選択された少なくとも一種が被覆されていることを特
徴とする請求項1に記載の立方晶窒化硼素含有硬質部
材。
3. The surface of the cubic boron nitride particles has a thickness of 1300.
The cubic boron nitride-containing hard member according to claim 1, wherein at least one selected from metals, alloys, and ceramics having a melting point of not less than ° C is coated.
【請求項4】 前記硬質部材がWC基超硬合金および鋼
の少なくとも一方に接合されていることを特徴とする請
求項1に記載の立方晶窒化硼素含有硬質部材。
4. The cubic boron nitride-containing hard member according to claim 1, wherein the hard member is bonded to at least one of a WC-based cemented carbide and steel.
【請求項5】 前記硬質部材にダイヤモンド、ダイヤモ
ンドライクカーボンおよび立方晶窒化硼素から選ばれた
少なくとも一つが被覆されたことを特徴とする請求項1
に記載の立方晶窒化硼素含有硬質部材。
5. The hard member is coated with at least one selected from the group consisting of diamond, diamond-like carbon, and cubic boron nitride.
3. The cubic boron nitride-containing hard member according to item 1.
【請求項6】 粒子中の不純物含有量が0.3wt%以下であ
る立方晶窒化硼素粒子を5〜70体積%と、残部が周期律
表IVa、Va、VIa族元素の炭化物、窒化物および炭窒化物
から選択された少なくとも一種の硬質原料粉末および鉄
族金属を主とする金属原料粉末を黒鉛型に装填する工程
と、 昇温速度が20〜500℃/min、焼結温度が1000〜1400℃、
焼結温度での保持時間が10秒以上30分以内、冷却速度が
15℃/min〜400℃/min、加圧力が10〜100MPaという条
件で黒鉛型内の原料粉末を通電加圧焼結する工程とを具
えることを特徴とする立方晶窒化硼素含有硬質部材の製
造方法。
6. A cubic boron nitride particle having an impurity content of 0.3% by weight or less in particles of 5 to 70% by volume, with the balance being carbides, nitrides and carbons of Group IVa, Va, VIa group elements. A step of loading at least one kind of hard raw material powder selected from nitrides and a metal raw material powder mainly composed of an iron group metal into a graphite mold, a heating rate of 20 to 500 ° C./min, and a sintering temperature of 1000 to 1400. ℃,
Holding time at sintering temperature is more than 10 seconds and less than 30 minutes, cooling rate is
Sintering the raw material powder in the graphite mold under electric pressure under conditions of 15 ° C./min to 400 ° C./min and a pressure of 10 to 100 MPa. Production method.
JP10367011A 1998-12-24 1998-12-24 Cubic boron nitride-containing hard member and its production Pending JP2000192184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10367011A JP2000192184A (en) 1998-12-24 1998-12-24 Cubic boron nitride-containing hard member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10367011A JP2000192184A (en) 1998-12-24 1998-12-24 Cubic boron nitride-containing hard member and its production

Publications (1)

Publication Number Publication Date
JP2000192184A true JP2000192184A (en) 2000-07-11

Family

ID=18488247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10367011A Pending JP2000192184A (en) 1998-12-24 1998-12-24 Cubic boron nitride-containing hard member and its production

Country Status (1)

Country Link
JP (1) JP2000192184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014217A (en) * 2018-08-09 2018-12-18 蓬莱市超硬复合材料有限公司 A kind of button compacting Production and quality control technique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014217A (en) * 2018-08-09 2018-12-18 蓬莱市超硬复合材料有限公司 A kind of button compacting Production and quality control technique

Similar Documents

Publication Publication Date Title
TWI299364B (en) Fabrication of b/c/n/o doped sputtering targets
AU619272B2 (en) A surface-coated cemented carbide and a process for the production of the same
JPH08119774A (en) Combined material having high hardness for tool
FR2715929A1 (en) Polycrystalline cubic boron nitride sintered compact mfr
WO2017136969A1 (en) Boron nitride composite coating, graded structure ultrafine hard alloy cutting tool with the composite coating, and method for manufacturing same
JP3214891B2 (en) Diamond coated members
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
JP2000234136A (en) Cemented carbide, coated cemented carbide and production thereof
JPH0819522B2 (en) Diamond-coated sintered alloy with excellent adhesion and method for producing the same
JP4191663B2 (en) Composite high hardness material for tools
JP4069749B2 (en) Cutting tool for roughing
JPH10237650A (en) Wc base cemented carbide and its production
JP2000144298A (en) Diamond-containing hard member and its production
JP2000192184A (en) Cubic boron nitride-containing hard member and its production
JP2001040446A (en) Diamond-containing hard member and its production
JP4281666B2 (en) Surface coated cemented carbide mold with excellent wear resistance of lubricated amorphous carbon coating in high speed press forming of metal powder
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JP2005248309A (en) Cemented carbide and coated cemented carbide
JP3872544B2 (en) Coated cemented carbide
JP3762278B2 (en) Cemented carbide and method for producing the same
JPH116056A (en) Target containing intermetallic compound, and manufacture of hard covered member using it
JPH08260129A (en) Cubic boron nitride composite cermet tool and its production
JP3729463B2 (en) Tough cemented carbide and coated cemented carbide for milling
JP2828512B2 (en) Coated TiCN-based cermet